Exploring Estimation Procedures for Reducing Dimensionality in Psychological Network Modeling
To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation algorithms to the conventional GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess the dimensionality structure o...
Saved in:
| Published in | Multivariate behavioral research Vol. 60; no. 2; pp. 184 - 210 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Routledge
04.03.2025
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0027-3171 1532-7906 1532-7906 |
| DOI | 10.1080/00273171.2024.2395941 |
Cover
| Abstract | To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation algorithms to the conventional GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess the dimensionality structure of the data. The study applied Bayesian conjugate or Jeffreys' priors to estimate the graphical structure and then used the Louvain community detection algorithm to partition and identify groups of nodes, which allowed the detection of the multi- and unidimensional factor structures. Monte Carlo simulations suggested that the two alternative Bayesian estimation algorithms had comparable or better performance when compared with the GLASSO-based EGA and conventional parallel analysis (PA). When estimating the multidimensional factor structure, the analytically based method (i.e., EGA.analytical) showed the best balance between accuracy and mean biased/absolute errors, with the highest accuracy tied with EGA but with the smallest errors. The sampling-based approach (EGA.sampling) yielded higher accuracy and smaller errors than PA; lower accuracy but also lower errors than EGA. Techniques from the two algorithms had more stable performance than EGA and PA across different data conditions. When estimating the unidimensional structure, the PA technique performed the best, followed closely by EGA, and then EGA.analytical and EGA.sampling. Furthermore, the study explored four full Bayesian techniques to assess dimensionality in network psychometrics. The results demonstrated superior performance when using Bayesian hypothesis testing or deriving posterior samples of graph structures under small sample sizes. The study recommends using the EGA.analytical technique as an alternative tool for assessing dimensionality and advocates for the usefulness of the EGA.sampling method as a valuable alternate technique. The findings also indicated encouraging results for extending the regularization-based network modeling EGA method to the Bayesian framework and discussed future directions in this line of work. The study illustrated the practical application of the techniques to two empirical examples in R. |
|---|---|
| AbstractList | To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation algorithms to the conventional GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess the dimensionality structure of the data. The study applied Bayesian conjugate or Jeffreys' priors to estimate the graphical structure and then used the Louvain community detection algorithm to partition and identify groups of nodes, which allowed the detection of the multi- and unidimensional factor structures. Monte Carlo simulations suggested that the two alternative Bayesian estimation algorithms had comparable or better performance when compared with the GLASSO-based EGA and conventional parallel analysis (PA). When estimating the multidimensional factor structure, the analytically based method (i.e., EGA.analytical) showed the best balance between accuracy and mean biased/absolute errors, with the highest accuracy tied with EGA but with the smallest errors. The sampling-based approach (EGA.sampling) yielded higher accuracy and smaller errors than PA; lower accuracy but also lower errors than EGA. Techniques from the two algorithms had more stable performance than EGA and PA across different data conditions. When estimating the unidimensional structure, the PA technique performed the best, followed closely by EGA, and then EGA.analytical and EGA.sampling. Furthermore, the study explored four full Bayesian techniques to assess dimensionality in network psychometrics. The results demonstrated superior performance when using Bayesian hypothesis testing or deriving posterior samples of graph structures under small sample sizes. The study recommends using the EGA.analytical technique as an alternative tool for assessing dimensionality and advocates for the usefulness of the EGA.sampling method as a valuable alternate technique. The findings also indicated encouraging results for extending the regularization-based network modeling EGA method to the Bayesian framework and discussed future directions in this line of work. The study illustrated the practical application of the techniques to two empirical examples in R. To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation algorithms to the conventional GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess the dimensionality structure of the data. The study applied Bayesian conjugate or Jeffreys' priors to estimate the graphical structure and then used the Louvain community detection algorithm to partition and identify groups of nodes, which allowed the detection of the multi- and unidimensional factor structures. Monte Carlo simulations suggested that the two alternative Bayesian estimation algorithms had comparable or better performance when compared with the GLASSO-based EGA and conventional parallel analysis (PA). When estimating the multidimensional factor structure, the analytically based method (i.e., EGA.analytical) showed the best balance between accuracy and mean biased/absolute errors, with the highest accuracy tied with EGA but with the smallest errors. The sampling-based approach (EGA.sampling) yielded higher accuracy and smaller errors than PA; lower accuracy but also lower errors than EGA. Techniques from the two algorithms had more stable performance than EGA and PA across different data conditions. When estimating the unidimensional structure, the PA technique performed the best, followed closely by EGA, and then EGA.analytical and EGA.sampling. Furthermore, the study explored four full Bayesian techniques to assess dimensionality in network psychometrics. The results demonstrated superior performance when using Bayesian hypothesis testing or deriving posterior samples of graph structures under small sample sizes. The study recommends using the EGA.analytical technique as an alternative tool for assessing dimensionality and advocates for the usefulness of the EGA.sampling method as a valuable alternate technique. The findings also indicated encouraging results for extending the regularization-based network modeling EGA method to the Bayesian framework and discussed future directions in this line of work. The study illustrated the practical application of the techniques to two empirical examples in R.To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation algorithms to the conventional GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess the dimensionality structure of the data. The study applied Bayesian conjugate or Jeffreys' priors to estimate the graphical structure and then used the Louvain community detection algorithm to partition and identify groups of nodes, which allowed the detection of the multi- and unidimensional factor structures. Monte Carlo simulations suggested that the two alternative Bayesian estimation algorithms had comparable or better performance when compared with the GLASSO-based EGA and conventional parallel analysis (PA). When estimating the multidimensional factor structure, the analytically based method (i.e., EGA.analytical) showed the best balance between accuracy and mean biased/absolute errors, with the highest accuracy tied with EGA but with the smallest errors. The sampling-based approach (EGA.sampling) yielded higher accuracy and smaller errors than PA; lower accuracy but also lower errors than EGA. Techniques from the two algorithms had more stable performance than EGA and PA across different data conditions. When estimating the unidimensional structure, the PA technique performed the best, followed closely by EGA, and then EGA.analytical and EGA.sampling. Furthermore, the study explored four full Bayesian techniques to assess dimensionality in network psychometrics. The results demonstrated superior performance when using Bayesian hypothesis testing or deriving posterior samples of graph structures under small sample sizes. The study recommends using the EGA.analytical technique as an alternative tool for assessing dimensionality and advocates for the usefulness of the EGA.sampling method as a valuable alternate technique. The findings also indicated encouraging results for extending the regularization-based network modeling EGA method to the Bayesian framework and discussed future directions in this line of work. The study illustrated the practical application of the techniques to two empirical examples in R. |
| Author | Day, Eric Anthony Golino, Hudson F. Christensen, Alexander P. Garrido, Luis Eduardo Shi, Dingjing |
| Author_xml | – sequence: 1 givenname: Dingjing orcidid: 0000-0002-5652-3818 surname: Shi fullname: Shi, Dingjing organization: Department of Psychology, University of Oklahoma – sequence: 2 givenname: Alexander P. orcidid: 0000-0002-9798-7037 surname: Christensen fullname: Christensen, Alexander P. organization: Department of Psychology and Human Development, Vanderbilt University – sequence: 3 givenname: Eric Anthony surname: Day fullname: Day, Eric Anthony organization: Department of Psychology, University of Oklahoma – sequence: 4 givenname: Hudson F. orcidid: 0000-0002-1601-1447 surname: Golino fullname: Golino, Hudson F. organization: Department of Psychology, University of Virginia – sequence: 5 givenname: Luis Eduardo orcidid: 0000-0001-8932-6063 surname: Garrido fullname: Garrido, Luis Eduardo organization: Pontificia Universidad Catolica Madre y Maestra |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39279587$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctv1DAQhy1URLeFPwEUiQuXLBM78eMGKstDKg8hOKLIrxQXx97aiUr-exx2y4ED4uQ5fL_xzDdn6CTEYBF63MC2AQ7PATAjDWu2GHC7xUR0om3uoU3TEVwzAfQEbVamXqFTdJbzNQDQrhUP0CkRmImOsw36tvu59zG5cFXt8uRGObkYqk8pamvmZHM1xFR9LrVekVdutCEXQno3LZUrZF709-jjldPSVx_sdBvTj-p9NNaXwEN0f5A-20fH9xx9fb37cvG2vvz45t3Fy8tat7SZasU7UNwIbuhAoDUKM1BgiR5At1opCmUhSRnGMEijuDDcUtCU2EG1ijFyjuih7xz2crmV3vf7VJZJS99Av_rq73z1q6_-6KsEnx2C-xRvZpunfnRZW-9lsHHOPWmgGMOdWP94-hd6HedUTKwU54IwLmihnhypWY3W_BnjzngBugOgU8w52eG_J31xyLlQTjLK4tmbfpJLud6QZNDu97T_avELnHCnLg |
| Cites_doi | 10.1037//0033-2909.112.1.155 10.1080/01621459.2021.1996377 10.1007/BF02294739 10.1371/journal.pone.0027407 10.1037/0022-3514.48.4.813 10.1073/PNAS.0601602103 10.1016/B978-0-12-813995-0.00037-6 10.1080/00273171.2020.1779642 10.1177/0963721416643289 10.3390/genes12020311 10.1080/00273171.2019.1575716 10.1146/annurev-clinpsy-050212-185608 10.3758/s13423-016-1221-4 10.1214/ss/1009212519 10.1093/biostatistics/kxm045 10.1002/sta4.23 10.1037/a0024377 10.1016/j.jmva.2008.01.016 10.3758/s13423-020-01798-5 10.31234/osf.io/t2cn7 10.3390/jintelligence7030014 10.1080/00273171.2018.1454823 10.1177/001316446002000116 10.1016/j.jrp.2005.08.007 10.1016/j.leaqua.2014.04.005 10.32614/CRAN.package.igraph 10.1037/met0000590 10.1038/srep09050 10.1103/PhysRevE.78.046110 10.1371/journal.pone.0174035 10.35566/jbds/v1n1/p5 10.1080/10705511.2022.2164285 10.1002/sta4.66 10.35566/jbds/v1n2/p2 10.1177/2158244017727039 10.1214/14-BA889 10.1037/met0000167 10.1037/ABN0000028 10.1080/10618600.2022.2050250 10.1111/j.2517-6161.1996.tb02080.x 10.1080/00273171.2017.1379379 10.1080/00273171.2021.1894412 10.1177/0165025407077764 10.1198/jasa.2011.tm10465 10.1037/1040-3590.7.3.286 10.1146/annurev-orgpsych-032414-111441) 10.7155/jgaa.00185 10.1002/9781118619179 10.1007/BF02289447 10.3102/1076998615621299 10.3758/s13423-015-0947-8 10.1214/12-BA729 10.4324/9781315827506 10.1037/0033-295X.113.4.842 10.1111/j.1467-9868.2008.00666.x 10.18637/jss.v048.i04 10.1080/08959285.2020.1823985 10.1038/s43586-021-00055-w 10.1111/j.1744-6570.1997.tb01484.x 10.1002/9781118489772.ch30 10.1037/a0012815 10.1214/11-EJS631 10.1080/00273171.2021.1938959 10.1177/25152459231193334 10.1080/10705511.2014.937322 10.1037/0021-9010.87.1.66 10.1037/met0000255 10.1080/08959285.2021.1956928 10.1177/1745691611406925 10.1017/S0033291719003209 10.31234/osf.io/ch7a2 10.1080/00273171.2021.1978054 10.1007/978-0-387-84858-7 10.1111/stan.12173 10.1007/BF02293557 10.1371/journal.pone.0179891 10.1177/0959354317737185 10.1016/j.jmp.2020.102441 10.1080/00273171.2023.2194606 10.3102/1076998615606113 10.18637/jss.v088.i02 10.56296/aip00010 10.1037/MET0000064 10.3389/fninf.2016.00045 10.1017/S1930297500004253 10.1207/s15327906mbr0102_10 10.3758/s13428-023-02106-4 10.1177/2515245919898657 10.1080/01621459.1995.10476572 10.1037/0033-2909.131.1.66 10.1093/biomet/81.4.721 10.1111/j.1744-6570.2010.01186.x 10.1007/978-3-030-48043-1_8 10.1177/001316446902900303 10.3758/s13428-017-0862-1 10.3389/fpsyg.2021.709928 10.1016/j.jrp.2014.07.003 10.1080/00273171.2018.1514484 10.3758/s13423-017-1343-3 10.1093/oso/9780198522195.001.0001 10.1111/apps.12442 10.1561/2200000001 10.1088/1742-5468/2008/10/P10008 10.1017/S0140525X09991567 10.1080/10400410701841807 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. 2024 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. 2024 – notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1080/00273171.2024.2395941 |
| DatabaseName | Taylor & Francis Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1532-7906 |
| EndPage | 210 |
| ExternalDocumentID | 10.1080/00273171.2024.2395941 39279587 10_1080_00273171_2024_2395941 2395941 |
| Genre | Research Article Journal Article |
| GroupedDBID | --Z -~X .7I .QK 0BK 0R~ 0YH 123 4.4 5VS 8VB AAGDL AAGZJ AAHIA AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABFIM ABIVO ABJNI ABLIJ ABLJU ABPEM ABPPZ ABRYG ABTAI ABXUL ABXYU ABZLS ACGFS ACHQT ACIWK ACNCT ACTIO ACTOA ADAHI ADCVX ADKVQ AECIN AEFOU AEISY AEKEX AENEX AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AIJEM AIYEW AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO DU5 EBS EMOBN E~B E~C F5P FEDTE G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O KYCEM LJTGL M4Z MS~ NA5 NW- O9- P2P PQQKQ QWB RIG RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TN5 TNTFI TRJHH TUROJ TWZ UT5 UT9 VAE WH7 YNT YQT ZL0 ~01 ~S~ AAYXX CITATION .GJ 07M 53G AANPH ABRLO ABVXC ABWZE ACPKE ACRBO ADEWX ADIUE ADXAZ ADYSH AETEA AEXSR AFFNX AIXGP ALEEW ALLRG C5A CAG CBZAQ CGR CKOZC COF CUY CVF C~T DGXZK ECM EFRLQ EGDCR EIF EJD FXNIP HVGLF H~9 JLMOS L7Y LPU NEJ NPM OHT P-O QZZOY RBICI ROL UA1 UAP XOL ZCG ZXP 7X8 ABBZI ADLFI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c461t-b850b8d98d6f304db270b0e3cf0c4cbb60790a67220fadb89d8e60c63efb4b773 |
| IEDL.DBID | 0YH |
| ISSN | 0027-3171 1532-7906 |
| IngestDate | Sun Sep 07 11:24:54 EDT 2025 Fri Sep 05 10:12:22 EDT 2025 Wed Aug 13 06:54:33 EDT 2025 Sun Apr 13 01:30:45 EDT 2025 Wed Oct 01 06:34:25 EDT 2025 Mon Oct 20 23:47:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | estimation procedures dimensionality assessment community detection algorithm Bayesian estimation Network psychometrics |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c461t-b850b8d98d6f304db270b0e3cf0c4cbb60790a67220fadb89d8e60c63efb4b773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8932-6063 0000-0002-1601-1447 0000-0002-5652-3818 0000-0002-9798-7037 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/00273171.2024.2395941 |
| PMID | 39279587 |
| PQID | 3188937896 |
| PQPubID | 47318 |
| PageCount | 27 |
| ParticipantIDs | pubmed_primary_39279587 crossref_primary_10_1080_00273171_2024_2395941 unpaywall_primary_10_1080_00273171_2024_2395941 proquest_miscellaneous_3105492597 informaworld_taylorfrancis_310_1080_00273171_2024_2395941 proquest_journals_3188937896 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-04 |
| PublicationDateYYYYMMDD | 2025-03-04 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Mahwah |
| PublicationTitle | Multivariate behavioral research |
| PublicationTitleAlternate | Multivariate Behav Res |
| PublicationYear | 2025 |
| Publisher | Routledge Taylor & Francis Ltd |
| Publisher_xml | – name: Routledge – name: Taylor & Francis Ltd |
| References | e_1_3_2_28_1 e_1_3_2_20_1 e_1_3_2_66_1 Mohammadi R. (e_1_3_2_79_1) 2015; 89 e_1_3_2_43_1 e_1_3_2_85_1 e_1_3_2_24_1 e_1_3_2_47_1 e_1_3_2_89_1 e_1_3_2_100_1 e_1_3_2_62_1 e_1_3_2_104_1 e_1_3_2_81_1 Epskamp S. (e_1_3_2_26_1) 2018 e_1_3_2_108_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_77_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_58_1 e_1_3_2_96_1 e_1_3_2_3_1 e_1_3_2_92_1 e_1_3_2_50_1 e_1_3_2_73_1 e_1_3_2_112_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_86_1 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_67_1 Foygel R. (e_1_3_2_29_1) 2010 e_1_3_2_40_1 e_1_3_2_82_1 Raiche G. (e_1_3_2_87_1) 2020 e_1_3_2_103_1 e_1_3_2_107_1 e_1_3_2_17_1 e_1_3_2_2_1 e_1_3_2_55_1 e_1_3_2_32_1 e_1_3_2_74_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_97_1 e_1_3_2_78_1 e_1_3_2_93_1 e_1_3_2_115_1 Gelman A. (e_1_3_2_36_1) 2002 e_1_3_2_51_1 e_1_3_2_111_1 e_1_3_2_70_1 Woodbury M. A. (e_1_3_2_116_1) 1950 e_1_3_2_49_1 e_1_3_2_41_1 e_1_3_2_22_1 e_1_3_2_64_1 e_1_3_2_45_1 Shi D. (e_1_3_2_95_1) 2023 e_1_3_2_68_1 Barnard J. (e_1_3_2_4_1) 2000; 10 e_1_3_2_83_1 e_1_3_2_60_1 e_1_3_2_102_1 e_1_3_2_106_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_75_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_56_1 e_1_3_2_98_1 e_1_3_2_114_1 e_1_3_2_94_1 e_1_3_2_110_1 e_1_3_2_71_1 e_1_3_2_90_1 e_1_3_2_118_1 e_1_3_2_27_1 e_1_3_2_42_1 e_1_3_2_65_1 e_1_3_2_88_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_69_1 e_1_3_2_80_1 e_1_3_2_101_1 Kac M. (e_1_3_2_59_1) 1969 e_1_3_2_61_1 e_1_3_2_84_1 e_1_3_2_105_1 e_1_3_2_109_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_19_1 e_1_3_2_30_1 e_1_3_2_76_1 e_1_3_2_11_1 e_1_3_2_53_1 e_1_3_2_34_1 e_1_3_2_15_1 e_1_3_2_57_1 e_1_3_2_99_1 e_1_3_2_113_1 Kruschke J. (e_1_3_2_63_1) 2014 e_1_3_2_72_1 e_1_3_2_91_1 e_1_3_2_117_1 |
| References_xml | – ident: e_1_3_2_15_1 doi: 10.1037//0033-2909.112.1.155 – ident: e_1_3_2_80_1 doi: 10.1080/01621459.2021.1996377 – ident: e_1_3_2_48_1 doi: 10.1007/BF02294739 – ident: e_1_3_2_8_1 doi: 10.1371/journal.pone.0027407 – ident: e_1_3_2_99_1 doi: 10.1037/0022-3514.48.4.813 – ident: e_1_3_2_84_1 doi: 10.1073/PNAS.0601602103 – ident: e_1_3_2_35_1 doi: 10.1016/B978-0-12-813995-0.00037-6 – ident: e_1_3_2_41_1 doi: 10.1080/00273171.2020.1779642 – ident: e_1_3_2_106_1 doi: 10.1177/0963721416643289 – ident: e_1_3_2_71_1 doi: 10.3390/genes12020311 – ident: e_1_3_2_115_1 doi: 10.1080/00273171.2019.1575716 – ident: e_1_3_2_7_1 doi: 10.1146/annurev-clinpsy-050212-185608 – ident: e_1_3_2_65_1 doi: 10.3758/s13423-016-1221-4 – ident: e_1_3_2_46_1 doi: 10.1214/ss/1009212519 – ident: e_1_3_2_31_1 doi: 10.1093/biostatistics/kxm045 – ident: e_1_3_2_70_1 doi: 10.1002/sta4.23 – ident: e_1_3_2_81_1 doi: 10.1037/a0024377 – ident: e_1_3_2_66_1 doi: 10.1016/j.jmva.2008.01.016 – ident: e_1_3_2_104_1 doi: 10.3758/s13423-020-01798-5 – ident: e_1_3_2_114_1 doi: 10.31234/osf.io/t2cn7 – volume-title: Doing bayesian data analysis: A tutorial with r, jags, and stan year: 2014 ident: e_1_3_2_63_1 – year: 2010 ident: e_1_3_2_29_1 article-title: Extended bayesian information criteria for gaussian graphical models publication-title: Advances in Neural Information Processing Systems, – ident: e_1_3_2_32_1 doi: 10.3390/jintelligence7030014 – ident: e_1_3_2_27_1 doi: 10.1080/00273171.2018.1454823 – ident: e_1_3_2_60_1 doi: 10.1177/001316446002000116 – ident: e_1_3_2_38_1 doi: 10.1016/j.jrp.2005.08.007 – ident: e_1_3_2_2_1 doi: 10.1016/j.leaqua.2014.04.005 – ident: e_1_3_2_19_1 doi: 10.32614/CRAN.package.igraph – ident: e_1_3_2_55_1 doi: 10.1037/met0000590 – ident: e_1_3_2_74_1 doi: 10.1038/srep09050 – ident: e_1_3_2_67_1 doi: 10.1103/PhysRevE.78.046110 – ident: e_1_3_2_86_1 – volume: 89 start-page: 1 year: 2015 ident: e_1_3_2_79_1 article-title: Bdgraph: An r package for bayesian structure learning in graphical models publication-title: Journal of Statistical Software, – ident: e_1_3_2_39_1 doi: 10.1371/journal.pone.0174035 – start-page: 1 year: 2020 ident: e_1_3_2_87_1 article-title: Package nfactors publication-title: Repository CRAN, – ident: e_1_3_2_12_1 doi: 10.35566/jbds/v1n1/p5 – ident: e_1_3_2_96_1 doi: 10.1080/10705511.2022.2164285 – ident: e_1_3_2_45_1 doi: 10.1002/sta4.66 – ident: e_1_3_2_117_1 doi: 10.35566/jbds/v1n2/p2 – ident: e_1_3_2_94_1 doi: 10.1177/2158244017727039 – ident: e_1_3_2_78_1 doi: 10.1214/14-BA889 – ident: e_1_3_2_22_1 doi: 10.1037/met0000167 – volume-title: Inverting modified matrices year: 1950 ident: e_1_3_2_116_1 – ident: e_1_3_2_30_1 doi: 10.1037/ABN0000028 – ident: e_1_3_2_102_1 doi: 10.1080/10618600.2022.2050250 – ident: e_1_3_2_100_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_3_2_73_1 doi: 10.1080/00273171.2017.1379379 – ident: e_1_3_2_112_1 doi: 10.1080/00273171.2021.1894412 – ident: e_1_3_2_118_1 doi: 10.1177/0165025407077764 – ident: e_1_3_2_20_1 doi: 10.1198/jasa.2011.tm10465 – ident: e_1_3_2_28_1 doi: 10.1037/1040-3590.7.3.286 – ident: e_1_3_2_50_1 doi: 10.1146/annurev-orgpsych-032414-111441) – ident: e_1_3_2_85_1 doi: 10.7155/jgaa.00185 – ident: e_1_3_2_6_1 doi: 10.1002/9781118619179 – year: 2023 ident: e_1_3_2_95_1 article-title: A longitudinal network model to assess affect structures in ecological momentary assessment: Likert and slider response formats may not be equivalent publication-title: PsyArXiv – ident: e_1_3_2_49_1 doi: 10.1007/BF02289447 – ident: e_1_3_2_77_1 doi: 10.3102/1076998615621299 – ident: e_1_3_2_82_1 doi: 10.3758/s13423-015-0947-8 – ident: e_1_3_2_111_1 doi: 10.1214/12-BA729 – ident: e_1_3_2_16_1 doi: 10.4324/9781315827506 – ident: e_1_3_2_103_1 doi: 10.1037/0033-295X.113.4.842 – ident: e_1_3_2_47_1 doi: 10.1111/j.1467-9868.2008.00666.x – ident: e_1_3_2_24_1 doi: 10.18637/jss.v048.i04 – ident: e_1_3_2_58_1 doi: 10.1080/08959285.2020.1823985 – ident: e_1_3_2_9_1 doi: 10.1038/s43586-021-00055-w – ident: e_1_3_2_83_1 doi: 10.1111/j.1744-6570.1997.tb01484.x – start-page: 953 year: 2018 ident: e_1_3_2_26_1 article-title: Network psychometrics publication-title: The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test Development doi: 10.1002/9781118489772.ch30 – ident: e_1_3_2_3_1 doi: 10.1037/a0012815 – ident: e_1_3_2_21_1 – ident: e_1_3_2_88_1 doi: 10.1214/11-EJS631 – ident: e_1_3_2_110_1 doi: 10.1080/00273171.2021.1938959 – ident: e_1_3_2_52_1 doi: 10.1177/25152459231193334 – ident: e_1_3_2_93_1 doi: 10.1080/10705511.2014.937322 – ident: e_1_3_2_91_1 doi: 10.1037/0021-9010.87.1.66 – ident: e_1_3_2_42_1 doi: 10.1037/met0000255 – volume: 10 start-page: 1281 year: 2000 ident: e_1_3_2_4_1 article-title: Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage publication-title: Statistica Sinica, – ident: e_1_3_2_10_1 doi: 10.1080/08959285.2021.1956928 – ident: e_1_3_2_64_1 doi: 10.1177/1745691611406925 – ident: e_1_3_2_89_1 doi: 10.1017/S0033291719003209 – ident: e_1_3_2_92_1 doi: 10.31234/osf.io/ch7a2 – ident: e_1_3_2_57_1 doi: 10.1080/00273171.2021.1978054 – ident: e_1_3_2_43_1 doi: 10.1007/978-0-387-84858-7 – ident: e_1_3_2_75_1 doi: 10.1111/stan.12173 – ident: e_1_3_2_105_1 doi: 10.1007/BF02293557 – ident: e_1_3_2_25_1 doi: 10.1371/journal.pone.0179891 – ident: e_1_3_2_101_1 doi: 10.1177/0959354317737185 – ident: e_1_3_2_113_1 doi: 10.1016/j.jmp.2020.102441 – ident: e_1_3_2_13_1 doi: 10.1080/00273171.2023.2194606 – ident: e_1_3_2_37_1 doi: 10.3102/1076998615606113 – ident: e_1_3_2_72_1 doi: 10.18637/jss.v088.i02 – ident: e_1_3_2_53_1 doi: 10.56296/aip00010 – ident: e_1_3_2_33_1 doi: 10.1037/MET0000064 – ident: e_1_3_2_34_1 doi: 10.3389/fninf.2016.00045 – ident: e_1_3_2_69_1 doi: 10.1017/S1930297500004253 – ident: e_1_3_2_11_1 doi: 10.1207/s15327906mbr0102_10 – ident: e_1_3_2_14_1 doi: 10.3758/s13428-023-02106-4 – ident: e_1_3_2_44_1 doi: 10.1177/2515245919898657 – ident: e_1_3_2_62_1 doi: 10.1080/01621459.1995.10476572 – ident: e_1_3_2_40_1 – ident: e_1_3_2_61_1 doi: 10.1037/0033-2909.131.1.66 – ident: e_1_3_2_76_1 doi: 10.1093/biomet/81.4.721 – ident: e_1_3_2_56_1 doi: 10.1111/j.1744-6570.2010.01186.x – ident: e_1_3_2_107_1 doi: 10.1007/978-3-030-48043-1_8 – ident: e_1_3_2_51_1 doi: 10.1177/001316446902900303 – ident: e_1_3_2_23_1 doi: 10.3758/s13428-017-0862-1 – ident: e_1_3_2_90_1 doi: 10.3389/fpsyg.2021.709928 – ident: e_1_3_2_17_1 doi: 10.1016/j.jrp.2014.07.003 – ident: e_1_3_2_97_1 doi: 10.1080/00273171.2018.1514484 – ident: e_1_3_2_108_1 doi: 10.3758/s13423-017-1343-3 – volume-title: Data analysis using regression and multilevel/hierarchical models year: 2002 ident: e_1_3_2_36_1 – ident: e_1_3_2_68_1 doi: 10.1093/oso/9780198522195.001.0001 – ident: e_1_3_2_54_1 doi: 10.1111/apps.12442 – ident: e_1_3_2_109_1 doi: 10.1561/2200000001 – ident: e_1_3_2_5_1 doi: 10.1088/1742-5468/2008/10/P10008 – ident: e_1_3_2_18_1 doi: 10.1017/S0140525X09991567 – volume-title: Mathematical mechanisms of phase transitions year: 1969 ident: e_1_3_2_59_1 – ident: e_1_3_2_98_1 doi: 10.1080/10400410701841807 |
| SSID | ssj0006549 |
| Score | 2.410033 |
| Snippet | To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation... |
| SourceID | unpaywall proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 184 |
| SubjectTerms | Accuracy Algorithms Bayes Theorem Bayesian analysis Bayesian estimation community detection algorithm Computer Simulation dimensionality assessment Errors Estimation estimation procedures Humans Hypothesis testing Modelling Models, Psychological Models, Statistical Monte Carlo Method Monte Carlo simulation Network psychometrics Psychometrics Psychometrics - methods Regularization Sampling methods |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_k-mB9qN96WiWCr3tmk2w2eSzaUgQPEQ_qgyyZTQJi2RbZpdS_3sxlb7kTxfqcD5KZfPwmmfkNwGtUgQfZikJEjYUSoixQyFC4ZLg5I0Jwjp4GPiz16Uq9P6vOxmB1ioXZ-b8nDmziWylrsuSEWghpK0th6nu6StB7Bnur5cejL9mNg97b6pEfNaFGy_UmYudv_ezcRTtMpX_Cm3fg9tBduusrd36-dQed3IXlZvTZ9eT7Yuhx0f78jdjxxtO7BwcjGmVHefnch1uhewD706F4_RC-Tk567DidBjnQka3DC_yQTHWWZsM-Ef8rVXlHuQIyz0dC9-xbqrl9wLJldjpnlIGN4uAfwerk-PPb02JMyVC0Spd9gabiaLw1XkfJlUdRcyRlR96qFlHzJHenayF4dB6N9SZo3moZIiqsa_kYZt1FF54C895X3tjSaCkVajTGBowuEiGPi1HNYbFRTnOZmTeaciI0zWJrSGzNKLY52G0VNv36ySPm_CSN_Efbw42-m3ETUxNDaM5YPYdXU3HafvSn4rpwMay7JY67ZJbN4UleJ9NoE_SsbWVSyZtp4dxsKs_-u8Vz2BeUmZi849QhzPofQ3iR4FKPL8dN8gs7cQTO priority: 102 providerName: Unpaywall |
| Title | Exploring Estimation Procedures for Reducing Dimensionality in Psychological Network Modeling |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00273171.2024.2395941 https://www.ncbi.nlm.nih.gov/pubmed/39279587 https://www.proquest.com/docview/3188937896 https://www.proquest.com/docview/3105492597 https://doi.org/10.1080/00273171.2024.2395941 |
| UnpaywallVersion | publishedVersion |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-7906 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006549 issn: 1532-7906 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Social Science and Humanities Library - DRAA customDbUrl: eissn: 1532-7906 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006549 issn: 1532-7906 databaseCode: TRJHH dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/ providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA-iD9qH0tZ-XGslBV9Xs0k2H49HVQ6hh0iP1kJZMpsECrJKvaP43zez2V1OsFjwaR_ysZuZzGQmO_MbQg5ABhZEwwseFRSS87IALkLhkuPmDA_BObwa-DJXs4U8-14N0YS3fVgl-tAxA0V0uhqF28HtEBF31GGwlBq9Oy4PubCVxdT1La5LixubXc5GZayq3gLmeB2nyyGJ51_T3Due7oGXPmSCPiPbq_bG3f1xV1drx9LpC_K8tyfpNG-Al2QjtK_IzqjW7nbJzzHMjp4kec6pirRLEPCr5GzT9HJ6gQiu2OUY0f4zUkeyz-mv1HNdRdJ5DhunWEMNM9lfk8XpydfPs6IvqlA0UpXLAkzFwHhrvIqCSQ9cM0B2RdbIBkAxbZlTmnMWnQdjvQmKNUqECBK0Fm_IZnvdhneEeu8rb2xplBASFBhjA0QXEVLHxSgn5HCgZX2TsTPqcoQkzcSvkfh1T_wJsesUr5fdpUXMFUZq8cjYvYE9dS-GOMSgPWasmpBPY3MSIPwr4tpwveqmRZS65FhNyNvM1vFrk_GobWVSy9HI5_9byvsnLOUD2eFYZRgj3eQe2Vz-XoWPyfRZwn63uffJ1nR2_ONbei7m59PLv2Br-zk |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_EPpx9KGpre37UCL6uZpNsNnksfnDV8x6Kgn0oS7JJQDhWKXcU_3szm73lBIuCz5tkNzOZyczszG8ADq3w1POaZSxImwnG8swy7jMTHTejmPfGYGjgaiJHN-LitrhdqoXBtEr0oUMCimh1NQo3BqMXKXHHLQhLXqJ7x8QR47rQWLv-oYjmIrZvoL9HvTaWRWcCM4zHlfmiiud_yzy7n56hl75kg36Ewbx5MI__zHS6dC-dr8OnzqAkP9IJ2IAV32zCWq_XHj_Dnz7PjpxFgU61iqStEHDz6G2T-HLyCyFcccgpwv0nqI5ooJO7OHJZR5JJyhsn2EQNS9m_wM352fXJKOu6KmS1kPkss6qgVjmtnAycCmdZSS3yK9Ba1NZKWmpqZMkYDcZZpZ3yktaS-2CFLUu-BavNfeO_AXHOFU7pXEnOhZVWKe1tMAExdUwIYghHC1pWDwk8o8p7TNJE_AqJX3XEH4Jepng1a6MWIbUYqfgrc3cX7Kk6OcQpCg0ypeUQDvrHUYLwt4hp_P28XRZh6qJnNYSvia3910brsdSFik-Oez6_bSvb79jKPgxG11fjavxzcrkDawxbDmPam9iF1dnfud-LdtDMfm8P-hMbCvtL |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_kClofxI-2nq02gq97zSbZbPJY2h6n1kPEA_tQlmSTQKFsD71D-t-b2ewud6Ao-JyP3cxkJjPJzG8A3lnhqec1y1iQNhOM5Zll3GcmOm5GMe-NwauBT3M5W4gP34o-mvBHF1aJPnRIQBGtrkbhXrrQR8SdtBgseYneHRMTxnWhMXV9p1DxeItbml7NBmUsi84CZngdV-Z9Es-fptk6nrbAS39ngj6GR-tmae5_mtvbjWNp-hSedPYkOU0b4Bk88M1z2B3U2v0LuB7C7MhFlOeUqkjaBAG3js42iR8nXxDBFbucI9p_QuqI9jm5iT03VSSZp7BxgjXUMJN9DxbTi69ns6wrqpDVQuarzKqCWuW0cjJwKpxlJbXIrkBrUVsraampkSVjNBhnlXbKS1pL7oMVtiz5Poyau8a_BOKcK5zSuZKcCyutUtrbYAJC6pgQxBgmPS2rZcLOqPIBkjQRv0LiVx3xx6A3KV6t2kuLkCqMVPwvY4969lSdGOIQhfaY0nIMb4fmKED4KmIaf7dup0WUuuhYjeEgsXX422g8lrpQseVk4PO_LeXVfyzlGB5-Pp9Wl-_nHw9hl2HBYQx6E0cwWn1f-9fRClrZN-0-_wWeyPp9 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_k-mB9qN96WiWCr3tmk2w2eSzaUgQPEQ_qgyyZTQJi2RbZpdS_3sxlb7kTxfqcD5KZfPwmmfkNwGtUgQfZikJEjYUSoixQyFC4ZLg5I0Jwjp4GPiz16Uq9P6vOxmB1ioXZ-b8nDmziWylrsuSEWghpK0th6nu6StB7Bnur5cejL9mNg97b6pEfNaFGy_UmYudv_ezcRTtMpX_Cm3fg9tBduusrd36-dQed3IXlZvTZ9eT7Yuhx0f78jdjxxtO7BwcjGmVHefnch1uhewD706F4_RC-Tk567DidBjnQka3DC_yQTHWWZsM-Ef8rVXlHuQIyz0dC9-xbqrl9wLJldjpnlIGN4uAfwerk-PPb02JMyVC0Spd9gabiaLw1XkfJlUdRcyRlR96qFlHzJHenayF4dB6N9SZo3moZIiqsa_kYZt1FF54C895X3tjSaCkVajTGBowuEiGPi1HNYbFRTnOZmTeaciI0zWJrSGzNKLY52G0VNv36ySPm_CSN_Efbw42-m3ETUxNDaM5YPYdXU3HafvSn4rpwMay7JY67ZJbN4UleJ9NoE_SsbWVSyZtp4dxsKs_-u8Vz2BeUmZi849QhzPofQ3iR4FKPL8dN8gs7cQTO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Estimation+Procedures+for+Reducing+Dimensionality+in+Psychological+Network+Modeling&rft.jtitle=Multivariate+behavioral+research&rft.au=Shi%2C+Dingjing&rft.au=Christensen%2C+Alexander+P&rft.au=Day%2C+Eric+Anthony&rft.au=Golino%2C+Hudson+F&rft.date=2025-03-04&rft.issn=1532-7906&rft.eissn=1532-7906&rft.spage=1&rft_id=info:doi/10.1080%2F00273171.2024.2395941&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-3171&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-3171&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-3171&client=summon |