Attempts to understand the mechanisms of mitochondrial diseases: The reverse genetics of mouse models for mitochondrial disease
Mitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1865; no. 3; p. 129835 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2020.129835 |
Cover
Abstract | Mitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA).
This paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function.
Several mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well.
Mouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments.
•Mouse models are indispensable in the study of the pathogenesis of mitochondrial disease.•Pathology of mitochondrial disease is diverse and complex.•Mouse models with mitochondrial and nuclear DNA mutations have been established.•These models lack sufficient diversity for a holistic study of mitochondrial diseases.•Diversity in mutations and breeding environments of mouse models is needed. |
---|---|
AbstractList | Mitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA).BACKGROUNDMitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA).This paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function.SCOPE OF REVIEWThis paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function.Several mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well.MAJOR CONCLUSIONSSeveral mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well.Mouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments.GENERAL SIGNIFICANCEMouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments. Mitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA).This paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function.Several mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well.Mouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments. Mitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA). This paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function. Several mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well. Mouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments. •Mouse models are indispensable in the study of the pathogenesis of mitochondrial disease.•Pathology of mitochondrial disease is diverse and complex.•Mouse models with mitochondrial and nuclear DNA mutations have been established.•These models lack sufficient diversity for a holistic study of mitochondrial diseases.•Diversity in mutations and breeding environments of mouse models is needed. Mitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA). This paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function. Several mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well. Mouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments. |
ArticleNumber | 129835 |
Author | Ishikawa, Kaori Nakada, Kazuto |
Author_xml | – sequence: 1 givenname: Kaori surname: Ishikawa fullname: Ishikawa, Kaori organization: Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan – sequence: 2 givenname: Kazuto surname: Nakada fullname: Nakada, Kazuto email: knakada@biol.tsukuba.ac.jp organization: Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33358867$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rFTEUxYNU7Gv1G4jM0s08838yXQilaCsU3NR1yCQ3vjxmkmeSV-jKr27KtBsRezcXLr9zuJxzhk5iioDQe4K3BBP5ab-dJvMT4pZi2k50VEy8QhuiBtorjOUJ2mCGec-JFKforJQ9biNG8QadMsaEUnLYoN-XtcJyqKWrqTtGB7lUE11Xd9AtYHcmhrKULvluCTXZXYouBzN3LhQwBcpFd9fIDPdNCF17B2qwK5-O7bIkB3PpfMr_NniLXnszF3j3tM_Rj69f7q5u-tvv19-uLm97yyWpPXUKvBqcN1IaIbD1jBgycA5OGDV547jChlGJ-WjlxIF5TylVEqhi2BF2jj6uvoecfh2hVL2EYmGeTYT2qKZCkJFjOQ4vo3xgLVQ2ioZ-eEKP0wJOH3JYTH7Qz_k24GIFbE6lZPDahmpqSLFmE2ZNsH4sU-_1WqZ-LFOvZTYx_0v87P-C7PMqa8HDfYCsiw0QLbiQwVbtUvi_wR-Eqrwk |
CitedBy_id | crossref_primary_10_32607_actanaturae_25442 crossref_primary_10_3390_ijms24119698 crossref_primary_10_1371_journal_pone_0276883 crossref_primary_10_1002_jimd_12804 crossref_primary_10_1242_dmm_048981 |
Cites_doi | 10.1016/S0140-6736(88)91632-7 10.1002/ana.10673 10.1038/srep10434 10.1073/pnas.0505551102 10.1016/j.ymgme.2016.07.001 10.1023/A:1008967412955 10.1016/0006-291X(78)91499-7 10.1093/nar/gkg739 10.1038/90058 10.1016/j.bbabio.2012.11.005 10.1073/pnas.1311660110 10.1038/gim.2014.177 10.1016/j.jnutbio.2018.07.003 10.1073/pnas.0502896102 10.1038/290607a0 10.1523/JNEUROSCI.21-20-08082.2001 10.1038/82826 10.1126/science.1156906 10.1136/jmedgenet-2013-101932 10.1074/jbc.274.47.33426 10.1073/pnas.1006214107 10.1016/S0167-4889(02)00260-4 10.1111/bpa.12403 10.1136/jmedgenet-2017-104615 10.1093/brain/awm114 10.1016/0022-510X(94)90014-0 10.1093/hmg/10.5.529 10.1038/290457a0 10.1093/hmg/ddi328 10.1146/annurev-genet-120215-035243 10.1093/brain/116.3.617 10.1038/5089 10.1016/j.cell.2020.02.051 10.1038/11403 10.1073/pnas.1202367109 10.1101/cshperspect.a011395 10.1016/j.tibtech.2017.11.006 10.1016/j.neuint.2017.05.003 10.1038/13779 10.1007/s00412-017-0658-1 10.1093/molehr/gah152 10.1016/S0022-3476(05)83431-6 10.1371/journal.pgen.1000756 10.1126/science.2711184 10.1038/90976 10.1038/ng0398-231 10.1126/science.1112125 10.1038/s41591-018-0166-8 10.1371/journal.pgen.1003794 10.1016/0092-8674(90)90059-N 10.1136/jmedgenet-2016-103876 10.1002/1531-8249(200009)48:3<330::AID-ANA7>3.0.CO;2-A 10.1038/ng0797-226 10.1006/bbrc.2000.3257 10.1073/pnas.232591499 10.1073/pnas.250491597 10.1038/s41598-018-19264-7 10.1167/iovs.05-0695 10.1016/j.bbagrm.2011.11.001 10.1073/pnas.1318109111 10.1016/j.bbrc.2015.02.070 10.1038/ng1970 10.1038/22026 10.15252/emmm.201708262 10.1002/ana.24362 10.1016/j.lfs.2017.11.019 10.1038/nm.3261 10.1073/pnas.1217113109 10.1016/j.bbrc.2015.09.072 10.1016/S0303-7207(98)00173-7 10.1093/brain/awh259 10.1002/ana.21036 10.1096/fj.201802655RR 10.1016/S0140-6736(04)16851-7 10.1016/j.ymthe.2006.03.026 10.1056/NEJM198905183202001 10.2337/db14-1937 10.1038/nature02517 10.1038/s41586-020-2477-4 10.1093/hmg/ddl005 10.1016/S0021-9258(19)50739-6 10.1126/science.289.5480.782 10.1002/mgg3.523 10.1371/annotation/4b800314-8d35-454d-afca-af6d0f57b5d1 10.1136/jnnp.2005.067041 10.1038/ng.2007.63 10.1038/ng.258 10.1016/j.cmet.2008.02.004 10.2174/1574888X09666131230142018 10.1371/journal.pgen.1004620 10.1007/s13311-013-0177-6 10.3389/fphys.2015.00109 10.1016/j.febslet.2010.07.048 10.1038/nrdp.2016.80 10.1016/S0014-5793(00)02334-6 10.1126/science.1147786 10.1042/EBC20170096 10.1073/pnas.71.5.1681 10.1038/81649 10.1126/science.283.5407.1482 10.1074/mcp.M300035-MCP200 10.1016/j.cmet.2018.08.002 10.1016/S0925-4439(97)00035-5 10.1126/science.aad9642 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129835 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 33358867 10_1016_j_bbagen_2020_129835 S0304416520303469 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-2d8ef87dfa66a550cf31a1744ed5a8bfad480a326049c6b4e3ff22286e2830d13 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Sat Sep 27 18:45:27 EDT 2025 Sun Sep 28 00:17:33 EDT 2025 Wed Feb 19 02:27:43 EST 2025 Thu Apr 24 23:08:20 EDT 2025 Tue Jul 01 00:22:14 EDT 2025 Fri Feb 23 02:46:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | IOSCA mtDNA RRF CPEO Mitochondrial diseases KSS Mito-mice adPEO MERRF TCA Mouse model of mitochondrial disease NARP SDH CSF CAP-R Nuclear DNA MDS |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-2d8ef87dfa66a550cf31a1744ed5a8bfad480a326049c6b4e3ff22286e2830d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 33358867 |
PQID | 2473416395 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551940697 proquest_miscellaneous_2473416395 pubmed_primary_33358867 crossref_citationtrail_10_1016_j_bbagen_2020_129835 crossref_primary_10_1016_j_bbagen_2020_129835 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129835 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bacman, Kauppila, Pereira, Nissanka, Miranda, Pinto, Williams, Larsson, Stewart, Moraes (bb0500) 2018; 24 Sligh, Levy, Waymire, Allard, Dillehay, Nusinowitz, Heckenlively, MacGregor, Wallace (bb0230) 2000; 97 Inoue, Nakada, Ogura, Isobe, Goto, Nonaka, Hayashi (bb0245) 2000; 26 Levy, Waymire, Kim, MacGregor, Wallace (bb0235) 1999; 8 P. Lestienne, G. Ponsot, Kearns-Sayre syndrome with muscle mitochondrial DNA deletion, Lancet 1(8590) (1988) 885. Wai, Teoli, Shoubridge (bb0060) 2008; 40 Shimizu, Mito, Hashizume, Yonekawa, Ishikawa, Nakada, Hayashi (bb0295) 2015; 459 Zhang, Burr, Chinnery (bb0065) 2018; 62 Artusi, Miyagawa, Goins, Cohen, Glorioso (bb0190) 2018; 6 McManus, Picard, Chen, De Haas, Potluri, Leipzig, Towheed, Angelin, Sengupta, Morrow, Kauffman, Vermulst, Narula, Wallace (bb0520) 2019; 29 Ciafaloni, Santorelli, Shanske, Deonna, Roulet, Janzer, Pescia, DiMauro (bb0120) 1993; 122 El-Hattab, Scaglia (bb0395) 2013; 10 Bayona-Bafaluy, Blits, Battersby, Shoubridge, Moraes (bb0215) 2005; 102 Grady, Pickett, Ng, Alston, Blakely, Hardy, Feeney, Bright, Schaefer, Gorman, McNally, Taylor, Turnbull, McFarland (bb0015) 2018; 10 Papa, Scacco, Sardanelli, Vergari, Papa, Budde, van den Heuvel, Smeitink (bb0435) 2001; 489 Tyynismaa, Mjosund, Wanrooij, Lappalainen, Ylikallio, Jalanko, Spelbrink, Paetau, Suomalainen (bb0350) 2005; 102 Wang, Wilhelmsson, Graff, Li, Oldfors, Rustin, Brüning, Kahn, Clayton, Barsh, Thorén, Larsson (bb0365) 1999; 21 Bernardo, Marques-Aleixo, Beleza, Oliveira, Ascensao, Magalhaes (bb0160) 2016; 26 Quintana, Kruse, Kapur, Sanz, Palmiter (bb0445) 2010; 107 Kim, Potluri, Khalil, Gaut, McManus, Compton, Wallace, Yadava (bb0455) 2017; 109 Hammans, Sweeney, Brockington, Lennox, Lawton, Kennedy, Morgan-Hughes, Harding (bb0110) 1993; 116 Jain, Zazzeron, Goli, Alexa, Schatzman-Bone, Dhillon, Goldberger, Peng, Shalem, Sanjana, Zhang, Goessling, Zapol, Mootha (bb0490) 2016; 352 Cree, Samuels, de Sousa Lopes, Rajasimha, Wonnapinij, Mann, Dahl, Chinnery (bb0035) 2008; 40 Jansen, de Boer (bb0040) 1998; 145 Cao, Shitara, Horii, Nagao, Imai, Abe, Hara, Hayashi, Yonekawa (bb0050) 2007; 39 Bayona-Bafaluy, Acín-Pérez, Mullikin, Park, Moreno-Loshuertos, Hu, Pérez-Martos, Fernández-Silva, Bai, Enríquez (bb0175) 2003; 31 Nikali, Suomalainen, Saharinen, Kuokkanen, Spelbrink, Lonnqvist, Peltonen (bb0340) 2005; 14 Kennedy, Salk, Schmitt, Loeb (bb0325) 2013; 9 Russell, Gorman, Lightowlers, Turnbull (bb0510) 2020; 181 Trifunovic, Wredenberg, Falkenberg, Spelbrink, Rovio, Bruder, Bohlooly, Gidlof, Oldfors, Wibom, Tornell, Jacobs, Larsson (bb0305) 2004; 429 Hayashi, Yonekawa, Gotoh, Watanabe, Tagashira (bb0025) 1978; 83 Horvath, Abicht, Holinski-Feder, Laner, Gempel, Prokisch, Lochmuller, Klopstock, Jaksch (bb0470) 2006; 77 Shoffner, Lott, Lezza, Seibel, Ballinger, Wallace (bb0115) 1990; 61 Larsson, Wang, Wilhelmsson, Oldfors, Rustin, Lewandoski, Barsh, Clayton (bb0360) 1998; 18 Mok, de Moraes, Zeng, Bosch, Kotrys, Raguram, Hsu, Radey, Peterson, Mootha, Mougous, Liu (bb0505) 2020; 583 M. Matsubara, H. Kanda, H. Imamura, M. Inoue, M. Noguchi, K. Hosoda, A. Kakizuka, K. Nakao, Analysis of mitochondrial function in human induced pluripotent stem cells from patients with mitochondrial diabetes due to the A3243G mutation, Sci. Rep. 8(1) (2018) 949. de Laat, Rodenburg, Smeitink, Janssen (bb0020) 2019; 7 Ishikawa, Takenaga, Akimoto, Koshikawa, Yamaguchi, Imanishi, Nakada, Honma, Hayashi (bb0265) 2008; 320 Krakauer, Mira (bb0045) 1999; 400 Bunn, Wallace, Eisenstadt (bb0240) 1974; 71 Bacman, Williams, Pinto, Peralta, Moraes (bb0495) 2013; 19 Heinonen, Buzkova, Muniandy, Kaksonen, Ollikainen, Ismail, Hakkarainen, Lundbom, Lundbom, Vuolteenaho, Moilanen, Kaprio, Rissanen, Suomalainen, Pietilainen (bb0150) 2015; 64 Sallevelt, de Die-Smulders, Hendrickx, Hellebrekers, de Coo, Alston, Taylor, Mcfarland, Smeets (bb0080) 2017; 54 Kearsey, Craig (bb0225) 1981; 290 McVey, Khodaverdian, Meyer, Cerqueira, Heyer (bb0205) 2016; 50 Stiles, Simon, Stover, Eftekharian, Khanlou, Wang, Magaki, Lee, Partynski, Dorrani, Chang, Martinez-Agosto, Abdenur (bb0400) 2016; 119 Yin, Stahl, Andrade, McMullen, Webb-Wood, Newman, Biousse, Wallace, Pardue (bb0420) 2005; 46 Fernandez-Moreira, Ugalde, Smeets, Rodenburg, Lopez-Laso, Ruiz-Falco, Briones, Martin, Smeitink, Arenas (bb0450) 2007; 61 Jacobs, de Coo, Nijland, Galjaard, Los, Schoonderwoerd, Niermeijer, Geraedts, Scholte, Smeets (bb0070) 2005; 11 Budde, van den Heuvel, Janssen, Smeets, Buskens, DeMeirleir, Van Coster, Baethmann, Voit, Trijbels, Smeitink (bb0430) 2000; 275 Birch-Machin, Taylor, Cochran, Ackrell, Turnbull (bb0475) 2000; 48 Hashizume, Ohnishi, Mito, Shimizu, Ishikawa, Nakada, Soda, Mano, Togayachi, Miyoshi, Okita, Hayashi (bb0330) 2015; 5 Andrews, Kubacka, Chinnery, Lightowlers, Turnbull, Howell (bb0180) 1999; 23 Marchington, Barlow, Poulton (bb0220) 1999; 5 Kruse, Watt, Marcinek, Kapur, Schenkman, Palmiter (bb0440) 2008; 7 Moraes, DiMauro, Zeviani, Lombes, Shanske, Miranda, Nakase, Bonilla, Werneck, Servidei (bb0135) 1989; 320 Yokota, Shitara, Hashizume, Ishikawa, Nakada, Ishii, Taya, Takenaga, Yonekawa, Hayashi (bb0275) 2010; 584 Nakada, Inoue, Ono, Isobe, Ogura, Goto, Nonaka, Hayashi (bb0250) 2001; 7 Gorman, Chinnery, DiMauro, Hirano, Koga, McFarland, Suomalainen, Thorburn, Zeviani, Turnbull (bb0090) 2016; 2 de Vries, de Wijs, Ruitenbeek, Begeer, Smit, Bentlage, van Oost (bb0100) 1994; 124 Rossignol, Malgat, Mazat, Letellier (bb0140) 1999; 274 Silva, Köhler, Graff, Oldfors, Magnuson, Berggren, Larsson (bb0375) 2000; 26 Cao, Shitara, Sugimoto, Hayashi, Abe, Yonekawa (bb0055) 2009; 5 Taylor, McDonnell, Blakely, Chinnery, Taylor, Howell, Zeviani, Briem, Carrara, Turnbull (bb0030) 2003; 54 Fan, Waymire, Narula, Li, Rocher, Coskun, Vannan, Narula, Macgregor, Wallace (bb0260) 2008; 319 Schon, Rizzuto, Moraes, Nakase, Zeviani, DiMauro (bb0130) 1989; 244 Lam, McKeague (bb0165) 2019; 63 Kujoth, Hiona, Pugh, Someya, Panzer, Wohlgemuth, Hofer, Seo, Sullivan, Jobling, Morrow, Van Remmen, Sedivy, Yamasoba, Tanokura, Weindruch, Leeuwenburgh, Prolla (bb0310) 2005; 309 Moraes, Shanske, Tritschler, Aprille, Andreetta, Bonilla, Schon, DiMauro (bb0390) 1991; 48 Kasahara, Ishikawa, Yamaoka, Ito, Watanabe, Akimoto, Sato, Nakada, Endo, Suda, Aizawa, Hayashi (bb0255) 2006; 15 Jackson, Nuoffer, Hahn, Prokisch, Haberberger, Gautschi, Haberli, Gallati, Schaller (bb0480) 2014; 51 Putti, Sica, Migliaccio, Lionetti (bb0145) 2015; 6 Kaukonen, Juselius, Tiranti, Kyttälä, Zeviani, Comi, Keränen, Peltonen, Suomalainen (bb0410) 2000; 289 Lin, Sharpley, Fan, Waymire, Sadun, Carelli, Ross-Cisneros, Baciu, Sung, McManus, Pan, Gil, Macgregor, Wallace (bb0285) 2012; 109 Zeviani, Di Donato (bb0095) 2004; 127 Wredenberg, Wibom, Wilhelmsson, Graff, Wiener, Burden, Oldfors, Westerblad, Larsson (bb0370) 2002; 99 Fisher, Lisowsky, Parisi, Clayton (bb0355) 1992; 267 Vachin, Adda-Herzog, Chalouhi, Elie, Rio, Rondeau, Gigarel, Jabot Hanin, Monnot, Borghese, Bengoa, Ville, Rotig, Munnich, Bonnefont, Steffann (bb0075) 2018; 55 Shimizu, Mito, Hayashi, Ogasawara, Koba, Negishi, Takenaga, Nakada, Hayashi (bb0290) 2014; 111 Chinnery, DiMauro, Shanske, Schon, Zeviani, Mariotti, Carrara, Lombes, Laforet, Ogier, Jaksch, Lochmuller, Horvath, Deschauer, Thorburn, Bindoff, Poulton, Taylor, Matthews, Turnbull (bb0085) 2004; 364 Glass, Lee, Li, Xu (bb0185) 2018; 36 Graham, Waymire, Cottrell, Trounce, MacGregor, Wallace (bb0415) 1997; 16 de Mello, Costa, Engel, Rezin (bb0155) 2018; 192 Ranjha, Howard, Cejka (bb0210) 2018; 127 Stumpf, Saneto, Copeland (bb0335) 2013; 5 Peralta, Wang, Moraes (bb0385) 2012; 1819 Sörensen, Ekstrand, Silva, Lindqvist, Xu, Rustin, Olson, Larsson (bb0380) 2001; 21 Hoekstra, Bayley (bb0465) 2013; 1827 Spelbrink, Li, Tiranti, Nikali, Yuan, Tariq, Wanrooij, Garrido, Comi, Morandi, Santoro, Toscano, Fabrizi, Somer, Croxen, Beeson, Poulton, Suomalainen, Jacobs, Zeviani, Larsson (bb0345) 2001; 28 Hashizume, Shimizu, Yokota, Sugiyama, Nakada, Miyoshi, Itami, Ohira, Nagase, Takenaga, Hayashi (bb0280) 2012; 109 Hämäläinen, Manninen, Koivumäki, Kislin, Otonkoski, Suomalainen (bb0525) 2013; 110 Jackson, Juranek, Lipps (bb0195) 2006; 14 Parikh, Goldstein, Koenig, Scaglia, Enns, Saneto, Anselm, Cohen, Falk, Greene, Gropman, Haas, Hirano, Morgan, Sims, Tarnopolsky, Van Hove, Wolfe, DiMauro (bb0010) 2015; 17 Zhang, Li, Yang, Qin, Yu, Yan (bb0530) 2014; 9 Williams, Mash, Zuchner, Moraes (bb0315) 2013; 9 Gorman, Schaefer, Ng, Gomez, Blakely, Alston, Feeney, Horvath, Yu-Wai-Man, Chinnery, Taylor, Turnbull, McFarland (bb0005) 2015; 77 Petruzzella, Vergari, Puzziferri, Boffoli, Lamantea, Zeviani, Papa (bb0425) 2001; 10 Pfanner, Chacinska (bb0200) 2002; 1592 Malfatti, Bugiani, Invernizzi, de Souza, Farina, Carrara, Lamantea, Antozzi, Confalonieri, Sanseverino, Giugliani, Uziel, Zeviani (bb0270) 2007; 130 Wallace (bb0170) 1999; 283 Anderson, Bankier, Barrell, de Bruijn, Coulson, Drouin, Eperon, Nierlich, Roe, Sanger, Schreier, Smith, Staden, Young (bb0300) 1981; 290 Al Khazal, Holte, Bolon, White, LeBrasseur, Maher (bb0485) 2019; 33 Greaves, Nooteboom, Elson, Tuppen, Taylor, Commane, Arasaradnam, Khrapko, Taylor, Kirkwood, Mathers, Turnbull (bb0320) 2014; 10 Zhang, Guo, Fang, Jun, Shi (bb0105) 2015; 8 Bogenhagen, Wang, Shen, Kobayashi (bb0405) 2003; 2 Rustin, Bourgeron, Parfait, Chretien, Munnich, Rotig (bb0460) 1997; 1361 Shimizu, Enoki, Ishikawa, Mito, Obata, Nagashima, Yonekawa, Nakada, Hayashi (bb0515) 2015; 467 Tyynismaa (10.1016/j.bbagen.2020.129835_bb0350) 2005; 102 Al Khazal (10.1016/j.bbagen.2020.129835_bb0485) 2019; 33 Shimizu (10.1016/j.bbagen.2020.129835_bb0295) 2015; 459 El-Hattab (10.1016/j.bbagen.2020.129835_bb0395) 2013; 10 Papa (10.1016/j.bbagen.2020.129835_bb0435) 2001; 489 Hashizume (10.1016/j.bbagen.2020.129835_bb0280) 2012; 109 Russell (10.1016/j.bbagen.2020.129835_bb0510) 2020; 181 Quintana (10.1016/j.bbagen.2020.129835_bb0445) 2010; 107 Lin (10.1016/j.bbagen.2020.129835_bb0285) 2012; 109 Bayona-Bafaluy (10.1016/j.bbagen.2020.129835_bb0215) 2005; 102 Marchington (10.1016/j.bbagen.2020.129835_bb0220) 1999; 5 Wang (10.1016/j.bbagen.2020.129835_bb0365) 1999; 21 Fernandez-Moreira (10.1016/j.bbagen.2020.129835_bb0450) 2007; 61 Jansen (10.1016/j.bbagen.2020.129835_bb0040) 1998; 145 Jackson (10.1016/j.bbagen.2020.129835_bb0195) 2006; 14 Shimizu (10.1016/j.bbagen.2020.129835_bb0290) 2014; 111 Putti (10.1016/j.bbagen.2020.129835_bb0145) 2015; 6 Rustin (10.1016/j.bbagen.2020.129835_bb0460) 1997; 1361 Grady (10.1016/j.bbagen.2020.129835_bb0015) 2018; 10 Sallevelt (10.1016/j.bbagen.2020.129835_bb0080) 2017; 54 Bacman (10.1016/j.bbagen.2020.129835_bb0500) 2018; 24 Moraes (10.1016/j.bbagen.2020.129835_bb0135) 1989; 320 Kaukonen (10.1016/j.bbagen.2020.129835_bb0410) 2000; 289 Wredenberg (10.1016/j.bbagen.2020.129835_bb0370) 2002; 99 Kennedy (10.1016/j.bbagen.2020.129835_bb0325) 2013; 9 McManus (10.1016/j.bbagen.2020.129835_bb0520) 2019; 29 Wallace (10.1016/j.bbagen.2020.129835_bb0170) 1999; 283 Kearsey (10.1016/j.bbagen.2020.129835_bb0225) 1981; 290 Zeviani (10.1016/j.bbagen.2020.129835_bb0095) 2004; 127 Rossignol (10.1016/j.bbagen.2020.129835_bb0140) 1999; 274 Bacman (10.1016/j.bbagen.2020.129835_bb0495) 2013; 19 Zhang (10.1016/j.bbagen.2020.129835_bb0105) 2015; 8 Kasahara (10.1016/j.bbagen.2020.129835_bb0255) 2006; 15 Kujoth (10.1016/j.bbagen.2020.129835_bb0310) 2005; 309 de Mello (10.1016/j.bbagen.2020.129835_bb0155) 2018; 192 Zhang (10.1016/j.bbagen.2020.129835_bb0065) 2018; 62 10.1016/j.bbagen.2020.129835_bb0125 Inoue (10.1016/j.bbagen.2020.129835_bb0245) 2000; 26 Taylor (10.1016/j.bbagen.2020.129835_bb0030) 2003; 54 Petruzzella (10.1016/j.bbagen.2020.129835_bb0425) 2001; 10 Yokota (10.1016/j.bbagen.2020.129835_bb0275) 2010; 584 Williams (10.1016/j.bbagen.2020.129835_bb0315) 2013; 9 Stumpf (10.1016/j.bbagen.2020.129835_bb0335) 2013; 5 Moraes (10.1016/j.bbagen.2020.129835_bb0390) 1991; 48 Artusi (10.1016/j.bbagen.2020.129835_bb0190) 2018; 6 Fisher (10.1016/j.bbagen.2020.129835_bb0355) 1992; 267 Malfatti (10.1016/j.bbagen.2020.129835_bb0270) 2007; 130 Wai (10.1016/j.bbagen.2020.129835_bb0060) 2008; 40 Shimizu (10.1016/j.bbagen.2020.129835_bb0515) 2015; 467 Hayashi (10.1016/j.bbagen.2020.129835_bb0025) 1978; 83 Heinonen (10.1016/j.bbagen.2020.129835_bb0150) 2015; 64 Vachin (10.1016/j.bbagen.2020.129835_bb0075) 2018; 55 Gorman (10.1016/j.bbagen.2020.129835_bb0090) 2016; 2 Jacobs (10.1016/j.bbagen.2020.129835_bb0070) 2005; 11 Ishikawa (10.1016/j.bbagen.2020.129835_bb0265) 2008; 320 Ciafaloni (10.1016/j.bbagen.2020.129835_bb0120) 1993; 122 Bogenhagen (10.1016/j.bbagen.2020.129835_bb0405) 2003; 2 Fan (10.1016/j.bbagen.2020.129835_bb0260) 2008; 319 Peralta (10.1016/j.bbagen.2020.129835_bb0385) 2012; 1819 McVey (10.1016/j.bbagen.2020.129835_bb0205) 2016; 50 Sligh (10.1016/j.bbagen.2020.129835_bb0230) 2000; 97 Graham (10.1016/j.bbagen.2020.129835_bb0415) 1997; 16 Kim (10.1016/j.bbagen.2020.129835_bb0455) 2017; 109 Trifunovic (10.1016/j.bbagen.2020.129835_bb0305) 2004; 429 Hashizume (10.1016/j.bbagen.2020.129835_bb0330) 2015; 5 Kruse (10.1016/j.bbagen.2020.129835_bb0440) 2008; 7 Jackson (10.1016/j.bbagen.2020.129835_bb0480) 2014; 51 Schon (10.1016/j.bbagen.2020.129835_bb0130) 1989; 244 Mok (10.1016/j.bbagen.2020.129835_bb0505) 2020; 583 Bernardo (10.1016/j.bbagen.2020.129835_bb0160) 2016; 26 Pfanner (10.1016/j.bbagen.2020.129835_bb0200) 2002; 1592 Cree (10.1016/j.bbagen.2020.129835_bb0035) 2008; 40 10.1016/j.bbagen.2020.129835_bb0535 Andrews (10.1016/j.bbagen.2020.129835_bb0180) 1999; 23 Greaves (10.1016/j.bbagen.2020.129835_bb0320) 2014; 10 Ranjha (10.1016/j.bbagen.2020.129835_bb0210) 2018; 127 Anderson (10.1016/j.bbagen.2020.129835_bb0300) 1981; 290 Spelbrink (10.1016/j.bbagen.2020.129835_bb0345) 2001; 28 Hämäläinen (10.1016/j.bbagen.2020.129835_bb0525) 2013; 110 de Vries (10.1016/j.bbagen.2020.129835_bb0100) 1994; 124 Bayona-Bafaluy (10.1016/j.bbagen.2020.129835_bb0175) 2003; 31 Krakauer (10.1016/j.bbagen.2020.129835_bb0045) 1999; 400 Parikh (10.1016/j.bbagen.2020.129835_bb0010) 2015; 17 Cao (10.1016/j.bbagen.2020.129835_bb0050) 2007; 39 Zhang (10.1016/j.bbagen.2020.129835_bb0530) 2014; 9 Birch-Machin (10.1016/j.bbagen.2020.129835_bb0475) 2000; 48 Nakada (10.1016/j.bbagen.2020.129835_bb0250) 2001; 7 Horvath (10.1016/j.bbagen.2020.129835_bb0470) 2006; 77 Cao (10.1016/j.bbagen.2020.129835_bb0055) 2009; 5 de Laat (10.1016/j.bbagen.2020.129835_bb0020) 2019; 7 Larsson (10.1016/j.bbagen.2020.129835_bb0360) 1998; 18 Sörensen (10.1016/j.bbagen.2020.129835_bb0380) 2001; 21 Budde (10.1016/j.bbagen.2020.129835_bb0430) 2000; 275 Levy (10.1016/j.bbagen.2020.129835_bb0235) 1999; 8 Chinnery (10.1016/j.bbagen.2020.129835_bb0085) 2004; 364 Yin (10.1016/j.bbagen.2020.129835_bb0420) 2005; 46 Jain (10.1016/j.bbagen.2020.129835_bb0490) 2016; 352 Gorman (10.1016/j.bbagen.2020.129835_bb0005) 2015; 77 Glass (10.1016/j.bbagen.2020.129835_bb0185) 2018; 36 Nikali (10.1016/j.bbagen.2020.129835_bb0340) 2005; 14 Bunn (10.1016/j.bbagen.2020.129835_bb0240) 1974; 71 Shoffner (10.1016/j.bbagen.2020.129835_bb0115) 1990; 61 Hammans (10.1016/j.bbagen.2020.129835_bb0110) 1993; 116 Lam (10.1016/j.bbagen.2020.129835_bb0165) 2019; 63 Stiles (10.1016/j.bbagen.2020.129835_bb0400) 2016; 119 Silva (10.1016/j.bbagen.2020.129835_bb0375) 2000; 26 Hoekstra (10.1016/j.bbagen.2020.129835_bb0465) 2013; 1827 |
References_xml | – volume: 145 start-page: 81 year: 1998 end-page: 88 ident: bb0040 article-title: The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate publication-title: Mol. Cell. Endocrinol. – volume: 14 start-page: 613 year: 2006 end-page: 626 ident: bb0195 article-title: Designing nonviral vectors for efficient gene transfer and long-term gene expression publication-title: Mol. Ther. – volume: 244 start-page: 346 year: 1989 end-page: 349 ident: bb0130 article-title: A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA publication-title: Science – volume: 50 start-page: 393 year: 2016 end-page: 421 ident: bb0205 article-title: Eukaryotic DNA polymerases in homologous recombination publication-title: Annu. Rev. Genet. – volume: 48 start-page: 492 year: 1991 end-page: 501 ident: bb0390 article-title: mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases publication-title: Am. J. Hum. Genet. – volume: 77 start-page: 753 year: 2015 end-page: 759 ident: bb0005 article-title: Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease publication-title: Ann. Neurol. – volume: 109 start-page: 20065 year: 2012 end-page: 20070 ident: bb0285 article-title: Mouse mtDNA mutant model of Leber hereditary optic neuropathy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 51 start-page: 170 year: 2014 end-page: 175 ident: bb0480 article-title: Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency publication-title: J. Med. Genet. – volume: 17 start-page: 689 year: 2015 end-page: 701 ident: bb0010 article-title: Diagnosis and management of mitochondrial disease: a consensus statement from the mitochondrial medicine society publication-title: Genet. Med. – volume: 8 start-page: 137 year: 1999 end-page: 145 ident: bb0235 article-title: Transfer of chloramphenicol-resistant mitochondrial DNA into the chimeric mouse publication-title: Transgenic Res. – volume: 429 start-page: 417 year: 2004 end-page: 423 ident: bb0305 article-title: Premature ageing in mice expressing defective mitochondrial DNA polymerase publication-title: Nature – volume: 7 start-page: 312 year: 2008 end-page: 320 ident: bb0440 article-title: Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy publication-title: Cell Metab. – volume: 36 start-page: 173 year: 2018 end-page: 185 ident: bb0185 article-title: Engineering the delivery system for CRISPR-based genome editing publication-title: Trends Biotechnol. – volume: 9 year: 2013 ident: bb0325 article-title: Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage publication-title: PLoS Genet. – volume: 97 start-page: 14461 year: 2000 end-page: 14466 ident: bb0230 article-title: Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 127 start-page: 2153 year: 2004 end-page: 2172 ident: bb0095 article-title: Mitochondrial disorders publication-title: Brain – volume: 2 start-page: 1205 year: 2003 end-page: 1216 ident: bb0405 article-title: Protein components of mitochondrial DNA nucleoids in higher eukaryotes publication-title: Mol. Cell. Proteomics – volume: 8 start-page: 13411 year: 2015 end-page: 13415 ident: bb0105 article-title: Clinical features of MELAS and its relation with A3243G gene point mutation publication-title: Int. J. Clin. Exp. Pathol. – volume: 64 start-page: 3135 year: 2015 end-page: 3145 ident: bb0150 article-title: Impaired mitochondrial biogenesis in adipose tissue in acquired obesity publication-title: Diabetes – volume: 24 start-page: 1696 year: 2018 end-page: 1700 ident: bb0500 article-title: MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation publication-title: Nat. Med. – volume: 275 start-page: 63 year: 2000 end-page: 68 ident: bb0430 article-title: Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene publication-title: Biochem. Biophys. Res. Commun. – volume: 6 start-page: 109 year: 2015 ident: bb0145 article-title: Diet impact on mitochondrial bioenergetics and dynamics publication-title: Front. Physiol. – volume: 127 start-page: 187 year: 2018 end-page: 214 ident: bb0210 article-title: Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes publication-title: Chromosoma – volume: 9 start-page: 134 year: 2014 end-page: 140 ident: bb0530 article-title: Patient-specific induced pluripotent stem cell models in mitochondrial diseases publication-title: Curr. Stem Cell Res. Ther. – volume: 111 start-page: 3104 year: 2014 end-page: 3109 ident: bb0290 article-title: Transmitochondrial mice as models for primary prevention of diseases caused by mutation in the tRNA(Lys) gene publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 21 start-page: 133 year: 1999 end-page: 137 ident: bb0365 article-title: Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression publication-title: Nat. Genet. – volume: 23 start-page: 147 year: 1999 ident: bb0180 article-title: Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA publication-title: Nat. Genet. – volume: 122 start-page: 419 year: 1993 end-page: 422 ident: bb0120 article-title: Maternally inherited Leigh syndrome publication-title: J. Pediatr. – reference: P. Lestienne, G. Ponsot, Kearns-Sayre syndrome with muscle mitochondrial DNA deletion, Lancet 1(8590) (1988) 885. – volume: 283 start-page: 1482 year: 1999 end-page: 1488 ident: bb0170 article-title: Mitochondrial diseases in man and mouse publication-title: Science – volume: 583 start-page: 631 year: 2020 end-page: 637 ident: bb0505 article-title: A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing publication-title: Nature – volume: 119 start-page: 91 year: 2016 end-page: 99 ident: bb0400 article-title: Mutations in TFAM, encoding mitochondrial transcription factor a, cause neonatal liver failure associated with mtDNA depletion publication-title: Mol. Genet. Metab. – volume: 46 start-page: 4555 year: 2005 end-page: 4562 ident: bb0420 article-title: Eliminating the Ant1 isoform produces a mouse with CPEO pathology but normal ocular motility publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 19 start-page: 1111 year: 2013 end-page: 1113 ident: bb0495 article-title: Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs publication-title: Nat. Med. – volume: 274 start-page: 33426 year: 1999 end-page: 33432 ident: bb0140 article-title: Threshold effect and tissue specificity. Implication for mitochondrial cytopathies publication-title: J. Biol. Chem. – reference: M. Matsubara, H. Kanda, H. Imamura, M. Inoue, M. Noguchi, K. Hosoda, A. Kakizuka, K. Nakao, Analysis of mitochondrial function in human induced pluripotent stem cells from patients with mitochondrial diabetes due to the A3243G mutation, Sci. Rep. 8(1) (2018) 949. – volume: 39 start-page: 386 year: 2007 end-page: 390 ident: bb0050 article-title: The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells publication-title: Nat. Genet. – volume: 11 start-page: 223 year: 2005 end-page: 228 ident: bb0070 article-title: Transmission and prenatal diagnosis of the T9176C mitochondrial DNA mutation publication-title: Mol. Hum. Reprod. – volume: 18 start-page: 231 year: 1998 end-page: 236 ident: bb0360 article-title: Mitochondrial transcription factor a is necessary for mtDNA maintenance and embryogenesis in mice publication-title: Nat. Genet. – volume: 16 start-page: 226 year: 1997 end-page: 234 ident: bb0415 article-title: A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator publication-title: Nat. Genet. – volume: 9 year: 2013 ident: bb0315 article-title: Somatic mtDNA mutation spectra in the aging human putamen publication-title: PLoS Genet. – volume: 7 start-page: e00523 year: 2019 ident: bb0020 article-title: Intra-patient variability of heteroplasmy levels in urinary epithelial cells in carriers of the m.3243A>G mutation publication-title: Mol. Genet. & Genomic Med. – volume: 107 start-page: 10996 year: 2010 end-page: 11001 ident: bb0445 article-title: Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 459 start-page: 66 year: 2015 end-page: 70 ident: bb0295 article-title: G7731A mutation in mouse mitochondrial tRNALys regulates late-onset disorders in transmitochondrial mice publication-title: Biochem. Biophys. Res. Commun. – volume: 54 start-page: 521 year: 2003 end-page: 524 ident: bb0030 article-title: Genotypes from patients indicate no paternal mitochondrial DNA contribution publication-title: Ann. Neurol. – volume: 489 start-page: 259 year: 2001 end-page: 262 ident: bb0435 article-title: Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome publication-title: FEBS Lett. – volume: 48 start-page: 330 year: 2000 end-page: 335 ident: bb0475 article-title: Late-onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene publication-title: Ann. Neurol. – volume: 55 start-page: 131 year: 2018 end-page: 136 ident: bb0075 article-title: Segregation of mitochondrial DNA mutations in the human placenta: implication for prenatal diagnosis of mtDNA disorders publication-title: J. Med. Genet. – volume: 1827 start-page: 543 year: 2013 end-page: 551 ident: bb0465 article-title: The role of complex II in disease publication-title: Biochim. Biophys. Acta – volume: 181 start-page: 168 year: 2020 end-page: 188 ident: bb0510 article-title: Mitochondrial diseases: Hope for the future publication-title: Cell – volume: 26 start-page: 176 year: 2000 end-page: 181 ident: bb0245 article-title: Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes publication-title: Nat. Genet. – volume: 54 start-page: 73 year: 2017 end-page: 83 ident: bb0080 article-title: De novo mtDNA point mutations are common and have a low recurrence risk publication-title: J. Med. Genet. – volume: 77 start-page: 74 year: 2006 end-page: 76 ident: bb0470 article-title: Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA) publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 130 start-page: 1894 year: 2007 end-page: 1904 ident: bb0270 article-title: Novel mutations of ND genes in complex I deficiency associated with mitochondrial encephalopathy publication-title: Brain – volume: 109 start-page: 10528 year: 2012 end-page: 10533 ident: bb0280 article-title: Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: a011395 year: 2013 ident: bb0335 article-title: Clinical and molecular features of POLG-related mitochondrial disease publication-title: Cold Spring Harb. Perspect. Biol. – volume: 29 start-page: 78 year: 2019 end-page: 90 ident: bb0520 article-title: Mitochondrial DNA variation dictates expressivity and progression of nuclear dna mutations causing cardiomyopathy publication-title: Cell Metab. – volume: 192 start-page: 26 year: 2018 end-page: 32 ident: bb0155 article-title: Mitochondrial dysfunction in obesity publication-title: Life Sci. – volume: 267 start-page: 3358 year: 1992 end-page: 3367 ident: bb0355 article-title: DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein publication-title: J. Biol. Chem. – volume: 5 start-page: 957 year: 1999 end-page: 960 ident: bb0220 article-title: Transmitochondrial mice carrying resistance to chloramphenicol on mitochondrial DNA: developing the first mouse model of mitochondrial DNA disease publication-title: Nat. Med. – volume: 352 start-page: 54 year: 2016 end-page: 61 ident: bb0490 article-title: Hypoxia as a therapy for mitochondrial disease publication-title: Science – volume: 10 year: 2018 ident: bb0015 article-title: mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease publication-title: EMBO Mol. Med. – volume: 14 start-page: 2981 year: 2005 end-page: 2990 ident: bb0340 article-title: Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins twinkle and Twinky publication-title: Hum. Mol. Genet. – volume: 2 start-page: 16080 year: 2016 ident: bb0090 article-title: Mitochondrial diseases publication-title: Nature reviews. Disease primers – volume: 364 start-page: 592 year: 2004 end-page: 596 ident: bb0085 article-title: Risk of developing a mitochondrial DNA deletion disorder publication-title: Lancet – volume: 1592 start-page: 15 year: 2002 end-page: 24 ident: bb0200 article-title: The mitochondrial import machinery: preprotein-conducting channels with binding sites for presequences publication-title: Biochim. Biophys. Acta – volume: 116 start-page: 617 year: 1993 end-page: 632 ident: bb0110 article-title: The mitochondrial DNA transfer RNA(Lys)A-->G(8344) mutation and the syndrome of myoclonic epilepsy with ragged red fibres (MERRF). Relationship of clinical phenotype to proportion of mutant mitochondrial DNA publication-title: Brain – volume: 5 start-page: 10434 year: 2015 ident: bb0330 article-title: Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects publication-title: Sci. Rep. – volume: 1819 start-page: 961 year: 2012 end-page: 969 ident: bb0385 article-title: Mitochondrial transcription: lessons from mouse models publication-title: Biochim. Biophys. Acta – volume: 320 start-page: 661 year: 2008 end-page: 664 ident: bb0265 article-title: ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis publication-title: Science – volume: 26 start-page: 648 year: 2016 end-page: 663 ident: bb0160 article-title: Physical exercise and brain mitochondrial fitness: the possible role against Alzheimer’s disease publication-title: Brain Pathol. – volume: 10 year: 2014 ident: bb0320 article-title: Clonal expansion of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing publication-title: PLoS Genet. – volume: 7 start-page: 934 year: 2001 end-page: 940 ident: bb0250 article-title: Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA publication-title: Nat. Med. – volume: 26 start-page: 336 year: 2000 end-page: 340 ident: bb0375 article-title: Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes publication-title: Nat. Genet. – volume: 33 start-page: 13189 year: 2019 end-page: 13201 ident: bb0485 article-title: A conditional mouse model of complex II deficiency manifesting as Leigh-like syndrome publication-title: FASEB J. – volume: 62 start-page: 225 year: 2018 end-page: 234 ident: bb0065 article-title: The mitochondrial DNA genetic bottleneck: inheritance and beyond publication-title: Essays Biochem. – volume: 320 start-page: 1293 year: 1989 end-page: 1299 ident: bb0135 article-title: Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome publication-title: N. Engl. J. Med. – volume: 40 start-page: 249 year: 2008 end-page: 254 ident: bb0035 article-title: A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes publication-title: Nat. Genet. – volume: 102 start-page: 17687 year: 2005 end-page: 17692 ident: bb0350 article-title: Mutant mitochondrial helicase twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 year: 2009 ident: bb0055 article-title: New evidence confirms that the mitochondrial bottleneck is generated without reduction of mitochondrial DNA content in early primordial germ cells of mice publication-title: PLoS Genet. – volume: 61 start-page: 931 year: 1990 end-page: 937 ident: bb0115 article-title: Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation publication-title: Cell – volume: 400 start-page: 125 year: 1999 end-page: 126 ident: bb0045 article-title: Mitochondria and germ-cell death publication-title: Nature – volume: 40 start-page: 1484 year: 2008 end-page: 1488 ident: bb0060 article-title: The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes publication-title: Nat. Genet. – volume: 61 start-page: 73 year: 2007 end-page: 83 ident: bb0450 article-title: X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy publication-title: Ann. Neurol. – volume: 99 start-page: 15066 year: 2002 end-page: 15071 ident: bb0370 article-title: Increased mitochondrial mass in mitochondrial myopathy mice publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 289 start-page: 782 year: 2000 end-page: 785 ident: bb0410 article-title: Role of adenine nucleotide translocator 1 in mtDNA maintenance publication-title: Science – volume: 584 start-page: 3943 year: 2010 end-page: 3948 ident: bb0275 article-title: Generation of trans-mitochondrial Mito-mice by the introduction of a pathogenic G13997A mtDNA from highly metastatic lung carcinoma cells publication-title: FEBS Lett. – volume: 31 start-page: 5349 year: 2003 end-page: 5355 ident: bb0175 article-title: Revisiting the mouse mitochondrial DNA sequence publication-title: Nucleic Acids Res. – volume: 124 start-page: 77 year: 1994 end-page: 82 ident: bb0100 article-title: Extreme variability of clinical symptoms among sibs in a MELAS family correlated with heteroplasmy for the mitochondrial A3243G mutation publication-title: J. Neurol. Sci. – volume: 15 start-page: 871 year: 2006 end-page: 881 ident: bb0255 article-title: Generation of trans-mitochondrial mice carrying homoplasmic mtDNAs with a missense mutation in a structural gene using ES cells publication-title: Hum. Mol. Genet. – volume: 309 start-page: 481 year: 2005 end-page: 484 ident: bb0310 article-title: Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging publication-title: Science – volume: 467 start-page: 1097 year: 2015 end-page: 1102 ident: bb0515 article-title: Mouse somatic mutation orthologous to MELAS A3302G mutation in the mitochondrial tRNA(Leu(UUR)) gene confers respiration defects publication-title: Biochem. Biophys. Res. Commun. – volume: 10 start-page: 186 year: 2013 end-page: 198 ident: bb0395 article-title: Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options publication-title: Neurotherapeutics – volume: 1361 start-page: 185 year: 1997 end-page: 197 ident: bb0460 article-title: Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human publication-title: Biochim. Biophys. Acta – volume: 28 start-page: 223 year: 2001 end-page: 231 ident: bb0345 article-title: Human mitochondrial DNA deletions associated with mutations in the gene encoding twinkle, a phage T7 gene 4-like protein localized in mitochondria publication-title: Nat. Genet. – volume: 21 start-page: 8082 year: 2001 end-page: 8090 ident: bb0380 article-title: Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice publication-title: J. Neurosci. – volume: 102 start-page: 14392 year: 2005 end-page: 14397 ident: bb0215 article-title: Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: 529 year: 2001 end-page: 535 ident: bb0425 article-title: A nonsense mutation in the NDUFS4 gene encoding the 18 kDa (AQDQ) subunit of complex I abolishes assembly and activity of the complex in a patient with Leigh-like syndrome publication-title: Hum. Mol. Genet. – volume: 110 start-page: E3622 year: 2013 end-page: E3630 ident: bb0525 article-title: Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 319 start-page: 958 year: 2008 end-page: 962 ident: bb0260 article-title: A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations publication-title: Science – volume: 83 start-page: 1032 year: 1978 end-page: 1038 ident: bb0025 article-title: Strictly maternal inheritance of rat mitochondrial DNA publication-title: Biochem. Biophys. Res. Commun. – volume: 71 start-page: 1681 year: 1974 end-page: 1685 ident: bb0240 article-title: Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 109 start-page: 78 year: 2017 end-page: 93 ident: bb0455 article-title: An X-chromosome linked mouse model (Ndufa1(S55A)) for systemic partial complex I deficiency for studying predisposition to neurodegeneration and other diseases publication-title: Neurochem. Int. – volume: 6 year: 2018 ident: bb0190 article-title: Herpes simplex virus vectors for gene transfer to the central nervous system publication-title: Diseases (Basel, Switzerland) – volume: 290 start-page: 607 year: 1981 end-page: 608 ident: bb0225 article-title: Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance publication-title: Nature – volume: 290 start-page: 457 year: 1981 end-page: 465 ident: bb0300 article-title: Sequence and organization of the human mitochondrial genome publication-title: Nature – volume: 63 start-page: 1 year: 2019 end-page: 10 ident: bb0165 article-title: Dietary modulation of mitochondrial DNA damage: implications in aging and associated diseases publication-title: J. Nutr. Biochem. – ident: 10.1016/j.bbagen.2020.129835_bb0125 doi: 10.1016/S0140-6736(88)91632-7 – volume: 54 start-page: 521 issue: 4 year: 2003 ident: 10.1016/j.bbagen.2020.129835_bb0030 article-title: Genotypes from patients indicate no paternal mitochondrial DNA contribution publication-title: Ann. Neurol. doi: 10.1002/ana.10673 – volume: 5 start-page: 10434 year: 2015 ident: 10.1016/j.bbagen.2020.129835_bb0330 article-title: Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects publication-title: Sci. Rep. doi: 10.1038/srep10434 – volume: 102 start-page: 17687 issue: 49 year: 2005 ident: 10.1016/j.bbagen.2020.129835_bb0350 article-title: Mutant mitochondrial helicase twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0505551102 – volume: 119 start-page: 91 issue: 1–2 year: 2016 ident: 10.1016/j.bbagen.2020.129835_bb0400 article-title: Mutations in TFAM, encoding mitochondrial transcription factor a, cause neonatal liver failure associated with mtDNA depletion publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2016.07.001 – volume: 8 start-page: 137 issue: 2 year: 1999 ident: 10.1016/j.bbagen.2020.129835_bb0235 article-title: Transfer of chloramphenicol-resistant mitochondrial DNA into the chimeric mouse publication-title: Transgenic Res. doi: 10.1023/A:1008967412955 – volume: 83 start-page: 1032 issue: 3 year: 1978 ident: 10.1016/j.bbagen.2020.129835_bb0025 article-title: Strictly maternal inheritance of rat mitochondrial DNA publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(78)91499-7 – volume: 31 start-page: 5349 issue: 18 year: 2003 ident: 10.1016/j.bbagen.2020.129835_bb0175 article-title: Revisiting the mouse mitochondrial DNA sequence publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg739 – volume: 28 start-page: 223 issue: 3 year: 2001 ident: 10.1016/j.bbagen.2020.129835_bb0345 article-title: Human mitochondrial DNA deletions associated with mutations in the gene encoding twinkle, a phage T7 gene 4-like protein localized in mitochondria publication-title: Nat. Genet. doi: 10.1038/90058 – volume: 1827 start-page: 543 issue: 5 year: 2013 ident: 10.1016/j.bbagen.2020.129835_bb0465 article-title: The role of complex II in disease publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2012.11.005 – volume: 110 start-page: E3622 issue: 38 year: 2013 ident: 10.1016/j.bbagen.2020.129835_bb0525 article-title: Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1311660110 – volume: 17 start-page: 689 issue: 9 year: 2015 ident: 10.1016/j.bbagen.2020.129835_bb0010 article-title: Diagnosis and management of mitochondrial disease: a consensus statement from the mitochondrial medicine society publication-title: Genet. Med. doi: 10.1038/gim.2014.177 – volume: 63 start-page: 1 year: 2019 ident: 10.1016/j.bbagen.2020.129835_bb0165 article-title: Dietary modulation of mitochondrial DNA damage: implications in aging and associated diseases publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2018.07.003 – volume: 102 start-page: 14392 issue: 40 year: 2005 ident: 10.1016/j.bbagen.2020.129835_bb0215 article-title: Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0502896102 – volume: 290 start-page: 607 issue: 5807 year: 1981 ident: 10.1016/j.bbagen.2020.129835_bb0225 article-title: Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance publication-title: Nature doi: 10.1038/290607a0 – volume: 21 start-page: 8082 issue: 20 year: 2001 ident: 10.1016/j.bbagen.2020.129835_bb0380 article-title: Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-20-08082.2001 – volume: 26 start-page: 176 issue: 2 year: 2000 ident: 10.1016/j.bbagen.2020.129835_bb0245 article-title: Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes publication-title: Nat. Genet. doi: 10.1038/82826 – volume: 320 start-page: 661 issue: 5876 year: 2008 ident: 10.1016/j.bbagen.2020.129835_bb0265 article-title: ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis publication-title: Science doi: 10.1126/science.1156906 – volume: 51 start-page: 170 issue: 3 year: 2014 ident: 10.1016/j.bbagen.2020.129835_bb0480 article-title: Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency publication-title: J. Med. Genet. doi: 10.1136/jmedgenet-2013-101932 – volume: 274 start-page: 33426 issue: 47 year: 1999 ident: 10.1016/j.bbagen.2020.129835_bb0140 article-title: Threshold effect and tissue specificity. Implication for mitochondrial cytopathies publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.47.33426 – volume: 107 start-page: 10996 issue: 24 year: 2010 ident: 10.1016/j.bbagen.2020.129835_bb0445 article-title: Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1006214107 – volume: 1592 start-page: 15 issue: 1 year: 2002 ident: 10.1016/j.bbagen.2020.129835_bb0200 article-title: The mitochondrial import machinery: preprotein-conducting channels with binding sites for presequences publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4889(02)00260-4 – volume: 26 start-page: 648 issue: 5 year: 2016 ident: 10.1016/j.bbagen.2020.129835_bb0160 article-title: Physical exercise and brain mitochondrial fitness: the possible role against Alzheimer’s disease publication-title: Brain Pathol. doi: 10.1111/bpa.12403 – volume: 55 start-page: 131 issue: 2 year: 2018 ident: 10.1016/j.bbagen.2020.129835_bb0075 article-title: Segregation of mitochondrial DNA mutations in the human placenta: implication for prenatal diagnosis of mtDNA disorders publication-title: J. Med. Genet. doi: 10.1136/jmedgenet-2017-104615 – volume: 130 start-page: 1894 issue: Pt 7 year: 2007 ident: 10.1016/j.bbagen.2020.129835_bb0270 article-title: Novel mutations of ND genes in complex I deficiency associated with mitochondrial encephalopathy publication-title: Brain doi: 10.1093/brain/awm114 – volume: 124 start-page: 77 issue: 1 year: 1994 ident: 10.1016/j.bbagen.2020.129835_bb0100 article-title: Extreme variability of clinical symptoms among sibs in a MELAS family correlated with heteroplasmy for the mitochondrial A3243G mutation publication-title: J. Neurol. Sci. doi: 10.1016/0022-510X(94)90014-0 – volume: 10 start-page: 529 issue: 5 year: 2001 ident: 10.1016/j.bbagen.2020.129835_bb0425 article-title: A nonsense mutation in the NDUFS4 gene encoding the 18 kDa (AQDQ) subunit of complex I abolishes assembly and activity of the complex in a patient with Leigh-like syndrome publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/10.5.529 – volume: 290 start-page: 457 issue: 5806 year: 1981 ident: 10.1016/j.bbagen.2020.129835_bb0300 article-title: Sequence and organization of the human mitochondrial genome publication-title: Nature doi: 10.1038/290457a0 – volume: 14 start-page: 2981 issue: 20 year: 2005 ident: 10.1016/j.bbagen.2020.129835_bb0340 article-title: Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins twinkle and Twinky publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddi328 – volume: 50 start-page: 393 year: 2016 ident: 10.1016/j.bbagen.2020.129835_bb0205 article-title: Eukaryotic DNA polymerases in homologous recombination publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-120215-035243 – volume: 116 start-page: 617 issue: Pt 3 year: 1993 ident: 10.1016/j.bbagen.2020.129835_bb0110 article-title: The mitochondrial DNA transfer RNA(Lys)A-->G(8344) mutation and the syndrome of myoclonic epilepsy with ragged red fibres (MERRF). Relationship of clinical phenotype to proportion of mutant mitochondrial DNA publication-title: Brain doi: 10.1093/brain/116.3.617 – volume: 21 start-page: 133 issue: 1 year: 1999 ident: 10.1016/j.bbagen.2020.129835_bb0365 article-title: Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression publication-title: Nat. Genet. doi: 10.1038/5089 – volume: 181 start-page: 168 issue: 1 year: 2020 ident: 10.1016/j.bbagen.2020.129835_bb0510 article-title: Mitochondrial diseases: Hope for the future publication-title: Cell doi: 10.1016/j.cell.2020.02.051 – volume: 5 start-page: 957 issue: 8 year: 1999 ident: 10.1016/j.bbagen.2020.129835_bb0220 article-title: Transmitochondrial mice carrying resistance to chloramphenicol on mitochondrial DNA: developing the first mouse model of mitochondrial DNA disease publication-title: Nat. Med. doi: 10.1038/11403 – volume: 109 start-page: 10528 issue: 26 year: 2012 ident: 10.1016/j.bbagen.2020.129835_bb0280 article-title: Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1202367109 – volume: 5 start-page: a011395 issue: 4 year: 2013 ident: 10.1016/j.bbagen.2020.129835_bb0335 article-title: Clinical and molecular features of POLG-related mitochondrial disease publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a011395 – volume: 36 start-page: 173 issue: 2 year: 2018 ident: 10.1016/j.bbagen.2020.129835_bb0185 article-title: Engineering the delivery system for CRISPR-based genome editing publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2017.11.006 – volume: 109 start-page: 78 year: 2017 ident: 10.1016/j.bbagen.2020.129835_bb0455 article-title: An X-chromosome linked mouse model (Ndufa1(S55A)) for systemic partial complex I deficiency for studying predisposition to neurodegeneration and other diseases publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2017.05.003 – volume: 23 start-page: 147 issue: 2 year: 1999 ident: 10.1016/j.bbagen.2020.129835_bb0180 article-title: Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA publication-title: Nat. Genet. doi: 10.1038/13779 – volume: 127 start-page: 187 issue: 2 year: 2018 ident: 10.1016/j.bbagen.2020.129835_bb0210 article-title: Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes publication-title: Chromosoma doi: 10.1007/s00412-017-0658-1 – volume: 11 start-page: 223 issue: 3 year: 2005 ident: 10.1016/j.bbagen.2020.129835_bb0070 article-title: Transmission and prenatal diagnosis of the T9176C mitochondrial DNA mutation publication-title: Mol. Hum. Reprod. doi: 10.1093/molehr/gah152 – volume: 122 start-page: 419 issue: 3 year: 1993 ident: 10.1016/j.bbagen.2020.129835_bb0120 article-title: Maternally inherited Leigh syndrome publication-title: J. Pediatr. doi: 10.1016/S0022-3476(05)83431-6 – volume: 5 issue: 12 year: 2009 ident: 10.1016/j.bbagen.2020.129835_bb0055 article-title: New evidence confirms that the mitochondrial bottleneck is generated without reduction of mitochondrial DNA content in early primordial germ cells of mice publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000756 – volume: 244 start-page: 346 issue: 4902 year: 1989 ident: 10.1016/j.bbagen.2020.129835_bb0130 article-title: A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA publication-title: Science doi: 10.1126/science.2711184 – volume: 7 start-page: 934 issue: 8 year: 2001 ident: 10.1016/j.bbagen.2020.129835_bb0250 article-title: Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA publication-title: Nat. Med. doi: 10.1038/90976 – volume: 18 start-page: 231 issue: 3 year: 1998 ident: 10.1016/j.bbagen.2020.129835_bb0360 article-title: Mitochondrial transcription factor a is necessary for mtDNA maintenance and embryogenesis in mice publication-title: Nat. Genet. doi: 10.1038/ng0398-231 – volume: 309 start-page: 481 issue: 5733 year: 2005 ident: 10.1016/j.bbagen.2020.129835_bb0310 article-title: Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging publication-title: Science doi: 10.1126/science.1112125 – volume: 24 start-page: 1696 issue: 11 year: 2018 ident: 10.1016/j.bbagen.2020.129835_bb0500 article-title: MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation publication-title: Nat. Med. doi: 10.1038/s41591-018-0166-8 – volume: 9 issue: 9 year: 2013 ident: 10.1016/j.bbagen.2020.129835_bb0325 article-title: Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003794 – volume: 61 start-page: 931 issue: 6 year: 1990 ident: 10.1016/j.bbagen.2020.129835_bb0115 article-title: Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation publication-title: Cell doi: 10.1016/0092-8674(90)90059-N – volume: 54 start-page: 73 issue: 2 year: 2017 ident: 10.1016/j.bbagen.2020.129835_bb0080 article-title: De novo mtDNA point mutations are common and have a low recurrence risk publication-title: J. Med. Genet. doi: 10.1136/jmedgenet-2016-103876 – volume: 48 start-page: 330 issue: 3 year: 2000 ident: 10.1016/j.bbagen.2020.129835_bb0475 article-title: Late-onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene publication-title: Ann. Neurol. doi: 10.1002/1531-8249(200009)48:3<330::AID-ANA7>3.0.CO;2-A – volume: 16 start-page: 226 issue: 3 year: 1997 ident: 10.1016/j.bbagen.2020.129835_bb0415 article-title: A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator publication-title: Nat. Genet. doi: 10.1038/ng0797-226 – volume: 275 start-page: 63 issue: 1 year: 2000 ident: 10.1016/j.bbagen.2020.129835_bb0430 article-title: Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.3257 – volume: 99 start-page: 15066 issue: 23 year: 2002 ident: 10.1016/j.bbagen.2020.129835_bb0370 article-title: Increased mitochondrial mass in mitochondrial myopathy mice publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.232591499 – volume: 97 start-page: 14461 issue: 26 year: 2000 ident: 10.1016/j.bbagen.2020.129835_bb0230 article-title: Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.250491597 – ident: 10.1016/j.bbagen.2020.129835_bb0535 doi: 10.1038/s41598-018-19264-7 – volume: 8 start-page: 13411 issue: 10 year: 2015 ident: 10.1016/j.bbagen.2020.129835_bb0105 article-title: Clinical features of MELAS and its relation with A3243G gene point mutation publication-title: Int. J. Clin. Exp. Pathol. – volume: 46 start-page: 4555 issue: 12 year: 2005 ident: 10.1016/j.bbagen.2020.129835_bb0420 article-title: Eliminating the Ant1 isoform produces a mouse with CPEO pathology but normal ocular motility publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.05-0695 – volume: 1819 start-page: 961 issue: 9–10 year: 2012 ident: 10.1016/j.bbagen.2020.129835_bb0385 article-title: Mitochondrial transcription: lessons from mouse models publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2011.11.001 – volume: 111 start-page: 3104 issue: 8 year: 2014 ident: 10.1016/j.bbagen.2020.129835_bb0290 article-title: Transmitochondrial mice as models for primary prevention of diseases caused by mutation in the tRNA(Lys) gene publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1318109111 – volume: 459 start-page: 66 issue: 1 year: 2015 ident: 10.1016/j.bbagen.2020.129835_bb0295 article-title: G7731A mutation in mouse mitochondrial tRNALys regulates late-onset disorders in transmitochondrial mice publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.02.070 – volume: 39 start-page: 386 issue: 3 year: 2007 ident: 10.1016/j.bbagen.2020.129835_bb0050 article-title: The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells publication-title: Nat. Genet. doi: 10.1038/ng1970 – volume: 400 start-page: 125 issue: 6740 year: 1999 ident: 10.1016/j.bbagen.2020.129835_bb0045 article-title: Mitochondria and germ-cell death publication-title: Nature doi: 10.1038/22026 – volume: 10 issue: 6 year: 2018 ident: 10.1016/j.bbagen.2020.129835_bb0015 article-title: mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201708262 – volume: 77 start-page: 753 issue: 5 year: 2015 ident: 10.1016/j.bbagen.2020.129835_bb0005 article-title: Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease publication-title: Ann. Neurol. doi: 10.1002/ana.24362 – volume: 192 start-page: 26 year: 2018 ident: 10.1016/j.bbagen.2020.129835_bb0155 article-title: Mitochondrial dysfunction in obesity publication-title: Life Sci. doi: 10.1016/j.lfs.2017.11.019 – volume: 19 start-page: 1111 issue: 9 year: 2013 ident: 10.1016/j.bbagen.2020.129835_bb0495 article-title: Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs publication-title: Nat. Med. doi: 10.1038/nm.3261 – volume: 109 start-page: 20065 issue: 49 year: 2012 ident: 10.1016/j.bbagen.2020.129835_bb0285 article-title: Mouse mtDNA mutant model of Leber hereditary optic neuropathy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1217113109 – volume: 467 start-page: 1097 issue: 4 year: 2015 ident: 10.1016/j.bbagen.2020.129835_bb0515 article-title: Mouse somatic mutation orthologous to MELAS A3302G mutation in the mitochondrial tRNA(Leu(UUR)) gene confers respiration defects publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.09.072 – volume: 145 start-page: 81 issue: 1–2 year: 1998 ident: 10.1016/j.bbagen.2020.129835_bb0040 article-title: The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate publication-title: Mol. Cell. Endocrinol. doi: 10.1016/S0303-7207(98)00173-7 – volume: 127 start-page: 2153 issue: Pt 10 year: 2004 ident: 10.1016/j.bbagen.2020.129835_bb0095 article-title: Mitochondrial disorders publication-title: Brain doi: 10.1093/brain/awh259 – volume: 61 start-page: 73 issue: 1 year: 2007 ident: 10.1016/j.bbagen.2020.129835_bb0450 article-title: X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy publication-title: Ann. Neurol. doi: 10.1002/ana.21036 – volume: 33 start-page: 13189 issue: 12 year: 2019 ident: 10.1016/j.bbagen.2020.129835_bb0485 article-title: A conditional mouse model of complex II deficiency manifesting as Leigh-like syndrome publication-title: FASEB J. doi: 10.1096/fj.201802655RR – volume: 364 start-page: 592 issue: 9434 year: 2004 ident: 10.1016/j.bbagen.2020.129835_bb0085 article-title: Risk of developing a mitochondrial DNA deletion disorder publication-title: Lancet doi: 10.1016/S0140-6736(04)16851-7 – volume: 14 start-page: 613 issue: 5 year: 2006 ident: 10.1016/j.bbagen.2020.129835_bb0195 article-title: Designing nonviral vectors for efficient gene transfer and long-term gene expression publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2006.03.026 – volume: 320 start-page: 1293 issue: 20 year: 1989 ident: 10.1016/j.bbagen.2020.129835_bb0135 article-title: Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJM198905183202001 – volume: 64 start-page: 3135 issue: 9 year: 2015 ident: 10.1016/j.bbagen.2020.129835_bb0150 article-title: Impaired mitochondrial biogenesis in adipose tissue in acquired obesity publication-title: Diabetes doi: 10.2337/db14-1937 – volume: 429 start-page: 417 issue: 6990 year: 2004 ident: 10.1016/j.bbagen.2020.129835_bb0305 article-title: Premature ageing in mice expressing defective mitochondrial DNA polymerase publication-title: Nature doi: 10.1038/nature02517 – volume: 583 start-page: 631 issue: 7817 year: 2020 ident: 10.1016/j.bbagen.2020.129835_bb0505 article-title: A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing publication-title: Nature doi: 10.1038/s41586-020-2477-4 – volume: 15 start-page: 871 issue: 6 year: 2006 ident: 10.1016/j.bbagen.2020.129835_bb0255 article-title: Generation of trans-mitochondrial mice carrying homoplasmic mtDNAs with a missense mutation in a structural gene using ES cells publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddl005 – volume: 6 issue: 3 year: 2018 ident: 10.1016/j.bbagen.2020.129835_bb0190 article-title: Herpes simplex virus vectors for gene transfer to the central nervous system publication-title: Diseases (Basel, Switzerland) – volume: 267 start-page: 3358 issue: 5 year: 1992 ident: 10.1016/j.bbagen.2020.129835_bb0355 article-title: DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)50739-6 – volume: 48 start-page: 492 issue: 3 year: 1991 ident: 10.1016/j.bbagen.2020.129835_bb0390 article-title: mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases publication-title: Am. J. Hum. Genet. – volume: 289 start-page: 782 issue: 5480 year: 2000 ident: 10.1016/j.bbagen.2020.129835_bb0410 article-title: Role of adenine nucleotide translocator 1 in mtDNA maintenance publication-title: Science doi: 10.1126/science.289.5480.782 – volume: 7 start-page: e00523 issue: 2 year: 2019 ident: 10.1016/j.bbagen.2020.129835_bb0020 article-title: Intra-patient variability of heteroplasmy levels in urinary epithelial cells in carriers of the m.3243A>G mutation publication-title: Mol. Genet. & Genomic Med. doi: 10.1002/mgg3.523 – volume: 9 issue: 12 year: 2013 ident: 10.1016/j.bbagen.2020.129835_bb0315 article-title: Somatic mtDNA mutation spectra in the aging human putamen publication-title: PLoS Genet. doi: 10.1371/annotation/4b800314-8d35-454d-afca-af6d0f57b5d1 – volume: 77 start-page: 74 issue: 1 year: 2006 ident: 10.1016/j.bbagen.2020.129835_bb0470 article-title: Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA) publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2005.067041 – volume: 40 start-page: 249 issue: 2 year: 2008 ident: 10.1016/j.bbagen.2020.129835_bb0035 article-title: A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes publication-title: Nat. Genet. doi: 10.1038/ng.2007.63 – volume: 40 start-page: 1484 issue: 12 year: 2008 ident: 10.1016/j.bbagen.2020.129835_bb0060 article-title: The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes publication-title: Nat. Genet. doi: 10.1038/ng.258 – volume: 7 start-page: 312 issue: 4 year: 2008 ident: 10.1016/j.bbagen.2020.129835_bb0440 article-title: Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy publication-title: Cell Metab. doi: 10.1016/j.cmet.2008.02.004 – volume: 9 start-page: 134 issue: 2 year: 2014 ident: 10.1016/j.bbagen.2020.129835_bb0530 article-title: Patient-specific induced pluripotent stem cell models in mitochondrial diseases publication-title: Curr. Stem Cell Res. Ther. doi: 10.2174/1574888X09666131230142018 – volume: 10 issue: 9 year: 2014 ident: 10.1016/j.bbagen.2020.129835_bb0320 article-title: Clonal expansion of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004620 – volume: 10 start-page: 186 issue: 2 year: 2013 ident: 10.1016/j.bbagen.2020.129835_bb0395 article-title: Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options publication-title: Neurotherapeutics doi: 10.1007/s13311-013-0177-6 – volume: 6 start-page: 109 year: 2015 ident: 10.1016/j.bbagen.2020.129835_bb0145 article-title: Diet impact on mitochondrial bioenergetics and dynamics publication-title: Front. Physiol. doi: 10.3389/fphys.2015.00109 – volume: 584 start-page: 3943 issue: 18 year: 2010 ident: 10.1016/j.bbagen.2020.129835_bb0275 article-title: Generation of trans-mitochondrial Mito-mice by the introduction of a pathogenic G13997A mtDNA from highly metastatic lung carcinoma cells publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.07.048 – volume: 2 start-page: 16080 year: 2016 ident: 10.1016/j.bbagen.2020.129835_bb0090 article-title: Mitochondrial diseases publication-title: Nature reviews. Disease primers doi: 10.1038/nrdp.2016.80 – volume: 489 start-page: 259 issue: 2–3 year: 2001 ident: 10.1016/j.bbagen.2020.129835_bb0435 article-title: Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome publication-title: FEBS Lett. doi: 10.1016/S0014-5793(00)02334-6 – volume: 319 start-page: 958 issue: 5865 year: 2008 ident: 10.1016/j.bbagen.2020.129835_bb0260 article-title: A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations publication-title: Science doi: 10.1126/science.1147786 – volume: 62 start-page: 225 issue: 3 year: 2018 ident: 10.1016/j.bbagen.2020.129835_bb0065 article-title: The mitochondrial DNA genetic bottleneck: inheritance and beyond publication-title: Essays Biochem. doi: 10.1042/EBC20170096 – volume: 71 start-page: 1681 issue: 5 year: 1974 ident: 10.1016/j.bbagen.2020.129835_bb0240 article-title: Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.71.5.1681 – volume: 26 start-page: 336 issue: 3 year: 2000 ident: 10.1016/j.bbagen.2020.129835_bb0375 article-title: Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes publication-title: Nat. Genet. doi: 10.1038/81649 – volume: 283 start-page: 1482 issue: 5407 year: 1999 ident: 10.1016/j.bbagen.2020.129835_bb0170 article-title: Mitochondrial diseases in man and mouse publication-title: Science doi: 10.1126/science.283.5407.1482 – volume: 2 start-page: 1205 issue: 11 year: 2003 ident: 10.1016/j.bbagen.2020.129835_bb0405 article-title: Protein components of mitochondrial DNA nucleoids in higher eukaryotes publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M300035-MCP200 – volume: 29 start-page: 78 issue: 1 year: 2019 ident: 10.1016/j.bbagen.2020.129835_bb0520 article-title: Mitochondrial DNA variation dictates expressivity and progression of nuclear dna mutations causing cardiomyopathy publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.08.002 – volume: 1361 start-page: 185 issue: 2 year: 1997 ident: 10.1016/j.bbagen.2020.129835_bb0460 article-title: Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human publication-title: Biochim. Biophys. Acta doi: 10.1016/S0925-4439(97)00035-5 – volume: 352 start-page: 54 issue: 6281 year: 2016 ident: 10.1016/j.bbagen.2020.129835_bb0490 article-title: Hypoxia as a therapy for mitochondrial disease publication-title: Science doi: 10.1126/science.aad9642 |
SSID | ssj0000595 |
Score | 2.3717704 |
SecondaryResourceType | review_article |
Snippet | Mitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129835 |
SubjectTerms | Animals Chromosome Mapping Cloning, Organism - methods Disease Models, Animal DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Genome, Mitochondrial Humans Maternal Inheritance Mice Mito-mice mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondria - pathology Mitochondrial diseases Mitochondrial Diseases - genetics Mitochondrial Diseases - metabolism Mitochondrial Diseases - pathology mitochondrial DNA Mouse model of mitochondrial disease Mutation Nuclear DNA nuclear genome Organ Specificity pathogenesis reverse genetics Reverse Genetics - methods Severity of Illness Index Species Specificity |
Title | Attempts to understand the mechanisms of mitochondrial diseases: The reverse genetics of mouse models for mitochondrial disease |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129835 https://www.ncbi.nlm.nih.gov/pubmed/33358867 https://www.proquest.com/docview/2473416395 https://www.proquest.com/docview/2551940697 |
Volume | 1865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrRBcEJTXFqiMxNXsJn4k6W21olpA9AKVerPs2JYWsdmqyR640L_emTjZCqlQiVtkjSPHM575nHkBvLeo47zIHbd5obgsK8kt4mJeiMwXOkZl-85zX8_08lx-vlAXe7AYc2EorHLQ_Umn99p6GJkOuzm9XK2m38iph3BC5fgg8JZHGeyyIFn_8Ps2zAPhg0qeBMmJekyf62O8nMNDS1VQcyqzUJV907c7zdPf4Gdvhk6fwOMBP7J5WuJT2AvNITxIHSV_HcLDxdjA7RlczzsqPNW1rNuw7S6JhSHkY-tAGb-rdt2yTWRrPNaoBhtP0sgGn017wlCGGJV4umoDwy-gfMdEv9niSN9Ep2WIeu9-wXM4P_34fbHkQ78FXkuddTz3ZYhl4aPV2uLNpY4iQ1ZJGbyypYvWy3JmEe_hraLWTgYRI_1A0oGqiPlMvID9ZtOEV8D8zElHSbM1FdjTymk0e5VU9SxWlauyCYhxm009FCOnnhg_zRh19sMk5hhijknMmQDfzbpMxTjuoS9GDpo_hMqgvbhn5ruR4Qa5Rk4U2wTcXJOjiBGIrf5FgzC0opTiYgIvk7Ts1iuEUGWpi6P_XttreJRTYE0fCPcG9rurbXiLyKhzx73oH8PB_NOX5dkNrl0NIA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlQuCMpreRqJq9lN_EjCrVpRLdD2Qiv1ZtmxLS1is1WTPXBp_zozcbIIqVCJW2SNI8cznvmceQG8t6jjvMgdt3mhuCwryS3iYl6IzBc6RmX7znPHJ3pxJr-cq_MdmI-5MBRWOej-pNN7bT2MTIfdnF4sl9Nv5NRDOKFyfBB4y7sDdyVJFAr1h6vfcR6IH1RyJUhO5GP-XB_k5RyeWiqDmlOdharsu77daJ_-hj97O3T4EB4MAJIdpDU-gp3Q7MO91FLy5z7szccObo_h-qCjylNdy7o122yzWBhiPrYKlPK7bFctW0e2wnONerDxJI5scNq0HxkKEaMaT5dtYPgFlPCY6NcbHOm76LQMYe_NL3gCZ4efTucLPjRc4LXUWcdzX4ZYFj5arS1eXeooMuSVlMErW7povSxnFgEfXitq7WQQMdIfJB2ojJjPxFPYbdZNeA7Mz5x0lDVbU4U9rZxGu1dJVc9iVbkqm4AYt9nUQzVyaorxw4xhZ99NYo4h5pjEnAnw7ayLVI3jFvpi5KD5Q6oMGoxbZr4bGW6Qa-RFsU3AzTW5LASh2OpfNIhDK8opLibwLEnLdr1CCFWWunjx32t7C3uL0-Mjc_T55OtLuJ9TlE0fFfcKdrvLTXiNMKlzb_pj8Au97Q6x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attempts+to+understand+the+mechanisms+of+mitochondrial+diseases%3A+The+reverse+genetics+of+mouse+models+for+mitochondrial+disease&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Ishikawa%2C+Kaori&rft.au=Nakada%2C+Kazuto&rft.date=2021-03-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1865&rft.issue=3&rft.spage=129835&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129835&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |