Multidimensional Feature Optimization Based Eye Blink Detection Under Epileptiform Discharges
Objectives: Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical. Methods: In this paper, we proposed a novel multi-dimensional feat...
Saved in:
| Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 905 - 914 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1534-4320 1558-0210 1558-0210 |
| DOI | 10.1109/TNSRE.2022.3164126 |
Cover
| Abstract | Objectives: Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical. Methods: In this paper, we proposed a novel multi-dimensional feature optimization based eye blink artifact detection algorithm for EEGs containing rich epileptiform discharges. An unsupervised clustering algorithm based on smoothed nonlinear energy operator (SNEO) and variational mode extraction (VME) is proposed to detect epileptiform discharges in the frontal leads. Then, multi-dimensional time/frequency EEG features extracted from forehead electrodes (FP1 and FP2 channels) combining with the improved VME (IVME) threshold are derived for EEG representation. A variance filtering method is further applied for discriminative feature selection and a machine learning model is finally learned to perform detection. Results: Experiments on EEGs of 16 subjects from the Children's Hospital of Zhejiang University School of Medicine (CHZU) show that our method achieves the highest average sensitivity, specificity and accuracy of 95.04, 89.52, and 93.01, respectively. That outperforms 5 recent and state-of-the-art (SOTA) eye blink detection algorithms. Significance: The proposed method is robust in eye blink artifact detection for EEGs containing high-frequency epileptiform discharges. It is also effective in dealing with individual differences in EEGs, which is usually ignored in conventional methods. |
|---|---|
| AbstractList | Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical.
In this paper, we proposed a novel multi-dimensional feature optimization based eye blink artifact detection algorithm for EEGs containing rich epileptiform discharges. An unsupervised clustering algorithm based on smoothed nonlinear energy operator (SNEO) and variational mode extraction (VME) is proposed to detect epileptiform discharges in the frontal leads. Then, multi-dimensional time/frequency EEG features extracted from forehead electrodes (FP1 and FP2 channels) combining with the improved VME (IVME) threshold are derived for EEG representation. A variance filtering method is further applied for discriminative feature selection and a machine learning model is finally learned to perform detection.
Experiments on EEGs of 16 subjects from the Children's Hospital of Zhejiang University School of Medicine (CHZU) show that our method achieves the highest average sensitivity, specificity and accuracy of 95.04, 89.52, and 93.01, respectively. That outperforms 5 recent and state-of-the-art (SOTA) eye blink detection algorithms.
The proposed method is robust in eye blink artifact detection for EEGs containing high-frequency epileptiform discharges. It is also effective in dealing with individual differences in EEGs, which is usually ignored in conventional methods. Objectives: Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical. Methods: In this paper, we proposed a novel multi-dimensional feature optimization based eye blink artifact detection algorithm for EEGs containing rich epileptiform discharges. An unsupervised clustering algorithm based on smoothed nonlinear energy operator (SNEO) and variational mode extraction (VME) is proposed to detect epileptiform discharges in the frontal leads. Then, multi-dimensional time/frequency EEG features extracted from forehead electrodes (FP1 and FP2 channels) combining with the improved VME (IVME) threshold are derived for EEG representation. A variance filtering method is further applied for discriminative feature selection and a machine learning model is finally learned to perform detection. Results: Experiments on EEGs of 16 subjects from the Children’s Hospital of Zhejiang University School of Medicine (CHZU) show that our method achieves the highest average sensitivity, specificity and accuracy of 95.04, 89.52, and 93.01, respectively. That outperforms 5 recent and state-of-the-art (SOTA) eye blink detection algorithms. Significance: The proposed method is robust in eye blink artifact detection for EEGs containing high-frequency epileptiform discharges. It is also effective in dealing with individual differences in EEGs, which is usually ignored in conventional methods. Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical.OBJECTIVESEye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical.In this paper, we proposed a novel multi-dimensional feature optimization based eye blink artifact detection algorithm for EEGs containing rich epileptiform discharges. An unsupervised clustering algorithm based on smoothed nonlinear energy operator (SNEO) and variational mode extraction (VME) is proposed to detect epileptiform discharges in the frontal leads. Then, multi-dimensional time/frequency EEG features extracted from forehead electrodes (FP1 and FP2 channels) combining with the improved VME (IVME) threshold are derived for EEG representation. A variance filtering method is further applied for discriminative feature selection and a machine learning model is finally learned to perform detection.METHODSIn this paper, we proposed a novel multi-dimensional feature optimization based eye blink artifact detection algorithm for EEGs containing rich epileptiform discharges. An unsupervised clustering algorithm based on smoothed nonlinear energy operator (SNEO) and variational mode extraction (VME) is proposed to detect epileptiform discharges in the frontal leads. Then, multi-dimensional time/frequency EEG features extracted from forehead electrodes (FP1 and FP2 channels) combining with the improved VME (IVME) threshold are derived for EEG representation. A variance filtering method is further applied for discriminative feature selection and a machine learning model is finally learned to perform detection.Experiments on EEGs of 16 subjects from the Children's Hospital of Zhejiang University School of Medicine (CHZU) show that our method achieves the highest average sensitivity, specificity and accuracy of 95.04, 89.52, and 93.01, respectively. That outperforms 5 recent and state-of-the-art (SOTA) eye blink detection algorithms.RESULTSExperiments on EEGs of 16 subjects from the Children's Hospital of Zhejiang University School of Medicine (CHZU) show that our method achieves the highest average sensitivity, specificity and accuracy of 95.04, 89.52, and 93.01, respectively. That outperforms 5 recent and state-of-the-art (SOTA) eye blink detection algorithms.The proposed method is robust in eye blink artifact detection for EEGs containing high-frequency epileptiform discharges. It is also effective in dealing with individual differences in EEGs, which is usually ignored in conventional methods.SIGNIFICANCEThe proposed method is robust in eye blink artifact detection for EEGs containing high-frequency epileptiform discharges. It is also effective in dealing with individual differences in EEGs, which is usually ignored in conventional methods. |
| Author | Wang, Tianlei Jiang, Tiejia Cao, Jiuwen Cui, Xiaonan Wang, Meng Gao, Feng Wang, Jianhui |
| Author_xml | – sequence: 1 givenname: Meng surname: Wang fullname: Wang, Meng email: 15968138702@163.com organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Jianhui surname: Wang fullname: Wang, Jianhui email: 15968194550@163.com organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: Xiaonan surname: Cui fullname: Cui, Xiaonan email: xiaonan18@foxmail.com organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China – sequence: 4 givenname: Tianlei orcidid: 0000-0002-4498-4326 surname: Wang fullname: Wang, Tianlei email: tianleiwang@hdu.edu.cn organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China – sequence: 5 givenname: Tiejia surname: Jiang fullname: Jiang, Tiejia email: jiangyouze@zju.edu.cn organization: Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China – sequence: 6 givenname: Feng orcidid: 0000-0003-4907-7212 surname: Gao fullname: Gao, Feng email: epilepsy@zju.edu.cn organization: Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China – sequence: 7 givenname: Jiuwen orcidid: 0000-0002-6480-5794 surname: Cao fullname: Cao, Jiuwen email: jwcao@hdu.edu.cn organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35363618$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1v1DAQjVAR_YA_ABKKxIXLLv5OfKTtFioVKkF7RNbEnhQvTrLYjtDy68l-0MMicbI1896b5zc-LY76oceieEnJnFKi3919_vplMWeEsTmnSlCmnhQnVMp6RhglR5s7FzPBGTkuTlNaEkIrJatnxTGXXHFF65Pi26cxZO98h33yQw-hvELIY8TydpV9539DnsrlOSR05WKN5Xnw_Y_yEjPabee-dxjLxcoHnAjtELvy0if7HeIDpufF0xZCwhf786y4v1rcXXyc3dx-uL54fzOzQtE8U4B11SgJrBVNKxiVDQNttWVIasKEqpwTSlnHmgakFYRUDKqmsdRRqYXjZ8X1TtcNsDSr6DuIazOAN9vCEB8MxOxtQCM1pVbUNYBmQhLX2LYhm8E1r7V07aTFd1pjv4L1LwjhUZASswne5D5FNJvgzT74ifV2x1rF4eeIKZtuSgFDgB6HMRmmplcwovUG-uYAuhzGOEW_RelKE07YhHq9R41Nh-7Rw9_VTQC2A9g4pMlP-4_N7f84tFkfkKzP2xXnCD78n_pqR_WI-DhLV0JqRvgflyHGDQ |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_1109_JSEN_2024_3358911 crossref_primary_10_1109_TNSRE_2023_3321414 crossref_primary_10_1109_TNSRE_2022_3229066 crossref_primary_10_1007_s11517_023_02976_y crossref_primary_10_1109_TIM_2022_3220287 crossref_primary_10_3390_app12104879 crossref_primary_10_1016_j_bspc_2023_104657 crossref_primary_10_1016_j_measen_2023_100810 crossref_primary_10_1016_j_neuri_2022_100115 crossref_primary_10_1109_TNSRE_2022_3223056 crossref_primary_10_1109_JSEN_2023_3305118 crossref_primary_10_1109_TNSRE_2024_3452315 crossref_primary_10_1142_S0219519423500653 |
| Cites_doi | 10.1109/TCDS.2020.3009020 10.1109/TCDS.2021.3064228 10.1109/JBHI.2021.3096984 10.1109/TNSRE.2021.3054733 10.1088/1741-2552/aa8d95 10.1016/S0013-4694(97)00042-8 10.1109/TCDS.2019.2936441 10.1109/LSP.2005.855539 10.3389/fnhum.2019.00250 10.1016/j.neunet.2022.03.014 10.1109/IEMBS.2010.5626481 10.1007/978-3-642-15819-3_59 10.1109/TBME.2005.845243 10.1016/j.neucom.2016.06.067 10.1109/IEMBS.2003.1280467 10.1109/ICSDA.2013.6709849 10.1109/TNSRE.2021.3107142 10.1049/iet-spr.2018.5111 10.1016/j.cmpb.2015.10.011 10.1109/JBHI.2021.3057891 10.1109/10.841330 10.1109/JBHI.2020.2995235 10.1038/s41598-021-90437-7 10.1109/TNSRE.2018.2794184 10.1088/0967-3334/26/1/R02 10.1088/0143-0815/12/A/010 10.1109/JBHI.2017.2723420 10.1007/s13534-013-0090-2 10.1109/TNSRE.2021.3099232 10.1049/ccs2.12035 10.11591/ijece.v6i6.pp3131-3141 10.1007/BF02344717 10.3390/brainsci9120352 10.1109/TNSRE.2016.2606416 10.1109/TNSRE.2018.2850308 10.1109/JBHI.2015.2450196 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY DOA |
| DOI | 10.1109/TNSRE.2022.3164126 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 914 |
| ExternalDocumentID | oai_doaj_org_article_5911c488aa92450dbcfb0a2f483895df 10.1109/tnsre.2022.3164126 35363618 10_1109_TNSRE_2022_3164126 9745920 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Natural Science Key Foundation of Zhejiang Province grantid: LZ22F030002 funderid: 10.13039/501100017600 – fundername: Key Research and Development Program of Zhejiang Province grantid: 2020C03038 – fundername: National Natural Science Foundation of China grantid: U1909209 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2021YFE0100100; 2021YFE0205400 funderid: 10.13039/501100012166 – fundername: Open Research Projects of Zhejiang Laboratory grantid: 2021MC0AB04 |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c461t-6ae87b65a2f4bf4215b2a9c9c2e0802467dd466cd2bba5c40072a7bbc1d1594d3 |
| IEDL.DBID | UNPAY |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Fri Oct 03 12:44:11 EDT 2025 Wed Oct 01 15:47:06 EDT 2025 Fri Jul 11 12:40:11 EDT 2025 Fri Jul 25 01:31:31 EDT 2025 Thu Apr 03 07:00:10 EDT 2025 Wed Oct 01 01:12:31 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Wed Aug 27 02:40:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c461t-6ae87b65a2f4bf4215b2a9c9c2e0802467dd466cd2bba5c40072a7bbc1d1594d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6480-5794 0000-0003-4907-7212 0000-0002-4498-4326 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/7333/9695946/09745920.pdf |
| PMID | 35363618 |
| PQID | 2649790302 |
| PQPubID | 85423 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9745920 pubmed_primary_35363618 crossref_primary_10_1109_TNSRE_2022_3164126 doaj_primary_oai_doaj_org_article_5911c488aa92450dbcfb0a2f483895df unpaywall_primary_10_1109_tnsre_2022_3164126 crossref_citationtrail_10_1109_TNSRE_2022_3164126 proquest_miscellaneous_2646720996 proquest_journals_2649790302 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 kaya (ref1) 2020 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref6 doi: 10.1109/TCDS.2020.3009020 – ident: ref5 doi: 10.1109/TCDS.2021.3064228 – ident: ref33 doi: 10.1109/JBHI.2021.3096984 – ident: ref30 doi: 10.1109/TNSRE.2021.3054733 – year: 2020 ident: ref1 article-title: A brief summary of EEG artifact handling publication-title: arXiv 2001 00693 – ident: ref34 doi: 10.1088/1741-2552/aa8d95 – ident: ref20 doi: 10.1016/S0013-4694(97)00042-8 – ident: ref4 doi: 10.1109/TCDS.2019.2936441 – ident: ref26 doi: 10.1109/LSP.2005.855539 – ident: ref2 doi: 10.3389/fnhum.2019.00250 – ident: ref36 doi: 10.1016/j.neunet.2022.03.014 – ident: ref8 doi: 10.1109/IEMBS.2010.5626481 – ident: ref24 doi: 10.1007/978-3-642-15819-3_59 – ident: ref13 doi: 10.1109/TBME.2005.845243 – ident: ref29 doi: 10.1016/j.neucom.2016.06.067 – ident: ref21 doi: 10.1109/IEMBS.2003.1280467 – ident: ref18 doi: 10.1109/ICSDA.2013.6709849 – ident: ref7 doi: 10.1109/TNSRE.2021.3107142 – ident: ref28 doi: 10.1049/iet-spr.2018.5111 – ident: ref9 doi: 10.1016/j.cmpb.2015.10.011 – ident: ref32 doi: 10.1109/JBHI.2021.3057891 – ident: ref22 doi: 10.1109/10.841330 – ident: ref25 doi: 10.1109/JBHI.2020.2995235 – ident: ref11 doi: 10.1038/s41598-021-90437-7 – ident: ref15 doi: 10.1109/TNSRE.2018.2794184 – ident: ref17 doi: 10.1088/0967-3334/26/1/R02 – ident: ref19 doi: 10.1088/0143-0815/12/A/010 – ident: ref27 doi: 10.1109/JBHI.2017.2723420 – ident: ref37 doi: 10.1007/s13534-013-0090-2 – ident: ref35 doi: 10.1109/TNSRE.2021.3099232 – ident: ref10 doi: 10.1049/ccs2.12035 – ident: ref31 doi: 10.11591/ijece.v6i6.pp3131-3141 – ident: ref12 doi: 10.1007/BF02344717 – ident: ref16 doi: 10.3390/brainsci9120352 – ident: ref14 doi: 10.1109/TNSRE.2016.2606416 – ident: ref3 doi: 10.1109/TNSRE.2018.2850308 – ident: ref23 doi: 10.1109/JBHI.2015.2450196 |
| SSID | ssj0017657 |
| Score | 2.4437218 |
| Snippet | Objectives: Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform... Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges.... |
| SourceID | doaj unpaywall proquest pubmed crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 905 |
| SubjectTerms | Algorithms Blinking Child Clustering Detection algorithms Discharges (electric) EEG Electroencephalography Electroencephalography - methods Epilepsy Epilepsy - diagnosis Epileptiform discharge Feature extraction Filtering Firing pattern Forehead Humans improved variational mode extraction Machine learning multi-dimensional EEG feature optimization Multidimensional methods Optimization variance filtering Waveforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFH_IXtSDqOtHdZUI6kXLNmmSNkfHnWURXGGdhb1IyVdBGLvDTgfZ_9730k6ZRdGL1zYJfXnfTd7vAbzmVnmrgs916-pceh_zOniVh8oXbSxDVbVUO_z5VJ-cy08X6mKn1RfdCRvggYeNO1SojR6lzFrMFFQRnG9dYUUra3S1KrRkfYvabJOp8fyg0qralsgU5nBx-vVsjsmgEJijaskJSmHHDSW0_rG9yp8izbtwe9Ot7PVPu1zueJ_j-3BvDBvZh-FzH8Ct2D2EN7sQwWwx4AOwt-zsBvr2PnxLVbaBcPwHDA5Ggd_mKrIvaDB-jJWYbIYOLbD5dWQzOtZlR7FP97Q6lpojsfkKLQhOoDCXHX1fJ5CluH4E58fzxceTfGyrkHupeZ9rG-vKaUWb6FqJPt8Ja7zxIlLhLVrOEKTWPgjnkJPUOF3YyjnPA8Y-MpSPYa-77OJTYM7wYELpMI7hkrehtrUOBNdjYytjrTPg211u_Eg1tb5YNin3KEyTONMQZ5qRMxm8m-asBsSNv46eEfOmkYSWnR6gDDWjDDX_kqEM9on10yKYYykjigwOtqLQjJq9bjCANJVB0ygyeDW9Rp2kgxbbxctNGqMrqknGz3syiNC0dqlKXWpeZ_B-kqnf6Ow7JP8Gnc_-B53P4Q6tOfxBOoC9_moTX2BM1buXSX1-AeWaHSw priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VXoBDeRRooCAjAReabeI4TnJk6VYVUotUtlIvKPIrEmLJrrqJUPn1zDgPbaFC3KLEtjKa8fgb2_MNwJtYpUal1oSy0nkojHFhbk0a2sxElUtsllWUO3x6Jk8uxKfL9HILDsZcGOecv3zmJvToz_Lt0rS0VXaI2DctOAbod7Jcdrla44lBJj2rJ05gEYqER0OCTFQczs--nM8wFOQcI1QpYk51i5I0kYmkWh8b65Gn7e_rrNwGOe_D3bZeqeufarHYWIaOH8DpIEB3--T7pG30xPz6g9vxfyV8CDs9HmUfOgN6BFuufgxvN7mH2bwjHmDv2PkNWu9d-OrTdy0VCOjIPRghyvbKsc_oiX70KZ5siiulZbNrx6Z0XsyOXOMvgNXMV11isxW6JuxA-JkdfVt79ia3fgIXx7P5x5Owr9cQGiHjJpTK5ZmWqeKV0JVAMKG5KkxhuKOMXnTJ1gopjeVao4lQRXauMq1NbBFUCZs8he16Wbs9YLqIbWETjQApFnFlc5VLSzxAylXC5TKAeNBaaXqpqabGovRBTVSUXuklKb3slR7A-7HPqqPy-GfrKRnD2JJouP0L1FfZz-oyxaXCoAtUCsPYNLLaVDoi8XPEgamtAtglHY-D9OoNYH8wrbJ3GesSkWmRFehzeQCvx8842ekER9Vu2fo2MqNkZ_y9Z51JjmMPBh3AwWijf8nZ1Cj-DTmf3_6LL-Aeteo2m_Zhu7lq3UuEX41-5efdby2oKhU priority: 102 providerName: IEEE |
| Title | Multidimensional Feature Optimization Based Eye Blink Detection Under Epileptiform Discharges |
| URI | https://ieeexplore.ieee.org/document/9745920 https://www.ncbi.nlm.nih.gov/pubmed/35363618 https://www.proquest.com/docview/2649790302 https://www.proquest.com/docview/2646720996 https://ieeexplore.ieee.org/ielx7/7333/9695946/09745920.pdf https://doaj.org/article/5911c488aa92450dbcfb0a2f483895df |
| UnpaywallVersion | publishedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_q9UF88Kt-ROqxgvqiucvH7iaLTz17pQieUu-gghL2K1A806OXoPWvd3aTC1cVQd9CshsyzOzMb7I7vwF4GkumJTM65KXKQ6q1DXOjWWgyHZU2NVlWutrhtzN-vKBvTtnpDrzqa2Gstf7wmR25S7-Xf2aX37NxlqbpWHDBBOXjCGEwE0k0WpnyGuxyhkB8ALuL2fuDjy1DKg1p6kkZMWDmoctsNiUzkRjXFcYfTA6TBHNWTmNHrbAVljx7f9du5U_I8wZcb6qVvPwml8utaHR0Cz5t5GgPoXwZNbUa6R-_UDz-p6C34WaHUslBa1Z3YMdWd-HZNiMxmbd0BOQ5OblC9r0Hn31Rr3FtA1rKD-JwZnNhyTv0T1-7wk8ywfhpyPTSkonbRSaHtvbHwiriezGR6QodFk5wqJocnq09p5Nd34PF0XT--jjsujiEmvK4Drm0eaY4k0lJVUkRYqhECi10Yl2dLzpqYyjn2iRKoeG4Pu2JzJTSsUGoRU16HwbVeWUfAlEiNsKkCmFTTOPS5DLnxrEDSVtSm_MA4o0SC91J7TptLAuf6kSimM8-nEwLp_iiU3wAL_o5q5bg46-jJ842-pGOnNvfQPUV3VovGAYQjY5RSkxuWWSULlXkxM8RHTJTBrDnVN6_pFNxAPsbSys6R7IuEK-KTKAnTgJ40j9GF-D2dWRlzxs_hmeuBBo_70Frof27U5bylMd5AC97k_1NTr8crsj56N-G78OgvmjsY8RntRr6_xpDX0o57NbkT_20N2U |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N42HwwNf4CAwwEvDC0iWO7SSPlHUqsBZpdNJeUOSvSNNKWq2J0PjrOTtp1MGEeIsS28rpzuff2b7fAbyJJdeSGx2KUmUh09qGmdE8NKmOSpuYNC1d7vBkKsan7PMZP9uC_T4XxlrrL5_ZgXv0Z_lmoRu3VXaA2JfnFAP0W5wxxttsrf7MIBWe1xOnMAtZQqN1ikyUH8ym305GGAxSijGqYDF1lYsSnohEuGofGyuSJ-7vKq3cBDrvwE5TLeXVTzmfbyxER_dgshahvX9yMWhqNdC__mB3_F8Z78PdDpGSD60JPYAtWz2Et5vsw2TWUg-Qd-TkGrH3Lnz3CbzGlQho6T2Iw5TNpSVf0Rf96JI8yRDXSkNGV5YM3YkxObS1vwJWEV93iYyW6Jywg0PQ5PB85fmb7OoRnB6NZh_HYVexIdRMxHUopM1SJbikJVMlQzihqMx1rql1Ob3olI1hQmhDlUIjcTXZqUyV0rFBWMVM8hi2q0VlnwJReWxykyiESDGLS5PJTBjHBCRtyWwmAojXWit0J7WrqjEvfFgT5YVXeuGUXnRKD-B932fZknn8s_XQGUPf0hFx-xeor6Kb1wXHxUKjE5QSA1keGaVLFTnxM0SC3JQB7Dod94N06g1gb21aRec0VgVi0zzN0evSAF73n3G6uzMcWdlF49uI1KU74-89aU2yH3tt0AHs9zb6l5x1heJfk_PZzb_4CnbGs8lxcfxp-uU53HY92q2nPdiuLxv7AsFYrV76Ofgb4tQtYg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_q9UF8sGq1plRZQX3R3OVjd5PFp569UgRPqXdQQQn7FSie6dFL0PrXO7vJhauKoG8h2V0yzOzMb9id3wA8jSXTkhkd8lLlIdXahrnRLDSZjkqbmiwrXe3w2yk_mdM3Z-xsC171tTDWWn_5zA7doz_LP7eL79koS9N0JLhggvJRhDCYiSQaLk15A7Y5QyA-gO359P3hx5YhlYY09aSMGDDz0GU265KZSIzqCuMPJodJgjkrp7GjVtgIS569v2u38ifkeQtuNtVSXn2Ti8VGNDregU9rOdpLKF-GTa2G-scvFI__KegduN2hVHLYmtVd2LLVPXi2yUhMZi0dAXlOTq-Rfe_CZ1_Ua1zbgJbygzic2Vxa8g7909eu8JOMMX4aMrmyZOxOkcmRrf21sIr4XkxkskSHhRMcqiZH5yvP6WRX92F-PJm9Pgm7Lg6hpjyuQy5tninOZFJSVVKEGCqRQgudWFfni47aGMq5NolSaDiuT3siM6V0bBBqUZM-gEF1UdmHQJSIjTCpQtgU07g0ucy5cexA0pbU5jyAeK3EQndSu04bi8KnOpEoZtMPp5PCKb7oFB_Ai37OsiX4-OvosbONfqQj5_YvUH1Ft9cLhgFEo2OUEpNbFhmlSxU58XNEh8yUAew6lfeLdCoO4GBtaUXnSFYF4lWRCfTESQBP-s_oAty5jqzsRePH8MyVQOPv7bUW2q-dspSnPM4DeNmb7G9y-u1wTc79fxt-AIP6srGPEJ_V6nG3D38Cdjw1bw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidimensional+Feature+Optimization+Based+Eye+Blink+Detection+Under+Epileptiform+Discharges&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Meng&rft.au=Wang%2C+Jianhui&rft.au=Cui%2C+Xiaonan&rft.au=Wang%2C+Tianlei&rft.date=2022&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=30&rft.spage=905&rft.epage=914&rft_id=info:doi/10.1109%2FTNSRE.2022.3164126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2022_3164126 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |