Deep-Learning for Rapid Estimation of the Out-of-Field Dose in External Beam Photon Radiation Therapy – A Proof of Concept
The dose deposited outside of the treatment field during external photon beam radiation therapy treatment, also known as out-of-field dose, is the subject of extensive study as it may be associated with a higher risk of developing a second cancer and could have deleterious effects on the immune syst...
Saved in:
| Published in | International journal of radiation oncology, biology, physics Vol. 120; no. 1; pp. 253 - 264 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.09.2024
|
| Online Access | Get full text |
| ISSN | 0360-3016 1879-355X 1879-355X |
| DOI | 10.1016/j.ijrobp.2024.03.007 |
Cover
| Abstract | The dose deposited outside of the treatment field during external photon beam radiation therapy treatment, also known as out-of-field dose, is the subject of extensive study as it may be associated with a higher risk of developing a second cancer and could have deleterious effects on the immune system that compromise the efficiency of combined radio-immunotherapy treatments. Out-of-field dose estimation tools developed today in research, including Monte Carlo simulations and analytical methods, are not suited to the requirements of clinical implementation because of their lack of versatility and their cumbersome application. We propose a proof of concept based on deep learning for out-of-field dose map estimation that addresses these limitations.
For this purpose, a 3D U-Net, considering as inputs the in-field dose, as computed by the treatment planning system, and the patient's anatomy, was trained to predict out-of-field dose maps. The cohort used for learning and performance evaluation included 3151 pediatric patients from the FCCSS database, treated in 5 clinical centers, whose whole-body dose maps were previously estimated with an empirical analytical method. The test set, composed of 433 patients, was split into 5 subdata sets, each containing patients treated with devices unseen during the training phase. Root mean square deviation evaluated only on nonzero voxels located in the out-of-field areas was computed as performance metric.
Root mean square deviations of 0.28 and 0.41 cGy/Gy were obtained for the training and validation data sets, respectively. Values of 0.27, 0.26, 0.28, 0.30, and 0.45 cGy/Gy were achieved for the 6 MV linear accelerator, 16 MV linear accelerator, Alcyon cobalt irradiator, Mobiletron cobalt irradiator, and betatron device test sets, respectively.
This proof-of-concept approach using a convolutional neural network has demonstrated unprecedented generalizability for this task, although it remains limited, and brings us closer to an implementation compatible with clinical routine. |
|---|---|
| AbstractList | The dose deposited outside of the treatment field during external photon beam radiation therapy treatment, also known as out-of-field dose, is the subject of extensive study as it may be associated with a higher risk of developing a second cancer and could have deleterious effects on the immune system that compromise the efficiency of combined radio-immunotherapy treatments. Out-of-field dose estimation tools developed today in research, including Monte Carlo simulations and analytical methods, are not suited to the requirements of clinical implementation because of their lack of versatility and their cumbersome application. We propose a proof of concept based on deep learning for out-of-field dose map estimation that addresses these limitations.
For this purpose, a 3D U-Net, considering as inputs the in-field dose, as computed by the treatment planning system, and the patient's anatomy, was trained to predict out-of-field dose maps. The cohort used for learning and performance evaluation included 3151 pediatric patients from the FCCSS database, treated in 5 clinical centers, whose whole-body dose maps were previously estimated with an empirical analytical method. The test set, composed of 433 patients, was split into 5 subdata sets, each containing patients treated with devices unseen during the training phase. Root mean square deviation evaluated only on nonzero voxels located in the out-of-field areas was computed as performance metric.
Root mean square deviations of 0.28 and 0.41 cGy/Gy were obtained for the training and validation data sets, respectively. Values of 0.27, 0.26, 0.28, 0.30, and 0.45 cGy/Gy were achieved for the 6 MV linear accelerator, 16 MV linear accelerator, Alcyon cobalt irradiator, Mobiletron cobalt irradiator, and betatron device test sets, respectively.
This proof-of-concept approach using a convolutional neural network has demonstrated unprecedented generalizability for this task, although it remains limited, and brings us closer to an implementation compatible with clinical routine. The dose deposited outside of the treatment field during external photon beam radiation therapy treatment, also known as out-of-field dose, is the subject of extensive study as it may be associated with a higher risk of developing a second cancer and could have deleterious effects on the immune system that compromise the efficiency of combined radio-immunotherapy treatments. Out-of-field dose estimation tools developed today in research, including Monte Carlo simulations and analytical methods, are not suited to the requirements of clinical implementation because of their lack of versatility and their cumbersome application. We propose a proof of concept based on deep learning for out-of-field dose map estimation that addresses these limitations.PURPOSEThe dose deposited outside of the treatment field during external photon beam radiation therapy treatment, also known as out-of-field dose, is the subject of extensive study as it may be associated with a higher risk of developing a second cancer and could have deleterious effects on the immune system that compromise the efficiency of combined radio-immunotherapy treatments. Out-of-field dose estimation tools developed today in research, including Monte Carlo simulations and analytical methods, are not suited to the requirements of clinical implementation because of their lack of versatility and their cumbersome application. We propose a proof of concept based on deep learning for out-of-field dose map estimation that addresses these limitations.For this purpose, a 3D U-Net, considering as inputs the in-field dose, as computed by the treatment planning system, and the patient's anatomy, was trained to predict out-of-field dose maps. The cohort used for learning and performance evaluation included 3151 pediatric patients from the FCCSS database, treated in 5 clinical centers, whose whole-body dose maps were previously estimated with an empirical analytical method. The test set, composed of 433 patients, was split into 5 subdata sets, each containing patients treated with devices unseen during the training phase. Root mean square deviation evaluated only on nonzero voxels located in the out-of-field areas was computed as performance metric.METHODS AND MATERIALSFor this purpose, a 3D U-Net, considering as inputs the in-field dose, as computed by the treatment planning system, and the patient's anatomy, was trained to predict out-of-field dose maps. The cohort used for learning and performance evaluation included 3151 pediatric patients from the FCCSS database, treated in 5 clinical centers, whose whole-body dose maps were previously estimated with an empirical analytical method. The test set, composed of 433 patients, was split into 5 subdata sets, each containing patients treated with devices unseen during the training phase. Root mean square deviation evaluated only on nonzero voxels located in the out-of-field areas was computed as performance metric.Root mean square deviations of 0.28 and 0.41 cGy/Gy were obtained for the training and validation data sets, respectively. Values of 0.27, 0.26, 0.28, 0.30, and 0.45 cGy/Gy were achieved for the 6 MV linear accelerator, 16 MV linear accelerator, Alcyon cobalt irradiator, Mobiletron cobalt irradiator, and betatron device test sets, respectively.RESULTSRoot mean square deviations of 0.28 and 0.41 cGy/Gy were obtained for the training and validation data sets, respectively. Values of 0.27, 0.26, 0.28, 0.30, and 0.45 cGy/Gy were achieved for the 6 MV linear accelerator, 16 MV linear accelerator, Alcyon cobalt irradiator, Mobiletron cobalt irradiator, and betatron device test sets, respectively.This proof-of-concept approach using a convolutional neural network has demonstrated unprecedented generalizability for this task, although it remains limited, and brings us closer to an implementation compatible with clinical routine.CONCLUSIONSThis proof-of-concept approach using a convolutional neural network has demonstrated unprecedented generalizability for this task, although it remains limited, and brings us closer to an implementation compatible with clinical routine. |
| Author | de Vathaire, Florent de Kermenguy, François Maury, Pauline Alapetite, Claire Aichi, Mohammed El Niyoteka, Stéphane Allodji, Rodrigue Sarrut, David Carré, Alexandre Colnot, Julie Grégoire, Vincent Journy, Neige Benzazon, Nathan M'hamdi, Meissane Deutsch, Eric Diallo, Ibrahima Robert, Charlotte Veres, Cristina |
| Author_xml | – sequence: 1 givenname: Nathan orcidid: 0000-0003-0868-5350 surname: Benzazon fullname: Benzazon, Nathan email: nathan.benzazon@gustaveroussy.fr organization: Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 2 givenname: Alexandre surname: Carré fullname: Carré, Alexandre organization: Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 3 givenname: François surname: de Kermenguy fullname: de Kermenguy, François organization: Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 4 givenname: Stéphane surname: Niyoteka fullname: Niyoteka, Stéphane organization: Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 5 givenname: Pauline surname: Maury fullname: Maury, Pauline organization: Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 6 givenname: Julie surname: Colnot fullname: Colnot, Julie organization: Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 7 givenname: Meissane surname: M'hamdi fullname: M'hamdi, Meissane organization: Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 8 givenname: Mohammed El surname: Aichi fullname: Aichi, Mohammed El organization: Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 9 givenname: Cristina surname: Veres fullname: Veres, Cristina organization: Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 10 givenname: Rodrigue surname: Allodji fullname: Allodji, Rodrigue organization: Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 11 givenname: Florent surname: de Vathaire fullname: de Vathaire, Florent organization: Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 12 givenname: David surname: Sarrut fullname: Sarrut, David organization: Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Léon Bérard cancer center, Lyon, France – sequence: 13 givenname: Neige surname: Journy fullname: Journy, Neige organization: Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 14 givenname: Claire surname: Alapetite fullname: Alapetite, Claire organization: Department of Radiotherapy, Institut Curie, Paris, France – sequence: 15 givenname: Vincent surname: Grégoire fullname: Grégoire, Vincent organization: Department of Radiation Oncology, centre Léon-Bérard, Lyon, France – sequence: 16 givenname: Eric surname: Deutsch fullname: Deutsch, Eric organization: Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 17 givenname: Ibrahima surname: Diallo fullname: Diallo, Ibrahima organization: Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France – sequence: 18 givenname: Charlotte surname: Robert fullname: Robert, Charlotte organization: Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38554830$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkMFqFDEch4NU7Lb6BiI5epkxmWQmsyJC3W5VWGgpFbyFTOY_btbZZJpk1IUe-g6-oU9i6lQPvawQyOX7fiTfETqwzgJCzynJKaHVq01uNt41Q16QgueE5YSIR2hGazHPWFl-PkAzwiqSsQQfoqMQNoQQSgV_gg5ZXZa8ZmSGbk4BhmwFyltjv-DOeXypBtPiZYhmq6JxFrsOxzXg8zFmrsvODPQtPnUBsLF4-SOCt6rH70Bt8cXaxSRcqtZM6tUavBp2-NftT3yCL7xLW-ksnNUwxKfocaf6AM_u72P06Wx5tfiQrc7ff1ycrDLNKxqzei5EPVeCFk1HC6o1b6um5ITxWnViDgJaNgctoKpYozrGuqZpKs6bWuuiFowdo3LaHe2gdt9V38vBp9_5naRE3tWUGznVlHc1JWEy1Uzey8kbvLseIUS5NUFD3ysLbgySkaIoRVVXJKEv7tGx2UL7b_9v6QTwCdDeheCh-98nvH6gaRP_tI1emX6f_HaSIcX9ZsDLoA2k9K3xoKNsndk38ObBgO6NNVr1X2G3X_8N8-7SMg |
| CitedBy_id | crossref_primary_10_1088_1361_6560_ad3c8d crossref_primary_10_1080_2162402X_2024_2432726 crossref_primary_10_1088_1361_6498_ad750e crossref_primary_10_1088_1361_6498_ad746e crossref_primary_10_47352_jmans_2774_3047_253 |
| Cites_doi | 10.1016/j.ejca.2018.08.017 10.1080/02841860701666055 10.1007/978-3-319-46723-8_49 10.1088/1361-6560/aa9838 10.1002/cncr.32938 10.1109/ICCVW54120.2021.00077 10.1002/mp.14018 10.1200/JCO.2008.19.9174 10.1002/mp.12462 10.1038/s41591-021-01359-w 10.1016/0167-8140(96)01713-6 10.1016/S0140-6736(88)90445-X 10.1038/s41467-022-34257-x 10.3389/fonc.2020.605119 10.1016/j.ijrobp.2006.01.027 10.1088/1361-6560/aa94b5 10.1038/s41598-021-81058-1 10.1016/j.zemedi.2013.10.008 10.1088/0031-9155/57/22/7725 10.2307/3577549 10.1016/0360-3016(83)90177-3 10.1016/j.ijrobp.2010.02.004 10.1016/j.ijrobp.2006.07.1367 10.1016/S1470-2045(22)00655-6 10.1016/j.inffus.2021.05.008 10.1088/0031-9155/60/12/4753 10.7554/eLife.67190 10.3389/fonc.2023.1201500 10.1088/0031-9155/58/21/7463 10.1016/j.tox.2021.153030 10.1002/mp.14356 10.1118/1.596170 10.1016/bs.ircmb.2023.03.002 10.1016/j.ijrobp.2014.08.335 10.1016/j.ijrobp.2015.07.2270 10.1088/0031-9155/55/23/S04 10.1088/1361-6560/aa6c9e 10.1002/acm2.13182 10.1016/S0360-3016(98)00199-0 10.1088/1361-6560/ab38e5 10.1088/0031-9155/55/23/S03 10.1038/s41571-020-0417-8 10.1118/1.596226 10.1038/s41592-018-0261-2 10.1118/1.4738963 10.1088/0031-9155/59/13/N113 10.3389/fonc.2023.1197079 10.1016/j.ijrobp.2009.01.040 10.1016/S0360-3016(03)00073-7 10.1016/j.semradonc.2019.12.003 10.1016/j.envint.2020.106212 10.3389/fonc.2022.872752 10.1088/1361-6560/ab303a 10.1088/1361-6498/aa575d |
| ContentType | Journal Article |
| Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.ijrobp.2024.03.007 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-355X |
| EndPage | 264 |
| ExternalDocumentID | 10.1016/j.ijrobp.2024.03.007 38554830 10_1016_j_ijrobp_2024_03_007 S0360301624004231 |
| Genre | Journal Article |
| GroupedDBID | --- --K .1- .FO 0R~ 1B1 1P~ 1RT 1~5 4.4 457 4G. 53G 5RE 7-5 AAEDT AAEDW AALRI AAWTL AAXUO ABJNI ABLJU ABNEU ABOCM ABUDA ACGFS ACIUM ADBBV AENEX AEVXI AFJKZ AFRHN AFTJW AHHHB AITUG AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BELOY DU5 EBS EFKBS F5P FDB GBLVA HED HMO IHE J1W KOM LX3 M41 MO0 O9- OC~ OO- RNS ROL RPZ SDG SEL SES SSZ UV1 XH2 Z5R ~S- 6I. AAFTH AFCTW EFJIC RIG SEW .55 .GJ 29J 5VS AAQFI AAQQT AAQXK AAYWO AAYXX ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFFNX AFPUW AGQPQ AGRDE AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB FIRID G-2 HMK HVGLF HX~ HZ~ NQ- R2- SAE UDS X7M XPP ZGI NPM 7X8 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c461t-897789a712bf121cc4d6b540348af79e7ed39ec7e663baf33fbbb644b8cc28733 |
| IEDL.DBID | UNPAY |
| ISSN | 0360-3016 1879-355X |
| IngestDate | Tue Aug 19 21:22:49 EDT 2025 Wed Oct 01 14:14:51 EDT 2025 Thu Apr 03 06:55:43 EDT 2025 Thu Apr 24 22:52:23 EDT 2025 Wed Oct 01 01:55:56 EDT 2025 Sat Sep 14 18:12:25 EDT 2024 Tue Oct 14 19:28:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c461t-897789a712bf121cc4d6b540348af79e7ed39ec7e663baf33fbbb644b8cc28733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0868-5350 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.redjournal.org/article/S0360301624004231/pdf |
| PMID | 38554830 |
| PQID | 3022576860 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ijrobp_2024_03_007 proquest_miscellaneous_3022576860 pubmed_primary_38554830 crossref_primary_10_1016_j_ijrobp_2024_03_007 crossref_citationtrail_10_1016_j_ijrobp_2024_03_007 elsevier_sciencedirect_doi_10_1016_j_ijrobp_2024_03_007 elsevier_clinicalkey_doi_10_1016_j_ijrobp_2024_03_007 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | International journal of radiation oncology, biology, physics |
| PublicationTitleAlternate | Int J Radiat Oncol Biol Phys |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Paganetti (bib0009) 2023; 13 Xiang, Chang, Pollom (bib0021) 2020; 126 Howell, Scarboro, Kry, Yaldo (bib0002) 2010; 55 Bewley, Bradshaw, Burns (bib0039) 1983; 4 de Kermenguy, Meziani, Mondini (bib0023) 2023; 378 Cardoso MJ, Li W, Brown R, et al. MONAI: An open-source framework for deep learning in healthcare. Little, Azizova, Richardson (bib0010) 2023; 380 Shi, Hu, Wu (bib0032) 2022; 13 Benadjaoud, Bezin, Veres (bib0037) 2012; 57 Francois, Beurtheret, Dutreix, De Vathaire (bib0040) 1988; 15 Francois, Beurtheret, Dutreix (bib0041) 1988; 15 Kase, Svensson, Wolbarst, Marks (bib0036) 1983; 9 McIntosh, Conroy, Tjong (bib0033) 2021; 27 Yoon, Heins, Zhao, Sanders, Zhang (bib0016) 2017; 62 Goy, Tmezak, Facchin (bib0007) 2022; 11 Lambin, Lieverse, Eckert (bib0024) 2020; 30 Taddei, Jalbout, Howell (bib0057) 2013; 58 Hall, Brenner (bib0022) 2006; 66 Nakamura, Kusunoki, Akiyama (bib0027) 1990; 123 Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. Colnot, Zefkili, Gschwind, Huet (bib0013) 2021; 22 De Bruin, Sparidans, van't Veer (bib0017) 2009; 27 Allodji, Schwartz, Veres (bib0043) 2015; 93 Tukenova, Guibout, Hawkins (bib0046) 2011; 80 Kry, Bednarz, Howell (bib0038) 2017; 44 Vũ Bezin, Allodji, Mege (bib0060) 2017; 37 Schneider, Halg, Hartmann (bib0030) 2014; 24 Colnot, Barraux, Loiseau (bib0028) 2019; 64 Hall, Wuu (bib0019) 2003; 56 Jagetic, Newhauser (bib0055) 2015; 60 Sánchez-Nieto, Medina-Ascanio, Rodríguez-Mongua, Doerner, Espinoza (bib0029) 2020; 47 Diallo, Lamon, Shamsaldin, Grimaud, de Vathaire, Chavaudra (bib0042) 1996; 38 Wilson, Newhauser, Schneider (bib0058) 2020; 47 Sánchez-Nieto, López-Martínez, Rodríguez-Mongua, Espinoza (bib0004) 2022; 12 Lumniczky, Impens, Armengol (bib0008) 2021; 149 Diallo, Haddy, Adjadj (bib0044) 2009; 74 2016;1606.06650. Narasimhamurthy, Mumbrekar, Satish Rao (bib0011) 2022; 465 Byrne, Alessi, Allodjii (bib0047) 2018; 103 2022;2211.02701. Hauptmann, Byrnes, Cardis (bib0012) 2023; 24 Jahreiß, Aben, Hoogeman (bib0020) 2020; 10 Cai, Fan, Guo (bib0025) 2021; 38 Sanchez, El-far, Irazola (bib0056) 2015; 1 Hall (bib0018) 2006; 65 Huynh, Parmar, Quackenbush (bib0035) 2020; 17 Howell, Scarboro, Taddei, Krishnan, Kry, Newhauser (bib0003) 2010; 55 de Vathaire, François, Schweisguth, Oberlin, Le (bib0045) 1988; 2 (bib0048) 1996 Benzazon, Colnot, de Kermenguy (bib0031) 2023; 13 Tao, Lefkopoulos, Ibrahima (bib0015) 2008; 47 Lerner, Medin, Jamtheim Gustafsson, Alkner, Olsson (bib0034) 2021; 11 Boyd J, Liashuha M, Deutsch E, et al. Self-supervised representation learning using visual field expansion on digital pathology. Ronneberger, Fischer, Brox (bib0052) 2015; 9351 De Saint-Hubert, Verellen, Poels (bib0053) 2017; 62 Wang, Ding (bib0006) 2014; 59 Almberg, Frengen, Lindmo (bib0001) 2021; 39 Veres C (bib62) 2014; 90 2021;2109.03299. Falk, Mai, Bensch (bib0051) 2019; 16 Schneider, Newhauser, Wilson, Kapsch (bib0005) 2019; 64 Mutic, Low (bib0014) 1998; 42 Heylmann, Ponath, Kindler, Kaina (bib0026) 2021; 11 Abdar, Pourpanah, Hussain (bib0059) 2021; 76 Gallagher, Tannous, Nabha (bib0054) 2018; 63 De Bruin (10.1016/j.ijrobp.2024.03.007_bib0017) 2009; 27 Kase (10.1016/j.ijrobp.2024.03.007_bib0036) 1983; 9 Diallo (10.1016/j.ijrobp.2024.03.007_bib0042) 1996; 38 Colnot (10.1016/j.ijrobp.2024.03.007_bib0028) 2019; 64 Narasimhamurthy (10.1016/j.ijrobp.2024.03.007_bib0011) 2022; 465 Howell (10.1016/j.ijrobp.2024.03.007_bib0003) 2010; 55 Bewley (10.1016/j.ijrobp.2024.03.007_bib0039) 1983; 4 Allodji (10.1016/j.ijrobp.2024.03.007_bib0043) 2015; 93 Gallagher (10.1016/j.ijrobp.2024.03.007_bib0054) 2018; 63 Wilson (10.1016/j.ijrobp.2024.03.007_bib0058) 2020; 47 McIntosh (10.1016/j.ijrobp.2024.03.007_bib0033) 2021; 27 Francois (10.1016/j.ijrobp.2024.03.007_bib0040) 1988; 15 de Vathaire (10.1016/j.ijrobp.2024.03.007_bib0045) 1988; 2 Wang (10.1016/j.ijrobp.2024.03.007_bib0006) 2014; 59 Goy (10.1016/j.ijrobp.2024.03.007_bib0007) 2022; 11 10.1016/j.ijrobp.2024.03.007_bib0049 Vũ Bezin (10.1016/j.ijrobp.2024.03.007_bib0060) 2017; 37 Almberg (10.1016/j.ijrobp.2024.03.007_bib0001) 2021; 39 Colnot (10.1016/j.ijrobp.2024.03.007_bib0013) 2021; 22 Hauptmann (10.1016/j.ijrobp.2024.03.007_bib0012) 2023; 24 10.1016/j.ijrobp.2024.03.007_bib0050 de Kermenguy (10.1016/j.ijrobp.2024.03.007_bib0023) 2023; 378 Schneider (10.1016/j.ijrobp.2024.03.007_bib0005) 2019; 64 Hall (10.1016/j.ijrobp.2024.03.007_bib0022) 2006; 66 Tukenova (10.1016/j.ijrobp.2024.03.007_bib0046) 2011; 80 Benzazon (10.1016/j.ijrobp.2024.03.007_bib0031) 2023; 13 Diallo (10.1016/j.ijrobp.2024.03.007_bib0044) 2009; 74 (10.1016/j.ijrobp.2024.03.007_bib0048) 1996 Veres C (10.1016/j.ijrobp.2024.03.007_bib62) 2014; 90 Abdar (10.1016/j.ijrobp.2024.03.007_bib0059) 2021; 76 Yoon (10.1016/j.ijrobp.2024.03.007_bib0016) 2017; 62 Huynh (10.1016/j.ijrobp.2024.03.007_bib0035) 2020; 17 Taddei (10.1016/j.ijrobp.2024.03.007_bib0057) 2013; 58 Mutic (10.1016/j.ijrobp.2024.03.007_bib0014) 1998; 42 Heylmann (10.1016/j.ijrobp.2024.03.007_bib0026) 2021; 11 Little (10.1016/j.ijrobp.2024.03.007_bib0010) 2023; 380 Sánchez-Nieto (10.1016/j.ijrobp.2024.03.007_bib0029) 2020; 47 Byrne (10.1016/j.ijrobp.2024.03.007_bib0047) 2018; 103 10.1016/j.ijrobp.2024.03.007_bib0061 Lumniczky (10.1016/j.ijrobp.2024.03.007_bib0008) 2021; 149 Falk (10.1016/j.ijrobp.2024.03.007_bib0051) 2019; 16 Francois (10.1016/j.ijrobp.2024.03.007_bib0041) 1988; 15 Jagetic (10.1016/j.ijrobp.2024.03.007_bib0055) 2015; 60 Jahreiß (10.1016/j.ijrobp.2024.03.007_bib0020) 2020; 10 Howell (10.1016/j.ijrobp.2024.03.007_bib0002) 2010; 55 Xiang (10.1016/j.ijrobp.2024.03.007_bib0021) 2020; 126 Kry (10.1016/j.ijrobp.2024.03.007_bib0038) 2017; 44 Sanchez (10.1016/j.ijrobp.2024.03.007_bib0056) 2015; 1 Cai (10.1016/j.ijrobp.2024.03.007_bib0025) 2021; 38 Paganetti (10.1016/j.ijrobp.2024.03.007_bib0009) 2023; 13 Hall (10.1016/j.ijrobp.2024.03.007_bib0019) 2003; 56 Benadjaoud (10.1016/j.ijrobp.2024.03.007_bib0037) 2012; 57 Ronneberger (10.1016/j.ijrobp.2024.03.007_bib0052) 2015; 9351 Schneider (10.1016/j.ijrobp.2024.03.007_bib0030) 2014; 24 De Saint-Hubert (10.1016/j.ijrobp.2024.03.007_bib0053) 2017; 62 Sánchez-Nieto (10.1016/j.ijrobp.2024.03.007_bib0004) 2022; 12 Shi (10.1016/j.ijrobp.2024.03.007_bib0032) 2022; 13 Lambin (10.1016/j.ijrobp.2024.03.007_bib0024) 2020; 30 Tao (10.1016/j.ijrobp.2024.03.007_bib0015) 2008; 47 Hall (10.1016/j.ijrobp.2024.03.007_bib0018) 2006; 65 Lerner (10.1016/j.ijrobp.2024.03.007_bib0034) 2021; 11 Nakamura (10.1016/j.ijrobp.2024.03.007_bib0027) 1990; 123 |
| References_xml | – volume: 38 start-page: 380 year: 2021 end-page: 387 ident: bib0025 article-title: Impact of radiation dose to circulating immune cells on tumor control and survival in esophageal cancer publication-title: Cancer Biother Radiopharm – volume: 378 start-page: 1 year: 2023 end-page: 30 ident: bib0023 article-title: Radio-induced lymphopenia in the era of anti-cancer immunotherapy publication-title: Int Rev Cell Mol Biol – volume: 30 start-page: 187 year: 2020 end-page: 193 ident: bib0024 article-title: Lymphocyte-sparing radiotherapy: The rationale for protecting lymphocyte-rich organs when combining radiotherapy with immunotherapy publication-title: Semin Radiat Oncol – volume: 11 start-page: 2478 year: 2021 ident: bib0026 article-title: Comparison of DNA repair and radiosensitivity of different blood cell populations publication-title: Sci Rep – volume: 1 year: 2015 ident: bib0056 article-title: Analytical model for photon peripheral dose estimation in radiotherapy treatments publication-title: Biomed Phys Eng Express – volume: 47 start-page: 442 year: 2008 end-page: 450 ident: bib0015 article-title: Comparison of dose contribution to normal pelvic tissues among conventional, conformal and intensity-modulated radiotherapy techniques in prostate cancer publication-title: Acta Oncol – volume: 13 start-page: 6566 year: 2022 ident: bib0032 article-title: Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy publication-title: Nat Commun – volume: 90 start-page: 1216 year: 2014 end-page: 1224 ident: bib62 article-title: Retrospective reconstructions of active bone marrow dose-volume histograms publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 465 year: 2022 ident: bib0011 article-title: Effects of low dose ionizing radiation on the brain- a functional, cellular, and molecular perspective publication-title: Toxicology – volume: 24 start-page: 45 year: 2023 end-page: 53 ident: bib0012 article-title: Brain cancer after radiation exposure from CT examinations of children and young adults: Results from the EPI-CT cohort study publication-title: Lancet Oncol – volume: 12 year: 2022 ident: bib0004 article-title: A simple analytical model for a fast 3D assessment of peripheral photon dose during coplanar isocentric photon radiotherapy publication-title: Front Oncol – year: 1996 ident: bib0048 article-title: Radiation Dose in Radiotherapy From Prescription to Delivery – reference: 2021;2109.03299. – volume: 11 year: 2021 ident: bib0034 article-title: Prospective clinical feasibility study for MRI-only brain radiotherapy publication-title: Front Oncol – volume: 44 start-page: e391 year: 2017 end-page: e429 ident: bib0038 article-title: AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy publication-title: Med Phys – reference: Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. – volume: 103 start-page: 238 year: 2018 end-page: 248 ident: bib0047 article-title: The PanCareSurFup consortium: Research and guidelines to improve lives for survivors of childhood cancer publication-title: Eur J Cancer – volume: 17 start-page: 771 year: 2020 end-page: 781 ident: bib0035 article-title: Artificial intelligence in radiation oncology publication-title: Nat Rev Clin Oncol – volume: 380 year: 2023 ident: bib0010 article-title: Ionising radiation and cardiovascular disease: Systematic review and meta-analysis publication-title: BMJ – volume: 2 start-page: 455 year: 1988 ident: bib0045 article-title: Irradiated neuroblastoma in childhood as potential risk factor for subsequent thyroid tumour publication-title: Lancet – volume: 62 start-page: 9039 year: 2017 end-page: 9053 ident: bib0016 article-title: Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques publication-title: Phys Med Biol – volume: 47 start-page: 2254 year: 2020 end-page: 2266 ident: bib0058 article-title: Method to quickly and accurately calculate absorbed dose from therapeutic and stray photon exposures throughout the entire body in individual patients publication-title: Med Phys – volume: 27 start-page: 4239 year: 2009 end-page: 4246 ident: bib0017 article-title: Breast cancer risk in female survivors of Hodgkin's lymphoma: Lower risk after smaller radiation volumes publication-title: J Clin Oncol – volume: 15 start-page: 879 year: 1988 end-page: 883 ident: bib0041 article-title: Calculation of the dose delivered to organs outside the radiation beams publication-title: Med Phys – reference: Boyd J, Liashuha M, Deutsch E, et al. Self-supervised representation learning using visual field expansion on digital pathology. – volume: 63 year: 2018 ident: bib0054 article-title: Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy publication-title: Phys Med Biol – volume: 4 year: 1983 ident: bib0039 article-title: Central axis depth dose data for use in radiotherapy publication-title: Br J Radiol – volume: 123 start-page: 224 year: 1990 end-page: 227 ident: bib0027 article-title: Radiosensitivity of CD4 or CD8 positive human T-lymphocytes by an in vitro colony formation assay publication-title: Radiat Res – volume: 58 start-page: 7463 year: 2013 end-page: 7479 ident: bib0057 article-title: Analytical model for out-of-field dose in photon craniospinal irradiation publication-title: Phys Med Biol – volume: 64 year: 2019 ident: bib0028 article-title: A new Monte Carlo model of a Cyberknife® system for the precise determination of out-of-field doses publication-title: Phys Med Biol – reference: 2022;2211.02701. – volume: 37 start-page: R1 year: 2017 end-page: R18 ident: bib0060 article-title: A review of uncertainties in radiotherapy dose reconstruction and their impacts on dose-response relationships publication-title: J Radiol Prot – volume: 149 year: 2021 ident: bib0008 article-title: Low dose ionizing radiation effects on the immune system publication-title: Environ Int – volume: 10 year: 2020 ident: bib0020 article-title: The risk of second primary cancers in prostate cancer survivors treated in the modern radiotherapy era publication-title: Front Oncol – volume: 39 start-page: 5194 year: 2021 end-page: 5203 ident: bib0001 article-title: Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter publication-title: Med Phys – volume: 60 start-page: 4753 year: 2015 end-page: 4775 ident: bib0055 article-title: A simple and fast physics-based analytical method to calculate therapeutic and stray doses from external beam, megavoltage x-ray therapy publication-title: Phys Med Biol – reference: Cardoso MJ, Li W, Brown R, et al. MONAI: An open-source framework for deep learning in healthcare. – volume: 24 start-page: 211 year: 2014 end-page: 215 ident: bib0030 article-title: Accuracy of out-of-field dose calculation of tomotherapy and cyberknife treatment planning systems: A dosimetric study publication-title: Z Med Phys – volume: 13 year: 2023 ident: bib0031 article-title: Analytical models for external photon beam radiotherapy out-of-field dose calculation: A scoping review publication-title: Front Oncol – volume: 66 start-page: 1595 year: 2006 ident: bib0022 article-title: In reply to Drs. Macklis Gottschalk publication-title: Int J Radiat Oncol Biol Phys – volume: 9351 year: 2015 ident: bib0052 article-title: U-Net publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 – volume: 22 start-page: 94 year: 2021 end-page: 106 ident: bib0013 article-title: Out-of-field doses from radiotherapy using photon beams: A comparative study for a pediatric renal treatment publication-title: J Appl Clin Med Phys – volume: 15 start-page: 328 year: 1988 end-page: 333 ident: bib0040 article-title: A mathematical child phantom for the calculation of dose to the organs at risk publication-title: Med Phys – volume: 93 start-page: 658 year: 2015 end-page: 667 ident: bib0043 article-title: Risk of subsequent leukemia after a solid tumor in childhood: Impact of bone marrow radiation therapy and chemotherapy publication-title: Int J Radiat Oncol Biol Phys – volume: 16 start-page: 67 year: 2019 end-page: 70 ident: bib0051 article-title: U-Net: Deep learning for cell counting, detection, and morphometry publication-title: Nat Methods – volume: 55 start-page: 6999 year: 2010 end-page: 7008 ident: bib0002 article-title: Accuracy of out-of-field dose calculations by a commercial treatment planning system publication-title: Phys Med Biol – volume: 13 year: 2023 ident: bib0009 article-title: A review on lymphocyte radiosensitivity and its impact on radiotherapy publication-title: Front Oncol – volume: 65 start-page: 1 year: 2006 end-page: 7 ident: bib0018 article-title: Intensity-modulated radiation therapy, protons, and the risk of second cancers publication-title: Int J Radiat Oncol Biol Phys – volume: 57 start-page: 7725 year: 2012 end-page: 7739 ident: bib0037 article-title: A multi-plane source model for out-of-field head scatter dose calculations in external beam photon therapy publication-title: Phys Med Biol – volume: 42 start-page: 229 year: 1998 end-page: 232 ident: bib0014 article-title: Whole-body dose from tomotherapy delivery publication-title: Int J Radiat Oncol Biol Phys – volume: 11 start-page: e67190 year: 2022 ident: bib0007 article-title: The out-of-field dose in radiation therapy induces delayed tumorigenesis by senescence evasion publication-title: Elife – volume: 80 start-page: 339 year: 2011 end-page: 346 ident: bib0046 article-title: Radiation therapy and late mortality from second sarcoma, carcinoma, and hematological malignancies after a solid cancer in childhood publication-title: Int J Radiat Oncol Biol Phys – volume: 126 start-page: 3560 year: 2020 end-page: 3568 ident: bib0021 article-title: Second cancer risk after primary cancer treatment with three-dimensional conformal, intensity-modulated, or proton beam radiation therapy publication-title: Cancer – volume: 55 start-page: 7009 year: 2010 end-page: 7023 ident: bib0003 article-title: Methodology for determining doses to in-field, out-of-field and partially in-field organs for late effects studies in photon radiotherapy publication-title: Phys Med Biol – volume: 9 start-page: 1177 year: 1983 end-page: 1183 ident: bib0036 article-title: Measurements of dose from secondary radiation outside a treatment field publication-title: Int J Radiat Oncol Biol Phys – volume: 76 start-page: 243 year: 2021 end-page: 297 ident: bib0059 article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges publication-title: Inf Fusion – volume: 27 start-page: 999 year: 2021 end-page: 1005 ident: bib0033 article-title: Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer publication-title: Nat Med – volume: 74 start-page: 876 year: 2009 end-page: 883 ident: bib0044 article-title: Frequency distribution of second solid cancer locations in relation to the irradiated volume among 115 patients treated for childhood cancer publication-title: Int J Radiat Oncol Biol Phys – volume: 59 start-page: N113 year: 2014 end-page: N128 ident: bib0006 article-title: The accuracy of the out-of-field dose calculations using a model based algorithm in a commercial treatment planning system publication-title: Phys Med Biol – reference: 2016;1606.06650. – volume: 56 start-page: 83 year: 2003 end-page: 88 ident: bib0019 article-title: Radiation-induced second cancers: The impact of 3D-CRT and IMRT publication-title: Int J Radiat Oncol Biol Phys – volume: 38 start-page: 269 year: 1996 end-page: 271 ident: bib0042 article-title: Estimation of the radiation dose delivered to any point outside the target volume per patient treated with external beam radiotherapy publication-title: Radiother Oncol – volume: 62 start-page: 5293 year: 2017 end-page: 5311 ident: bib0053 article-title: Out-of-field doses from pediatric craniospinal irradiations using 3D-CRT, IMRT, helical tomotherapy and electron-based therapy publication-title: Phys Med Biol – volume: 64 year: 2019 ident: bib0005 article-title: A physics-based analytical model of absorbed dose from primary, leakage, and scattered photons from megavoltage radiotherapy with MLCs publication-title: Phys Med Biol – volume: 47 start-page: 4616 year: 2020 end-page: 4625 ident: bib0029 article-title: Study of out-of-field dose in photon radiotherapy: A commercial treatment planning system versus measurements and Monte Carlo simulations publication-title: Med Phys – volume: 103 start-page: 238 year: 2018 ident: 10.1016/j.ijrobp.2024.03.007_bib0047 article-title: The PanCareSurFup consortium: Research and guidelines to improve lives for survivors of childhood cancer publication-title: Eur J Cancer doi: 10.1016/j.ejca.2018.08.017 – volume: 47 start-page: 442 year: 2008 ident: 10.1016/j.ijrobp.2024.03.007_bib0015 article-title: Comparison of dose contribution to normal pelvic tissues among conventional, conformal and intensity-modulated radiotherapy techniques in prostate cancer publication-title: Acta Oncol doi: 10.1080/02841860701666055 – ident: 10.1016/j.ijrobp.2024.03.007_bib0050 doi: 10.1007/978-3-319-46723-8_49 – volume: 9351 year: 2015 ident: 10.1016/j.ijrobp.2024.03.007_bib0052 article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation – volume: 11 year: 2021 ident: 10.1016/j.ijrobp.2024.03.007_bib0034 article-title: Prospective clinical feasibility study for MRI-only brain radiotherapy publication-title: Front Oncol – volume: 63 year: 2018 ident: 10.1016/j.ijrobp.2024.03.007_bib0054 article-title: Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa9838 – volume: 126 start-page: 3560 year: 2020 ident: 10.1016/j.ijrobp.2024.03.007_bib0021 article-title: Second cancer risk after primary cancer treatment with three-dimensional conformal, intensity-modulated, or proton beam radiation therapy publication-title: Cancer doi: 10.1002/cncr.32938 – volume: 4 year: 1983 ident: 10.1016/j.ijrobp.2024.03.007_bib0039 article-title: Central axis depth dose data for use in radiotherapy publication-title: Br J Radiol – ident: 10.1016/j.ijrobp.2024.03.007_bib0061 doi: 10.1109/ICCVW54120.2021.00077 – volume: 47 start-page: 2254 year: 2020 ident: 10.1016/j.ijrobp.2024.03.007_bib0058 article-title: Method to quickly and accurately calculate absorbed dose from therapeutic and stray photon exposures throughout the entire body in individual patients publication-title: Med Phys doi: 10.1002/mp.14018 – volume: 27 start-page: 4239 year: 2009 ident: 10.1016/j.ijrobp.2024.03.007_bib0017 article-title: Breast cancer risk in female survivors of Hodgkin's lymphoma: Lower risk after smaller radiation volumes publication-title: J Clin Oncol doi: 10.1200/JCO.2008.19.9174 – volume: 44 start-page: e391 year: 2017 ident: 10.1016/j.ijrobp.2024.03.007_bib0038 article-title: AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy publication-title: Med Phys doi: 10.1002/mp.12462 – volume: 27 start-page: 999 year: 2021 ident: 10.1016/j.ijrobp.2024.03.007_bib0033 article-title: Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer publication-title: Nat Med doi: 10.1038/s41591-021-01359-w – volume: 38 start-page: 269 year: 1996 ident: 10.1016/j.ijrobp.2024.03.007_bib0042 article-title: Estimation of the radiation dose delivered to any point outside the target volume per patient treated with external beam radiotherapy publication-title: Radiother Oncol doi: 10.1016/0167-8140(96)01713-6 – volume: 2 start-page: 455 year: 1988 ident: 10.1016/j.ijrobp.2024.03.007_bib0045 article-title: Irradiated neuroblastoma in childhood as potential risk factor for subsequent thyroid tumour publication-title: Lancet doi: 10.1016/S0140-6736(88)90445-X – volume: 13 start-page: 6566 year: 2022 ident: 10.1016/j.ijrobp.2024.03.007_bib0032 article-title: Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy publication-title: Nat Commun doi: 10.1038/s41467-022-34257-x – volume: 10 year: 2020 ident: 10.1016/j.ijrobp.2024.03.007_bib0020 article-title: The risk of second primary cancers in prostate cancer survivors treated in the modern radiotherapy era publication-title: Front Oncol doi: 10.3389/fonc.2020.605119 – volume: 38 start-page: 380 year: 2021 ident: 10.1016/j.ijrobp.2024.03.007_bib0025 article-title: Impact of radiation dose to circulating immune cells on tumor control and survival in esophageal cancer publication-title: Cancer Biother Radiopharm – volume: 65 start-page: 1 year: 2006 ident: 10.1016/j.ijrobp.2024.03.007_bib0018 article-title: Intensity-modulated radiation therapy, protons, and the risk of second cancers publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2006.01.027 – volume: 62 start-page: 9039 year: 2017 ident: 10.1016/j.ijrobp.2024.03.007_bib0016 article-title: Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa94b5 – volume: 11 start-page: 2478 year: 2021 ident: 10.1016/j.ijrobp.2024.03.007_bib0026 article-title: Comparison of DNA repair and radiosensitivity of different blood cell populations publication-title: Sci Rep doi: 10.1038/s41598-021-81058-1 – volume: 24 start-page: 211 year: 2014 ident: 10.1016/j.ijrobp.2024.03.007_bib0030 article-title: Accuracy of out-of-field dose calculation of tomotherapy and cyberknife treatment planning systems: A dosimetric study publication-title: Z Med Phys doi: 10.1016/j.zemedi.2013.10.008 – volume: 57 start-page: 7725 year: 2012 ident: 10.1016/j.ijrobp.2024.03.007_bib0037 article-title: A multi-plane source model for out-of-field head scatter dose calculations in external beam photon therapy publication-title: Phys Med Biol doi: 10.1088/0031-9155/57/22/7725 – volume: 380 year: 2023 ident: 10.1016/j.ijrobp.2024.03.007_bib0010 article-title: Ionising radiation and cardiovascular disease: Systematic review and meta-analysis publication-title: BMJ – volume: 123 start-page: 224 year: 1990 ident: 10.1016/j.ijrobp.2024.03.007_bib0027 article-title: Radiosensitivity of CD4 or CD8 positive human T-lymphocytes by an in vitro colony formation assay publication-title: Radiat Res doi: 10.2307/3577549 – volume: 9 start-page: 1177 year: 1983 ident: 10.1016/j.ijrobp.2024.03.007_bib0036 article-title: Measurements of dose from secondary radiation outside a treatment field publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/0360-3016(83)90177-3 – volume: 80 start-page: 339 year: 2011 ident: 10.1016/j.ijrobp.2024.03.007_bib0046 article-title: Radiation therapy and late mortality from second sarcoma, carcinoma, and hematological malignancies after a solid cancer in childhood publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.02.004 – volume: 66 start-page: 1595 year: 2006 ident: 10.1016/j.ijrobp.2024.03.007_bib0022 article-title: In reply to Drs. Macklis Gottschalk publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2006.07.1367 – volume: 24 start-page: 45 year: 2023 ident: 10.1016/j.ijrobp.2024.03.007_bib0012 article-title: Brain cancer after radiation exposure from CT examinations of children and young adults: Results from the EPI-CT cohort study publication-title: Lancet Oncol doi: 10.1016/S1470-2045(22)00655-6 – volume: 76 start-page: 243 year: 2021 ident: 10.1016/j.ijrobp.2024.03.007_bib0059 article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges publication-title: Inf Fusion doi: 10.1016/j.inffus.2021.05.008 – volume: 60 start-page: 4753 year: 2015 ident: 10.1016/j.ijrobp.2024.03.007_bib0055 article-title: A simple and fast physics-based analytical method to calculate therapeutic and stray doses from external beam, megavoltage x-ray therapy publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/12/4753 – volume: 11 start-page: e67190 year: 2022 ident: 10.1016/j.ijrobp.2024.03.007_bib0007 article-title: The out-of-field dose in radiation therapy induces delayed tumorigenesis by senescence evasion publication-title: Elife doi: 10.7554/eLife.67190 – volume: 13 year: 2023 ident: 10.1016/j.ijrobp.2024.03.007_bib0009 article-title: A review on lymphocyte radiosensitivity and its impact on radiotherapy publication-title: Front Oncol doi: 10.3389/fonc.2023.1201500 – volume: 58 start-page: 7463 year: 2013 ident: 10.1016/j.ijrobp.2024.03.007_bib0057 article-title: Analytical model for out-of-field dose in photon craniospinal irradiation publication-title: Phys Med Biol doi: 10.1088/0031-9155/58/21/7463 – year: 1996 ident: 10.1016/j.ijrobp.2024.03.007_bib0048 – ident: 10.1016/j.ijrobp.2024.03.007_bib0049 – volume: 465 year: 2022 ident: 10.1016/j.ijrobp.2024.03.007_bib0011 article-title: Effects of low dose ionizing radiation on the brain- a functional, cellular, and molecular perspective publication-title: Toxicology doi: 10.1016/j.tox.2021.153030 – volume: 47 start-page: 4616 year: 2020 ident: 10.1016/j.ijrobp.2024.03.007_bib0029 article-title: Study of out-of-field dose in photon radiotherapy: A commercial treatment planning system versus measurements and Monte Carlo simulations publication-title: Med Phys doi: 10.1002/mp.14356 – volume: 15 start-page: 879 year: 1988 ident: 10.1016/j.ijrobp.2024.03.007_bib0041 article-title: Calculation of the dose delivered to organs outside the radiation beams publication-title: Med Phys doi: 10.1118/1.596170 – volume: 378 start-page: 1 year: 2023 ident: 10.1016/j.ijrobp.2024.03.007_bib0023 article-title: Radio-induced lymphopenia in the era of anti-cancer immunotherapy publication-title: Int Rev Cell Mol Biol doi: 10.1016/bs.ircmb.2023.03.002 – volume: 90 start-page: 1216 year: 2014 ident: 10.1016/j.ijrobp.2024.03.007_bib62 article-title: Retrospective reconstructions of active bone marrow dose-volume histograms publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2014.08.335 – volume: 93 start-page: 658 year: 2015 ident: 10.1016/j.ijrobp.2024.03.007_bib0043 article-title: Risk of subsequent leukemia after a solid tumor in childhood: Impact of bone marrow radiation therapy and chemotherapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2015.07.2270 – volume: 55 start-page: 7009 year: 2010 ident: 10.1016/j.ijrobp.2024.03.007_bib0003 article-title: Methodology for determining doses to in-field, out-of-field and partially in-field organs for late effects studies in photon radiotherapy publication-title: Phys Med Biol doi: 10.1088/0031-9155/55/23/S04 – volume: 62 start-page: 5293 year: 2017 ident: 10.1016/j.ijrobp.2024.03.007_bib0053 article-title: Out-of-field doses from pediatric craniospinal irradiations using 3D-CRT, IMRT, helical tomotherapy and electron-based therapy publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa6c9e – volume: 22 start-page: 94 year: 2021 ident: 10.1016/j.ijrobp.2024.03.007_bib0013 article-title: Out-of-field doses from radiotherapy using photon beams: A comparative study for a pediatric renal treatment publication-title: J Appl Clin Med Phys doi: 10.1002/acm2.13182 – volume: 42 start-page: 229 year: 1998 ident: 10.1016/j.ijrobp.2024.03.007_bib0014 article-title: Whole-body dose from tomotherapy delivery publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(98)00199-0 – volume: 64 year: 2019 ident: 10.1016/j.ijrobp.2024.03.007_bib0028 article-title: A new Monte Carlo model of a Cyberknife® system for the precise determination of out-of-field doses publication-title: Phys Med Biol doi: 10.1088/1361-6560/ab38e5 – volume: 55 start-page: 6999 year: 2010 ident: 10.1016/j.ijrobp.2024.03.007_bib0002 article-title: Accuracy of out-of-field dose calculations by a commercial treatment planning system publication-title: Phys Med Biol doi: 10.1088/0031-9155/55/23/S03 – volume: 1 year: 2015 ident: 10.1016/j.ijrobp.2024.03.007_bib0056 article-title: Analytical model for photon peripheral dose estimation in radiotherapy treatments publication-title: Biomed Phys Eng Express – volume: 17 start-page: 771 year: 2020 ident: 10.1016/j.ijrobp.2024.03.007_bib0035 article-title: Artificial intelligence in radiation oncology publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-020-0417-8 – volume: 15 start-page: 328 year: 1988 ident: 10.1016/j.ijrobp.2024.03.007_bib0040 article-title: A mathematical child phantom for the calculation of dose to the organs at risk publication-title: Med Phys doi: 10.1118/1.596226 – volume: 16 start-page: 67 year: 2019 ident: 10.1016/j.ijrobp.2024.03.007_bib0051 article-title: U-Net: Deep learning for cell counting, detection, and morphometry publication-title: Nat Methods doi: 10.1038/s41592-018-0261-2 – volume: 39 start-page: 5194 year: 2021 ident: 10.1016/j.ijrobp.2024.03.007_bib0001 article-title: Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter publication-title: Med Phys doi: 10.1118/1.4738963 – volume: 59 start-page: N113 year: 2014 ident: 10.1016/j.ijrobp.2024.03.007_bib0006 article-title: The accuracy of the out-of-field dose calculations using a model based algorithm in a commercial treatment planning system publication-title: Phys Med Biol doi: 10.1088/0031-9155/59/13/N113 – volume: 13 year: 2023 ident: 10.1016/j.ijrobp.2024.03.007_bib0031 article-title: Analytical models for external photon beam radiotherapy out-of-field dose calculation: A scoping review publication-title: Front Oncol doi: 10.3389/fonc.2023.1197079 – volume: 74 start-page: 876 year: 2009 ident: 10.1016/j.ijrobp.2024.03.007_bib0044 article-title: Frequency distribution of second solid cancer locations in relation to the irradiated volume among 115 patients treated for childhood cancer publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.01.040 – volume: 56 start-page: 83 year: 2003 ident: 10.1016/j.ijrobp.2024.03.007_bib0019 article-title: Radiation-induced second cancers: The impact of 3D-CRT and IMRT publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(03)00073-7 – volume: 30 start-page: 187 year: 2020 ident: 10.1016/j.ijrobp.2024.03.007_bib0024 article-title: Lymphocyte-sparing radiotherapy: The rationale for protecting lymphocyte-rich organs when combining radiotherapy with immunotherapy publication-title: Semin Radiat Oncol doi: 10.1016/j.semradonc.2019.12.003 – volume: 149 year: 2021 ident: 10.1016/j.ijrobp.2024.03.007_bib0008 article-title: Low dose ionizing radiation effects on the immune system publication-title: Environ Int doi: 10.1016/j.envint.2020.106212 – volume: 12 year: 2022 ident: 10.1016/j.ijrobp.2024.03.007_bib0004 article-title: A simple analytical model for a fast 3D assessment of peripheral photon dose during coplanar isocentric photon radiotherapy publication-title: Front Oncol doi: 10.3389/fonc.2022.872752 – volume: 64 year: 2019 ident: 10.1016/j.ijrobp.2024.03.007_bib0005 article-title: A physics-based analytical model of absorbed dose from primary, leakage, and scattered photons from megavoltage radiotherapy with MLCs publication-title: Phys Med Biol doi: 10.1088/1361-6560/ab303a – volume: 37 start-page: R1 year: 2017 ident: 10.1016/j.ijrobp.2024.03.007_bib0060 article-title: A review of uncertainties in radiotherapy dose reconstruction and their impacts on dose-response relationships publication-title: J Radiol Prot doi: 10.1088/1361-6498/aa575d |
| SSID | ssj0001174 |
| Score | 2.486359 |
| Snippet | The dose deposited outside of the treatment field during external photon beam radiation therapy treatment, also known as out-of-field dose, is the subject of... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 253 |
| Title | Deep-Learning for Rapid Estimation of the Out-of-Field Dose in External Beam Photon Radiation Therapy – A Proof of Concept |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0360301624004231 https://dx.doi.org/10.1016/j.ijrobp.2024.03.007 https://www.ncbi.nlm.nih.gov/pubmed/38554830 https://www.proquest.com/docview/3022576860 http://www.redjournal.org/article/S0360301624004231/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 120 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-355X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001174 issn: 1879-355X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-355X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001174 issn: 1879-355X databaseCode: AKRWK dateStart: 19761001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bb9MwFICPoJWAPXAfK5fJSLy6a-LETh_L1mpiYlRjFeXJih2bdZQk6hIhEA_8B_4hv4TjOSlIE9r2GCXHku3j48_xuQC8ivGIIay2NA1dCTPOIqqEiimPjYpiEbka287b4pDvz6I383j-99eF86pcmawZR58n2I_gznu0tY7fufN6RAgIdsrM3oQujxHCO9CdHU5HH_3NJFqWwXnRU1dKm-KOOm-D5s49uxanq0K5XJVh5BOciv9tShehcwNu13mZfvuaLpf_bESTezBvw3m8_8nnfl2pvv5-Mbvjdft4H-42cEpG_rsHcMPkD-HW2-b6_RH82DOmpE1K1k8EeZccpeUiI2M0FD4GkhSWIFOSd3VFC0snzkGO7BVnhixyMm5STpPXJv1CpicFgie2kHn1IMc-wwH5_fMXGZEpMr11ze36yMrHMJuMj3f3aVO-geqIBxVNEC2TYSqCUNkgDLSOMq4QEFmUpFYMjTAZGxotDEKPSi1jVimFeKYSrfEcx9gmdPIiN1tAYo0tGKSnhOsIbdBwwJOAaYt4aFUYih6wdv6kbnKbuxIbS9k6sZ1KP-vSzbocMImz3gO6lip9bo9Lvo9b1ZBt3CpaWombzyVyYi3XcI3nlStIvmw1UOKyd3c5aW6K-kwyZC93VOSDHjzxqrnuA3OuhwnDN_21rl6pg0-vK_AM7rgn73P3HDrVqjYvENIqtQ3d0cHRh4PtZmH-AXnnOOs |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bb9MwFIAt6CQYD9wv5SYj8equiR07fSxbqwmJUcEqlSfLduzR0SVRlwiBeOA_8A_5JRzPTkGa0LbHKDmWbB8ff47PBaHXGRwxhDOOqNSXMOOUES10RnhmNcsE8zW2vbfFAd-fs7eLbPH314X3qlzbIo5jyBMcRnDnI9haz-_cez0CBCQ7deGuoy2eAYT30Nb8YDb-FG4mwbIMz4qe-lLaBHbURRc0d-bZtTxeV9rnqkxZSHAq_rcpnYfOW-hmW9bq21e1Wv2zEU3voEUXzhP8T74M2kYPzPfz2R2v2se76HaEUzwO391D12x5H914F6_fH6Afe9bWJKZkPcLAu_iDqpcFnoChCDGQuHIYmBK_bxtSOTL1DnJ4rzq1eFniSUw5jd9YdYJnnysAT2ihCOqBD0OGA_z75y88xjNgeueb2w2RlQ_RfDo53N0nsXwDMYwnDckBLfOREkmqXZImxrCCawBEynLlxMgKW9CRNcIC9GjlKHVaa8AznRsD5zhKH6FeWZX2CcKZgRYs0FPODQMbNBryPKHGAR46naaij2g3f9LE3Oa-xMZKdk5sxzLMuvSzLodUwqz3EdlI1SG3xwXfZ51qyC5uFSythM3nAjmxkYtcE3jlEpKvOg2UsOz9XY4qbdWeSgrs5Y-KfNhHj4NqbvpAvethTuHNYKOrl-rg06sKPEPb_in43D1HvWbd2hcAaY1-GRfkH7qDN0g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning+for+Rapid+Estimation+of+the+Out-of-Field+Dose+in+External+Beam+Photon+Radiation+Therapy+-+A+Proof+of+Concept&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Benzazon%2C+Nathan&rft.au=Carr%C3%A9%2C+Alexandre&rft.au=de+Kermenguy%2C+Fran%C3%A7ois&rft.au=Niyoteka%2C+St%C3%A9phane&rft.date=2024-09-01&rft.eissn=1879-355X&rft_id=info:doi/10.1016%2Fj.ijrobp.2024.03.007&rft_id=info%3Apmid%2F38554830&rft.externalDocID=38554830 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3016&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3016&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3016&client=summon |