Jumping Knowledge Based Spatial-Temporal Graph Convolutional Networks for Automatic Sleep Stage Classification

A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electroc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 1464 - 1472
Main Authors Ji, Xiaopeng, Li, Yan, Wen, Peng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2022.3176004

Cover

More Information
Summary:A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) are utilized to classify sleep stages, after extracting features by a standard convolutional neural network (CNN) named FeatureNet. Intrinsic connections among different bio-signal channels from the identical epoch and neighboring epochs can be obtained through two adaptive adjacency matrices learning methods. A jumping knowledge spatial-temporal graph convolution module helps the JK-STGCN model to extract spatial features from the graph convolutions efficiently and temporal features are extracted from its common standard convolutions to learn the transition rules among sleep stages. Experimental results on the ISRUC-S3 dataset showed that the overall accuracy achieved 0.831 and the F1-score and Cohen kappa reached 0.814 and 0.782, respectively, which are the competitive classification performance with the state-of-the-art baselines. Further experiments on the ISRUC-S3 dataset are also conducted to evaluate the execution efficiency of the JK-STGCN model. The training time on 10 subjects is 2621s and the testing time on 50 subjects is 6.8s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U-Net architecture algorithms. Experimental results on the ISRUC-S1 dataset also demonstrate its generality, whose accuracy, F1-score, and Cohen kappa achieve 0.820, 0.798, and 0.767 respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2022.3176004