BWGAN-GP: An EEG Data Generation Method for Class Imbalance Problem in RSVP Tasks

In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class imbalance problems (CIPs) can hinder the classifier from achieving better performance, especially in deep learning. This paper proposed a novel d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 251 - 263
Main Authors Xu, Meng, Chen, Yuanfang, Wang, Yijun, Wang, Dan, Liu, Zehua, Zhang, Lijian
Format Journal Article
LanguageEnglish
Published United States IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2022.3145515

Cover

Abstract In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class imbalance problems (CIPs) can hinder the classifier from achieving better performance, especially in deep learning. This paper proposed a novel data augmentation method called balanced Wasserstein generative adversarial network with gradient penalty (BWGAN-GP) to generate RSVP minority class data. The model learned useful features from majority classes and used them to generate minority-class artificial EEG data. It combines generative adversarial network (GAN) with autoencoder initialization strategy enables this method to learn an accurate class-conditioning in the latent space to drive the generation process towards the minority class. We used RSVP datasets from nine subjects to evaluate the classification performance of our proposed generated model and compare them with those of other methods. The average AUC obtained with BWGAN-GP on EEGNet was 94.43%, an increase of 3.7% over the original data. We also used different amounts of original data to investigate the effect of the generated EEG data on the calibration phase. Only 60% of original data were needed to achieve acceptable classification performance. These results show that the BWGAN-GP could effectively alleviate CIPs in the RSVP task and obtain the best performance when the two classes of data are balanced. The findings suggest that data augmentation techniques could generate artificial EEG to reduce calibration time in other brain-computer interfaces (BCI) paradigms similar to RSVP.
AbstractList In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class imbalance problems (CIPs) can hinder the classifier from achieving better performance, especially in deep learning. This paper proposed a novel data augmentation method called balanced Wasserstein generative adversarial network with gradient penalty (BWGAN-GP) to generate RSVP minority class data. The model learned useful features from majority classes and used them to generate minority-class artificial EEG data. It combines generative adversarial network (GAN) with autoencoder initialization strategy enables this method to learn an accurate class-conditioning in the latent space to drive the generation process towards the minority class. We used RSVP datasets from nine subjects to evaluate the classification performance of our proposed generated model and compare them with those of other methods. The average AUC obtained with BWGAN-GP on EEGNet was 94.43%, an increase of 3.7% over the original data. We also used different amounts of original data to investigate the effect of the generated EEG data on the calibration phase. Only 60% of original data were needed to achieve acceptable classification performance. These results show that the BWGAN-GP could effectively alleviate CIPs in the RSVP task and obtain the best performance when the two classes of data are balanced. The findings suggest that data augmentation techniques could generate artificial EEG to reduce calibration time in other brain-computer interfaces (BCI) paradigms similar to RSVP.
In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class imbalance problems (CIPs) can hinder the classifier from achieving better performance, especially in deep learning. This paper proposed a novel data augmentation method called balanced Wasserstein generative adversarial network with gradient penalty (BWGAN-GP) to generate RSVP minority class data. The model learned useful features from majority classes and used them to generate minority-class artificial EEG data. It combines generative adversarial network (GAN) with autoencoder initialization strategy enables this method to learn an accurate class-conditioning in the latent space to drive the generation process towards the minority class. We used RSVP datasets from nine subjects to evaluate the classification performance of our proposed generated model and compare them with those of other methods. The average AUC obtained with BWGAN-GP on EEGNet was 94.43%, an increase of 3.7% over the original data. We also used different amounts of original data to investigate the effect of the generated EEG data on the calibration phase. Only 60% of original data were needed to achieve acceptable classification performance. These results show that the BWGAN-GP could effectively alleviate CIPs in the RSVP task and obtain the best performance when the two classes of data are balanced. The findings suggest that data augmentation techniques could generate artificial EEG to reduce calibration time in other brain-computer interfaces (BCI) paradigms similar to RSVP.In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class imbalance problems (CIPs) can hinder the classifier from achieving better performance, especially in deep learning. This paper proposed a novel data augmentation method called balanced Wasserstein generative adversarial network with gradient penalty (BWGAN-GP) to generate RSVP minority class data. The model learned useful features from majority classes and used them to generate minority-class artificial EEG data. It combines generative adversarial network (GAN) with autoencoder initialization strategy enables this method to learn an accurate class-conditioning in the latent space to drive the generation process towards the minority class. We used RSVP datasets from nine subjects to evaluate the classification performance of our proposed generated model and compare them with those of other methods. The average AUC obtained with BWGAN-GP on EEGNet was 94.43%, an increase of 3.7% over the original data. We also used different amounts of original data to investigate the effect of the generated EEG data on the calibration phase. Only 60% of original data were needed to achieve acceptable classification performance. These results show that the BWGAN-GP could effectively alleviate CIPs in the RSVP task and obtain the best performance when the two classes of data are balanced. The findings suggest that data augmentation techniques could generate artificial EEG to reduce calibration time in other brain-computer interfaces (BCI) paradigms similar to RSVP.
Author Chen, Yuanfang
Liu, Zehua
Wang, Dan
Zhang, Lijian
Wang, Yijun
Xu, Meng
Author_xml – sequence: 1
  givenname: Meng
  surname: Xu
  fullname: Xu, Meng
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China
– sequence: 2
  givenname: Yuanfang
  orcidid: 0000-0002-9888-9869
  surname: Chen
  fullname: Chen, Yuanfang
  email: chenyuanfang2015@163.com
  organization: Beijing Institute of Mechanical Equipment, Beijing, China
– sequence: 3
  givenname: Yijun
  orcidid: 0000-0001-9950-6025
  surname: Wang
  fullname: Wang, Yijun
  organization: State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Dan
  orcidid: 0000-0002-0657-9370
  surname: Wang
  fullname: Wang, Dan
  email: wangdan@bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China
– sequence: 5
  givenname: Zehua
  orcidid: 0000-0001-6544-4858
  surname: Liu
  fullname: Liu, Zehua
  organization: Fan GongXiu Honors College, Beijing University of Technology, Beijing, China
– sequence: 6
  givenname: Lijian
  orcidid: 0000-0002-5953-0079
  surname: Zhang
  fullname: Zhang, Lijian
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35073267$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhSNURB_wB0BClth0k8GvazvshmEII5UytCNYWrbjQIYkLnZm0X9PMjPtogtWtqzvHN97znl20ofeZ9lrgmeE4OL95vr2ZjmjmNIZIxyAwLPsjACoHFOCT6Y74zlnFJ9m5yltMSZSgHyRnTLAklEhz7LvH3-W8-u8XH9A8x4tlyX6ZAaDSt_7aIYm9OirH36HCtUhokVrUkKrzprW9M6jdQy29R1qenRz-2ONNib9SS-z57Vpk391PC-yzeflZvElv_pWrhbzq9xxQYYcOPMKiHA1q4S0NS04MKpsrUARTK0BB8RaWgAXpqq9Uwxqa6UTUEjr2UW2OthWwWz1XWw6E-91MI3eP4T4S5s4NK71GhRgCuAIF5IzoZSgjFNBuRdK0nryujx43cXwd-fToLsmOd-OW_qwS3pk6fitEGJE3z1Bt2EX-3HRieISOCFspN4eqZ3tfPU43kPuI6AOgIshpehr7Zphn_cQTdNqgvVUsd5XrKeK9bHiUUqfSB_c_yt6cxA13vtHQSEKPGbC_gH7Zatw
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_neunet_2023_01_009
crossref_primary_10_3390_bioengineering11040347
crossref_primary_10_1016_j_bspc_2024_107394
crossref_primary_10_1109_TCDS_2023_3288201
crossref_primary_10_32604_cmc_2024_056016
crossref_primary_10_1007_s00138_023_01506_y
crossref_primary_10_1109_TBME_2024_3361716
crossref_primary_10_3389_fnins_2023_1219133
crossref_primary_10_7717_peerj_cs_2649
crossref_primary_10_1016_j_neucom_2024_129239
crossref_primary_10_1109_JBHI_2022_3185587
crossref_primary_10_7717_peerj_cs_2394
crossref_primary_10_1016_j_eswa_2024_125585
crossref_primary_10_1016_j_eswa_2023_122681
crossref_primary_10_1109_TNSRE_2023_3268979
Cites_doi 10.1016/j.jneumeth.2020.108885
10.1145/3422622
10.1016/j.neucom.2017.08.039
10.1109/EMBC44109.2020.9175401
10.1109/MSP.2008.4408447
10.1016/j.neunet.2018.07.011
10.1109/SMC.2019.8914492
10.1007/s00521-021-06163-8
10.1016/j.neucom.2019.09.106
10.1109/TNSRE.2020.3023761
10.1088/1741-2552/abb580
10.1088/1741-2552/aa9817
10.1007/s12008-020-00715-3
10.1109/TNSRE.2008.2003381
10.1109/CIEL.2013.6613138
10.1109/EMBC.2018.8512396
10.1109/ACCESS.2020.2982224
10.1177/001316446002000104
10.3233/IDA-2002-6504
10.1109/IEMBS.2011.6091575
10.1088/1741-2552/ac0489
10.1109/BCI48061.2020.9061656
10.1504/IJMEI.2018.093350
10.7717/peerj.7731
10.1080/2326263X.2019.1568821
10.1007/978-3-030-63322-6_8
10.3389/fncom.2015.00146
10.1109/TNSRE.2020.3006180
10.1023/A:1026543900054
10.1109/TBME.2017.2650259
10.1109/ICCV.2017.369
10.1016/j.neuroimage.2005.06.026
10.24018/ejers.2021.6.4.2438
10.1002/hbm.23730
10.1016/j.patrec.2005.10.010
10.1109/TPAMI.2020.2969348
10.1088/1741-2552/aace8c
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2022.3145515
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 263
ExternalDocumentID oai_doaj_org_article_5850255c14674368862342624e6872fe
35073267
10_1109_TNSRE_2022_3145515
9690467
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Plan of China
  grantid: 2017YFB1300304
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61672505
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c461t-543e8516cf3d67bf2945328bf858102ba5c51bb29546adfec835fbb7c6597be3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:29:20 EDT 2025
Thu Jul 10 22:36:02 EDT 2025
Sun Jul 13 04:42:27 EDT 2025
Wed Feb 19 02:27:18 EST 2025
Wed Oct 01 01:12:31 EDT 2025
Thu Apr 24 23:09:34 EDT 2025
Wed Aug 27 03:00:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-543e8516cf3d67bf2945328bf858102ba5c51bb29546adfec835fbb7c6597be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9950-6025
0000-0002-9888-9869
0000-0002-0657-9370
0000-0002-5953-0079
0000-0001-6544-4858
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9690467
PMID 35073267
PQID 2624754113
PQPubID 85423
PageCount 13
ParticipantIDs proquest_miscellaneous_2622659666
proquest_journals_2624754113
doaj_primary_oai_doaj_org_article_5850255c14674368862342624e6872fe
crossref_citationtrail_10_1109_TNSRE_2022_3145515
ieee_primary_9690467
crossref_primary_10_1109_TNSRE_2022_3145515
pubmed_primary_35073267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
gulrajani (ref29) 2017; abs 1704 28
ref14
wen (ref7) 2020; abs 2002 12478
ref11
ref10
mcinnes (ref45) 2018
ref16
ref19
ref18
zhang (ref17) 2018; abs 1806 7108
ref50
ref46
ref48
ref42
ref41
ref43
ref49
ref8
mariani (ref30) 2018; abs 1803 9655
ref9
ref4
ref3
ref6
ref35
ref34
ref37
ref36
ref31
wang (ref5) 2018
ref32
ref2
ref1
ref39
ref38
hartmann (ref15) 2018
ref24
ref23
ref25
ref20
ref22
park (ref44) 0
ref21
barachant (ref33) 2014
arjovsky (ref28) 2017; 70
ref27
grover (ref40) 2017; abs 1705 8868
arora (ref47) 2018
sutter (ref26) 2020; abs 2006 8242
References_xml – ident: ref8
  doi: 10.1016/j.jneumeth.2020.108885
– ident: ref24
  doi: 10.1145/3422622
– start-page: 243
  year: 2018
  ident: ref5
  article-title: A review of feature extraction and classification algorithms for image RSVP-based BCI
  publication-title: Signal Processing and Machine Learning for Brain-Machine Interfaces
– ident: ref35
  doi: 10.1016/j.neucom.2017.08.039
– ident: ref50
  doi: 10.1109/EMBC44109.2020.9175401
– ident: ref32
  doi: 10.1109/MSP.2008.4408447
– ident: ref21
  doi: 10.1016/j.neunet.2018.07.011
– ident: ref20
  doi: 10.1109/SMC.2019.8914492
– ident: ref31
  doi: 10.1007/s00521-021-06163-8
– ident: ref10
  doi: 10.1016/j.neucom.2019.09.106
– ident: ref42
  doi: 10.1109/TNSRE.2020.3023761
– ident: ref18
  doi: 10.1088/1741-2552/abb580
– volume: abs 1803 9655
  start-page: 1
  year: 2018
  ident: ref30
  article-title: BAGAN: Data augmentation with balancing GAN
  publication-title: CoRR
– ident: ref2
  doi: 10.1088/1741-2552/aa9817
– ident: ref48
  doi: 10.1007/s12008-020-00715-3
– start-page: 1455
  year: 2018
  ident: ref47
  article-title: An analysis of the t-SNE algorithm for data visualization
  publication-title: Proc COLT
– ident: ref1
  doi: 10.1109/TNSRE.2008.2003381
– year: 2018
  ident: ref15
  article-title: EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals
  publication-title: arXiv 1806 01875
– volume: 70
  start-page: 214
  year: 2017
  ident: ref28
  article-title: Wasserstein generative adversarial networks
  publication-title: Proc ICML
– volume: abs 1705 8868
  start-page: 1
  year: 2017
  ident: ref40
  article-title: Flow-GAN: Bridging implicit and prescribed learning in generative models
  publication-title: CoRR
– ident: ref23
  doi: 10.1109/CIEL.2013.6613138
– year: 2014
  ident: ref33
  article-title: A plug & play P300 BCI using information geometry
  publication-title: arXiv 1409 0107
– ident: ref14
  doi: 10.1109/EMBC.2018.8512396
– ident: ref25
  doi: 10.1109/ACCESS.2020.2982224
– ident: ref43
  doi: 10.1177/001316446002000104
– ident: ref22
  doi: 10.3233/IDA-2002-6504
– ident: ref3
  doi: 10.1109/IEMBS.2011.6091575
– ident: ref46
  doi: 10.1088/1741-2552/ac0489
– volume: abs 1704 28
  start-page: 1
  year: 2017
  ident: ref29
  article-title: Improved training of Wasserstein GANs
  publication-title: CoRR
– ident: ref11
  doi: 10.1109/BCI48061.2020.9061656
– ident: ref13
  doi: 10.1504/IJMEI.2018.093350
– year: 2018
  ident: ref45
  article-title: UMAP: Uniform manifold approximation and projection for dimension reduction
  publication-title: arXiv 1802 03426
– volume: abs 1806 7108
  start-page: 1
  year: 2018
  ident: ref17
  article-title: Improving brain computer interface performance by data augmentation with conditional deep convolutional generative adversarial networks
  publication-title: CoRR
– volume: abs 2006 8242
  start-page: 1
  year: 2020
  ident: ref26
  article-title: Multimodal generative learning utilizing Jensen-Shannon-divergence
  publication-title: CoRR
– ident: ref37
  doi: 10.7717/peerj.7731
– ident: ref6
  doi: 10.1080/2326263X.2019.1568821
– ident: ref39
  doi: 10.1007/978-3-030-63322-6_8
– year: 0
  ident: ref44
  publication-title: Comparing group means T-tests and one-way anova using stata sas r and spss
– ident: ref34
  doi: 10.3389/fncom.2015.00146
– ident: ref19
  doi: 10.1109/TNSRE.2020.3006180
– ident: ref27
  doi: 10.1023/A:1026543900054
– ident: ref12
  doi: 10.1109/TBME.2017.2650259
– ident: ref16
  doi: 10.1109/ICCV.2017.369
– ident: ref4
  doi: 10.1016/j.neuroimage.2005.06.026
– ident: ref49
  doi: 10.24018/ejers.2021.6.4.2438
– ident: ref36
  doi: 10.1002/hbm.23730
– ident: ref41
  doi: 10.1016/j.patrec.2005.10.010
– volume: abs 2002 12478
  start-page: 1
  year: 2020
  ident: ref7
  article-title: Time series data augmentation for deep learning: A survey
  publication-title: CoRR
– ident: ref9
  doi: 10.1109/TPAMI.2020.2969348
– ident: ref38
  doi: 10.1088/1741-2552/aace8c
SSID ssj0017657
Score 2.4681163
Snippet In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 251
SubjectTerms auto-encoder
Brain modeling
Brain-Computer Interfaces
Calibration
class imbalance problem
Classification
Data augmentation
Deep learning
EEG
Electroencephalography
Generative adversarial networks
Human-computer interface
Humans
Interfaces
Learning
Machine learning
Mathematical models
Performance evaluation
Rapid serial visual presentation (RSVP)
Task analysis
Training
Visual tasks
Visualization
Wasserstein generative adversarial network (WGAN)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTr1UbYGSllaDVLhUEZv4K-G2wLIUidWypC03K3YcCbUNVXf5_8zY2QgObS-9JmPLmRnH78XOG8Y-itYjim-zlEvtU1G6Ji0aIVJSZm8sAd5w5P9yps6_iIsbefOo1BedCYvywNFxhwhnCfY6mtGklo4InJOKuvCq0Hnr6e2Ly9iaTPX7B1pJvf5FZlQeVrPrxQTJYJ4jRxUIEuSTZSio9fflVf6MNMOKc_aSveihIozjEF-xZ757zfYfywJDFTUB4AAWTxS3N9nV8bfpeJZO50cw7mAymcJpvaohqkyTCVyG2tGAoBVCZUz4_NPSOUfnYR6rzMBtB4vrr3Oo6uX35RarzibVyXnal09InVDZKpWCe8RTyrW8Udq2eSkkzwvbFrJAWGFr6WRmLW30qbppvUMw1lqrnUKSYT3fZhvdXed3GHjb1C4bOSSLSKiUr4XnmdOILIUtpbMJy9bONK5_UKpw8cMEijEqTQiAoQCYPgAJ-zS0-RWFNf5qfUwxGixJFDtcwFQxfaqYf6VKwjYpwkMnpSpHaJqw3XXETT-Bl4aaaSmyjCdsb7iNU4_2U-rO390Hmxx9hQQwYW9ipgx9c8TZiIz12_8x8HfsOTkjfvnZZRur3_f-PWKhlf0Q0v4B3IP7zQ
  priority: 102
  providerName: Directory of Open Access Journals
Title BWGAN-GP: An EEG Data Generation Method for Class Imbalance Problem in RSVP Tasks
URI https://ieeexplore.ieee.org/document/9690467
https://www.ncbi.nlm.nih.gov/pubmed/35073267
https://www.proquest.com/docview/2624754113
https://www.proquest.com/docview/2622659666
https://doaj.org/article/5850255c14674368862342624e6872fe
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXHhVR6hpTIScIFsN7ETJ9y2sN2CtKtlG6C3KHYmUlXIVmz2wq9nxnmIIkDcomScxBlP_H1-fAPwXFVIKL4KfBlp9FVqSz8plfJZmb00DHjdkv_5Ij77pD5cRBc78HrYC4OIbvEZjvjQzeWXa7vlobLjlKgcBfYu7Gqdtnu1hhkDHTtVTwpg5SsZjvsNMuP0OFucr6ZEBcOQGKoiiMDpaiQBIYIu-kZ_5GT7uzwrf4ecrus5vQPz_qXbFSdXo21jRvbHb3qO_1uru3C7w6Bi0jaae7CD9X148avesMhasQHxUqxuSHnvw8eTL7PJwp8t34hJLabTmXhXNIVo5avZRMxdUmpBaFi4lJvi_TfDCygtimWbvkZc1mJ1_nkpsmJztXkA2ek0e3vmd3kZfKvioPEjJZGAWmwrWcbaVGGqIhkmpkqihPCKKSIbBcbwDGJclBVaQnmVMdrGxF4MyoewV69rfAwCTVnYYGyJhRJTi7FQKAOrCbIqk0bWeBD0zsltV1FOnfE1d9xlnObOtzn7Nu9868Grocx1q9jxT-sT9vlgyWrb7gS5KO-CNydKxdTLcq_Civ3EAiUr-SuMEx1W6ME-u3W4SedRDw77FpR3f4ZNzsV0pIJAevBsuEwxzRM1RY3rrbMJ6VsRs_TgUdvyhnv37fbJn595ALe4eu0g0SHsNd-3-JRgU2OO3HDDkYuany23DLQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr0IJFDAScIFsN7GdR29b2O4WuqtlG2hvVuw4EipkEZu98Os74zxEESBuUTJO4own_j4_vgF4IUqLKL4MfC5j64vUFH5SCOGTMnuhCfC6Jf-zeTT9JN6fy_MteNPvhbHWusVndkCHbi6_WJkNDZXtp0jlMLCvwXWJrCJudmv1cwZx5HQ9MYSFL3g47LbIDNP9bH66HCMZDEPkqAJBAiWs4QiFELzEV3okJ9zfZlr5O-h0nc_RbZh1r92sObkYbGo9MD9_U3T833rdgVstCmWjptnchS1b3YOXvyoOs6yRG2Cv2PKKmPcOfDw8m4zm_mRxwEYVG48n7F1e56wRsCYTNnNpqRniYeaSbrLjb5qWUBrLFk0CG_alYsvTzwuW5euL9X3IjsbZ26nfZmbwjYiC2peCW4RqkSl5EcW6DFMheZjoMpEJIhadSyMDrWkOMcqL0hrEeaXWsYmQv2jLH8B2tarsQ2BWF7kJhgZ5KHK1yObC8sDECFqFTqXRHgSdc5RpK0rJM74qx16GqXK-VeRb1frWg9d9me-NZsc_rQ_J570l6W27E-gi1YavQlJF5MtQv0Ka_cgDOWn5CxslcVhaD3bIrf1NWo96sNe1INX-G9aKisVSBAH34Hl_GaOapmryyq42zibEb4Xc0oPdpuX19-7a7aM_P_MZ3JhmsxN1cjz_8BhuUlWbIaM92K5_bOwTBFG1fupi5xIb_g8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BWGAN-GP%3A+An+EEG+Data+Generation+Method+for+Class+Imbalance+Problem+in+RSVP+Tasks&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Xu%2C+Meng&rft.au=Chen%2C+Yuanfang&rft.au=Wang%2C+Yijun&rft.au=Wang%2C+Dan&rft.date=2022&rft.eissn=1558-0210&rft.volume=30&rft.spage=251&rft_id=info:doi/10.1109%2FTNSRE.2022.3145515&rft_id=info%3Apmid%2F35073267&rft.externalDocID=35073267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon