A complex carotenoid palette tunes avian colour vision

The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pi...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Society interface Vol. 12; no. 111; p. 20150563
Main Authors Toomey, Matthew B., Collins, Aaron M., Frederiksen, Rikard, Cornwall, M. Carter, Timlin, Jerilyn A., Corbo, Joseph C.
Format Journal Article
LanguageEnglish
Published England The Royal Society 06.10.2015
Subjects
Online AccessGet full text
ISSN1742-5689
1742-5662
1742-5662
DOI10.1098/rsif.2015.0563

Cover

Abstract The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.
AbstractList The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.
The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.
The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken ( Gallus gallus ). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.
The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Furthermore, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.
Author Frederiksen, Rikard
Cornwall, M. Carter
Toomey, Matthew B.
Collins, Aaron M.
Timlin, Jerilyn A.
Corbo, Joseph C.
AuthorAffiliation 1 Department of Pathology and Immunology , Washington University School of Medicine , St Louis, MO 63110 , USA
2 Bioenergy and Defense Technologies , Sandia National Laboratories , Albuquerque, NM 87123 , USA
3 Department of Physiology and Biophysics , Boston University School of Medicine , Boston, MA 02118-2526 , USA
AuthorAffiliation_xml – name: 2 Bioenergy and Defense Technologies , Sandia National Laboratories , Albuquerque, NM 87123 , USA
– name: 3 Department of Physiology and Biophysics , Boston University School of Medicine , Boston, MA 02118-2526 , USA
– name: 1 Department of Pathology and Immunology , Washington University School of Medicine , St Louis, MO 63110 , USA
Author_xml – sequence: 1
  givenname: Matthew B.
  orcidid: 0000-0001-9184-197X
  surname: Toomey
  fullname: Toomey, Matthew B.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
– sequence: 2
  givenname: Aaron M.
  surname: Collins
  fullname: Collins, Aaron M.
  organization: Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM 87123, USA
– sequence: 3
  givenname: Rikard
  surname: Frederiksen
  fullname: Frederiksen, Rikard
  organization: Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA
– sequence: 4
  givenname: M. Carter
  orcidid: 0000-0002-0847-939X
  surname: Cornwall
  fullname: Cornwall, M. Carter
  organization: Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA
– sequence: 5
  givenname: Jerilyn A.
  orcidid: 0000-0003-2953-1721
  surname: Timlin
  fullname: Timlin, Jerilyn A.
  organization: Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM 87123, USA
– sequence: 6
  givenname: Joseph C.
  orcidid: 0000-0002-9323-7140
  surname: Corbo
  fullname: Corbo, Joseph C.
  email: jcorbo@wustl.edu
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26446559$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1236232$$D View this record in Osti.gov
BookMark eNp1kc1LJDEQxcPisuro1aM0nrzMbL57chFkWD9A8LJ7Dul0tUZ6kjFJD85_v2lmHFTwlIR6r-qlfsfowAcPCJ0RPCNYzX_H5LoZxUTMsJDsBzoiNadTISU92N_n6hAdp_SCMauZEL_QIZWcSyHUEZLXlQ3LVQ9vlTUxZPDBtdXK9JAzVHnwkCqzdsYXWR-GWK1dcsGfoJ-d6ROc7s4J-nfz5-_ibvrweHu_uH6YWi5JnlIFSrS4wVYybBnlBDMramO62rS2aWEuDSil6o40rCNSAcGSz9u67hhtmGQTdLXtuxqaJbQWfI6m16voliZudDBOf65496yfwlqX8ZwrWhpcbBuElJ1O1mWwzzZ4DzZrQpmkbBRd7qbE8DpAynrpkoW-Nx7CkDSpKWGCSEyK9PxjoH2S940WwWwrsDGkFKHbSwjWIzI9ItMjMj0iKwb-xVBCmlyWXD7k-u9tbGuLYVMIBOsgb_RLQeTL8zvXfwuDrGc
CitedBy_id crossref_primary_10_1016_j_semcdb_2020_03_011
crossref_primary_10_1093_beheco_arw116
crossref_primary_10_1016_j_ympev_2017_09_016
crossref_primary_10_1016_j_cobeha_2019_10_009
crossref_primary_10_1098_rsos_190319
crossref_primary_10_1242_jeb_203844
crossref_primary_10_3389_fncir_2017_00097
crossref_primary_10_1098_rsos_160383
crossref_primary_10_1016_j_visres_2019_02_005
crossref_primary_10_1073_pnas_1700751114
crossref_primary_10_1093_molbev_msaa006
crossref_primary_10_1016_j_avrs_2023_100127
crossref_primary_10_1016_j_semcdb_2020_05_004
crossref_primary_10_1016_j_tig_2017_01_002
crossref_primary_10_1007_s10336_024_02232_6
crossref_primary_10_1093_gigascience_giae073
crossref_primary_10_7554_eLife_15675
crossref_primary_10_1016_j_visres_2023_108312
crossref_primary_10_1098_rstb_2016_0338
crossref_primary_10_21048_IJND_2021_58_1_24867
crossref_primary_10_1364_BOE_9_005543
crossref_primary_10_1016_j_cois_2017_09_007
crossref_primary_10_1016_j_cub_2024_10_019
crossref_primary_10_1016_j_gde_2017_09_005
crossref_primary_10_1111_ahe_12779
crossref_primary_10_1016_j_semcdb_2020_04_004
crossref_primary_10_3390_md21100514
crossref_primary_10_1016_j_cub_2016_03_076
crossref_primary_10_1242_jeb_152918
crossref_primary_10_1146_annurev_vision_091718_014926
crossref_primary_10_1186_s12862_018_1136_y
crossref_primary_10_1371_journal_pone_0217418
crossref_primary_10_3390_antiox10040601
crossref_primary_10_1186_s40657_016_0041_6
crossref_primary_10_1007_s10336_022_02001_3
crossref_primary_10_1038_srep41835
crossref_primary_10_1177_11206721241272254
crossref_primary_10_3390_cells11193056
crossref_primary_10_1109_TAES_2021_3075524
crossref_primary_10_1111_jeb_13257
crossref_primary_10_1016_j_cub_2016_09_032
crossref_primary_10_1098_rspb_2019_1039
crossref_primary_10_1111_brv_13008
crossref_primary_10_1016_j_jchromb_2018_09_036
crossref_primary_10_1111_imb_12727
crossref_primary_10_1016_j_cub_2022_08_013
Cites_doi 10.1111/j.1095-8312.2005.00540.x
10.1371/journal.pone.0008992
10.1016/S0378-1119(00)00435-2
10.1242/jeb.202.21.2951
10.1167/iovs.07-0208
10.1007/s00359-004-0595-3
10.1366/000370203321666461
10.1007/s00359-013-0878-7
10.1007/s00359-002-0385-8
10.1111/evo.12572
10.1038/253370a0
10.1021/jp9916135
10.1186/1471-2148-12-3
10.1016/0042-6989(93)90237-Q
10.1098/rspb.2003.2381
10.1093/molbev/msm109
10.1098/rstb.2013.0041
10.1039/b909924g
10.1242/jeb.062224
10.1016/S0042-6989(97)00026-6
10.1016/0377-0427(87)90125-7
10.1038/140197a0
10.1085/jgp.31.5.377
10.1002/9780470316801
10.1016/0042-6989(84)90324-9
10.1016/j.chemolab.2012.01.011
10.1086/510163
10.1016/S1350-9462(00)00002-1
10.1098/rspb.2009.1805
10.1086/587526
10.1085/jgp.201110685
10.1098/rspb.2013.2209
10.1086/510141
10.1016/0169-7439(95)00047-X
10.1098/rstb.2009.0044
10.1364/AO.45.006283
10.1016/0042-6989(83)90169-4
10.1017/S0952523800174036
10.1073/pnas.0708090105
10.1007/s003590050229
10.1186/1471-2148-11-313
10.1016/0042-6989(84)90114-7
10.1002/cem.889
10.1371/journal.pone.0021653
10.1186/1471-2148-13-250
10.1194/jlr.R039537
10.1242/jeb.02568
10.1007/s003590050286
10.1007/978-3-0348-7836-4
10.1086/416840
10.1002/jez.b.22576
10.1016/S1350-9462(01)00009-X
10.1111/tpj.12351
ContentType Journal Article
Copyright 2015 The Author(s)
2015 The Author(s).
2015 The Author(s) 2015
Copyright_xml – notice: 2015 The Author(s)
– notice: 2015 The Author(s).
– notice: 2015 The Author(s) 2015
CorporateAuthor Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
DOI 10.1098/rsif.2015.0563
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate A complex carotenoid palette tunes avian colour vision
EISSN 1742-5662
ExternalDocumentID PMC4614492
1236232
26446559
10_1098_rsif_2015_0563
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Human Frontier Science Program
  grantid: RGP0017/2011
  funderid: http://dx.doi.org/10.13039/501100000854
– fundername: Division of Biological Infrastructure
  grantid: 1202776
  funderid: http://dx.doi.org/10.13039/100000153
– fundername: National Institutes of Health
  grantid: 5T32-EY013360-12; R01-EY01157-42; RO1-EY018826; RO1-EY024958
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: Basic Energy Sciences
  grantid: DE-C 0001035
  funderid: http://dx.doi.org/10.13039/100006151
– fundername: National Nuclear Security Administration
  grantid: DE-C04-94AL85000
  funderid: http://dx.doi.org/10.13039/100006168
– fundername: NEI NIH HHS
  grantid: T32 EY013360
– fundername: NEI NIH HHS
  grantid: R01-EY024958
– fundername: NEI NIH HHS
  grantid: 5T32-EY013360-12
– fundername: NEI NIH HHS
  grantid: R01 EY024958
– fundername: NEI NIH HHS
  grantid: R01-EY01157-42
– fundername: NEI NIH HHS
  grantid: R01 EY018826
– fundername: NEI NIH HHS
  grantid: R01-EY018826
– fundername: ;
  grantid: RGP0017/2011
– fundername: ;
  grantid: 5T32-EY013360-12; R01-EY01157-42; RO1-EY018826; RO1-EY024958
– fundername: ;
  grantid: 1202776
– fundername: ;
  grantid: DE-C04-94AL85000
– fundername: ;
  grantid: DE-C 0001035
GroupedDBID ---
0R~
18M
29L
2WC
4.4
53G
5GY
5VS
ABXXB
ACGFO
ACQIA
ADBBV
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CS3
DIK
DU5
EBS
EJD
GX1
HH5
HYE
HZ~
ICLEN
KQ8
MRS
MV1
NSAHA
O9-
OK1
OP1
P2P
RHF
RPM
RRY
TR2
V1E
W8F
XSW
AAYXX
ACRPL
ADNMO
AFFVI
AGPVY
AGQPQ
AJZGM
ALMYZ
BGBPD
C1A
CAG
CITATION
COF
H13
ROL
S70
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c461t-29e95d0b0c630c324103c57aaf7adcbde86ae9997f1b3f169e10648d77f32b363
ISSN 1742-5689
1742-5662
IngestDate Thu Aug 21 13:32:23 EDT 2025
Mon Jul 03 03:59:18 EDT 2023
Thu Jul 10 19:22:07 EDT 2025
Thu Apr 03 07:00:15 EDT 2025
Thu Apr 24 23:03:18 EDT 2025
Tue Jul 01 01:43:08 EDT 2025
Wed Jan 17 02:37:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 111
Keywords hyperspectral microscopy
vision
microspectrophotometry
carotenoid
Language English
License http://royalsocietypublishing.org/licence: Published by the Royal Society. All rights reserved.
2015 The Author(s).
Published by the Royal Society. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-29e95d0b0c630c324103c57aaf7adcbde86ae9997f1b3f169e10648d77f32b363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC04-94AL85000
SAND-2015-4230J
ORCID 0000-0001-9184-197X
0000-0003-2953-1721
0000-0002-0847-939X
0000-0002-9323-7140
OpenAccessLink https://www.osti.gov/servlets/purl/1236232
PMID 26446559
PQID 1721351601
PQPubID 23479
ParticipantIDs crossref_primary_10_1098_rsif_2015_0563
osti_scitechconnect_1236232
proquest_miscellaneous_1721351601
crossref_citationtrail_10_1098_rsif_2015_0563
pubmed_primary_26446559
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4614492
royalsociety_journals_10_1098_rsif_2015_0563
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-06
PublicationDateYYYYMMDD 2015-10-06
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-06
  day: 06
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle Journal of the Royal Society interface
PublicationTitleAbbrev J. R. Soc. Interface
PublicationTitleAlternate J R Soc Interface
PublicationYear 2015
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_5_25_2
e_1_3_5_23_2
e_1_3_5_21_2
Goldsmith TH (e_1_3_5_45_2) 2003; 189
e_1_3_5_44_2
e_1_3_5_46_2
e_1_3_5_48_2
e_1_3_5_29_2
e_1_3_5_40_2
e_1_3_5_42_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_3_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_54_2
e_1_3_5_56_2
e_1_3_5_58_2
e_1_3_5_18_2
e_1_3_5_50_2
e_1_3_5_52_2
e_1_3_5_31_2
e_1_3_5_28_2
e_1_3_5_26_2
e_1_3_5_24_2
e_1_3_5_22_2
e_1_3_5_43_2
e_1_3_5_47_2
e_1_3_5_49_2
e_1_3_5_2_2
Osorio D (e_1_3_5_5_2) 1999; 202
e_1_3_5_41_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_4_2
Abràmofff MD (e_1_3_5_38_2) 2005; 11
e_1_3_5_6_2
e_1_3_5_17_2
e_1_3_5_15_2
e_1_3_5_36_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_55_2
e_1_3_5_57_2
e_1_3_5_59_2
e_1_3_5_19_2
e_1_3_5_51_2
Capranica S (e_1_3_5_27_2) 1877; 1
e_1_3_5_53_2
e_1_3_5_30_2
12607042 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Feb;189(2):135-42
22641642 - J Gen Physiol. 2012 Jun;139(6):493-505
1110782 - Nature. 1975 Jan 31;253(5490):370-2
24366429 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Mar;200(3):197-207
11016572 - Vis Neurosci. 2000 Jul-Aug;17(4):509-28
6533991 - Vision Res. 1984;24(11):1661-71
2146698 - Q Rev Biol. 1990 Sep;65(3):281-322
19720655 - Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2941-55
8506642 - Vision Res. 1993 May;33(8):1011-7
23667178 - J Lipid Res. 2013 Jul;54(7):1719-30
17556758 - Mol Biol Evol. 2007 Aug;24(8):1843-52
15711964 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Apr;191(4):381-92
18316743 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4050-5
17114410 - J Exp Biol. 2006 Dec;209(Pt 23):4776-87
6666057 - Vision Res. 1983;23(12):1555-9
10518476 - J Exp Biol. 1999 Nov;202(Pt 21):2951-9
25496318 - Evolution. 2015 Feb;69(2):341-56
22399654 - J Exp Biol. 2012 Apr 1;215(Pt 7):1090-105
18419340 - Am Nat. 2008 Jun;171(6):755-76
12816638 - Proc Biol Sci. 2003 Jun 22;270(1521):1255-61
24499383 - BMC Evol Biol. 2013;13:250
16892134 - Appl Opt. 2006 Aug 20;45(24):6283-91
14658670 - Appl Spectrosc. 2003 May;57(5):154A-170A
20126550 - PLoS One. 2010;5(2):e8992
6740977 - Vision Res. 1984;24(6):567-604
21747917 - PLoS One. 2011;6(6):e21653
24118159 - Plant J. 2013 Dec;76(6):1074-83
20449025 - Phys Chem Chem Phys. 2009 Oct 21;11(39):8795-803
24890094 - J Exp Zool B Mol Dev Evol. 2014 Nov;322(7):529-39
10785616 - Prog Retin Eye Res. 2000 Jul;19(4):385-419
11163957 - Gene. 2000 Dec 23;259(1-2):17-24
22233462 - BMC Evol Biol. 2012;12:3
9578901 - Vision Res. 1997 Aug;37(16):2183-94
9839454 - J Comp Physiol A. 1998 Nov;183(5):621-33
19426092 - Am Nat. 2007 Jan;169 Suppl 1:S7-26
24258716 - Proc Biol Sci. 2014 Jan 7;281(1774):20132209
22024316 - BMC Evol Biol. 2011;11:313
24395968 - Philos Trans R Soc Lond B Biol Sci. 2014;369(1636):20130041
17724175 - Invest Ophthalmol Vis Sci. 2007 Sep;48(9):3976-82
11470455 - Prog Retin Eye Res. 2001 Sep;20(5):675-703
18917022 - J Gen Physiol. 1948 May 20;31(5):377-83
19939843 - Proc Biol Sci. 2010 Mar 22;277(1683):953-62
References_xml – ident: e_1_3_5_25_2
  doi: 10.1111/j.1095-8312.2005.00540.x
– volume: 11
  start-page: 36
  year: 2005
  ident: e_1_3_5_38_2
  article-title: Image processing with ImageJ Part II
  publication-title: Biophotonics Int
– ident: e_1_3_5_7_2
  doi: 10.1371/journal.pone.0008992
– ident: e_1_3_5_11_2
  doi: 10.1016/S0378-1119(00)00435-2
– volume: 202
  start-page: 2951
  year: 1999
  ident: e_1_3_5_5_2
  article-title: Colour vision of domestic chicks
  publication-title: J. Exp. Biol
  doi: 10.1242/jeb.202.21.2951
– ident: e_1_3_5_40_2
– ident: e_1_3_5_30_2
  doi: 10.1167/iovs.07-0208
– ident: e_1_3_5_23_2
  doi: 10.1007/s00359-004-0595-3
– ident: e_1_3_5_34_2
  doi: 10.1366/000370203321666461
– ident: e_1_3_5_59_2
  doi: 10.1007/s00359-013-0878-7
– volume: 189
  start-page: 135
  year: 2003
  ident: e_1_3_5_45_2
  article-title: The roles of receptor noise and cone oil droplets in the photopic spectral sensitivity of the budgerigar, Melopsittacus undulatus
  publication-title: J. Comp. Physiol. A, Neuroethol. Sens. Neural Behav. Physiol
  doi: 10.1007/s00359-002-0385-8
– ident: e_1_3_5_20_2
  doi: 10.1111/evo.12572
– ident: e_1_3_5_21_2
  doi: 10.1038/253370a0
– ident: e_1_3_5_48_2
  doi: 10.1021/jp9916135
– ident: e_1_3_5_52_2
  doi: 10.1186/1471-2148-12-3
– ident: e_1_3_5_56_2
  doi: 10.1016/0042-6989(93)90237-Q
– ident: e_1_3_5_10_2
  doi: 10.1098/rspb.2003.2381
– ident: e_1_3_5_13_2
  doi: 10.1093/molbev/msm109
– ident: e_1_3_5_26_2
  doi: 10.1098/rstb.2013.0041
– ident: e_1_3_5_16_2
  doi: 10.1039/b909924g
– ident: e_1_3_5_51_2
  doi: 10.1242/jeb.062224
– ident: e_1_3_5_50_2
  doi: 10.1016/S0042-6989(97)00026-6
– ident: e_1_3_5_42_2
  doi: 10.1016/0377-0427(87)90125-7
– volume: 1
  start-page: 283
  year: 1877
  ident: e_1_3_5_27_2
  article-title: Physiologie-chemische Untersuchungen über die farbigen Substanzen der Retina
  publication-title: Arch. Physiol
– ident: e_1_3_5_28_2
  doi: 10.1038/140197a0
– ident: e_1_3_5_29_2
  doi: 10.1085/jgp.31.5.377
– ident: e_1_3_5_39_2
  doi: 10.1002/9780470316801
– ident: e_1_3_5_6_2
  doi: 10.1016/0042-6989(84)90324-9
– ident: e_1_3_5_33_2
  doi: 10.1016/j.chemolab.2012.01.011
– ident: e_1_3_5_2_2
  doi: 10.1086/510163
– ident: e_1_3_5_15_2
  doi: 10.1016/S1350-9462(00)00002-1
– ident: e_1_3_5_54_2
  doi: 10.1098/rspb.2009.1805
– ident: e_1_3_5_24_2
  doi: 10.1086/587526
– ident: e_1_3_5_43_2
  doi: 10.1085/jgp.201110685
– ident: e_1_3_5_57_2
  doi: 10.1098/rspb.2013.2209
– ident: e_1_3_5_14_2
  doi: 10.1086/510141
– ident: e_1_3_5_35_2
  doi: 10.1016/0169-7439(95)00047-X
– ident: e_1_3_5_12_2
  doi: 10.1098/rstb.2009.0044
– ident: e_1_3_5_31_2
  doi: 10.1364/AO.45.006283
– ident: e_1_3_5_58_2
  doi: 10.1016/0042-6989(83)90169-4
– ident: e_1_3_5_41_2
– ident: e_1_3_5_55_2
  doi: 10.1017/S0952523800174036
– ident: e_1_3_5_32_2
  doi: 10.1073/pnas.0708090105
– ident: e_1_3_5_44_2
– ident: e_1_3_5_4_2
  doi: 10.1007/s003590050229
– ident: e_1_3_5_17_2
  doi: 10.1186/1471-2148-11-313
– ident: e_1_3_5_22_2
  doi: 10.1016/0042-6989(84)90114-7
– ident: e_1_3_5_36_2
  doi: 10.1002/cem.889
– ident: e_1_3_5_53_2
  doi: 10.1371/journal.pone.0021653
– ident: e_1_3_5_19_2
  doi: 10.1186/1471-2148-13-250
– ident: e_1_3_5_46_2
  doi: 10.1194/jlr.R039537
– ident: e_1_3_5_49_2
  doi: 10.1242/jeb.02568
– ident: e_1_3_5_9_2
  doi: 10.1007/s003590050286
– ident: e_1_3_5_47_2
  doi: 10.1007/978-3-0348-7836-4
– ident: e_1_3_5_8_2
  doi: 10.1086/416840
– ident: e_1_3_5_18_2
  doi: 10.1002/jez.b.22576
– ident: e_1_3_5_3_2
  doi: 10.1016/S1350-9462(01)00009-X
– ident: e_1_3_5_37_2
  doi: 10.1111/tpj.12351
– reference: 10518476 - J Exp Biol. 1999 Nov;202(Pt 21):2951-9
– reference: 10785616 - Prog Retin Eye Res. 2000 Jul;19(4):385-419
– reference: 17556758 - Mol Biol Evol. 2007 Aug;24(8):1843-52
– reference: 22024316 - BMC Evol Biol. 2011;11:313
– reference: 14658670 - Appl Spectrosc. 2003 May;57(5):154A-170A
– reference: 24366429 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Mar;200(3):197-207
– reference: 9578901 - Vision Res. 1997 Aug;37(16):2183-94
– reference: 11470455 - Prog Retin Eye Res. 2001 Sep;20(5):675-703
– reference: 6666057 - Vision Res. 1983;23(12):1555-9
– reference: 16892134 - Appl Opt. 2006 Aug 20;45(24):6283-91
– reference: 12816638 - Proc Biol Sci. 2003 Jun 22;270(1521):1255-61
– reference: 25496318 - Evolution. 2015 Feb;69(2):341-56
– reference: 12607042 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Feb;189(2):135-42
– reference: 19426092 - Am Nat. 2007 Jan;169 Suppl 1:S7-26
– reference: 22399654 - J Exp Biol. 2012 Apr 1;215(Pt 7):1090-105
– reference: 21747917 - PLoS One. 2011;6(6):e21653
– reference: 8506642 - Vision Res. 1993 May;33(8):1011-7
– reference: 22233462 - BMC Evol Biol. 2012;12:3
– reference: 24395968 - Philos Trans R Soc Lond B Biol Sci. 2014;369(1636):20130041
– reference: 6533991 - Vision Res. 1984;24(11):1661-71
– reference: 24890094 - J Exp Zool B Mol Dev Evol. 2014 Nov;322(7):529-39
– reference: 17114410 - J Exp Biol. 2006 Dec;209(Pt 23):4776-87
– reference: 15711964 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Apr;191(4):381-92
– reference: 24499383 - BMC Evol Biol. 2013;13:250
– reference: 20126550 - PLoS One. 2010;5(2):e8992
– reference: 19939843 - Proc Biol Sci. 2010 Mar 22;277(1683):953-62
– reference: 1110782 - Nature. 1975 Jan 31;253(5490):370-2
– reference: 17724175 - Invest Ophthalmol Vis Sci. 2007 Sep;48(9):3976-82
– reference: 18917022 - J Gen Physiol. 1948 May 20;31(5):377-83
– reference: 9839454 - J Comp Physiol A. 1998 Nov;183(5):621-33
– reference: 11016572 - Vis Neurosci. 2000 Jul-Aug;17(4):509-28
– reference: 22641642 - J Gen Physiol. 2012 Jun;139(6):493-505
– reference: 2146698 - Q Rev Biol. 1990 Sep;65(3):281-322
– reference: 11163957 - Gene. 2000 Dec 23;259(1-2):17-24
– reference: 20449025 - Phys Chem Chem Phys. 2009 Oct 21;11(39):8795-803
– reference: 23667178 - J Lipid Res. 2013 Jul;54(7):1719-30
– reference: 19720655 - Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2941-55
– reference: 6740977 - Vision Res. 1984;24(6):567-604
– reference: 18316743 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4050-5
– reference: 18419340 - Am Nat. 2008 Jun;171(6):755-76
– reference: 24258716 - Proc Biol Sci. 2014 Jan 7;281(1774):20132209
– reference: 24118159 - Plant J. 2013 Dec;76(6):1074-83
SSID ssj0037355
Score 2.3526342
Snippet The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
royalsociety
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20150563
SubjectTerms Animals
BASIC BIOLOGICAL SCIENCES
Carotenoid
Carotenoids - chemistry
Chickens
Chromatography, High Pressure Liquid
Color
Color Vision - physiology
Hyperspectral Microscopy
Light
Lutein - chemistry
Microspectrophotometry
Oils - chemistry
Pigmentation - physiology
Retina - physiology
Retinal Cone Photoreceptor Cells
Ultraviolet Rays
Vision
Xanthophylls - chemistry
Zeaxanthins - chemistry
Title A complex carotenoid palette tunes avian colour vision
URI https://royalsocietypublishing.org/doi/full/10.1098/rsif.2015.0563
https://www.ncbi.nlm.nih.gov/pubmed/26446559
https://www.proquest.com/docview/1721351601
https://www.osti.gov/servlets/purl/1236232
https://pubmed.ncbi.nlm.nih.gov/PMC4614492
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dj5NAFJ3U-uKLcf3EVYOJiZrKCgww8NhsXDcm64PpJn1yMgxDlqxCw4caf733MgMt2iZq0pAGpoXOuZyeudw5Q8gL_E-QMPx3QGtkTpCGwhEqjpwspmksGbz6B-0XH6Pzy-DDOlzPZp93qpa6Nj2RP_fOK_kfVGEf4IqzZP8B2fFLYQe8B3xhCwjD9q8wXuqKcPUDDaYrUL9VkS02QPltqxZtByy2EN_wDkZr6q5e6InkB_QoKlCdTBgqOdFKos7FFvsVqGyd4jbLhG_XbD7tzb310sZwLeU2y3pWo19FcW1SPZ-KazORX3-sLr8L_ejjAqtPhmphk4jwegNT19hYa_KEYbYD8nDKrv5uFBliNWSJ2ZZQ89sfTO4mODuhboreZzU8-b0hILH52uOKki4Kja_41Dt7OHSD3PQZ87Dk8_16LAGiDMTWaOQZv52eDG2izccnmmVeAffuG4_sKautEbVGg7YjW1Z3yG2Dr73UwXNEZqq8S44Mozf2K2M7_voeiZa2iSZ7G022iSa7jya7jyZbR5Oto-k-uTx7tzo9d8yqGo4MIq91_EQlYeamroyoK0FPey6VIRMiZyKTaQZ3qlAwbGC5l9LcixLlgWyNM8Zy6qc0og_IvKxK9YjYIk-U66sMWJwFWY7mlDTJ0R9K-MLPEos4Q79xaSznceWTL1yXPsQcu5xjl3Pscou8HNtvtNnKwZbHCAMHmYhexxKLwmTL0UoIhggWeT6gw4Et8RGYKFXVNRwTHjT0ItezyEON1nimAW2LsAmOYwN0Yp8eKYur3pE9wLRKAud9s4s4N1TRHPgRjw9ewjG5tb3DnpB5W3fqKYjfNn3WR_AvJcyv3Q
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+complex+carotenoid+palette+tunes+avian+colour+vision&rft.jtitle=Journal+of+the+Royal+Society+interface&rft.au=Toomey%2C+Matthew+B&rft.au=Collins%2C+Aaron+M&rft.au=Frederiksen%2C+Rikard&rft.au=Cornwall%2C+M+Carter&rft.date=2015-10-06&rft.eissn=1742-5662&rft.volume=12&rft.issue=111&rft.spage=20150563&rft_id=info:doi/10.1098%2Frsif.2015.0563&rft_id=info%3Apmid%2F26446559&rft.externalDocID=26446559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5689&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5689&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5689&client=summon