Jumping Knowledge Based Spatial-Temporal Graph Convolutional Networks for Automatic Sleep Stage Classification
A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electroc...
Saved in:
| Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 1464 - 1472 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1534-4320 1558-0210 1558-0210 |
| DOI | 10.1109/TNSRE.2022.3176004 |
Cover
| Abstract | A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) are utilized to classify sleep stages, after extracting features by a standard convolutional neural network (CNN) named FeatureNet. Intrinsic connections among different bio-signal channels from the identical epoch and neighboring epochs can be obtained through two adaptive adjacency matrices learning methods. A jumping knowledge spatial-temporal graph convolution module helps the JK-STGCN model to extract spatial features from the graph convolutions efficiently and temporal features are extracted from its common standard convolutions to learn the transition rules among sleep stages. Experimental results on the ISRUC-S3 dataset showed that the overall accuracy achieved 0.831 and the F1-score and Cohen kappa reached 0.814 and 0.782, respectively, which are the competitive classification performance with the state-of-the-art baselines. Further experiments on the ISRUC-S3 dataset are also conducted to evaluate the execution efficiency of the JK-STGCN model. The training time on 10 subjects is 2621s and the testing time on 50 subjects is 6.8s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U-Net architecture algorithms. Experimental results on the ISRUC-S1 dataset also demonstrate its generality, whose accuracy, F1-score, and Cohen kappa achieve 0.820, 0.798, and 0.767 respectively. |
|---|---|
| AbstractList | A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) are utilized to classify sleep stages, after extracting features by a standard convolutional neural network (CNN) named FeatureNet. Intrinsic connections among different bio-signal channels from the identical epoch and neighboring epochs can be obtained through two adaptive adjacency matrices learning methods. A jumping knowledge spatial-temporal graph convolution module helps the JK-STGCN model to extract spatial features from the graph convolutions efficiently and temporal features are extracted from its common standard convolutions to learn the transition rules among sleep stages. Experimental results on the ISRUC-S3 dataset showed that the overall accuracy achieved 0.831 and the F1-score and Cohen kappa reached 0.814 and 0.782, respectively, which are the competitive classification performance with the state-of-the-art baselines. Further experiments on the ISRUC-S3 dataset are also conducted to evaluate the execution efficiency of the JK-STGCN model. The training time on 10 subjects is 2621s and the testing time on 50 subjects is 6.8s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U-Net architecture algorithms. Experimental results on the ISRUC-S1 dataset also demonstrate its generality, whose accuracy, F1-score, and Cohen kappa achieve 0.820, 0.798, and 0.767 respectively. A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) are utilized to classify sleep stages, after extracting features by a standard convolutional neural network (CNN) named FeatureNet. Intrinsic connections among different bio-signal channels from the identical epoch and neighboring epochs can be obtained through two adaptive adjacency matrices learning methods. A jumping knowledge spatial-temporal graph convolution module helps the JK-STGCN model to extract spatial features from the graph convolutions efficiently and temporal features are extracted from its common standard convolutions to learn the transition rules among sleep stages. Experimental results on the ISRUC-S3 dataset showed that the overall accuracy achieved 0.831 and the F1-score and Cohen kappa reached 0.814 and 0.782, respectively, which are the competitive classification performance with the state-of-the-art baselines. Further experiments on the ISRUC-S3 dataset are also conducted to evaluate the execution efficiency of the JK-STGCN model. The training time on 10 subjects is 2621s and the testing time on 50 subjects is 6.8s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U-Net architecture algorithms. Experimental results on the ISRUC-S1 dataset also demonstrate its generality, whose accuracy, F1-score, and Cohen kappa achieve 0.820, 0.798, and 0.767 respectively.A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) are utilized to classify sleep stages, after extracting features by a standard convolutional neural network (CNN) named FeatureNet. Intrinsic connections among different bio-signal channels from the identical epoch and neighboring epochs can be obtained through two adaptive adjacency matrices learning methods. A jumping knowledge spatial-temporal graph convolution module helps the JK-STGCN model to extract spatial features from the graph convolutions efficiently and temporal features are extracted from its common standard convolutions to learn the transition rules among sleep stages. Experimental results on the ISRUC-S3 dataset showed that the overall accuracy achieved 0.831 and the F1-score and Cohen kappa reached 0.814 and 0.782, respectively, which are the competitive classification performance with the state-of-the-art baselines. Further experiments on the ISRUC-S3 dataset are also conducted to evaluate the execution efficiency of the JK-STGCN model. The training time on 10 subjects is 2621s and the testing time on 50 subjects is 6.8s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U-Net architecture algorithms. Experimental results on the ISRUC-S1 dataset also demonstrate its generality, whose accuracy, F1-score, and Cohen kappa achieve 0.820, 0.798, and 0.767 respectively. |
| Author | Ji, Xiaopeng Wen, Peng Li, Yan |
| Author_xml | – sequence: 1 givenname: Xiaopeng orcidid: 0000-0002-4453-3541 surname: Ji fullname: Ji, Xiaopeng email: xiaopeng.ji@usq.edu.au organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, QLD, Australia – sequence: 2 givenname: Yan orcidid: 0000-0002-4694-4926 surname: Li fullname: Li, Yan email: yan.li@usq.edu.au organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, QLD, Australia – sequence: 3 givenname: Peng surname: Wen fullname: Wen, Peng email: paul.wen@usq.edu.au organization: School of Mechanical and Electrical Engineering, University of Southern Queensland, Toowoomba, QLD, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35584068$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktv1DAUhSPUij7gD4CEIrFhk8F27NhellEppVWRmGFt3TjO4MGJg50w6r_H82AWI1a2rO8cnXuPr7Kz3vcmy95gNMMYyY_Lp8X32xlBhMxKzCuE6IvsEjMmCkQwOtveS1rQkqCL7CrGNUKJYvxldlEmiKJKXGb916kbbL_KH3q_caZZmfwTRNPkiwFGC65Ymm7wAVx-F2D4mc99_8e7abS-T29PZtz48CvmrQ_5zTT6Lol0vnDGDPlihOQ2dxCjba2GreZVdt6Ci-b14bzOfny-Xc6_FI_f7u7nN4-FphUeC6M5w22lpWkaxrRkNRXIUESaRgjS1MC5JiA5KWXJqxZIDWkwAoQKYRjF5XV2v_dtPKzVEGwH4Vl5sGr34MNKQUhRnVFagtAUY8oIppTJZFbLhklZ46ZltE1e5d5r6gd43oBzR0OM1LYJNfYxGLVtQh2aSKoPe9UQ_O_JxFF1NmrjHPTGT1GRqqoYFZLwhL4_Qdd-Cmm_W4oTgaoSy0S9O1BT3ZnmmOFflwkQe0AHH1OeVmk77rY-BrDuGHb3bU7DkhPp6YT_Fb3di6wx5iiQnHOZEv8FbQTLxQ |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_1007_s11069_025_07187_2 crossref_primary_10_1016_j_eswa_2024_125303 crossref_primary_10_1109_TNSRE_2023_3309542 crossref_primary_10_1016_j_neucom_2023_126901 crossref_primary_10_1186_s40708_024_00219_w crossref_primary_10_1007_s40747_024_01648_0 crossref_primary_10_1109_JBHI_2023_3339713 crossref_primary_10_1109_JIOT_2023_3327795 crossref_primary_10_1016_j_bbe_2024_06_004 crossref_primary_10_1016_j_cmpb_2023_107992 crossref_primary_10_1007_s13755_024_00328_0 crossref_primary_10_1145_3625238 crossref_primary_10_1109_ACCESS_2024_3496721 crossref_primary_10_3389_frsle_2023_1163477 crossref_primary_10_1016_j_neunet_2023_05_016 crossref_primary_10_1088_1741_2552_adb996 crossref_primary_10_3390_app14135392 crossref_primary_10_1186_s40708_024_00241_y crossref_primary_10_1142_S0219519424500064 |
| Cites_doi | 10.1093/sleep/zsz306 10.1109/EMBC44109.2020.9176741 10.1504/IJBRA.2013.052447 10.1016/j.cmpb.2015.10.013 10.1007/978-3-642-35139-6_18 10.1109/CVPR.2016.90 10.1109/ICTAI.2017.00025 10.1007/s10439-015-1444-y 10.1016/j.eswa.2020.114031 10.1088/0967-3334/35/1/R1 10.1176/appi.ajp.2008.07121882 10.3389/fncom.2018.00085 10.1007/s40708-014-0003-x 10.1016/j.procs.2017.10.042 10.1016/j.cmpb.2019.105116 10.1001/archpsyc.1969.01740140118016 10.1109/TAFFC.2018.2817622 10.1109/TNSRE.2017.2776149 10.1109/CVPR.2015.7298594 10.1109/TNSRE.2021.3110665 10.24963/ijcai.2020/184 10.1164/rccm.2109080 10.1109/TAFFC.2020.2994159 10.24963/ijcai.2021/360 10.1038/s41746-021-00440-5 10.18653/v1/P17-1172 10.3389/fninf.2019.00045 10.1109/CVPR.2017.11 10.1016/j.cmpb.2011.11.005 10.1109/TIM.2018.2799059 10.1007/978-3-642-02962-2_47 10.1109/TNSRE.2016.2552539 10.1007/s00521-017-2919-6 10.1016/j.bspc.2007.05.005 10.1109/78.650093 10.1016/j.compbiomed.2019.01.013 10.1109/EMBC.2016.7591789 10.1016/j.bspc.2017.12.001 10.1609/aaai.v33i01.3301922 10.1109/TNSRE.2017.2721116 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY DOA |
| DOI | 10.1109/TNSRE.2022.3176004 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Nursing and Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 1472 |
| ExternalDocumentID | oai_doaj_org_article_c9a8c41145214459a2bb9d599b1df54f 10.1109/tnsre.2022.3176004 35584068 10_1109_TNSRE_2022_3176004 9777906 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: University of Southern Queensland International Tuition Fee Scholarship funderid: 10.13039/501100001795 |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c461t-ec751f6c9edd55c95b480e402dd882dba77c2a97239376fa2ba6572a2488e5413 |
| IEDL.DBID | RIE |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Fri Oct 03 12:44:53 EDT 2025 Tue Aug 19 18:52:23 EDT 2025 Thu Jul 10 22:55:30 EDT 2025 Fri Jul 25 06:27:35 EDT 2025 Mon Jul 21 06:00:19 EDT 2025 Thu Apr 24 22:51:59 EDT 2025 Wed Oct 01 01:12:31 EDT 2025 Wed Aug 27 02:24:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c461t-ec751f6c9edd55c95b480e402dd882dba77c2a97239376fa2ba6572a2488e5413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4453-3541 0000-0002-4694-4926 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9777906 |
| PMID | 35584068 |
| PQID | 2672806319 |
| PQPubID | 85423 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2666548927 doaj_primary_oai_doaj_org_article_c9a8c41145214459a2bb9d599b1df54f proquest_journals_2672806319 ieee_primary_9777906 pubmed_primary_35584068 crossref_citationtrail_10_1109_TNSRE_2022_3176004 unpaywall_primary_10_1109_tnsre_2022_3176004 crossref_primary_10_1109_TNSRE_2022_3176004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 vaswani (ref39) 2017 ref17 ref16 ref19 ref18 ref50 covert (ref43) 2019 ref45 ref47 hamilton (ref38) 2017 ref42 ref41 ref44 berry (ref5) 2012; 176 ref49 ref8 ref7 ref9 ref4 ref3 ref6 hou (ref40) 2020 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 hyvärinen (ref46) 1997 zhou (ref20) 2018 ref24 ref23 ref26 ref25 ref22 ref28 ref27 ref29 duvenaud (ref37) 2015 xu (ref48) 2018 kipf (ref21) 2016 |
| References_xml | – ident: ref30 doi: 10.1093/sleep/zsz306 – year: 2016 ident: ref21 article-title: Semi-supervised classification with graph convolutional networks publication-title: arXiv 1609 02907 – ident: ref18 doi: 10.1109/EMBC44109.2020.9176741 – ident: ref3 doi: 10.1504/IJBRA.2013.052447 – ident: ref50 doi: 10.1016/j.cmpb.2015.10.013 – ident: ref36 doi: 10.1007/978-3-642-35139-6_18 – ident: ref26 doi: 10.1109/CVPR.2016.90 – ident: ref16 doi: 10.1109/ICTAI.2017.00025 – ident: ref11 doi: 10.1007/s10439-015-1444-y – ident: ref14 doi: 10.1016/j.eswa.2020.114031 – ident: ref6 doi: 10.1088/0967-3334/35/1/R1 – ident: ref2 doi: 10.1176/appi.ajp.2008.07121882 – start-page: 1 year: 1997 ident: ref46 article-title: New approximations of differential entropy for independent component analysis and projection pursuit publication-title: Proc Adv Neural Inf Process Syst – ident: ref17 doi: 10.3389/fncom.2018.00085 – ident: ref35 doi: 10.1007/s40708-014-0003-x – ident: ref19 doi: 10.1016/j.procs.2017.10.042 – ident: ref13 doi: 10.1016/j.cmpb.2019.105116 – year: 2020 ident: ref40 article-title: Deep feature mining via attention-based BiLSTM-GCN for human motor imagery recognition publication-title: arXiv 2005 00777 – ident: ref4 doi: 10.1001/archpsyc.1969.01740140118016 – ident: ref41 doi: 10.1109/TAFFC.2018.2817622 – ident: ref25 doi: 10.1109/TNSRE.2017.2776149 – year: 2015 ident: ref37 article-title: Convolutional networks on graphs for learning molecular fingerprints publication-title: arXiv 1509 09292 – ident: ref27 doi: 10.1109/CVPR.2015.7298594 – year: 2018 ident: ref48 article-title: Representation learning on graphs with jumping knowledge networks publication-title: arXiv 1806 03536 – ident: ref47 doi: 10.1109/TNSRE.2021.3110665 – year: 2018 ident: ref20 article-title: Graph neural networks: A review of methods and applications publication-title: arXiv 1812 08434 – ident: ref44 doi: 10.24963/ijcai.2020/184 – ident: ref1 doi: 10.1164/rccm.2109080 – ident: ref42 doi: 10.1109/TAFFC.2020.2994159 – ident: ref34 doi: 10.24963/ijcai.2021/360 – ident: ref33 doi: 10.1038/s41746-021-00440-5 – ident: ref28 doi: 10.18653/v1/P17-1172 – volume: 176 start-page: 2012 year: 2012 ident: ref5 article-title: The AASM manual for the scoring of sleep and associated events publication-title: Rules Terminology and Technical Specifications Darien Illinois American Academy of Sleep Medicine – ident: ref12 doi: 10.3389/fninf.2019.00045 – ident: ref49 doi: 10.1109/CVPR.2017.11 – ident: ref24 doi: 10.1016/j.cmpb.2011.11.005 – ident: ref22 doi: 10.1109/TIM.2018.2799059 – ident: ref23 doi: 10.1007/978-3-642-02962-2_47 – ident: ref7 doi: 10.1109/TNSRE.2016.2552539 – ident: ref8 doi: 10.1007/s00521-017-2919-6 – ident: ref9 doi: 10.1016/j.bspc.2007.05.005 – year: 2017 ident: ref39 article-title: Attention is all you need publication-title: arXiv 1706 03762 – ident: ref31 doi: 10.1109/78.650093 – year: 2017 ident: ref38 article-title: Inductive representation learning on large graphs publication-title: arXiv 1706 02216 – ident: ref29 doi: 10.1016/j.compbiomed.2019.01.013 – ident: ref10 doi: 10.1109/EMBC.2016.7591789 – ident: ref32 doi: 10.1016/j.bspc.2017.12.001 – ident: ref45 doi: 10.1609/aaai.v33i01.3301922 – ident: ref15 doi: 10.1109/TNSRE.2017.2721116 – start-page: 160 year: 2019 ident: ref43 article-title: Temporal graph convolutional networks for automatic seizure detection publication-title: Proc Mach Learn Healthcare Conf |
| SSID | ssj0017657 |
| Score | 2.484903 |
| Snippet | A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method,... |
| SourceID | doaj unpaywall proquest pubmed crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1464 |
| SubjectTerms | Aggregates Algorithms Artificial neural networks Classification Classification algorithms Convolution Datasets Deep learning EEG EKG Electrocardiography Electroencephalography Electromyography Feature extraction graph convolutional networks Jumping Manganese Neural networks Sleep sleep stage classification Temporal variations Testing time |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hXoADAspHoCAjAReImrj-iI9t1VIVaQ_tVuotcmznFGVXNAvi3zNjJ9GuQHDhmnW8a89z5k3sfQ_g_RH3lTPK5bx0R3GbMbciYLGifSFCERAEUe1zoS5uxOWtvN2y-qIzYUkeOE3coTO2cgJZuyRxL2ksbxrjpTFN6VspWnr6FpWZiqlx_0Arqae_yBTmcLm4vjrDYpBzrFFpK0rspKGo1j_aq_yJaT6E-5t-bX_-sF23lX3OH8OjkTay4_Rzn8C90D-FD9sSwWyZ9AHYR3a1o769D_0lxgxTFPs6vUBjJ5i8PCM_YsRfvkz6VB37QvLV7HTVfx8RidcW6aD4HUN6y443wyqKvLLrLoQ1Q66KvUVnTTpzFL_wGdycny1PL_LRZyF3QpVDHpyWZaucCd5L6YxsRFUELCy9R_7tG6u145bsyZDLqBYjYHF6ueW4-IPELPgc9vpVH14C46YSodG6aIwVFqlXqVvXtkgaCixkAs-gnKa9duM0kBdGV8dipDB1DFVNoarHUGXwab5nnSQ4_tr6hKI5tyT57HgBQVWPoKr_BaoM9gkLcydIkrUpVAYHEzbqcanf1VyRw5fCR1kG7-aPcZHSzovtw2pDbcjkuTJcZ_AiYWrum_TtkVVVGXyeQfbbOIceh78zzlf_Y5yv4QH1mV4pHcDe8G0T3iDJGpq3cT39AhvPIDo priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6N7gF44NeABQYyEvACaRPHjmPx1E0b05AqtLXSkJAix3YktCitWMKvv56zk0YrICR4axPX0dXf-b6zne8AnifUZFqmOqSxTvw2Y6iYxWRFmIjZyCIIvNrnLD1esJNzfr4Fb4Z3Yay1_vCZHbuPfi__k62-iYlIkmSCwV2ij00ipC1CRul4ZcprsJ1yJOIj2F7M3k8_dAqpLGSJF2XEgJmFLrNZvzITyUlTY_zB5JBSzFnd1hTbCEtevb8vt_In5nkTrrf1Sn3_qqrqSjQ6ug0f13Z0h1Auxm1TjPWPXyQe_9PQO3CrZ6lk2sHqLmzZ-h68uKpITOadHAF5SU43xL53oD5BiGBEJO_W63VkH2OlIa78McI9nHdyWBV569SyycGy_tI7AF6bdefSLwmyaTJtm6XXlCVnlbUrgtQYe_OFPN0RJ__A-7A4OpwfHId9WYdQszRuQqsFj8tUS2sM51rygmWRxTzWGKT7plBCaKpcNTSkTmmpaKFSLqiiONdYjkH3AYzqZW13gVCZMVsIERVSMYVMLxalLkvkKBHmTZYGEK9HNdf93-BKb1S5z30imc9nZ6eHuUNC3iMhgFfDb1ad4sdfW-87sAwtnVq3v4DjmffOn2upMs0w8-ROoI5LNKmQhktZxKbkrAxgx2Fg6KQf8wD21tDL-5nlMqepKyiW4swZwLPhNs4JbqNH1XbZujaupnQmqQjgYQfZoW8np48kLgvg9YDh3-z0_rFh56N_a_4Ybriv3VrVHoyaz619guytKZ72XvoT-pk61A priority: 102 providerName: Unpaywall |
| Title | Jumping Knowledge Based Spatial-Temporal Graph Convolutional Networks for Automatic Sleep Stage Classification |
| URI | https://ieeexplore.ieee.org/document/9777906 https://www.ncbi.nlm.nih.gov/pubmed/35584068 https://www.proquest.com/docview/2672806319 https://www.proquest.com/docview/2666548927 https://ieeexplore.ieee.org/ielx7/7333/4359219/09777906.pdf https://doaj.org/article/c9a8c41145214459a2bb9d599b1df54f |
| UnpaywallVersion | publishedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8QA88GvAAqMyEvDC0iWuE8eP3bQxDVGhrZXGU-TYzgtVWm0JCP567pwfWmFCvFWp6_bqz77vfPZ3AG8n3GZGpSbksZn4NGOohcNgRdpIuMghCLza5yw9XYizy-RyC_aHuzDOOX_4zI3ppc_l25VpaKvsALmKVKSvfUdmaXtXa8gYyNSreuIEFqGY8Ki_IBOpg_ns4vwYQ0HOMUKlRBQV4yFZcXRm2YY_8rL9XZ2V2yjnA7jXVGv984deLm-4oZNH8Lk3oD198m3c1MXY_PpD2_F_LXwMDzs-yqYtgJ7Alquewrub2sNs3goPsPfsfEPWeweqMwQD-j72qd-ZY4foFS2jQscI7HDeCl8t2UfSxWZHq-p7B3V8NmtPoF8z5M1s2tQrrx7LLpbOrRmSYOzNl-ykw0z-C5_B4uR4fnQadgUcQiPSuA6dkUlcpkY5a5PEqKQQWeQwYrUWib0ttJSGa6p7hiQpLTUvNI4i1xxXFZege30O29WqcrvAuMqEK6SMCqWFRk4Xy9KUJbKRCCMkxwOI-2HMTfc3UJGNZe6jnEjlHgU5oSDvUBDAh-Ez61bb45-tDwkdQ0vS5fYPcADzbprnRunMCIwxE5KiSxSaVCibKFXEtkxEGcAODfrQSTfeAez1WMu7NeQ65ymVDktxjQzgzfA2zn5K6ejKrRpqQ9WjM8VlAC9ajA599wgPYH8A7V921hWav2Hny9t_4iu4T63a3ac92K6vGvca-VhdjPw-xshPxxHcXcy-TL_-BoPPMEU |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5VA48CqUlAJGAi4028RrJ_GxrVqWPvbQbqXeIsd2LqyyK5oUwa9nxnmoCxXitso6Tibz2TPjsb8B-DDmNjMqMSGPzdinGUMtHAYrqY2EixyCwLN9TpPJlTi5ltdrsDuchXHO-c1nbkQ_fS7fLkxDS2V76Kukivi1H0ghhGxPaw05gzTxvJ44hEUoxjzqj8hEam82vbw4wmCQc4xRKRVF5XiIWBzNWbZikTxxf1dp5T6n8xFsNNVS__yh5_M7huj4CZz3IrT7T76NmroYmV9_sDv-r4xP4XHnkbL9FkLPYM1Vz-HjXfZhNmupB9gndrFC7L0J1QnCAa0fO-3X5tgB2kXLqNQxQjuctdRXc_aFmLHZ4aK67cCO16btHvQbhp4z22_qheePZZdz55YM3WDszRftpO1M_oEv4Or4aHY4CbsSDqERSVyHzqQyLhOjnLVSGiULkUUOY1Zr0bW3hU5TwzVVPkM3KSk1LzRqkWuO84qTaGBfwnq1qNwrYFxlwhVpGhVKC41eXZyWpizRH4kwRnI8gLhXY266z0BlNua5j3MilXsU5ISCvENBAJ-He5Ytu8c_Wx8QOoaWxMztL6AC826g50bpzAiMMiWR0UmFIhXKSqWK2JZSlAFsktKHTjp9B7DTYy3vZpGbnCdUPCzBWTKA98PfOP4pqaMrt2ioDdWPzhRPA9hqMTr03SM8gN0BtH_JWVco_oqc2_e_4jvYmMzOz_Kzr9PT1_CQ7mjXonZgvf7euDfondXFWz8ofwPX6TDt |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6N7gF44NeABQYyEvACaRPHjmPx1E0b05AqtLXSkJAix3YktCitWMKvv56zk0YrICR4axPX0dXf-b6zne8AnifUZFqmOqSxTvw2Y6iYxWRFmIjZyCIIvNrnLD1esJNzfr4Fb4Z3Yay1_vCZHbuPfi__k62-iYlIkmSCwV2ij00ipC1CRul4ZcprsJ1yJOIj2F7M3k8_dAqpLGSJF2XEgJmFLrNZvzITyUlTY_zB5JBSzFnd1hTbCEtevb8vt_In5nkTrrf1Sn3_qqrqSjQ6ug0f13Z0h1Auxm1TjPWPXyQe_9PQO3CrZ6lk2sHqLmzZ-h68uKpITOadHAF5SU43xL53oD5BiGBEJO_W63VkH2OlIa78McI9nHdyWBV569SyycGy_tI7AF6bdefSLwmyaTJtm6XXlCVnlbUrgtQYe_OFPN0RJ__A-7A4OpwfHId9WYdQszRuQqsFj8tUS2sM51rygmWRxTzWGKT7plBCaKpcNTSkTmmpaKFSLqiiONdYjkH3AYzqZW13gVCZMVsIERVSMYVMLxalLkvkKBHmTZYGEK9HNdf93-BKb1S5z30imc9nZ6eHuUNC3iMhgFfDb1ad4sdfW-87sAwtnVq3v4DjmffOn2upMs0w8-ROoI5LNKmQhktZxKbkrAxgx2Fg6KQf8wD21tDL-5nlMqepKyiW4swZwLPhNs4JbqNH1XbZujaupnQmqQjgYQfZoW8np48kLgvg9YDh3-z0_rFh56N_a_4Ybriv3VrVHoyaz619guytKZ72XvoT-pk61A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jumping+Knowledge+Based+Spatial-Temporal+Graph+Convolutional+Networks+for+Automatic+Sleep+Stage+Classification&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Ji%2C+Xiaopeng&rft.au=Li%2C+Yan&rft.au=Wen%2C+Peng&rft.date=2022-01-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=30&rft.spage=1464&rft.epage=1472&rft_id=info:doi/10.1109%2FTNSRE.2022.3176004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2022_3176004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |