Multidimensional Feature Optimization Based Eye Blink Detection Under Epileptiform Discharges

Objectives: Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical. Methods: In this paper, we proposed a novel multi-dimensional feat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 905 - 914
Main Authors Wang, Meng, Wang, Jianhui, Cui, Xiaonan, Wang, Tianlei, Jiang, Tiejia, Gao, Feng, Cao, Jiuwen
Format Journal Article
LanguageEnglish
Published United States IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2022.3164126

Cover

Abstract Objectives: Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical. Methods: In this paper, we proposed a novel multi-dimensional feature optimization based eye blink artifact detection algorithm for EEGs containing rich epileptiform discharges. An unsupervised clustering algorithm based on smoothed nonlinear energy operator (SNEO) and variational mode extraction (VME) is proposed to detect epileptiform discharges in the frontal leads. Then, multi-dimensional time/frequency EEG features extracted from forehead electrodes (FP1 and FP2 channels) combining with the improved VME (IVME) threshold are derived for EEG representation. A variance filtering method is further applied for discriminative feature selection and a machine learning model is finally learned to perform detection. Results: Experiments on EEGs of 16 subjects from the Children's Hospital of Zhejiang University School of Medicine (CHZU) show that our method achieves the highest average sensitivity, specificity and accuracy of 95.04, 89.52, and 93.01, respectively. That outperforms 5 recent and state-of-the-art (SOTA) eye blink detection algorithms. Significance: The proposed method is robust in eye blink artifact detection for EEGs containing high-frequency epileptiform discharges. It is also effective in dealing with individual differences in EEGs, which is usually ignored in conventional methods.
AbstractList Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical. In this paper, we proposed a novel multi-dimensional feature optimization based eye blink artifact detection algorithm for EEGs containing rich epileptiform discharges. An unsupervised clustering algorithm based on smoothed nonlinear energy operator (SNEO) and variational mode extraction (VME) is proposed to detect epileptiform discharges in the frontal leads. Then, multi-dimensional time/frequency EEG features extracted from forehead electrodes (FP1 and FP2 channels) combining with the improved VME (IVME) threshold are derived for EEG representation. A variance filtering method is further applied for discriminative feature selection and a machine learning model is finally learned to perform detection. Experiments on EEGs of 16 subjects from the Children's Hospital of Zhejiang University School of Medicine (CHZU) show that our method achieves the highest average sensitivity, specificity and accuracy of 95.04, 89.52, and 93.01, respectively. That outperforms 5 recent and state-of-the-art (SOTA) eye blink detection algorithms. The proposed method is robust in eye blink artifact detection for EEGs containing high-frequency epileptiform discharges. It is also effective in dealing with individual differences in EEGs, which is usually ignored in conventional methods.
Objectives: Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical. Methods: In this paper, we proposed a novel multi-dimensional feature optimization based eye blink artifact detection algorithm for EEGs containing rich epileptiform discharges. An unsupervised clustering algorithm based on smoothed nonlinear energy operator (SNEO) and variational mode extraction (VME) is proposed to detect epileptiform discharges in the frontal leads. Then, multi-dimensional time/frequency EEG features extracted from forehead electrodes (FP1 and FP2 channels) combining with the improved VME (IVME) threshold are derived for EEG representation. A variance filtering method is further applied for discriminative feature selection and a machine learning model is finally learned to perform detection. Results: Experiments on EEGs of 16 subjects from the Children’s Hospital of Zhejiang University School of Medicine (CHZU) show that our method achieves the highest average sensitivity, specificity and accuracy of 95.04, 89.52, and 93.01, respectively. That outperforms 5 recent and state-of-the-art (SOTA) eye blink detection algorithms. Significance: The proposed method is robust in eye blink artifact detection for EEGs containing high-frequency epileptiform discharges. It is also effective in dealing with individual differences in EEGs, which is usually ignored in conventional methods.
Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical.OBJECTIVESEye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical.In this paper, we proposed a novel multi-dimensional feature optimization based eye blink artifact detection algorithm for EEGs containing rich epileptiform discharges. An unsupervised clustering algorithm based on smoothed nonlinear energy operator (SNEO) and variational mode extraction (VME) is proposed to detect epileptiform discharges in the frontal leads. Then, multi-dimensional time/frequency EEG features extracted from forehead electrodes (FP1 and FP2 channels) combining with the improved VME (IVME) threshold are derived for EEG representation. A variance filtering method is further applied for discriminative feature selection and a machine learning model is finally learned to perform detection.METHODSIn this paper, we proposed a novel multi-dimensional feature optimization based eye blink artifact detection algorithm for EEGs containing rich epileptiform discharges. An unsupervised clustering algorithm based on smoothed nonlinear energy operator (SNEO) and variational mode extraction (VME) is proposed to detect epileptiform discharges in the frontal leads. Then, multi-dimensional time/frequency EEG features extracted from forehead electrodes (FP1 and FP2 channels) combining with the improved VME (IVME) threshold are derived for EEG representation. A variance filtering method is further applied for discriminative feature selection and a machine learning model is finally learned to perform detection.Experiments on EEGs of 16 subjects from the Children's Hospital of Zhejiang University School of Medicine (CHZU) show that our method achieves the highest average sensitivity, specificity and accuracy of 95.04, 89.52, and 93.01, respectively. That outperforms 5 recent and state-of-the-art (SOTA) eye blink detection algorithms.RESULTSExperiments on EEGs of 16 subjects from the Children's Hospital of Zhejiang University School of Medicine (CHZU) show that our method achieves the highest average sensitivity, specificity and accuracy of 95.04, 89.52, and 93.01, respectively. That outperforms 5 recent and state-of-the-art (SOTA) eye blink detection algorithms.The proposed method is robust in eye blink artifact detection for EEGs containing high-frequency epileptiform discharges. It is also effective in dealing with individual differences in EEGs, which is usually ignored in conventional methods.SIGNIFICANCEThe proposed method is robust in eye blink artifact detection for EEGs containing high-frequency epileptiform discharges. It is also effective in dealing with individual differences in EEGs, which is usually ignored in conventional methods.
Author Wang, Tianlei
Jiang, Tiejia
Cao, Jiuwen
Cui, Xiaonan
Wang, Meng
Gao, Feng
Wang, Jianhui
Author_xml – sequence: 1
  givenname: Meng
  surname: Wang
  fullname: Wang, Meng
  email: 15968138702@163.com
  organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Jianhui
  surname: Wang
  fullname: Wang, Jianhui
  email: 15968194550@163.com
  organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
– sequence: 3
  givenname: Xiaonan
  surname: Cui
  fullname: Cui, Xiaonan
  email: xiaonan18@foxmail.com
  organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
– sequence: 4
  givenname: Tianlei
  orcidid: 0000-0002-4498-4326
  surname: Wang
  fullname: Wang, Tianlei
  email: tianleiwang@hdu.edu.cn
  organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
– sequence: 5
  givenname: Tiejia
  surname: Jiang
  fullname: Jiang, Tiejia
  email: jiangyouze@zju.edu.cn
  organization: Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
– sequence: 6
  givenname: Feng
  orcidid: 0000-0003-4907-7212
  surname: Gao
  fullname: Gao, Feng
  email: epilepsy@zju.edu.cn
  organization: Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
– sequence: 7
  givenname: Jiuwen
  orcidid: 0000-0002-6480-5794
  surname: Cao
  fullname: Cao, Jiuwen
  email: jwcao@hdu.edu.cn
  organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35363618$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVAR_YA_ABKKxIXLLv5OfKTtFioVKkF7RNbEnhQvTrLYjtDy68l-0MMicbI1896b5zc-LY76oceieEnJnFKi3919_vplMWeEsTmnSlCmnhQnVMp6RhglR5s7FzPBGTkuTlNaEkIrJatnxTGXXHFF65Pi26cxZO98h33yQw-hvELIY8TydpV9539DnsrlOSR05WKN5Xnw_Y_yEjPabee-dxjLxcoHnAjtELvy0if7HeIDpufF0xZCwhf786y4v1rcXXyc3dx-uL54fzOzQtE8U4B11SgJrBVNKxiVDQNttWVIasKEqpwTSlnHmgakFYRUDKqmsdRRqYXjZ8X1TtcNsDSr6DuIazOAN9vCEB8MxOxtQCM1pVbUNYBmQhLX2LYhm8E1r7V07aTFd1pjv4L1LwjhUZASswne5D5FNJvgzT74ifV2x1rF4eeIKZtuSgFDgB6HMRmmplcwovUG-uYAuhzGOEW_RelKE07YhHq9R41Nh-7Rw9_VTQC2A9g4pMlP-4_N7f84tFkfkKzP2xXnCD78n_pqR_WI-DhLV0JqRvgflyHGDQ
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_JSEN_2024_3358911
crossref_primary_10_1109_TNSRE_2023_3321414
crossref_primary_10_1109_TNSRE_2022_3229066
crossref_primary_10_1007_s11517_023_02976_y
crossref_primary_10_1109_TIM_2022_3220287
crossref_primary_10_3390_app12104879
crossref_primary_10_1016_j_bspc_2023_104657
crossref_primary_10_1016_j_measen_2023_100810
crossref_primary_10_1016_j_neuri_2022_100115
crossref_primary_10_1109_TNSRE_2022_3223056
crossref_primary_10_1109_JSEN_2023_3305118
crossref_primary_10_1109_TNSRE_2024_3452315
crossref_primary_10_1142_S0219519423500653
Cites_doi 10.1109/TCDS.2020.3009020
10.1109/TCDS.2021.3064228
10.1109/JBHI.2021.3096984
10.1109/TNSRE.2021.3054733
10.1088/1741-2552/aa8d95
10.1016/S0013-4694(97)00042-8
10.1109/TCDS.2019.2936441
10.1109/LSP.2005.855539
10.3389/fnhum.2019.00250
10.1016/j.neunet.2022.03.014
10.1109/IEMBS.2010.5626481
10.1007/978-3-642-15819-3_59
10.1109/TBME.2005.845243
10.1016/j.neucom.2016.06.067
10.1109/IEMBS.2003.1280467
10.1109/ICSDA.2013.6709849
10.1109/TNSRE.2021.3107142
10.1049/iet-spr.2018.5111
10.1016/j.cmpb.2015.10.011
10.1109/JBHI.2021.3057891
10.1109/10.841330
10.1109/JBHI.2020.2995235
10.1038/s41598-021-90437-7
10.1109/TNSRE.2018.2794184
10.1088/0967-3334/26/1/R02
10.1088/0143-0815/12/A/010
10.1109/JBHI.2017.2723420
10.1007/s13534-013-0090-2
10.1109/TNSRE.2021.3099232
10.1049/ccs2.12035
10.11591/ijece.v6i6.pp3131-3141
10.1007/BF02344717
10.3390/brainsci9120352
10.1109/TNSRE.2016.2606416
10.1109/TNSRE.2018.2850308
10.1109/JBHI.2015.2450196
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
DOA
DOI 10.1109/TNSRE.2022.3164126
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 914
ExternalDocumentID oai_doaj_org_article_5911c488aa92450dbcfb0a2f483895df
10.1109/tnsre.2022.3164126
35363618
10_1109_TNSRE_2022_3164126
9745920
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science Key Foundation of Zhejiang Province
  grantid: LZ22F030002
  funderid: 10.13039/501100017600
– fundername: Key Research and Development Program of Zhejiang Province
  grantid: 2020C03038
– fundername: National Natural Science Foundation of China
  grantid: U1909209
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2021YFE0100100; 2021YFE0205400
  funderid: 10.13039/501100012166
– fundername: Open Research Projects of Zhejiang Laboratory
  grantid: 2021MC0AB04
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c461t-6ae87b65a2f4bf4215b2a9c9c2e0802467dd466cd2bba5c40072a7bbc1d1594d3
IEDL.DBID UNPAY
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:44:11 EDT 2025
Wed Oct 01 15:47:06 EDT 2025
Fri Jul 11 12:40:11 EDT 2025
Fri Jul 25 01:31:31 EDT 2025
Thu Apr 03 07:00:10 EDT 2025
Wed Oct 01 01:12:31 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Wed Aug 27 02:40:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-6ae87b65a2f4bf4215b2a9c9c2e0802467dd466cd2bba5c40072a7bbc1d1594d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6480-5794
0000-0003-4907-7212
0000-0002-4498-4326
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/7333/9695946/09745920.pdf
PMID 35363618
PQID 2649790302
PQPubID 85423
PageCount 10
ParticipantIDs ieee_primary_9745920
pubmed_primary_35363618
crossref_primary_10_1109_TNSRE_2022_3164126
doaj_primary_oai_doaj_org_article_5911c488aa92450dbcfb0a2f483895df
unpaywall_primary_10_1109_tnsre_2022_3164126
crossref_citationtrail_10_1109_TNSRE_2022_3164126
proquest_miscellaneous_2646720996
proquest_journals_2649790302
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
kaya (ref1) 2020
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1109/TCDS.2020.3009020
– ident: ref5
  doi: 10.1109/TCDS.2021.3064228
– ident: ref33
  doi: 10.1109/JBHI.2021.3096984
– ident: ref30
  doi: 10.1109/TNSRE.2021.3054733
– year: 2020
  ident: ref1
  article-title: A brief summary of EEG artifact handling
  publication-title: arXiv 2001 00693
– ident: ref34
  doi: 10.1088/1741-2552/aa8d95
– ident: ref20
  doi: 10.1016/S0013-4694(97)00042-8
– ident: ref4
  doi: 10.1109/TCDS.2019.2936441
– ident: ref26
  doi: 10.1109/LSP.2005.855539
– ident: ref2
  doi: 10.3389/fnhum.2019.00250
– ident: ref36
  doi: 10.1016/j.neunet.2022.03.014
– ident: ref8
  doi: 10.1109/IEMBS.2010.5626481
– ident: ref24
  doi: 10.1007/978-3-642-15819-3_59
– ident: ref13
  doi: 10.1109/TBME.2005.845243
– ident: ref29
  doi: 10.1016/j.neucom.2016.06.067
– ident: ref21
  doi: 10.1109/IEMBS.2003.1280467
– ident: ref18
  doi: 10.1109/ICSDA.2013.6709849
– ident: ref7
  doi: 10.1109/TNSRE.2021.3107142
– ident: ref28
  doi: 10.1049/iet-spr.2018.5111
– ident: ref9
  doi: 10.1016/j.cmpb.2015.10.011
– ident: ref32
  doi: 10.1109/JBHI.2021.3057891
– ident: ref22
  doi: 10.1109/10.841330
– ident: ref25
  doi: 10.1109/JBHI.2020.2995235
– ident: ref11
  doi: 10.1038/s41598-021-90437-7
– ident: ref15
  doi: 10.1109/TNSRE.2018.2794184
– ident: ref17
  doi: 10.1088/0967-3334/26/1/R02
– ident: ref19
  doi: 10.1088/0143-0815/12/A/010
– ident: ref27
  doi: 10.1109/JBHI.2017.2723420
– ident: ref37
  doi: 10.1007/s13534-013-0090-2
– ident: ref35
  doi: 10.1109/TNSRE.2021.3099232
– ident: ref10
  doi: 10.1049/ccs2.12035
– ident: ref31
  doi: 10.11591/ijece.v6i6.pp3131-3141
– ident: ref12
  doi: 10.1007/BF02344717
– ident: ref16
  doi: 10.3390/brainsci9120352
– ident: ref14
  doi: 10.1109/TNSRE.2016.2606416
– ident: ref3
  doi: 10.1109/TNSRE.2018.2850308
– ident: ref23
  doi: 10.1109/JBHI.2015.2450196
SSID ssj0017657
Score 2.4437218
Snippet Objectives: Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform...
Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges....
SourceID doaj
unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 905
SubjectTerms Algorithms
Blinking
Child
Clustering
Detection algorithms
Discharges (electric)
EEG
Electroencephalography
Electroencephalography - methods
Epilepsy
Epilepsy - diagnosis
Epileptiform discharge
Feature extraction
Filtering
Firing pattern
Forehead
Humans
improved variational mode extraction
Machine learning
multi-dimensional EEG feature optimization
Multidimensional methods
Optimization
variance filtering
Waveforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFH_IXtSDqOtHdZUI6kXLNmmSNkfHnWURXGGdhb1IyVdBGLvDTgfZ_9730k6ZRdGL1zYJfXnfTd7vAbzmVnmrgs916-pceh_zOniVh8oXbSxDVbVUO_z5VJ-cy08X6mKn1RfdCRvggYeNO1SojR6lzFrMFFQRnG9dYUUra3S1KrRkfYvabJOp8fyg0qralsgU5nBx-vVsjsmgEJijaskJSmHHDSW0_rG9yp8izbtwe9Ot7PVPu1zueJ_j-3BvDBvZh-FzH8Ct2D2EN7sQwWwx4AOwt-zsBvr2PnxLVbaBcPwHDA5Ggd_mKrIvaDB-jJWYbIYOLbD5dWQzOtZlR7FP97Q6lpojsfkKLQhOoDCXHX1fJ5CluH4E58fzxceTfGyrkHupeZ9rG-vKaUWb6FqJPt8Ja7zxIlLhLVrOEKTWPgjnkJPUOF3YyjnPA8Y-MpSPYa-77OJTYM7wYELpMI7hkrehtrUOBNdjYytjrTPg211u_Eg1tb5YNin3KEyTONMQZ5qRMxm8m-asBsSNv46eEfOmkYSWnR6gDDWjDDX_kqEM9on10yKYYykjigwOtqLQjJq9bjCANJVB0ygyeDW9Rp2kgxbbxctNGqMrqknGz3syiNC0dqlKXWpeZ_B-kqnf6Ow7JP8Gnc_-B53P4Q6tOfxBOoC9_moTX2BM1buXSX1-AeWaHSw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VXoBDeRRooCAjAReabeI4TnJk6VYVUotUtlIvKPIrEmLJrrqJUPn1zDgPbaFC3KLEtjKa8fgb2_MNwJtYpUal1oSy0nkojHFhbk0a2sxElUtsllWUO3x6Jk8uxKfL9HILDsZcGOecv3zmJvToz_Lt0rS0VXaI2DctOAbod7Jcdrla44lBJj2rJ05gEYqER0OCTFQczs--nM8wFOQcI1QpYk51i5I0kYmkWh8b65Gn7e_rrNwGOe_D3bZeqeufarHYWIaOH8DpIEB3--T7pG30xPz6g9vxfyV8CDs9HmUfOgN6BFuufgxvN7mH2bwjHmDv2PkNWu9d-OrTdy0VCOjIPRghyvbKsc_oiX70KZ5siiulZbNrx6Z0XsyOXOMvgNXMV11isxW6JuxA-JkdfVt79ia3fgIXx7P5x5Owr9cQGiHjJpTK5ZmWqeKV0JVAMKG5KkxhuKOMXnTJ1gopjeVao4lQRXauMq1NbBFUCZs8he16Wbs9YLqIbWETjQApFnFlc5VLSzxAylXC5TKAeNBaaXqpqabGovRBTVSUXuklKb3slR7A-7HPqqPy-GfrKRnD2JJouP0L1FfZz-oyxaXCoAtUCsPYNLLaVDoi8XPEgamtAtglHY-D9OoNYH8wrbJ3GesSkWmRFehzeQCvx8842ekER9Vu2fo2MqNkZ_y9Z51JjmMPBh3AwWijf8nZ1Cj-DTmf3_6LL-Aeteo2m_Zhu7lq3UuEX41-5efdby2oKhU
  priority: 102
  providerName: IEEE
Title Multidimensional Feature Optimization Based Eye Blink Detection Under Epileptiform Discharges
URI https://ieeexplore.ieee.org/document/9745920
https://www.ncbi.nlm.nih.gov/pubmed/35363618
https://www.proquest.com/docview/2649790302
https://www.proquest.com/docview/2646720996
https://ieeexplore.ieee.org/ielx7/7333/9695946/09745920.pdf
https://doaj.org/article/5911c488aa92450dbcfb0a2f483895df
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_q9UF88Kt-ROqxgvqiucvH7iaLTz17pQieUu-gghL2K1A806OXoPWvd3aTC1cVQd9CshsyzOzMb7I7vwF4GkumJTM65KXKQ6q1DXOjWWgyHZU2NVlWutrhtzN-vKBvTtnpDrzqa2Gstf7wmR25S7-Xf2aX37NxlqbpWHDBBOXjCGEwE0k0WpnyGuxyhkB8ALuL2fuDjy1DKg1p6kkZMWDmoctsNiUzkRjXFcYfTA6TBHNWTmNHrbAVljx7f9du5U_I8wZcb6qVvPwml8utaHR0Cz5t5GgPoXwZNbUa6R-_UDz-p6C34WaHUslBa1Z3YMdWd-HZNiMxmbd0BOQ5OblC9r0Hn31Rr3FtA1rKD-JwZnNhyTv0T1-7wk8ywfhpyPTSkonbRSaHtvbHwiriezGR6QodFk5wqJocnq09p5Nd34PF0XT--jjsujiEmvK4Drm0eaY4k0lJVUkRYqhECi10Yl2dLzpqYyjn2iRKoeG4Pu2JzJTSsUGoRU16HwbVeWUfAlEiNsKkCmFTTOPS5DLnxrEDSVtSm_MA4o0SC91J7TptLAuf6kSimM8-nEwLp_iiU3wAL_o5q5bg46-jJ842-pGOnNvfQPUV3VovGAYQjY5RSkxuWWSULlXkxM8RHTJTBrDnVN6_pFNxAPsbSys6R7IuEK-KTKAnTgJ40j9GF-D2dWRlzxs_hmeuBBo_70Frof27U5bylMd5AC97k_1NTr8crsj56N-G78OgvmjsY8RntRr6_xpDX0o57NbkT_20N2U
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N42HwwNf4CAwwEvDC0iWO7SSPlHUqsBZpdNJeUOSvSNNKWq2J0PjrOTtp1MGEeIsS28rpzuff2b7fAbyJJdeSGx2KUmUh09qGmdE8NKmOSpuYNC1d7vBkKsan7PMZP9uC_T4XxlrrL5_ZgXv0Z_lmoRu3VXaA2JfnFAP0W5wxxttsrf7MIBWe1xOnMAtZQqN1ikyUH8ym305GGAxSijGqYDF1lYsSnohEuGofGyuSJ-7vKq3cBDrvwE5TLeXVTzmfbyxER_dgshahvX9yMWhqNdC__mB3_F8Z78PdDpGSD60JPYAtWz2Et5vsw2TWUg-Qd-TkGrH3Lnz3CbzGlQho6T2Iw5TNpSVf0Rf96JI8yRDXSkNGV5YM3YkxObS1vwJWEV93iYyW6Jywg0PQ5PB85fmb7OoRnB6NZh_HYVexIdRMxHUopM1SJbikJVMlQzihqMx1rql1Ob3olI1hQmhDlUIjcTXZqUyV0rFBWMVM8hi2q0VlnwJReWxykyiESDGLS5PJTBjHBCRtyWwmAojXWit0J7WrqjEvfFgT5YVXeuGUXnRKD-B932fZknn8s_XQGUPf0hFx-xeor6Kb1wXHxUKjE5QSA1keGaVLFTnxM0SC3JQB7Dod94N06g1gb21aRec0VgVi0zzN0evSAF73n3G6uzMcWdlF49uI1KU74-89aU2yH3tt0AHs9zb6l5x1heJfk_PZzb_4CnbGs8lxcfxp-uU53HY92q2nPdiuLxv7AsFYrV76Ofgb4tQtYg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_q9UF8sGq1plRZQX3R3OVjd5PFp569UgRPqXdQQQn7FSie6dFL0PrXO7vJhauKoG8h2V0yzOzMb9id3wA8jSXTkhkd8lLlIdXahrnRLDSZjkqbmiwrXe3w2yk_mdM3Z-xsC171tTDWWn_5zA7doz_LP7eL79koS9N0JLhggvJRhDCYiSQaLk15A7Y5QyA-gO359P3hx5YhlYY09aSMGDDz0GU265KZSIzqCuMPJodJgjkrp7GjVtgIS569v2u38ifkeQtuNtVSXn2Ti8VGNDregU9rOdpLKF-GTa2G-scvFI__KegduN2hVHLYmtVd2LLVPXi2yUhMZi0dAXlOTq-Rfe_CZ1_Ua1zbgJbygzic2Vxa8g7909eu8JOMMX4aMrmyZOxOkcmRrf21sIr4XkxkskSHhRMcqiZH5yvP6WRX92F-PJm9Pgm7Lg6hpjyuQy5tninOZFJSVVKEGCqRQgudWFfni47aGMq5NolSaDiuT3siM6V0bBBqUZM-gEF1UdmHQJSIjTCpQtgU07g0ucy5cexA0pbU5jyAeK3EQndSu04bi8KnOpEoZtMPp5PCKb7oFB_Ai37OsiX4-OvosbONfqQj5_YvUH1Ft9cLhgFEo2OUEpNbFhmlSxU58XNEh8yUAew6lfeLdCoO4GBtaUXnSFYF4lWRCfTESQBP-s_oAty5jqzsRePH8MyVQOPv7bUW2q-dspSnPM4DeNmb7G9y-u1wTc79fxt-AIP6srGPEJ_V6nG3D38Cdjw1bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidimensional+Feature+Optimization+Based+Eye+Blink+Detection+Under+Epileptiform+Discharges&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Meng&rft.au=Wang%2C+Jianhui&rft.au=Cui%2C+Xiaonan&rft.au=Wang%2C+Tianlei&rft.date=2022&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=30&rft.spage=905&rft.epage=914&rft_id=info:doi/10.1109%2FTNSRE.2022.3164126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2022_3164126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon