BWGAN-GP: An EEG Data Generation Method for Class Imbalance Problem in RSVP Tasks
In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class imbalance problems (CIPs) can hinder the classifier from achieving better performance, especially in deep learning. This paper proposed a novel d...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 251 - 263 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2022.3145515 |
Cover
Abstract | In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class imbalance problems (CIPs) can hinder the classifier from achieving better performance, especially in deep learning. This paper proposed a novel data augmentation method called balanced Wasserstein generative adversarial network with gradient penalty (BWGAN-GP) to generate RSVP minority class data. The model learned useful features from majority classes and used them to generate minority-class artificial EEG data. It combines generative adversarial network (GAN) with autoencoder initialization strategy enables this method to learn an accurate class-conditioning in the latent space to drive the generation process towards the minority class. We used RSVP datasets from nine subjects to evaluate the classification performance of our proposed generated model and compare them with those of other methods. The average AUC obtained with BWGAN-GP on EEGNet was 94.43%, an increase of 3.7% over the original data. We also used different amounts of original data to investigate the effect of the generated EEG data on the calibration phase. Only 60% of original data were needed to achieve acceptable classification performance. These results show that the BWGAN-GP could effectively alleviate CIPs in the RSVP task and obtain the best performance when the two classes of data are balanced. The findings suggest that data augmentation techniques could generate artificial EEG to reduce calibration time in other brain-computer interfaces (BCI) paradigms similar to RSVP. |
---|---|
AbstractList | In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class imbalance problems (CIPs) can hinder the classifier from achieving better performance, especially in deep learning. This paper proposed a novel data augmentation method called balanced Wasserstein generative adversarial network with gradient penalty (BWGAN-GP) to generate RSVP minority class data. The model learned useful features from majority classes and used them to generate minority-class artificial EEG data. It combines generative adversarial network (GAN) with autoencoder initialization strategy enables this method to learn an accurate class-conditioning in the latent space to drive the generation process towards the minority class. We used RSVP datasets from nine subjects to evaluate the classification performance of our proposed generated model and compare them with those of other methods. The average AUC obtained with BWGAN-GP on EEGNet was 94.43%, an increase of 3.7% over the original data. We also used different amounts of original data to investigate the effect of the generated EEG data on the calibration phase. Only 60% of original data were needed to achieve acceptable classification performance. These results show that the BWGAN-GP could effectively alleviate CIPs in the RSVP task and obtain the best performance when the two classes of data are balanced. The findings suggest that data augmentation techniques could generate artificial EEG to reduce calibration time in other brain-computer interfaces (BCI) paradigms similar to RSVP. In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class imbalance problems (CIPs) can hinder the classifier from achieving better performance, especially in deep learning. This paper proposed a novel data augmentation method called balanced Wasserstein generative adversarial network with gradient penalty (BWGAN-GP) to generate RSVP minority class data. The model learned useful features from majority classes and used them to generate minority-class artificial EEG data. It combines generative adversarial network (GAN) with autoencoder initialization strategy enables this method to learn an accurate class-conditioning in the latent space to drive the generation process towards the minority class. We used RSVP datasets from nine subjects to evaluate the classification performance of our proposed generated model and compare them with those of other methods. The average AUC obtained with BWGAN-GP on EEGNet was 94.43%, an increase of 3.7% over the original data. We also used different amounts of original data to investigate the effect of the generated EEG data on the calibration phase. Only 60% of original data were needed to achieve acceptable classification performance. These results show that the BWGAN-GP could effectively alleviate CIPs in the RSVP task and obtain the best performance when the two classes of data are balanced. The findings suggest that data augmentation techniques could generate artificial EEG to reduce calibration time in other brain-computer interfaces (BCI) paradigms similar to RSVP.In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class imbalance problems (CIPs) can hinder the classifier from achieving better performance, especially in deep learning. This paper proposed a novel data augmentation method called balanced Wasserstein generative adversarial network with gradient penalty (BWGAN-GP) to generate RSVP minority class data. The model learned useful features from majority classes and used them to generate minority-class artificial EEG data. It combines generative adversarial network (GAN) with autoencoder initialization strategy enables this method to learn an accurate class-conditioning in the latent space to drive the generation process towards the minority class. We used RSVP datasets from nine subjects to evaluate the classification performance of our proposed generated model and compare them with those of other methods. The average AUC obtained with BWGAN-GP on EEGNet was 94.43%, an increase of 3.7% over the original data. We also used different amounts of original data to investigate the effect of the generated EEG data on the calibration phase. Only 60% of original data were needed to achieve acceptable classification performance. These results show that the BWGAN-GP could effectively alleviate CIPs in the RSVP task and obtain the best performance when the two classes of data are balanced. The findings suggest that data augmentation techniques could generate artificial EEG to reduce calibration time in other brain-computer interfaces (BCI) paradigms similar to RSVP. |
Author | Chen, Yuanfang Liu, Zehua Wang, Dan Zhang, Lijian Wang, Yijun Xu, Meng |
Author_xml | – sequence: 1 givenname: Meng surname: Xu fullname: Xu, Meng organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China – sequence: 2 givenname: Yuanfang orcidid: 0000-0002-9888-9869 surname: Chen fullname: Chen, Yuanfang email: chenyuanfang2015@163.com organization: Beijing Institute of Mechanical Equipment, Beijing, China – sequence: 3 givenname: Yijun orcidid: 0000-0001-9950-6025 surname: Wang fullname: Wang, Yijun organization: State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Dan orcidid: 0000-0002-0657-9370 surname: Wang fullname: Wang, Dan email: wangdan@bjut.edu.cn organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China – sequence: 5 givenname: Zehua orcidid: 0000-0001-6544-4858 surname: Liu fullname: Liu, Zehua organization: Fan GongXiu Honors College, Beijing University of Technology, Beijing, China – sequence: 6 givenname: Lijian orcidid: 0000-0002-5953-0079 surname: Zhang fullname: Zhang, Lijian organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35073267$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhSNURB_wB0BClth0k8GvazvshmEII5UytCNYWrbjQIYkLnZm0X9PMjPtogtWtqzvHN97znl20ofeZ9lrgmeE4OL95vr2ZjmjmNIZIxyAwLPsjACoHFOCT6Y74zlnFJ9m5yltMSZSgHyRnTLAklEhz7LvH3-W8-u8XH9A8x4tlyX6ZAaDSt_7aIYm9OirH36HCtUhokVrUkKrzprW9M6jdQy29R1qenRz-2ONNib9SS-z57Vpk391PC-yzeflZvElv_pWrhbzq9xxQYYcOPMKiHA1q4S0NS04MKpsrUARTK0BB8RaWgAXpqq9Uwxqa6UTUEjr2UW2OthWwWz1XWw6E-91MI3eP4T4S5s4NK71GhRgCuAIF5IzoZSgjFNBuRdK0nryujx43cXwd-fToLsmOd-OW_qwS3pk6fitEGJE3z1Bt2EX-3HRieISOCFspN4eqZ3tfPU43kPuI6AOgIshpehr7Zphn_cQTdNqgvVUsd5XrKeK9bHiUUqfSB_c_yt6cxA13vtHQSEKPGbC_gH7Zatw |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1016_j_neunet_2023_01_009 crossref_primary_10_3390_bioengineering11040347 crossref_primary_10_1016_j_bspc_2024_107394 crossref_primary_10_1109_TCDS_2023_3288201 crossref_primary_10_32604_cmc_2024_056016 crossref_primary_10_1007_s00138_023_01506_y crossref_primary_10_1109_TBME_2024_3361716 crossref_primary_10_3389_fnins_2023_1219133 crossref_primary_10_7717_peerj_cs_2649 crossref_primary_10_1016_j_neucom_2024_129239 crossref_primary_10_1109_JBHI_2022_3185587 crossref_primary_10_7717_peerj_cs_2394 crossref_primary_10_1016_j_eswa_2024_125585 crossref_primary_10_1016_j_eswa_2023_122681 crossref_primary_10_1109_TNSRE_2023_3268979 |
Cites_doi | 10.1016/j.jneumeth.2020.108885 10.1145/3422622 10.1016/j.neucom.2017.08.039 10.1109/EMBC44109.2020.9175401 10.1109/MSP.2008.4408447 10.1016/j.neunet.2018.07.011 10.1109/SMC.2019.8914492 10.1007/s00521-021-06163-8 10.1016/j.neucom.2019.09.106 10.1109/TNSRE.2020.3023761 10.1088/1741-2552/abb580 10.1088/1741-2552/aa9817 10.1007/s12008-020-00715-3 10.1109/TNSRE.2008.2003381 10.1109/CIEL.2013.6613138 10.1109/EMBC.2018.8512396 10.1109/ACCESS.2020.2982224 10.1177/001316446002000104 10.3233/IDA-2002-6504 10.1109/IEMBS.2011.6091575 10.1088/1741-2552/ac0489 10.1109/BCI48061.2020.9061656 10.1504/IJMEI.2018.093350 10.7717/peerj.7731 10.1080/2326263X.2019.1568821 10.1007/978-3-030-63322-6_8 10.3389/fncom.2015.00146 10.1109/TNSRE.2020.3006180 10.1023/A:1026543900054 10.1109/TBME.2017.2650259 10.1109/ICCV.2017.369 10.1016/j.neuroimage.2005.06.026 10.24018/ejers.2021.6.4.2438 10.1002/hbm.23730 10.1016/j.patrec.2005.10.010 10.1109/TPAMI.2020.2969348 10.1088/1741-2552/aace8c |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2022.3145515 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 263 |
ExternalDocumentID | oai_doaj_org_article_5850255c14674368862342624e6872fe 35073267 10_1109_TNSRE_2022_3145515 9690467 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Plan of China grantid: 2017YFB1300304 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61672505 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c461t-543e8516cf3d67bf2945328bf858102ba5c51bb29546adfec835fbb7c6597be3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:29:20 EDT 2025 Thu Jul 10 22:36:02 EDT 2025 Sun Jul 13 04:42:27 EDT 2025 Wed Feb 19 02:27:18 EST 2025 Wed Oct 01 01:12:31 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 Wed Aug 27 03:00:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-543e8516cf3d67bf2945328bf858102ba5c51bb29546adfec835fbb7c6597be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9950-6025 0000-0002-9888-9869 0000-0002-0657-9370 0000-0002-5953-0079 0000-0001-6544-4858 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9690467 |
PMID | 35073267 |
PQID | 2624754113 |
PQPubID | 85423 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2622659666 proquest_journals_2624754113 doaj_primary_oai_doaj_org_article_5850255c14674368862342624e6872fe crossref_citationtrail_10_1109_TNSRE_2022_3145515 ieee_primary_9690467 crossref_primary_10_1109_TNSRE_2022_3145515 pubmed_primary_35073267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 gulrajani (ref29) 2017; abs 1704 28 ref14 wen (ref7) 2020; abs 2002 12478 ref11 ref10 mcinnes (ref45) 2018 ref16 ref19 ref18 zhang (ref17) 2018; abs 1806 7108 ref50 ref46 ref48 ref42 ref41 ref43 ref49 ref8 mariani (ref30) 2018; abs 1803 9655 ref9 ref4 ref3 ref6 ref35 ref34 ref37 ref36 ref31 wang (ref5) 2018 ref32 ref2 ref1 ref39 ref38 hartmann (ref15) 2018 ref24 ref23 ref25 ref20 ref22 park (ref44) 0 ref21 barachant (ref33) 2014 arjovsky (ref28) 2017; 70 ref27 grover (ref40) 2017; abs 1705 8868 arora (ref47) 2018 sutter (ref26) 2020; abs 2006 8242 |
References_xml | – ident: ref8 doi: 10.1016/j.jneumeth.2020.108885 – ident: ref24 doi: 10.1145/3422622 – start-page: 243 year: 2018 ident: ref5 article-title: A review of feature extraction and classification algorithms for image RSVP-based BCI publication-title: Signal Processing and Machine Learning for Brain-Machine Interfaces – ident: ref35 doi: 10.1016/j.neucom.2017.08.039 – ident: ref50 doi: 10.1109/EMBC44109.2020.9175401 – ident: ref32 doi: 10.1109/MSP.2008.4408447 – ident: ref21 doi: 10.1016/j.neunet.2018.07.011 – ident: ref20 doi: 10.1109/SMC.2019.8914492 – ident: ref31 doi: 10.1007/s00521-021-06163-8 – ident: ref10 doi: 10.1016/j.neucom.2019.09.106 – ident: ref42 doi: 10.1109/TNSRE.2020.3023761 – ident: ref18 doi: 10.1088/1741-2552/abb580 – volume: abs 1803 9655 start-page: 1 year: 2018 ident: ref30 article-title: BAGAN: Data augmentation with balancing GAN publication-title: CoRR – ident: ref2 doi: 10.1088/1741-2552/aa9817 – ident: ref48 doi: 10.1007/s12008-020-00715-3 – start-page: 1455 year: 2018 ident: ref47 article-title: An analysis of the t-SNE algorithm for data visualization publication-title: Proc COLT – ident: ref1 doi: 10.1109/TNSRE.2008.2003381 – year: 2018 ident: ref15 article-title: EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals publication-title: arXiv 1806 01875 – volume: 70 start-page: 214 year: 2017 ident: ref28 article-title: Wasserstein generative adversarial networks publication-title: Proc ICML – volume: abs 1705 8868 start-page: 1 year: 2017 ident: ref40 article-title: Flow-GAN: Bridging implicit and prescribed learning in generative models publication-title: CoRR – ident: ref23 doi: 10.1109/CIEL.2013.6613138 – year: 2014 ident: ref33 article-title: A plug & play P300 BCI using information geometry publication-title: arXiv 1409 0107 – ident: ref14 doi: 10.1109/EMBC.2018.8512396 – ident: ref25 doi: 10.1109/ACCESS.2020.2982224 – ident: ref43 doi: 10.1177/001316446002000104 – ident: ref22 doi: 10.3233/IDA-2002-6504 – ident: ref3 doi: 10.1109/IEMBS.2011.6091575 – ident: ref46 doi: 10.1088/1741-2552/ac0489 – volume: abs 1704 28 start-page: 1 year: 2017 ident: ref29 article-title: Improved training of Wasserstein GANs publication-title: CoRR – ident: ref11 doi: 10.1109/BCI48061.2020.9061656 – ident: ref13 doi: 10.1504/IJMEI.2018.093350 – year: 2018 ident: ref45 article-title: UMAP: Uniform manifold approximation and projection for dimension reduction publication-title: arXiv 1802 03426 – volume: abs 1806 7108 start-page: 1 year: 2018 ident: ref17 article-title: Improving brain computer interface performance by data augmentation with conditional deep convolutional generative adversarial networks publication-title: CoRR – volume: abs 2006 8242 start-page: 1 year: 2020 ident: ref26 article-title: Multimodal generative learning utilizing Jensen-Shannon-divergence publication-title: CoRR – ident: ref37 doi: 10.7717/peerj.7731 – ident: ref6 doi: 10.1080/2326263X.2019.1568821 – ident: ref39 doi: 10.1007/978-3-030-63322-6_8 – year: 0 ident: ref44 publication-title: Comparing group means T-tests and one-way anova using stata sas r and spss – ident: ref34 doi: 10.3389/fncom.2015.00146 – ident: ref19 doi: 10.1109/TNSRE.2020.3006180 – ident: ref27 doi: 10.1023/A:1026543900054 – ident: ref12 doi: 10.1109/TBME.2017.2650259 – ident: ref16 doi: 10.1109/ICCV.2017.369 – ident: ref4 doi: 10.1016/j.neuroimage.2005.06.026 – ident: ref49 doi: 10.24018/ejers.2021.6.4.2438 – ident: ref36 doi: 10.1002/hbm.23730 – ident: ref41 doi: 10.1016/j.patrec.2005.10.010 – volume: abs 2002 12478 start-page: 1 year: 2020 ident: ref7 article-title: Time series data augmentation for deep learning: A survey publication-title: CoRR – ident: ref9 doi: 10.1109/TPAMI.2020.2969348 – ident: ref38 doi: 10.1088/1741-2552/aace8c |
SSID | ssj0017657 |
Score | 2.4681163 |
Snippet | In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 251 |
SubjectTerms | auto-encoder Brain modeling Brain-Computer Interfaces Calibration class imbalance problem Classification Data augmentation Deep learning EEG Electroencephalography Generative adversarial networks Human-computer interface Humans Interfaces Learning Machine learning Mathematical models Performance evaluation Rapid serial visual presentation (RSVP) Task analysis Training Visual tasks Visualization Wasserstein generative adversarial network (WGAN) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTr1UbYGSllaDVLhUEZv4K-G2wLIUidWypC03K3YcCbUNVXf5_8zY2QgObS-9JmPLmRnH78XOG8Y-itYjim-zlEvtU1G6Ji0aIVJSZm8sAd5w5P9yps6_iIsbefOo1BedCYvywNFxhwhnCfY6mtGklo4InJOKuvCq0Hnr6e2Ly9iaTPX7B1pJvf5FZlQeVrPrxQTJYJ4jRxUIEuSTZSio9fflVf6MNMOKc_aSveihIozjEF-xZ757zfYfywJDFTUB4AAWTxS3N9nV8bfpeJZO50cw7mAymcJpvaohqkyTCVyG2tGAoBVCZUz4_NPSOUfnYR6rzMBtB4vrr3Oo6uX35RarzibVyXnal09InVDZKpWCe8RTyrW8Udq2eSkkzwvbFrJAWGFr6WRmLW30qbppvUMw1lqrnUKSYT3fZhvdXed3GHjb1C4bOSSLSKiUr4XnmdOILIUtpbMJy9bONK5_UKpw8cMEijEqTQiAoQCYPgAJ-zS0-RWFNf5qfUwxGixJFDtcwFQxfaqYf6VKwjYpwkMnpSpHaJqw3XXETT-Bl4aaaSmyjCdsb7iNU4_2U-rO390Hmxx9hQQwYW9ipgx9c8TZiIz12_8x8HfsOTkjfvnZZRur3_f-PWKhlf0Q0v4B3IP7zQ priority: 102 providerName: Directory of Open Access Journals |
Title | BWGAN-GP: An EEG Data Generation Method for Class Imbalance Problem in RSVP Tasks |
URI | https://ieeexplore.ieee.org/document/9690467 https://www.ncbi.nlm.nih.gov/pubmed/35073267 https://www.proquest.com/docview/2624754113 https://www.proquest.com/docview/2622659666 https://doaj.org/article/5850255c14674368862342624e6872fe |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXHhVR6hpTIScIFsN7ETJ9y2sN2CtKtlG6C3KHYmUlXIVmz2wq9nxnmIIkDcomScxBlP_H1-fAPwXFVIKL4KfBlp9FVqSz8plfJZmb00DHjdkv_5Ij77pD5cRBc78HrYC4OIbvEZjvjQzeWXa7vlobLjlKgcBfYu7Gqdtnu1hhkDHTtVTwpg5SsZjvsNMuP0OFucr6ZEBcOQGKoiiMDpaiQBIYIu-kZ_5GT7uzwrf4ecrus5vQPz_qXbFSdXo21jRvbHb3qO_1uru3C7w6Bi0jaae7CD9X148avesMhasQHxUqxuSHnvw8eTL7PJwp8t34hJLabTmXhXNIVo5avZRMxdUmpBaFi4lJvi_TfDCygtimWbvkZc1mJ1_nkpsmJztXkA2ek0e3vmd3kZfKvioPEjJZGAWmwrWcbaVGGqIhkmpkqihPCKKSIbBcbwDGJclBVaQnmVMdrGxF4MyoewV69rfAwCTVnYYGyJhRJTi7FQKAOrCbIqk0bWeBD0zsltV1FOnfE1d9xlnObOtzn7Nu9868Grocx1q9jxT-sT9vlgyWrb7gS5KO-CNydKxdTLcq_Civ3EAiUr-SuMEx1W6ME-u3W4SedRDw77FpR3f4ZNzsV0pIJAevBsuEwxzRM1RY3rrbMJ6VsRs_TgUdvyhnv37fbJn595ALe4eu0g0SHsNd-3-JRgU2OO3HDDkYuany23DLQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr0IJFDAScIFsN7GdR29b2O4WuqtlG2hvVuw4EipkEZu98Os74zxEESBuUTJO4own_j4_vgF4IUqLKL4MfC5j64vUFH5SCOGTMnuhCfC6Jf-zeTT9JN6fy_MteNPvhbHWusVndkCHbi6_WJkNDZXtp0jlMLCvwXWJrCJudmv1cwZx5HQ9MYSFL3g47LbIDNP9bH66HCMZDEPkqAJBAiWs4QiFELzEV3okJ9zfZlr5O-h0nc_RbZh1r92sObkYbGo9MD9_U3T833rdgVstCmWjptnchS1b3YOXvyoOs6yRG2Cv2PKKmPcOfDw8m4zm_mRxwEYVG48n7F1e56wRsCYTNnNpqRniYeaSbrLjb5qWUBrLFk0CG_alYsvTzwuW5euL9X3IjsbZ26nfZmbwjYiC2peCW4RqkSl5EcW6DFMheZjoMpEJIhadSyMDrWkOMcqL0hrEeaXWsYmQv2jLH8B2tarsQ2BWF7kJhgZ5KHK1yObC8sDECFqFTqXRHgSdc5RpK0rJM74qx16GqXK-VeRb1frWg9d9me-NZsc_rQ_J570l6W27E-gi1YavQlJF5MtQv0Ka_cgDOWn5CxslcVhaD3bIrf1NWo96sNe1INX-G9aKisVSBAH34Hl_GaOapmryyq42zibEb4Xc0oPdpuX19-7a7aM_P_MZ3JhmsxN1cjz_8BhuUlWbIaM92K5_bOwTBFG1fupi5xIb_g8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BWGAN-GP%3A+An+EEG+Data+Generation+Method+for+Class+Imbalance+Problem+in+RSVP+Tasks&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Xu%2C+Meng&rft.au=Chen%2C+Yuanfang&rft.au=Wang%2C+Yijun&rft.au=Wang%2C+Dan&rft.date=2022&rft.eissn=1558-0210&rft.volume=30&rft.spage=251&rft_id=info:doi/10.1109%2FTNSRE.2022.3145515&rft_id=info%3Apmid%2F35073267&rft.externalDocID=35073267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |