A complex carotenoid palette tunes avian colour vision
The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pi...
Saved in:
Published in | Journal of the Royal Society interface Vol. 12; no. 111; p. 20150563 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
06.10.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-5689 1742-5662 1742-5662 |
DOI | 10.1098/rsif.2015.0563 |
Cover
Abstract | The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering. |
---|---|
AbstractList | The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering. The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering. The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken ( Gallus gallus ). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering. The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Furthermore, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering. |
Author | Frederiksen, Rikard Cornwall, M. Carter Toomey, Matthew B. Collins, Aaron M. Timlin, Jerilyn A. Corbo, Joseph C. |
AuthorAffiliation | 1 Department of Pathology and Immunology , Washington University School of Medicine , St Louis, MO 63110 , USA 2 Bioenergy and Defense Technologies , Sandia National Laboratories , Albuquerque, NM 87123 , USA 3 Department of Physiology and Biophysics , Boston University School of Medicine , Boston, MA 02118-2526 , USA |
AuthorAffiliation_xml | – name: 2 Bioenergy and Defense Technologies , Sandia National Laboratories , Albuquerque, NM 87123 , USA – name: 3 Department of Physiology and Biophysics , Boston University School of Medicine , Boston, MA 02118-2526 , USA – name: 1 Department of Pathology and Immunology , Washington University School of Medicine , St Louis, MO 63110 , USA |
Author_xml | – sequence: 1 givenname: Matthew B. orcidid: 0000-0001-9184-197X surname: Toomey fullname: Toomey, Matthew B. organization: Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA – sequence: 2 givenname: Aaron M. surname: Collins fullname: Collins, Aaron M. organization: Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM 87123, USA – sequence: 3 givenname: Rikard surname: Frederiksen fullname: Frederiksen, Rikard organization: Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA – sequence: 4 givenname: M. Carter orcidid: 0000-0002-0847-939X surname: Cornwall fullname: Cornwall, M. Carter organization: Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA – sequence: 5 givenname: Jerilyn A. orcidid: 0000-0003-2953-1721 surname: Timlin fullname: Timlin, Jerilyn A. organization: Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM 87123, USA – sequence: 6 givenname: Joseph C. orcidid: 0000-0002-9323-7140 surname: Corbo fullname: Corbo, Joseph C. email: jcorbo@wustl.edu organization: Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26446559$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1236232$$D View this record in Osti.gov |
BookMark | eNp1kc1LJDEQxcPisuro1aM0nrzMbL57chFkWD9A8LJ7Dul0tUZ6kjFJD85_v2lmHFTwlIR6r-qlfsfowAcPCJ0RPCNYzX_H5LoZxUTMsJDsBzoiNadTISU92N_n6hAdp_SCMauZEL_QIZWcSyHUEZLXlQ3LVQ9vlTUxZPDBtdXK9JAzVHnwkCqzdsYXWR-GWK1dcsGfoJ-d6ROc7s4J-nfz5-_ibvrweHu_uH6YWi5JnlIFSrS4wVYybBnlBDMramO62rS2aWEuDSil6o40rCNSAcGSz9u67hhtmGQTdLXtuxqaJbQWfI6m16voliZudDBOf65496yfwlqX8ZwrWhpcbBuElJ1O1mWwzzZ4DzZrQpmkbBRd7qbE8DpAynrpkoW-Nx7CkDSpKWGCSEyK9PxjoH2S940WwWwrsDGkFKHbSwjWIzI9ItMjMj0iKwb-xVBCmlyWXD7k-u9tbGuLYVMIBOsgb_RLQeTL8zvXfwuDrGc |
CitedBy_id | crossref_primary_10_1016_j_semcdb_2020_03_011 crossref_primary_10_1093_beheco_arw116 crossref_primary_10_1016_j_ympev_2017_09_016 crossref_primary_10_1016_j_cobeha_2019_10_009 crossref_primary_10_1098_rsos_190319 crossref_primary_10_1242_jeb_203844 crossref_primary_10_3389_fncir_2017_00097 crossref_primary_10_1098_rsos_160383 crossref_primary_10_1016_j_visres_2019_02_005 crossref_primary_10_1073_pnas_1700751114 crossref_primary_10_1093_molbev_msaa006 crossref_primary_10_1016_j_avrs_2023_100127 crossref_primary_10_1016_j_semcdb_2020_05_004 crossref_primary_10_1016_j_tig_2017_01_002 crossref_primary_10_1007_s10336_024_02232_6 crossref_primary_10_1093_gigascience_giae073 crossref_primary_10_7554_eLife_15675 crossref_primary_10_1016_j_visres_2023_108312 crossref_primary_10_1098_rstb_2016_0338 crossref_primary_10_21048_IJND_2021_58_1_24867 crossref_primary_10_1364_BOE_9_005543 crossref_primary_10_1016_j_cois_2017_09_007 crossref_primary_10_1016_j_cub_2024_10_019 crossref_primary_10_1016_j_gde_2017_09_005 crossref_primary_10_1111_ahe_12779 crossref_primary_10_1016_j_semcdb_2020_04_004 crossref_primary_10_3390_md21100514 crossref_primary_10_1016_j_cub_2016_03_076 crossref_primary_10_1242_jeb_152918 crossref_primary_10_1146_annurev_vision_091718_014926 crossref_primary_10_1186_s12862_018_1136_y crossref_primary_10_1371_journal_pone_0217418 crossref_primary_10_3390_antiox10040601 crossref_primary_10_1186_s40657_016_0041_6 crossref_primary_10_1007_s10336_022_02001_3 crossref_primary_10_1038_srep41835 crossref_primary_10_1177_11206721241272254 crossref_primary_10_3390_cells11193056 crossref_primary_10_1109_TAES_2021_3075524 crossref_primary_10_1111_jeb_13257 crossref_primary_10_1016_j_cub_2016_09_032 crossref_primary_10_1098_rspb_2019_1039 crossref_primary_10_1111_brv_13008 crossref_primary_10_1016_j_jchromb_2018_09_036 crossref_primary_10_1111_imb_12727 crossref_primary_10_1016_j_cub_2022_08_013 |
Cites_doi | 10.1111/j.1095-8312.2005.00540.x 10.1371/journal.pone.0008992 10.1016/S0378-1119(00)00435-2 10.1242/jeb.202.21.2951 10.1167/iovs.07-0208 10.1007/s00359-004-0595-3 10.1366/000370203321666461 10.1007/s00359-013-0878-7 10.1007/s00359-002-0385-8 10.1111/evo.12572 10.1038/253370a0 10.1021/jp9916135 10.1186/1471-2148-12-3 10.1016/0042-6989(93)90237-Q 10.1098/rspb.2003.2381 10.1093/molbev/msm109 10.1098/rstb.2013.0041 10.1039/b909924g 10.1242/jeb.062224 10.1016/S0042-6989(97)00026-6 10.1016/0377-0427(87)90125-7 10.1038/140197a0 10.1085/jgp.31.5.377 10.1002/9780470316801 10.1016/0042-6989(84)90324-9 10.1016/j.chemolab.2012.01.011 10.1086/510163 10.1016/S1350-9462(00)00002-1 10.1098/rspb.2009.1805 10.1086/587526 10.1085/jgp.201110685 10.1098/rspb.2013.2209 10.1086/510141 10.1016/0169-7439(95)00047-X 10.1098/rstb.2009.0044 10.1364/AO.45.006283 10.1016/0042-6989(83)90169-4 10.1017/S0952523800174036 10.1073/pnas.0708090105 10.1007/s003590050229 10.1186/1471-2148-11-313 10.1016/0042-6989(84)90114-7 10.1002/cem.889 10.1371/journal.pone.0021653 10.1186/1471-2148-13-250 10.1194/jlr.R039537 10.1242/jeb.02568 10.1007/s003590050286 10.1007/978-3-0348-7836-4 10.1086/416840 10.1002/jez.b.22576 10.1016/S1350-9462(01)00009-X 10.1111/tpj.12351 |
ContentType | Journal Article |
Copyright | 2015 The Author(s) 2015 The Author(s). 2015 The Author(s) 2015 |
Copyright_xml | – notice: 2015 The Author(s) – notice: 2015 The Author(s). – notice: 2015 The Author(s) 2015 |
CorporateAuthor | Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
CorporateAuthor_xml | – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI 5PM |
DOI | 10.1098/rsif.2015.0563 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | A complex carotenoid palette tunes avian colour vision |
EISSN | 1742-5662 |
ExternalDocumentID | PMC4614492 1236232 26446559 10_1098_rsif_2015_0563 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Human Frontier Science Program grantid: RGP0017/2011 funderid: http://dx.doi.org/10.13039/501100000854 – fundername: Division of Biological Infrastructure grantid: 1202776 funderid: http://dx.doi.org/10.13039/100000153 – fundername: National Institutes of Health grantid: 5T32-EY013360-12; R01-EY01157-42; RO1-EY018826; RO1-EY024958 funderid: http://dx.doi.org/10.13039/100000002 – fundername: Basic Energy Sciences grantid: DE-C 0001035 funderid: http://dx.doi.org/10.13039/100006151 – fundername: National Nuclear Security Administration grantid: DE-C04-94AL85000 funderid: http://dx.doi.org/10.13039/100006168 – fundername: NEI NIH HHS grantid: T32 EY013360 – fundername: NEI NIH HHS grantid: R01-EY024958 – fundername: NEI NIH HHS grantid: 5T32-EY013360-12 – fundername: NEI NIH HHS grantid: R01 EY024958 – fundername: NEI NIH HHS grantid: R01-EY01157-42 – fundername: NEI NIH HHS grantid: R01 EY018826 – fundername: NEI NIH HHS grantid: R01-EY018826 – fundername: ; grantid: RGP0017/2011 – fundername: ; grantid: 5T32-EY013360-12; R01-EY01157-42; RO1-EY018826; RO1-EY024958 – fundername: ; grantid: 1202776 – fundername: ; grantid: DE-C04-94AL85000 – fundername: ; grantid: DE-C 0001035 |
GroupedDBID | --- 0R~ 18M 29L 2WC 4.4 53G 5GY 5VS ABXXB ACGFO ACQIA ADBBV ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CS3 DIK DU5 EBS EJD GX1 HH5 HYE HZ~ ICLEN KQ8 MRS MV1 NSAHA O9- OK1 OP1 P2P RHF RPM RRY TR2 V1E W8F XSW AAYXX ACRPL ADNMO AFFVI AGPVY AGQPQ AJZGM ALMYZ BGBPD C1A CAG CITATION COF H13 ROL S70 CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c461t-29e95d0b0c630c324103c57aaf7adcbde86ae9997f1b3f169e10648d77f32b363 |
ISSN | 1742-5689 1742-5662 |
IngestDate | Thu Aug 21 13:32:23 EDT 2025 Mon Jul 03 03:59:18 EDT 2023 Thu Jul 10 19:22:07 EDT 2025 Thu Apr 03 07:00:15 EDT 2025 Thu Apr 24 23:03:18 EDT 2025 Tue Jul 01 01:43:08 EDT 2025 Wed Jan 17 02:37:35 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 111 |
Keywords | hyperspectral microscopy vision microspectrophotometry carotenoid |
Language | English |
License | http://royalsocietypublishing.org/licence: Published by the Royal Society. All rights reserved. 2015 The Author(s). Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c461t-29e95d0b0c630c324103c57aaf7adcbde86ae9997f1b3f169e10648d77f32b363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) AC04-94AL85000 SAND-2015-4230J |
ORCID | 0000-0001-9184-197X 0000-0003-2953-1721 0000-0002-0847-939X 0000-0002-9323-7140 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1236232 |
PMID | 26446559 |
PQID | 1721351601 |
PQPubID | 23479 |
ParticipantIDs | crossref_primary_10_1098_rsif_2015_0563 osti_scitechconnect_1236232 proquest_miscellaneous_1721351601 crossref_citationtrail_10_1098_rsif_2015_0563 pubmed_primary_26446559 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4614492 royalsociety_journals_10_1098_rsif_2015_0563 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-06 |
PublicationDateYYYYMMDD | 2015-10-06 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: United States |
PublicationTitle | Journal of the Royal Society interface |
PublicationTitleAbbrev | J. R. Soc. Interface |
PublicationTitleAlternate | J R Soc Interface |
PublicationYear | 2015 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_5_25_2 e_1_3_5_23_2 e_1_3_5_21_2 Goldsmith TH (e_1_3_5_45_2) 2003; 189 e_1_3_5_44_2 e_1_3_5_46_2 e_1_3_5_48_2 e_1_3_5_29_2 e_1_3_5_40_2 e_1_3_5_42_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_3_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_54_2 e_1_3_5_56_2 e_1_3_5_58_2 e_1_3_5_18_2 e_1_3_5_50_2 e_1_3_5_52_2 e_1_3_5_31_2 e_1_3_5_28_2 e_1_3_5_26_2 e_1_3_5_24_2 e_1_3_5_22_2 e_1_3_5_43_2 e_1_3_5_47_2 e_1_3_5_49_2 e_1_3_5_2_2 Osorio D (e_1_3_5_5_2) 1999; 202 e_1_3_5_41_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_4_2 Abràmofff MD (e_1_3_5_38_2) 2005; 11 e_1_3_5_6_2 e_1_3_5_17_2 e_1_3_5_15_2 e_1_3_5_36_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_55_2 e_1_3_5_57_2 e_1_3_5_59_2 e_1_3_5_19_2 e_1_3_5_51_2 Capranica S (e_1_3_5_27_2) 1877; 1 e_1_3_5_53_2 e_1_3_5_30_2 12607042 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Feb;189(2):135-42 22641642 - J Gen Physiol. 2012 Jun;139(6):493-505 1110782 - Nature. 1975 Jan 31;253(5490):370-2 24366429 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Mar;200(3):197-207 11016572 - Vis Neurosci. 2000 Jul-Aug;17(4):509-28 6533991 - Vision Res. 1984;24(11):1661-71 2146698 - Q Rev Biol. 1990 Sep;65(3):281-322 19720655 - Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2941-55 8506642 - Vision Res. 1993 May;33(8):1011-7 23667178 - J Lipid Res. 2013 Jul;54(7):1719-30 17556758 - Mol Biol Evol. 2007 Aug;24(8):1843-52 15711964 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Apr;191(4):381-92 18316743 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4050-5 17114410 - J Exp Biol. 2006 Dec;209(Pt 23):4776-87 6666057 - Vision Res. 1983;23(12):1555-9 10518476 - J Exp Biol. 1999 Nov;202(Pt 21):2951-9 25496318 - Evolution. 2015 Feb;69(2):341-56 22399654 - J Exp Biol. 2012 Apr 1;215(Pt 7):1090-105 18419340 - Am Nat. 2008 Jun;171(6):755-76 12816638 - Proc Biol Sci. 2003 Jun 22;270(1521):1255-61 24499383 - BMC Evol Biol. 2013;13:250 16892134 - Appl Opt. 2006 Aug 20;45(24):6283-91 14658670 - Appl Spectrosc. 2003 May;57(5):154A-170A 20126550 - PLoS One. 2010;5(2):e8992 6740977 - Vision Res. 1984;24(6):567-604 21747917 - PLoS One. 2011;6(6):e21653 24118159 - Plant J. 2013 Dec;76(6):1074-83 20449025 - Phys Chem Chem Phys. 2009 Oct 21;11(39):8795-803 24890094 - J Exp Zool B Mol Dev Evol. 2014 Nov;322(7):529-39 10785616 - Prog Retin Eye Res. 2000 Jul;19(4):385-419 11163957 - Gene. 2000 Dec 23;259(1-2):17-24 22233462 - BMC Evol Biol. 2012;12:3 9578901 - Vision Res. 1997 Aug;37(16):2183-94 9839454 - J Comp Physiol A. 1998 Nov;183(5):621-33 19426092 - Am Nat. 2007 Jan;169 Suppl 1:S7-26 24258716 - Proc Biol Sci. 2014 Jan 7;281(1774):20132209 22024316 - BMC Evol Biol. 2011;11:313 24395968 - Philos Trans R Soc Lond B Biol Sci. 2014;369(1636):20130041 17724175 - Invest Ophthalmol Vis Sci. 2007 Sep;48(9):3976-82 11470455 - Prog Retin Eye Res. 2001 Sep;20(5):675-703 18917022 - J Gen Physiol. 1948 May 20;31(5):377-83 19939843 - Proc Biol Sci. 2010 Mar 22;277(1683):953-62 |
References_xml | – ident: e_1_3_5_25_2 doi: 10.1111/j.1095-8312.2005.00540.x – volume: 11 start-page: 36 year: 2005 ident: e_1_3_5_38_2 article-title: Image processing with ImageJ Part II publication-title: Biophotonics Int – ident: e_1_3_5_7_2 doi: 10.1371/journal.pone.0008992 – ident: e_1_3_5_11_2 doi: 10.1016/S0378-1119(00)00435-2 – volume: 202 start-page: 2951 year: 1999 ident: e_1_3_5_5_2 article-title: Colour vision of domestic chicks publication-title: J. Exp. Biol doi: 10.1242/jeb.202.21.2951 – ident: e_1_3_5_40_2 – ident: e_1_3_5_30_2 doi: 10.1167/iovs.07-0208 – ident: e_1_3_5_23_2 doi: 10.1007/s00359-004-0595-3 – ident: e_1_3_5_34_2 doi: 10.1366/000370203321666461 – ident: e_1_3_5_59_2 doi: 10.1007/s00359-013-0878-7 – volume: 189 start-page: 135 year: 2003 ident: e_1_3_5_45_2 article-title: The roles of receptor noise and cone oil droplets in the photopic spectral sensitivity of the budgerigar, Melopsittacus undulatus publication-title: J. Comp. Physiol. A, Neuroethol. Sens. Neural Behav. Physiol doi: 10.1007/s00359-002-0385-8 – ident: e_1_3_5_20_2 doi: 10.1111/evo.12572 – ident: e_1_3_5_21_2 doi: 10.1038/253370a0 – ident: e_1_3_5_48_2 doi: 10.1021/jp9916135 – ident: e_1_3_5_52_2 doi: 10.1186/1471-2148-12-3 – ident: e_1_3_5_56_2 doi: 10.1016/0042-6989(93)90237-Q – ident: e_1_3_5_10_2 doi: 10.1098/rspb.2003.2381 – ident: e_1_3_5_13_2 doi: 10.1093/molbev/msm109 – ident: e_1_3_5_26_2 doi: 10.1098/rstb.2013.0041 – ident: e_1_3_5_16_2 doi: 10.1039/b909924g – ident: e_1_3_5_51_2 doi: 10.1242/jeb.062224 – ident: e_1_3_5_50_2 doi: 10.1016/S0042-6989(97)00026-6 – ident: e_1_3_5_42_2 doi: 10.1016/0377-0427(87)90125-7 – volume: 1 start-page: 283 year: 1877 ident: e_1_3_5_27_2 article-title: Physiologie-chemische Untersuchungen über die farbigen Substanzen der Retina publication-title: Arch. Physiol – ident: e_1_3_5_28_2 doi: 10.1038/140197a0 – ident: e_1_3_5_29_2 doi: 10.1085/jgp.31.5.377 – ident: e_1_3_5_39_2 doi: 10.1002/9780470316801 – ident: e_1_3_5_6_2 doi: 10.1016/0042-6989(84)90324-9 – ident: e_1_3_5_33_2 doi: 10.1016/j.chemolab.2012.01.011 – ident: e_1_3_5_2_2 doi: 10.1086/510163 – ident: e_1_3_5_15_2 doi: 10.1016/S1350-9462(00)00002-1 – ident: e_1_3_5_54_2 doi: 10.1098/rspb.2009.1805 – ident: e_1_3_5_24_2 doi: 10.1086/587526 – ident: e_1_3_5_43_2 doi: 10.1085/jgp.201110685 – ident: e_1_3_5_57_2 doi: 10.1098/rspb.2013.2209 – ident: e_1_3_5_14_2 doi: 10.1086/510141 – ident: e_1_3_5_35_2 doi: 10.1016/0169-7439(95)00047-X – ident: e_1_3_5_12_2 doi: 10.1098/rstb.2009.0044 – ident: e_1_3_5_31_2 doi: 10.1364/AO.45.006283 – ident: e_1_3_5_58_2 doi: 10.1016/0042-6989(83)90169-4 – ident: e_1_3_5_41_2 – ident: e_1_3_5_55_2 doi: 10.1017/S0952523800174036 – ident: e_1_3_5_32_2 doi: 10.1073/pnas.0708090105 – ident: e_1_3_5_44_2 – ident: e_1_3_5_4_2 doi: 10.1007/s003590050229 – ident: e_1_3_5_17_2 doi: 10.1186/1471-2148-11-313 – ident: e_1_3_5_22_2 doi: 10.1016/0042-6989(84)90114-7 – ident: e_1_3_5_36_2 doi: 10.1002/cem.889 – ident: e_1_3_5_53_2 doi: 10.1371/journal.pone.0021653 – ident: e_1_3_5_19_2 doi: 10.1186/1471-2148-13-250 – ident: e_1_3_5_46_2 doi: 10.1194/jlr.R039537 – ident: e_1_3_5_49_2 doi: 10.1242/jeb.02568 – ident: e_1_3_5_9_2 doi: 10.1007/s003590050286 – ident: e_1_3_5_47_2 doi: 10.1007/978-3-0348-7836-4 – ident: e_1_3_5_8_2 doi: 10.1086/416840 – ident: e_1_3_5_18_2 doi: 10.1002/jez.b.22576 – ident: e_1_3_5_3_2 doi: 10.1016/S1350-9462(01)00009-X – ident: e_1_3_5_37_2 doi: 10.1111/tpj.12351 – reference: 10518476 - J Exp Biol. 1999 Nov;202(Pt 21):2951-9 – reference: 10785616 - Prog Retin Eye Res. 2000 Jul;19(4):385-419 – reference: 17556758 - Mol Biol Evol. 2007 Aug;24(8):1843-52 – reference: 22024316 - BMC Evol Biol. 2011;11:313 – reference: 14658670 - Appl Spectrosc. 2003 May;57(5):154A-170A – reference: 24366429 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Mar;200(3):197-207 – reference: 9578901 - Vision Res. 1997 Aug;37(16):2183-94 – reference: 11470455 - Prog Retin Eye Res. 2001 Sep;20(5):675-703 – reference: 6666057 - Vision Res. 1983;23(12):1555-9 – reference: 16892134 - Appl Opt. 2006 Aug 20;45(24):6283-91 – reference: 12816638 - Proc Biol Sci. 2003 Jun 22;270(1521):1255-61 – reference: 25496318 - Evolution. 2015 Feb;69(2):341-56 – reference: 12607042 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Feb;189(2):135-42 – reference: 19426092 - Am Nat. 2007 Jan;169 Suppl 1:S7-26 – reference: 22399654 - J Exp Biol. 2012 Apr 1;215(Pt 7):1090-105 – reference: 21747917 - PLoS One. 2011;6(6):e21653 – reference: 8506642 - Vision Res. 1993 May;33(8):1011-7 – reference: 22233462 - BMC Evol Biol. 2012;12:3 – reference: 24395968 - Philos Trans R Soc Lond B Biol Sci. 2014;369(1636):20130041 – reference: 6533991 - Vision Res. 1984;24(11):1661-71 – reference: 24890094 - J Exp Zool B Mol Dev Evol. 2014 Nov;322(7):529-39 – reference: 17114410 - J Exp Biol. 2006 Dec;209(Pt 23):4776-87 – reference: 15711964 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Apr;191(4):381-92 – reference: 24499383 - BMC Evol Biol. 2013;13:250 – reference: 20126550 - PLoS One. 2010;5(2):e8992 – reference: 19939843 - Proc Biol Sci. 2010 Mar 22;277(1683):953-62 – reference: 1110782 - Nature. 1975 Jan 31;253(5490):370-2 – reference: 17724175 - Invest Ophthalmol Vis Sci. 2007 Sep;48(9):3976-82 – reference: 18917022 - J Gen Physiol. 1948 May 20;31(5):377-83 – reference: 9839454 - J Comp Physiol A. 1998 Nov;183(5):621-33 – reference: 11016572 - Vis Neurosci. 2000 Jul-Aug;17(4):509-28 – reference: 22641642 - J Gen Physiol. 2012 Jun;139(6):493-505 – reference: 2146698 - Q Rev Biol. 1990 Sep;65(3):281-322 – reference: 11163957 - Gene. 2000 Dec 23;259(1-2):17-24 – reference: 20449025 - Phys Chem Chem Phys. 2009 Oct 21;11(39):8795-803 – reference: 23667178 - J Lipid Res. 2013 Jul;54(7):1719-30 – reference: 19720655 - Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2941-55 – reference: 6740977 - Vision Res. 1984;24(6):567-604 – reference: 18316743 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4050-5 – reference: 18419340 - Am Nat. 2008 Jun;171(6):755-76 – reference: 24258716 - Proc Biol Sci. 2014 Jan 7;281(1774):20132209 – reference: 24118159 - Plant J. 2013 Dec;76(6):1074-83 |
SSID | ssj0037355 |
Score | 2.3526342 |
Snippet | The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors... |
SourceID | pubmedcentral osti proquest pubmed crossref royalsociety |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20150563 |
SubjectTerms | Animals BASIC BIOLOGICAL SCIENCES Carotenoid Carotenoids - chemistry Chickens Chromatography, High Pressure Liquid Color Color Vision - physiology Hyperspectral Microscopy Light Lutein - chemistry Microspectrophotometry Oils - chemistry Pigmentation - physiology Retina - physiology Retinal Cone Photoreceptor Cells Ultraviolet Rays Vision Xanthophylls - chemistry Zeaxanthins - chemistry |
Title | A complex carotenoid palette tunes avian colour vision |
URI | https://royalsocietypublishing.org/doi/full/10.1098/rsif.2015.0563 https://www.ncbi.nlm.nih.gov/pubmed/26446559 https://www.proquest.com/docview/1721351601 https://www.osti.gov/servlets/purl/1236232 https://pubmed.ncbi.nlm.nih.gov/PMC4614492 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dj5NAFJ3U-uKLcf3EVYOJiZrKCgww8NhsXDcm64PpJn1yMgxDlqxCw4caf733MgMt2iZq0pAGpoXOuZyeudw5Q8gL_E-QMPx3QGtkTpCGwhEqjpwspmksGbz6B-0XH6Pzy-DDOlzPZp93qpa6Nj2RP_fOK_kfVGEf4IqzZP8B2fFLYQe8B3xhCwjD9q8wXuqKcPUDDaYrUL9VkS02QPltqxZtByy2EN_wDkZr6q5e6InkB_QoKlCdTBgqOdFKos7FFvsVqGyd4jbLhG_XbD7tzb310sZwLeU2y3pWo19FcW1SPZ-KazORX3-sLr8L_ejjAqtPhmphk4jwegNT19hYa_KEYbYD8nDKrv5uFBliNWSJ2ZZQ89sfTO4mODuhboreZzU8-b0hILH52uOKki4Kja_41Dt7OHSD3PQZ87Dk8_16LAGiDMTWaOQZv52eDG2izccnmmVeAffuG4_sKautEbVGg7YjW1Z3yG2Dr73UwXNEZqq8S44Mozf2K2M7_voeiZa2iSZ7G022iSa7jya7jyZbR5Oto-k-uTx7tzo9d8yqGo4MIq91_EQlYeamroyoK0FPey6VIRMiZyKTaQZ3qlAwbGC5l9LcixLlgWyNM8Zy6qc0og_IvKxK9YjYIk-U66sMWJwFWY7mlDTJ0R9K-MLPEos4Q79xaSznceWTL1yXPsQcu5xjl3Pscou8HNtvtNnKwZbHCAMHmYhexxKLwmTL0UoIhggWeT6gw4Et8RGYKFXVNRwTHjT0ItezyEON1nimAW2LsAmOYwN0Yp8eKYur3pE9wLRKAud9s4s4N1TRHPgRjw9ewjG5tb3DnpB5W3fqKYjfNn3WR_AvJcyv3Q |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+complex+carotenoid+palette+tunes+avian+colour+vision&rft.jtitle=Journal+of+the+Royal+Society+interface&rft.au=Toomey%2C+Matthew+B&rft.au=Collins%2C+Aaron+M&rft.au=Frederiksen%2C+Rikard&rft.au=Cornwall%2C+M+Carter&rft.date=2015-10-06&rft.eissn=1742-5662&rft.volume=12&rft.issue=111&rft.spage=20150563&rft_id=info:doi/10.1098%2Frsif.2015.0563&rft_id=info%3Apmid%2F26446559&rft.externalDocID=26446559 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5689&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5689&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5689&client=summon |