Exploring Estimation Procedures for Reducing Dimensionality in Psychological Network Modeling

To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation algorithms to the conventional GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess the dimensionality structure o...

Full description

Saved in:
Bibliographic Details
Published inMultivariate behavioral research Vol. 60; no. 2; pp. 184 - 210
Main Authors Shi, Dingjing, Christensen, Alexander P., Day, Eric Anthony, Golino, Hudson F., Garrido, Luis Eduardo
Format Journal Article
LanguageEnglish
Published United States Routledge 04.03.2025
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0027-3171
1532-7906
1532-7906
DOI10.1080/00273171.2024.2395941

Cover

Abstract To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation algorithms to the conventional GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess the dimensionality structure of the data. The study applied Bayesian conjugate or Jeffreys' priors to estimate the graphical structure and then used the Louvain community detection algorithm to partition and identify groups of nodes, which allowed the detection of the multi- and unidimensional factor structures. Monte Carlo simulations suggested that the two alternative Bayesian estimation algorithms had comparable or better performance when compared with the GLASSO-based EGA and conventional parallel analysis (PA). When estimating the multidimensional factor structure, the analytically based method (i.e., EGA.analytical) showed the best balance between accuracy and mean biased/absolute errors, with the highest accuracy tied with EGA but with the smallest errors. The sampling-based approach (EGA.sampling) yielded higher accuracy and smaller errors than PA; lower accuracy but also lower errors than EGA. Techniques from the two algorithms had more stable performance than EGA and PA across different data conditions. When estimating the unidimensional structure, the PA technique performed the best, followed closely by EGA, and then EGA.analytical and EGA.sampling. Furthermore, the study explored four full Bayesian techniques to assess dimensionality in network psychometrics. The results demonstrated superior performance when using Bayesian hypothesis testing or deriving posterior samples of graph structures under small sample sizes. The study recommends using the EGA.analytical technique as an alternative tool for assessing dimensionality and advocates for the usefulness of the EGA.sampling method as a valuable alternate technique. The findings also indicated encouraging results for extending the regularization-based network modeling EGA method to the Bayesian framework and discussed future directions in this line of work. The study illustrated the practical application of the techniques to two empirical examples in R.
AbstractList To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation algorithms to the conventional GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess the dimensionality structure of the data. The study applied Bayesian conjugate or Jeffreys' priors to estimate the graphical structure and then used the Louvain community detection algorithm to partition and identify groups of nodes, which allowed the detection of the multi- and unidimensional factor structures. Monte Carlo simulations suggested that the two alternative Bayesian estimation algorithms had comparable or better performance when compared with the GLASSO-based EGA and conventional parallel analysis (PA). When estimating the multidimensional factor structure, the analytically based method (i.e., EGA.analytical) showed the best balance between accuracy and mean biased/absolute errors, with the highest accuracy tied with EGA but with the smallest errors. The sampling-based approach (EGA.sampling) yielded higher accuracy and smaller errors than PA; lower accuracy but also lower errors than EGA. Techniques from the two algorithms had more stable performance than EGA and PA across different data conditions. When estimating the unidimensional structure, the PA technique performed the best, followed closely by EGA, and then EGA.analytical and EGA.sampling. Furthermore, the study explored four full Bayesian techniques to assess dimensionality in network psychometrics. The results demonstrated superior performance when using Bayesian hypothesis testing or deriving posterior samples of graph structures under small sample sizes. The study recommends using the EGA.analytical technique as an alternative tool for assessing dimensionality and advocates for the usefulness of the EGA.sampling method as a valuable alternate technique. The findings also indicated encouraging results for extending the regularization-based network modeling EGA method to the Bayesian framework and discussed future directions in this line of work. The study illustrated the practical application of the techniques to two empirical examples in R.
To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation algorithms to the conventional GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess the dimensionality structure of the data. The study applied Bayesian conjugate or Jeffreys' priors to estimate the graphical structure and then used the Louvain community detection algorithm to partition and identify groups of nodes, which allowed the detection of the multi- and unidimensional factor structures. Monte Carlo simulations suggested that the two alternative Bayesian estimation algorithms had comparable or better performance when compared with the GLASSO-based EGA and conventional parallel analysis (PA). When estimating the multidimensional factor structure, the analytically based method (i.e., EGA.analytical) showed the best balance between accuracy and mean biased/absolute errors, with the highest accuracy tied with EGA but with the smallest errors. The sampling-based approach (EGA.sampling) yielded higher accuracy and smaller errors than PA; lower accuracy but also lower errors than EGA. Techniques from the two algorithms had more stable performance than EGA and PA across different data conditions. When estimating the unidimensional structure, the PA technique performed the best, followed closely by EGA, and then EGA.analytical and EGA.sampling. Furthermore, the study explored four full Bayesian techniques to assess dimensionality in network psychometrics. The results demonstrated superior performance when using Bayesian hypothesis testing or deriving posterior samples of graph structures under small sample sizes. The study recommends using the EGA.analytical technique as an alternative tool for assessing dimensionality and advocates for the usefulness of the EGA.sampling method as a valuable alternate technique. The findings also indicated encouraging results for extending the regularization-based network modeling EGA method to the Bayesian framework and discussed future directions in this line of work. The study illustrated the practical application of the techniques to two empirical examples in R.To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation algorithms to the conventional GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess the dimensionality structure of the data. The study applied Bayesian conjugate or Jeffreys' priors to estimate the graphical structure and then used the Louvain community detection algorithm to partition and identify groups of nodes, which allowed the detection of the multi- and unidimensional factor structures. Monte Carlo simulations suggested that the two alternative Bayesian estimation algorithms had comparable or better performance when compared with the GLASSO-based EGA and conventional parallel analysis (PA). When estimating the multidimensional factor structure, the analytically based method (i.e., EGA.analytical) showed the best balance between accuracy and mean biased/absolute errors, with the highest accuracy tied with EGA but with the smallest errors. The sampling-based approach (EGA.sampling) yielded higher accuracy and smaller errors than PA; lower accuracy but also lower errors than EGA. Techniques from the two algorithms had more stable performance than EGA and PA across different data conditions. When estimating the unidimensional structure, the PA technique performed the best, followed closely by EGA, and then EGA.analytical and EGA.sampling. Furthermore, the study explored four full Bayesian techniques to assess dimensionality in network psychometrics. The results demonstrated superior performance when using Bayesian hypothesis testing or deriving posterior samples of graph structures under small sample sizes. The study recommends using the EGA.analytical technique as an alternative tool for assessing dimensionality and advocates for the usefulness of the EGA.sampling method as a valuable alternate technique. The findings also indicated encouraging results for extending the regularization-based network modeling EGA method to the Bayesian framework and discussed future directions in this line of work. The study illustrated the practical application of the techniques to two empirical examples in R.
Author Day, Eric Anthony
Golino, Hudson F.
Christensen, Alexander P.
Garrido, Luis Eduardo
Shi, Dingjing
Author_xml – sequence: 1
  givenname: Dingjing
  orcidid: 0000-0002-5652-3818
  surname: Shi
  fullname: Shi, Dingjing
  organization: Department of Psychology, University of Oklahoma
– sequence: 2
  givenname: Alexander P.
  orcidid: 0000-0002-9798-7037
  surname: Christensen
  fullname: Christensen, Alexander P.
  organization: Department of Psychology and Human Development, Vanderbilt University
– sequence: 3
  givenname: Eric Anthony
  surname: Day
  fullname: Day, Eric Anthony
  organization: Department of Psychology, University of Oklahoma
– sequence: 4
  givenname: Hudson F.
  orcidid: 0000-0002-1601-1447
  surname: Golino
  fullname: Golino, Hudson F.
  organization: Department of Psychology, University of Virginia
– sequence: 5
  givenname: Luis Eduardo
  orcidid: 0000-0001-8932-6063
  surname: Garrido
  fullname: Garrido, Luis Eduardo
  organization: Pontificia Universidad Catolica Madre y Maestra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39279587$$D View this record in MEDLINE/PubMed
BookMark eNqNkctv1DAQhy1URLeFPwEUiQuXLBM78eMGKstDKg8hOKLIrxQXx97aiUr-exx2y4ED4uQ5fL_xzDdn6CTEYBF63MC2AQ7PATAjDWu2GHC7xUR0om3uoU3TEVwzAfQEbVamXqFTdJbzNQDQrhUP0CkRmImOsw36tvu59zG5cFXt8uRGObkYqk8pamvmZHM1xFR9LrVekVdutCEXQno3LZUrZF709-jjldPSVx_sdBvTj-p9NNaXwEN0f5A-20fH9xx9fb37cvG2vvz45t3Fy8tat7SZasU7UNwIbuhAoDUKM1BgiR5At1opCmUhSRnGMEijuDDcUtCU2EG1ijFyjuih7xz2crmV3vf7VJZJS99Av_rq73z1q6_-6KsEnx2C-xRvZpunfnRZW-9lsHHOPWmgGMOdWP94-hd6HedUTKwU54IwLmihnhypWY3W_BnjzngBugOgU8w52eG_J31xyLlQTjLK4tmbfpJLud6QZNDu97T_avELnHCnLg
Cites_doi 10.1037//0033-2909.112.1.155
10.1080/01621459.2021.1996377
10.1007/BF02294739
10.1371/journal.pone.0027407
10.1037/0022-3514.48.4.813
10.1073/PNAS.0601602103
10.1016/B978-0-12-813995-0.00037-6
10.1080/00273171.2020.1779642
10.1177/0963721416643289
10.3390/genes12020311
10.1080/00273171.2019.1575716
10.1146/annurev-clinpsy-050212-185608
10.3758/s13423-016-1221-4
10.1214/ss/1009212519
10.1093/biostatistics/kxm045
10.1002/sta4.23
10.1037/a0024377
10.1016/j.jmva.2008.01.016
10.3758/s13423-020-01798-5
10.31234/osf.io/t2cn7
10.3390/jintelligence7030014
10.1080/00273171.2018.1454823
10.1177/001316446002000116
10.1016/j.jrp.2005.08.007
10.1016/j.leaqua.2014.04.005
10.32614/CRAN.package.igraph
10.1037/met0000590
10.1038/srep09050
10.1103/PhysRevE.78.046110
10.1371/journal.pone.0174035
10.35566/jbds/v1n1/p5
10.1080/10705511.2022.2164285
10.1002/sta4.66
10.35566/jbds/v1n2/p2
10.1177/2158244017727039
10.1214/14-BA889
10.1037/met0000167
10.1037/ABN0000028
10.1080/10618600.2022.2050250
10.1111/j.2517-6161.1996.tb02080.x
10.1080/00273171.2017.1379379
10.1080/00273171.2021.1894412
10.1177/0165025407077764
10.1198/jasa.2011.tm10465
10.1037/1040-3590.7.3.286
10.1146/annurev-orgpsych-032414-111441)
10.7155/jgaa.00185
10.1002/9781118619179
10.1007/BF02289447
10.3102/1076998615621299
10.3758/s13423-015-0947-8
10.1214/12-BA729
10.4324/9781315827506
10.1037/0033-295X.113.4.842
10.1111/j.1467-9868.2008.00666.x
10.18637/jss.v048.i04
10.1080/08959285.2020.1823985
10.1038/s43586-021-00055-w
10.1111/j.1744-6570.1997.tb01484.x
10.1002/9781118489772.ch30
10.1037/a0012815
10.1214/11-EJS631
10.1080/00273171.2021.1938959
10.1177/25152459231193334
10.1080/10705511.2014.937322
10.1037/0021-9010.87.1.66
10.1037/met0000255
10.1080/08959285.2021.1956928
10.1177/1745691611406925
10.1017/S0033291719003209
10.31234/osf.io/ch7a2
10.1080/00273171.2021.1978054
10.1007/978-0-387-84858-7
10.1111/stan.12173
10.1007/BF02293557
10.1371/journal.pone.0179891
10.1177/0959354317737185
10.1016/j.jmp.2020.102441
10.1080/00273171.2023.2194606
10.3102/1076998615606113
10.18637/jss.v088.i02
10.56296/aip00010
10.1037/MET0000064
10.3389/fninf.2016.00045
10.1017/S1930297500004253
10.1207/s15327906mbr0102_10
10.3758/s13428-023-02106-4
10.1177/2515245919898657
10.1080/01621459.1995.10476572
10.1037/0033-2909.131.1.66
10.1093/biomet/81.4.721
10.1111/j.1744-6570.2010.01186.x
10.1007/978-3-030-48043-1_8
10.1177/001316446902900303
10.3758/s13428-017-0862-1
10.3389/fpsyg.2021.709928
10.1016/j.jrp.2014.07.003
10.1080/00273171.2018.1514484
10.3758/s13423-017-1343-3
10.1093/oso/9780198522195.001.0001
10.1111/apps.12442
10.1561/2200000001
10.1088/1742-5468/2008/10/P10008
10.1017/S0140525X09991567
10.1080/10400410701841807
ContentType Journal Article
Copyright 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. 2024
2024 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. 2024
– notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1080/00273171.2024.2395941
DatabaseName Taylor & Francis Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1532-7906
EndPage 210
ExternalDocumentID 10.1080/00273171.2024.2395941
39279587
10_1080_00273171_2024_2395941
2395941
Genre Research Article
Journal Article
GroupedDBID --Z
-~X
.7I
.QK
0BK
0R~
0YH
123
4.4
5VS
8VB
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABLJU
ABPEM
ABPPZ
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACHQT
ACIWK
ACNCT
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEISY
AEKEX
AENEX
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
DU5
EBS
EMOBN
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
MS~
NA5
NW-
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TN5
TNTFI
TRJHH
TUROJ
TWZ
UT5
UT9
VAE
WH7
YNT
YQT
ZL0
~01
~S~
AAYXX
CITATION
.GJ
07M
53G
AANPH
ABRLO
ABVXC
ABWZE
ACPKE
ACRBO
ADEWX
ADIUE
ADXAZ
ADYSH
AETEA
AEXSR
AFFNX
AIXGP
ALEEW
ALLRG
C5A
CAG
CBZAQ
CGR
CKOZC
COF
CUY
CVF
C~T
DGXZK
ECM
EFRLQ
EGDCR
EIF
EJD
FXNIP
HVGLF
H~9
JLMOS
L7Y
LPU
NEJ
NPM
OHT
P-O
QZZOY
RBICI
ROL
UA1
UAP
XOL
ZCG
ZXP
7X8
ABBZI
ADLFI
ADTOC
UNPAY
ID FETCH-LOGICAL-c461t-b850b8d98d6f304db270b0e3cf0c4cbb60790a67220fadb89d8e60c63efb4b773
IEDL.DBID 0YH
ISSN 0027-3171
1532-7906
IngestDate Sun Sep 07 11:24:54 EDT 2025
Fri Sep 05 10:12:22 EDT 2025
Wed Aug 13 06:54:33 EDT 2025
Sun Apr 13 01:30:45 EDT 2025
Wed Oct 01 06:34:25 EDT 2025
Mon Oct 20 23:47:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords estimation procedures
dimensionality assessment
community detection algorithm
Bayesian estimation
Network psychometrics
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-b850b8d98d6f304db270b0e3cf0c4cbb60790a67220fadb89d8e60c63efb4b773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8932-6063
0000-0002-1601-1447
0000-0002-5652-3818
0000-0002-9798-7037
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/00273171.2024.2395941
PMID 39279587
PQID 3188937896
PQPubID 47318
PageCount 27
ParticipantIDs pubmed_primary_39279587
crossref_primary_10_1080_00273171_2024_2395941
unpaywall_primary_10_1080_00273171_2024_2395941
proquest_miscellaneous_3105492597
informaworld_taylorfrancis_310_1080_00273171_2024_2395941
proquest_journals_3188937896
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Mahwah
PublicationTitle Multivariate behavioral research
PublicationTitleAlternate Multivariate Behav Res
PublicationYear 2025
Publisher Routledge
Taylor & Francis Ltd
Publisher_xml – name: Routledge
– name: Taylor & Francis Ltd
References e_1_3_2_28_1
e_1_3_2_20_1
e_1_3_2_66_1
Mohammadi R. (e_1_3_2_79_1) 2015; 89
e_1_3_2_43_1
e_1_3_2_85_1
e_1_3_2_24_1
e_1_3_2_47_1
e_1_3_2_89_1
e_1_3_2_100_1
e_1_3_2_62_1
e_1_3_2_104_1
e_1_3_2_81_1
Epskamp S. (e_1_3_2_26_1) 2018
e_1_3_2_108_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_77_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_58_1
e_1_3_2_96_1
e_1_3_2_3_1
e_1_3_2_92_1
e_1_3_2_50_1
e_1_3_2_73_1
e_1_3_2_112_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_86_1
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_67_1
Foygel R. (e_1_3_2_29_1) 2010
e_1_3_2_40_1
e_1_3_2_82_1
Raiche G. (e_1_3_2_87_1) 2020
e_1_3_2_103_1
e_1_3_2_107_1
e_1_3_2_17_1
e_1_3_2_2_1
e_1_3_2_55_1
e_1_3_2_32_1
e_1_3_2_74_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_97_1
e_1_3_2_78_1
e_1_3_2_93_1
e_1_3_2_115_1
Gelman A. (e_1_3_2_36_1) 2002
e_1_3_2_51_1
e_1_3_2_111_1
e_1_3_2_70_1
Woodbury M. A. (e_1_3_2_116_1) 1950
e_1_3_2_49_1
e_1_3_2_41_1
e_1_3_2_22_1
e_1_3_2_64_1
e_1_3_2_45_1
Shi D. (e_1_3_2_95_1) 2023
e_1_3_2_68_1
Barnard J. (e_1_3_2_4_1) 2000; 10
e_1_3_2_83_1
e_1_3_2_60_1
e_1_3_2_102_1
e_1_3_2_106_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_75_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_98_1
e_1_3_2_114_1
e_1_3_2_94_1
e_1_3_2_110_1
e_1_3_2_71_1
e_1_3_2_90_1
e_1_3_2_118_1
e_1_3_2_27_1
e_1_3_2_42_1
e_1_3_2_65_1
e_1_3_2_88_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_69_1
e_1_3_2_80_1
e_1_3_2_101_1
Kac M. (e_1_3_2_59_1) 1969
e_1_3_2_61_1
e_1_3_2_84_1
e_1_3_2_105_1
e_1_3_2_109_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_30_1
e_1_3_2_76_1
e_1_3_2_11_1
e_1_3_2_53_1
e_1_3_2_34_1
e_1_3_2_15_1
e_1_3_2_57_1
e_1_3_2_99_1
e_1_3_2_113_1
Kruschke J. (e_1_3_2_63_1) 2014
e_1_3_2_72_1
e_1_3_2_91_1
e_1_3_2_117_1
References_xml – ident: e_1_3_2_15_1
  doi: 10.1037//0033-2909.112.1.155
– ident: e_1_3_2_80_1
  doi: 10.1080/01621459.2021.1996377
– ident: e_1_3_2_48_1
  doi: 10.1007/BF02294739
– ident: e_1_3_2_8_1
  doi: 10.1371/journal.pone.0027407
– ident: e_1_3_2_99_1
  doi: 10.1037/0022-3514.48.4.813
– ident: e_1_3_2_84_1
  doi: 10.1073/PNAS.0601602103
– ident: e_1_3_2_35_1
  doi: 10.1016/B978-0-12-813995-0.00037-6
– ident: e_1_3_2_41_1
  doi: 10.1080/00273171.2020.1779642
– ident: e_1_3_2_106_1
  doi: 10.1177/0963721416643289
– ident: e_1_3_2_71_1
  doi: 10.3390/genes12020311
– ident: e_1_3_2_115_1
  doi: 10.1080/00273171.2019.1575716
– ident: e_1_3_2_7_1
  doi: 10.1146/annurev-clinpsy-050212-185608
– ident: e_1_3_2_65_1
  doi: 10.3758/s13423-016-1221-4
– ident: e_1_3_2_46_1
  doi: 10.1214/ss/1009212519
– ident: e_1_3_2_31_1
  doi: 10.1093/biostatistics/kxm045
– ident: e_1_3_2_70_1
  doi: 10.1002/sta4.23
– ident: e_1_3_2_81_1
  doi: 10.1037/a0024377
– ident: e_1_3_2_66_1
  doi: 10.1016/j.jmva.2008.01.016
– ident: e_1_3_2_104_1
  doi: 10.3758/s13423-020-01798-5
– ident: e_1_3_2_114_1
  doi: 10.31234/osf.io/t2cn7
– volume-title: Doing bayesian data analysis: A tutorial with r, jags, and stan
  year: 2014
  ident: e_1_3_2_63_1
– year: 2010
  ident: e_1_3_2_29_1
  article-title: Extended bayesian information criteria for gaussian graphical models
  publication-title: Advances in Neural Information Processing Systems,
– ident: e_1_3_2_32_1
  doi: 10.3390/jintelligence7030014
– ident: e_1_3_2_27_1
  doi: 10.1080/00273171.2018.1454823
– ident: e_1_3_2_60_1
  doi: 10.1177/001316446002000116
– ident: e_1_3_2_38_1
  doi: 10.1016/j.jrp.2005.08.007
– ident: e_1_3_2_2_1
  doi: 10.1016/j.leaqua.2014.04.005
– ident: e_1_3_2_19_1
  doi: 10.32614/CRAN.package.igraph
– ident: e_1_3_2_55_1
  doi: 10.1037/met0000590
– ident: e_1_3_2_74_1
  doi: 10.1038/srep09050
– ident: e_1_3_2_67_1
  doi: 10.1103/PhysRevE.78.046110
– ident: e_1_3_2_86_1
– volume: 89
  start-page: 1
  year: 2015
  ident: e_1_3_2_79_1
  article-title: Bdgraph: An r package for bayesian structure learning in graphical models
  publication-title: Journal of Statistical Software,
– ident: e_1_3_2_39_1
  doi: 10.1371/journal.pone.0174035
– start-page: 1
  year: 2020
  ident: e_1_3_2_87_1
  article-title: Package nfactors
  publication-title: Repository CRAN,
– ident: e_1_3_2_12_1
  doi: 10.35566/jbds/v1n1/p5
– ident: e_1_3_2_96_1
  doi: 10.1080/10705511.2022.2164285
– ident: e_1_3_2_45_1
  doi: 10.1002/sta4.66
– ident: e_1_3_2_117_1
  doi: 10.35566/jbds/v1n2/p2
– ident: e_1_3_2_94_1
  doi: 10.1177/2158244017727039
– ident: e_1_3_2_78_1
  doi: 10.1214/14-BA889
– ident: e_1_3_2_22_1
  doi: 10.1037/met0000167
– volume-title: Inverting modified matrices
  year: 1950
  ident: e_1_3_2_116_1
– ident: e_1_3_2_30_1
  doi: 10.1037/ABN0000028
– ident: e_1_3_2_102_1
  doi: 10.1080/10618600.2022.2050250
– ident: e_1_3_2_100_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_3_2_73_1
  doi: 10.1080/00273171.2017.1379379
– ident: e_1_3_2_112_1
  doi: 10.1080/00273171.2021.1894412
– ident: e_1_3_2_118_1
  doi: 10.1177/0165025407077764
– ident: e_1_3_2_20_1
  doi: 10.1198/jasa.2011.tm10465
– ident: e_1_3_2_28_1
  doi: 10.1037/1040-3590.7.3.286
– ident: e_1_3_2_50_1
  doi: 10.1146/annurev-orgpsych-032414-111441)
– ident: e_1_3_2_85_1
  doi: 10.7155/jgaa.00185
– ident: e_1_3_2_6_1
  doi: 10.1002/9781118619179
– year: 2023
  ident: e_1_3_2_95_1
  article-title: A longitudinal network model to assess affect structures in ecological momentary assessment: Likert and slider response formats may not be equivalent
  publication-title: PsyArXiv
– ident: e_1_3_2_49_1
  doi: 10.1007/BF02289447
– ident: e_1_3_2_77_1
  doi: 10.3102/1076998615621299
– ident: e_1_3_2_82_1
  doi: 10.3758/s13423-015-0947-8
– ident: e_1_3_2_111_1
  doi: 10.1214/12-BA729
– ident: e_1_3_2_16_1
  doi: 10.4324/9781315827506
– ident: e_1_3_2_103_1
  doi: 10.1037/0033-295X.113.4.842
– ident: e_1_3_2_47_1
  doi: 10.1111/j.1467-9868.2008.00666.x
– ident: e_1_3_2_24_1
  doi: 10.18637/jss.v048.i04
– ident: e_1_3_2_58_1
  doi: 10.1080/08959285.2020.1823985
– ident: e_1_3_2_9_1
  doi: 10.1038/s43586-021-00055-w
– ident: e_1_3_2_83_1
  doi: 10.1111/j.1744-6570.1997.tb01484.x
– start-page: 953
  year: 2018
  ident: e_1_3_2_26_1
  article-title: Network psychometrics
  publication-title: The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test Development
  doi: 10.1002/9781118489772.ch30
– ident: e_1_3_2_3_1
  doi: 10.1037/a0012815
– ident: e_1_3_2_21_1
– ident: e_1_3_2_88_1
  doi: 10.1214/11-EJS631
– ident: e_1_3_2_110_1
  doi: 10.1080/00273171.2021.1938959
– ident: e_1_3_2_52_1
  doi: 10.1177/25152459231193334
– ident: e_1_3_2_93_1
  doi: 10.1080/10705511.2014.937322
– ident: e_1_3_2_91_1
  doi: 10.1037/0021-9010.87.1.66
– ident: e_1_3_2_42_1
  doi: 10.1037/met0000255
– volume: 10
  start-page: 1281
  year: 2000
  ident: e_1_3_2_4_1
  article-title: Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage
  publication-title: Statistica Sinica,
– ident: e_1_3_2_10_1
  doi: 10.1080/08959285.2021.1956928
– ident: e_1_3_2_64_1
  doi: 10.1177/1745691611406925
– ident: e_1_3_2_89_1
  doi: 10.1017/S0033291719003209
– ident: e_1_3_2_92_1
  doi: 10.31234/osf.io/ch7a2
– ident: e_1_3_2_57_1
  doi: 10.1080/00273171.2021.1978054
– ident: e_1_3_2_43_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_3_2_75_1
  doi: 10.1111/stan.12173
– ident: e_1_3_2_105_1
  doi: 10.1007/BF02293557
– ident: e_1_3_2_25_1
  doi: 10.1371/journal.pone.0179891
– ident: e_1_3_2_101_1
  doi: 10.1177/0959354317737185
– ident: e_1_3_2_113_1
  doi: 10.1016/j.jmp.2020.102441
– ident: e_1_3_2_13_1
  doi: 10.1080/00273171.2023.2194606
– ident: e_1_3_2_37_1
  doi: 10.3102/1076998615606113
– ident: e_1_3_2_72_1
  doi: 10.18637/jss.v088.i02
– ident: e_1_3_2_53_1
  doi: 10.56296/aip00010
– ident: e_1_3_2_33_1
  doi: 10.1037/MET0000064
– ident: e_1_3_2_34_1
  doi: 10.3389/fninf.2016.00045
– ident: e_1_3_2_69_1
  doi: 10.1017/S1930297500004253
– ident: e_1_3_2_11_1
  doi: 10.1207/s15327906mbr0102_10
– ident: e_1_3_2_14_1
  doi: 10.3758/s13428-023-02106-4
– ident: e_1_3_2_44_1
  doi: 10.1177/2515245919898657
– ident: e_1_3_2_62_1
  doi: 10.1080/01621459.1995.10476572
– ident: e_1_3_2_40_1
– ident: e_1_3_2_61_1
  doi: 10.1037/0033-2909.131.1.66
– ident: e_1_3_2_76_1
  doi: 10.1093/biomet/81.4.721
– ident: e_1_3_2_56_1
  doi: 10.1111/j.1744-6570.2010.01186.x
– ident: e_1_3_2_107_1
  doi: 10.1007/978-3-030-48043-1_8
– ident: e_1_3_2_51_1
  doi: 10.1177/001316446902900303
– ident: e_1_3_2_23_1
  doi: 10.3758/s13428-017-0862-1
– ident: e_1_3_2_90_1
  doi: 10.3389/fpsyg.2021.709928
– ident: e_1_3_2_17_1
  doi: 10.1016/j.jrp.2014.07.003
– ident: e_1_3_2_97_1
  doi: 10.1080/00273171.2018.1514484
– ident: e_1_3_2_108_1
  doi: 10.3758/s13423-017-1343-3
– volume-title: Data analysis using regression and multilevel/hierarchical models
  year: 2002
  ident: e_1_3_2_36_1
– ident: e_1_3_2_68_1
  doi: 10.1093/oso/9780198522195.001.0001
– ident: e_1_3_2_54_1
  doi: 10.1111/apps.12442
– ident: e_1_3_2_109_1
  doi: 10.1561/2200000001
– ident: e_1_3_2_5_1
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: e_1_3_2_18_1
  doi: 10.1017/S0140525X09991567
– volume-title: Mathematical mechanisms of phase transitions
  year: 1969
  ident: e_1_3_2_59_1
– ident: e_1_3_2_98_1
  doi: 10.1080/10400410701841807
SSID ssj0006549
Score 2.410033
Snippet To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation...
SourceID unpaywall
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 184
SubjectTerms Accuracy
Algorithms
Bayes Theorem
Bayesian analysis
Bayesian estimation
community detection algorithm
Computer Simulation
dimensionality assessment
Errors
Estimation
estimation procedures
Humans
Hypothesis testing
Modelling
Models, Psychological
Models, Statistical
Monte Carlo Method
Monte Carlo simulation
Network psychometrics
Psychometrics
Psychometrics - methods
Regularization
Sampling methods
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_k-mB9qN96WiWCr3tmk2w2eSzaUgQPEQ_qgyyZTQJi2RbZpdS_3sxlb7kTxfqcD5KZfPwmmfkNwGtUgQfZikJEjYUSoixQyFC4ZLg5I0Jwjp4GPiz16Uq9P6vOxmB1ioXZ-b8nDmziWylrsuSEWghpK0th6nu6StB7Bnur5cejL9mNg97b6pEfNaFGy_UmYudv_ezcRTtMpX_Cm3fg9tBduusrd36-dQed3IXlZvTZ9eT7Yuhx0f78jdjxxtO7BwcjGmVHefnch1uhewD706F4_RC-Tk567DidBjnQka3DC_yQTHWWZsM-Ef8rVXlHuQIyz0dC9-xbqrl9wLJldjpnlIGN4uAfwerk-PPb02JMyVC0Spd9gabiaLw1XkfJlUdRcyRlR96qFlHzJHenayF4dB6N9SZo3moZIiqsa_kYZt1FF54C895X3tjSaCkVajTGBowuEiGPi1HNYbFRTnOZmTeaciI0zWJrSGzNKLY52G0VNv36ySPm_CSN_Efbw42-m3ETUxNDaM5YPYdXU3HafvSn4rpwMay7JY67ZJbN4UleJ9NoE_SsbWVSyZtp4dxsKs_-u8Vz2BeUmZi849QhzPofQ3iR4FKPL8dN8gs7cQTO
  priority: 102
  providerName: Unpaywall
Title Exploring Estimation Procedures for Reducing Dimensionality in Psychological Network Modeling
URI https://www.tandfonline.com/doi/abs/10.1080/00273171.2024.2395941
https://www.ncbi.nlm.nih.gov/pubmed/39279587
https://www.proquest.com/docview/3188937896
https://www.proquest.com/docview/3105492597
https://doi.org/10.1080/00273171.2024.2395941
UnpaywallVersion publishedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1532-7906
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006549
  issn: 1532-7906
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Social Science and Humanities Library - DRAA
  customDbUrl:
  eissn: 1532-7906
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006549
  issn: 1532-7906
  databaseCode: TRJHH
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA-iD9qH0tZ-XGslBV9Xs0k2H49HVQ6hh0iP1kJZMpsECrJKvaP43zez2V1OsFjwaR_ysZuZzGQmO_MbQg5ABhZEwwseFRSS87IALkLhkuPmDA_BObwa-DJXs4U8-14N0YS3fVgl-tAxA0V0uhqF28HtEBF31GGwlBq9Oy4PubCVxdT1La5LixubXc5GZayq3gLmeB2nyyGJ51_T3Due7oGXPmSCPiPbq_bG3f1xV1drx9LpC_K8tyfpNG-Al2QjtK_IzqjW7nbJzzHMjp4kec6pirRLEPCr5GzT9HJ6gQiu2OUY0f4zUkeyz-mv1HNdRdJ5DhunWEMNM9lfk8XpydfPs6IvqlA0UpXLAkzFwHhrvIqCSQ9cM0B2RdbIBkAxbZlTmnMWnQdjvQmKNUqECBK0Fm_IZnvdhneEeu8rb2xplBASFBhjA0QXEVLHxSgn5HCgZX2TsTPqcoQkzcSvkfh1T_wJsesUr5fdpUXMFUZq8cjYvYE9dS-GOMSgPWasmpBPY3MSIPwr4tpwveqmRZS65FhNyNvM1vFrk_GobWVSy9HI5_9byvsnLOUD2eFYZRgj3eQe2Vz-XoWPyfRZwn63uffJ1nR2_ONbei7m59PLv2Br-zk
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_EPpx9KGpre37UCL6uZpNsNnksfnDV8x6Kgn0oS7JJQDhWKXcU_3szm73lBIuCz5tkNzOZyczszG8ADq3w1POaZSxImwnG8swy7jMTHTejmPfGYGjgaiJHN-LitrhdqoXBtEr0oUMCimh1NQo3BqMXKXHHLQhLXqJ7x8QR47rQWLv-oYjmIrZvoL9HvTaWRWcCM4zHlfmiiud_yzy7n56hl75kg36Ewbx5MI__zHS6dC-dr8OnzqAkP9IJ2IAV32zCWq_XHj_Dnz7PjpxFgU61iqStEHDz6G2T-HLyCyFcccgpwv0nqI5ooJO7OHJZR5JJyhsn2EQNS9m_wM352fXJKOu6KmS1kPkss6qgVjmtnAycCmdZSS3yK9Ba1NZKWmpqZMkYDcZZpZ3yktaS-2CFLUu-BavNfeO_AXHOFU7pXEnOhZVWKe1tMAExdUwIYghHC1pWDwk8o8p7TNJE_AqJX3XEH4Jepng1a6MWIbUYqfgrc3cX7Kk6OcQpCg0ypeUQDvrHUYLwt4hp_P28XRZh6qJnNYSvia3910brsdSFik-Oez6_bSvb79jKPgxG11fjavxzcrkDawxbDmPam9iF1dnfud-LdtDMfm8P-hMbCvtL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_kClofxI-2nq02gq97zSbZbPJY2h6n1kPEA_tQlmSTQKFsD71D-t-b2ewud6Ao-JyP3cxkJjPJzG8A3lnhqec1y1iQNhOM5Zll3GcmOm5GMe-NwauBT3M5W4gP34o-mvBHF1aJPnRIQBGtrkbhXrrQR8SdtBgseYneHRMTxnWhMXV9p1DxeItbml7NBmUsi84CZngdV-Z9Es-fptk6nrbAS39ngj6GR-tmae5_mtvbjWNp-hSedPYkOU0b4Bk88M1z2B3U2v0LuB7C7MhFlOeUqkjaBAG3js42iR8nXxDBFbucI9p_QuqI9jm5iT03VSSZp7BxgjXUMJN9DxbTi69ns6wrqpDVQuarzKqCWuW0cjJwKpxlJbXIrkBrUVsraampkSVjNBhnlXbKS1pL7oMVtiz5Poyau8a_BOKcK5zSuZKcCyutUtrbYAJC6pgQxBgmPS2rZcLOqPIBkjQRv0LiVx3xx6A3KV6t2kuLkCqMVPwvY4969lSdGOIQhfaY0nIMb4fmKED4KmIaf7dup0WUuuhYjeEgsXX422g8lrpQseVk4PO_LeXVfyzlGB5-Pp9Wl-_nHw9hl2HBYQx6E0cwWn1f-9fRClrZN-0-_wWeyPp9
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_k-mB9qN96WiWCr3tmk2w2eSzaUgQPEQ_qgyyZTQJi2RbZpdS_3sxlb7kTxfqcD5KZfPwmmfkNwGtUgQfZikJEjYUSoixQyFC4ZLg5I0Jwjp4GPiz16Uq9P6vOxmB1ioXZ-b8nDmziWylrsuSEWghpK0th6nu6StB7Bnur5cejL9mNg97b6pEfNaFGy_UmYudv_ezcRTtMpX_Cm3fg9tBduusrd36-dQed3IXlZvTZ9eT7Yuhx0f78jdjxxtO7BwcjGmVHefnch1uhewD706F4_RC-Tk567DidBjnQka3DC_yQTHWWZsM-Ef8rVXlHuQIyz0dC9-xbqrl9wLJldjpnlIGN4uAfwerk-PPb02JMyVC0Spd9gabiaLw1XkfJlUdRcyRlR96qFlHzJHenayF4dB6N9SZo3moZIiqsa_kYZt1FF54C895X3tjSaCkVajTGBowuEiGPi1HNYbFRTnOZmTeaciI0zWJrSGzNKLY52G0VNv36ySPm_CSN_Efbw42-m3ETUxNDaM5YPYdXU3HafvSn4rpwMay7JY67ZJbN4UleJ9NoE_SsbWVSyZtp4dxsKs_-u8Vz2BeUmZi849QhzPofQ3iR4FKPL8dN8gs7cQTO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Estimation+Procedures+for+Reducing+Dimensionality+in+Psychological+Network+Modeling&rft.jtitle=Multivariate+behavioral+research&rft.au=Shi%2C+Dingjing&rft.au=Christensen%2C+Alexander+P&rft.au=Day%2C+Eric+Anthony&rft.au=Golino%2C+Hudson+F&rft.date=2025-03-04&rft.issn=1532-7906&rft.eissn=1532-7906&rft.spage=1&rft_id=info:doi/10.1080%2F00273171.2024.2395941&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-3171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-3171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-3171&client=summon