Continuous Scoring of Depression From EEG Signals via a Hybrid of Convolutional Neural Networks

Depression score is traditionally determined by taking the Beck depression inventory (BDI) test, which is a qualitative questionnaire. Quantitative scoring of depression has also been achieved by analyzing and classifying pre-recorded electroencephalography (EEG) signals. Here, we go one step furthe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 176 - 183
Main Authors Hashempour, S., Boostani, R., Mohammadi, M., Sanei, S.
Format Journal Article
LanguageEnglish
Published United States IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2022.3143162

Cover

Abstract Depression score is traditionally determined by taking the Beck depression inventory (BDI) test, which is a qualitative questionnaire. Quantitative scoring of depression has also been achieved by analyzing and classifying pre-recorded electroencephalography (EEG) signals. Here, we go one step further and apply raw EEG signals to a proposed hybrid convolutional and temporal-convolutional neural network (CNN-TCN) to continuously estimate the BDI score. In this research, the EEG signals of 119 individuals are captured by 64 scalp electrodes through successive eyes-closed and eyes-open intervals. Moreover, all the subjects take the BDI test and their scores are determined. The proposed CNN-TCN provides mean squared error (MSE) of 5.64±1.6 and mean absolute error (MAE) of 1.73±0.27 for eyes-open state and also provides MSE of 9.53±2.94 and MAE of 2.32±0.35 for the eyes-closed state, which significantly surpasses state-of-the-art deep network methods. In another approach, conventional EEG features are elicited from the EEG signals in successive frames and apply them to the proposed CNN-TCN in conjunction with known statistical regression methods. Our method provides MSE of 10.81±5.14 and MAE of 2.41±0.59 that statistically outperform the statistical regression methods. Moreover, the results with raw EEG are significantly better than those with EEG features.
AbstractList Depression score is traditionally determined by taking the Beck depression inventory (BDI) test, which is a qualitative questionnaire. Quantitative scoring of depression has also been achieved by analyzing and classifying pre-recorded electroencephalography (EEG) signals. Here, we go one step further and apply raw EEG signals to a proposed hybrid convolutional and temporal-convolutional neural network (CNN-TCN) to continuously estimate the BDI score. In this research, the EEG signals of 119 individuals are captured by 64 scalp electrodes through successive eyes-closed and eyes-open intervals. Moreover, all the subjects take the BDI test and their scores are determined. The proposed CNN-TCN provides mean squared error (MSE) of 5.64±1.6 and mean absolute error (MAE) of 1.73±0.27 for eyes-open state and also provides MSE of 9.53±2.94 and MAE of 2.32±0.35 for the eyes-closed state, which significantly surpasses state-of-the-art deep network methods. In another approach, conventional EEG features are elicited from the EEG signals in successive frames and apply them to the proposed CNN-TCN in conjunction with known statistical regression methods. Our method provides MSE of 10.81±5.14 and MAE of 2.41±0.59 that statistically outperform the statistical regression methods. Moreover, the results with raw EEG are significantly better than those with EEG features.
Depression score is traditionally determined by taking the Beck depression inventory (BDI) test, which is a qualitative questionnaire. Quantitative scoring of depression has also been achieved by analyzing and classifying pre-recorded electroencephalography (EEG) signals. Here, we go one step further and apply raw EEG signals to a proposed hybrid convolutional and temporal-convolutional neural network (CNN-TCN) to continuously estimate the BDI score. In this research, the EEG signals of 119 individuals are captured by 64 scalp electrodes through successive eyes-closed and eyes-open intervals. Moreover, all the subjects take the BDI test and their scores are determined. The proposed CNN-TCN provides mean squared error (MSE) of 5.64±1.6 and mean absolute error (MAE) of 1.73±0.27 for eyes-open state and also provides MSE of 9.53±2.94 and MAE of 2.32±0.35 for the eyes-closed state, which significantly surpasses state-of-the-art deep network methods. In another approach, conventional EEG features are elicited from the EEG signals in successive frames and apply them to the proposed CNN-TCN in conjunction with known statistical regression methods. Our method provides MSE of 10.81±5.14 and MAE of 2.41±0.59 that statistically outperform the statistical regression methods. Moreover, the results with raw EEG are significantly better than those with EEG features.Depression score is traditionally determined by taking the Beck depression inventory (BDI) test, which is a qualitative questionnaire. Quantitative scoring of depression has also been achieved by analyzing and classifying pre-recorded electroencephalography (EEG) signals. Here, we go one step further and apply raw EEG signals to a proposed hybrid convolutional and temporal-convolutional neural network (CNN-TCN) to continuously estimate the BDI score. In this research, the EEG signals of 119 individuals are captured by 64 scalp electrodes through successive eyes-closed and eyes-open intervals. Moreover, all the subjects take the BDI test and their scores are determined. The proposed CNN-TCN provides mean squared error (MSE) of 5.64±1.6 and mean absolute error (MAE) of 1.73±0.27 for eyes-open state and also provides MSE of 9.53±2.94 and MAE of 2.32±0.35 for the eyes-closed state, which significantly surpasses state-of-the-art deep network methods. In another approach, conventional EEG features are elicited from the EEG signals in successive frames and apply them to the proposed CNN-TCN in conjunction with known statistical regression methods. Our method provides MSE of 10.81±5.14 and MAE of 2.41±0.59 that statistically outperform the statistical regression methods. Moreover, the results with raw EEG are significantly better than those with EEG features.
Author Hashempour, S.
Boostani, R.
Mohammadi, M.
Sanei, S.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0003-3613-3107
  surname: Hashempour
  fullname: Hashempour, S.
  email: hashempour.sara73@gmail.com
  organization: CSE & IT Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
– sequence: 2
  givenname: R.
  orcidid: 0000-0003-0055-4452
  surname: Boostani
  fullname: Boostani, R.
  email: boostani@shirazu.ac.ir
  organization: CSE & IT Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
– sequence: 3
  givenname: M.
  orcidid: 0000-0002-1393-5062
  surname: Mohammadi
  fullname: Mohammadi, M.
  email: mukhtar@lfu.edu.krd
  organization: Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Kurdistan Region, Erbil, Iraq
– sequence: 4
  givenname: S.
  orcidid: 0000-0002-1446-5744
  surname: Sanei
  fullname: Sanei, S.
  email: saeid.sanei@ntu.ac.uk
  organization: School of Science and Technology, Nottingham Trent University, Nottingham, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35030081$$D View this record in MEDLINE/PubMed
BookMark eNp9kkuL2zAUhU2Z0nm0f6CFYuimG6d6y1qWNPOAYQrNdC1k-ToodaxUsmfIv68cZ7LIQFdXiO8cHc7VZXbW-Q6y7CNGM4yR-vb4sPy1mBFEyIxiRrEgb7ILzHlZIILR2XimrGCUoPPsMsY1QlgKLt9l55QjilCJLzI9913vusEPMV9aH1y3yn2T_4BtgBid7_Lr4Df5YnGTL92qM23Mn5zJTX67q4KrRzY5PPl26BNs2vwBhrAf_bMPf-L77G2TRPDhMK-y39eLx_ltcf_z5m7-_b6wTOC-IIw3lpWVVbUSVnIQQACQwaw2RNqyJlQRwgkvwTBEVCO5ZBVIQJVQqFL0KrubfGtv1nob3MaEnfbG6f2FDyttQu9sCxqUEDVhFkFZM0Z5qQytCE92DZUCQ_Kik9fQbc3u2bTt0RAjPVav-y4G0GP1-lB9Un2dVNvg_w4Qe71x0ULbmg5Su5oIMlbO8Ih-OUHXfghjuSPFJKdSsUR9PlBDtYH6mOFleQkgE2CDjylP8yrm_oecxixPRNb1ZlxeH4xr_y_9NEkdABzfUqLEpcL0H04KxRc
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107112
crossref_primary_10_1016_j_bspc_2024_106182
crossref_primary_10_1109_ACCESS_2022_3161489
crossref_primary_10_3390_su15021293
crossref_primary_10_3390_brainsci13091340
crossref_primary_10_1016_j_bspc_2024_107271
crossref_primary_10_1109_TNSRE_2023_3320693
crossref_primary_10_1016_j_bspc_2024_106996
crossref_primary_10_1109_ACCESS_2023_3275024
crossref_primary_10_4015_S1016237224500406
crossref_primary_10_1016_j_cmpb_2022_107113
crossref_primary_10_1109_TNSRE_2022_3193666
crossref_primary_10_1109_JBHI_2022_3232497
crossref_primary_10_1109_TII_2023_3337971
crossref_primary_10_2174_1872212117666220801105612
crossref_primary_10_1109_TNSRE_2022_3192988
crossref_primary_10_1145_3597309
crossref_primary_10_3390_e27030317
crossref_primary_10_3390_diagnostics15020210
crossref_primary_10_1016_j_foodchem_2024_141533
crossref_primary_10_1109_TNSRE_2025_3529991
Cites_doi 10.1016/j.clineuro.2013.08.009
10.1590/1516-4446-2012-1048
10.3390/app9142870
10.1002/acr.20556
10.1109/CVPR.2016.90
10.1142/S0219519414500353
10.1016/j.jneumeth.2019.04.013
10.1016/j.ijpsycho.2012.05.001
10.1016/j.patrec.2020.03.009
10.1142/S0219519412400192
10.1016/j.jad.2014.02.026
10.1109/EMBC44109.2020.9176161
10.1186/s12991-021-00333-7
10.1016/j.bspc.2009.01.004
10.1159/000381950
10.1109/CSPA.2018.8368709
10.3390/s17061385
10.1109/TSP.2018.2844203
10.1016/j.eswa.2018.12.023
10.1177/1550059413480504
10.1016/j.compbiomed.2019.01.013
10.1016/j.jad.2019.03.058
10.1016/j.cmpb.2018.04.012
10.35784/iapgos.1543
10.1088/1741-2552/abd463
10.1145/3274856.3274876
10.1166/jmihi.2017.2204
10.1016/j.eswa.2010.07.128
10.1007/s11517-019-01978-z
10.1016/j.inffus.2018.11.001
10.3389/fpsyg.2016.01342
10.1109/CVPR46437.2021.01352
10.1007/978-981-15-5243-4_29
10.1007/978-981-13-2354-6_5
10.1007/s11517-019-01959-2
10.3389/fninf.2017.00067
10.1007/s10916-019-1345-y
10.1162/cpsy_a_00024
10.1016/j.neunet.2020.01.017
10.1007/s11571-020-09619-0
10.3389/fnhum.2019.00056
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
DOA
DOI 10.1109/TNSRE.2022.3143162
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
Statistics
EISSN 1558-0210
EndPage 183
ExternalDocumentID oai_doaj_org_article_e966d24c0e8d443589a3b254bef3761e
10.1109/tnsre.2022.3143162
35030081
10_1109_TNSRE_2022_3143162
9681891
Genre orig-research
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c461t-245fc48bc9d96c75e6e2ee0a14da27c8d239225258ea4029f7574be7e0b690b93
IEDL.DBID UNPAY
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:43:31 EDT 2025
Wed Oct 01 16:25:11 EDT 2025
Thu Oct 02 06:26:29 EDT 2025
Mon Jul 14 09:12:38 EDT 2025
Wed Feb 19 02:27:17 EST 2025
Wed Oct 01 01:12:31 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Aug 27 02:48:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-245fc48bc9d96c75e6e2ee0a14da27c8d239225258ea4029f7574be7e0b690b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1446-5744
0000-0003-3613-3107
0000-0003-0055-4452
0000-0002-1393-5062
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/7333/9695946/09681891.pdf
PMID 35030081
PQID 2624753794
PQPubID 85423
PageCount 8
ParticipantIDs ieee_primary_9681891
proquest_miscellaneous_2620081412
proquest_journals_2624753794
crossref_citationtrail_10_1109_TNSRE_2022_3143162
unpaywall_primary_10_1109_tnsre_2022_3143162
doaj_primary_oai_doaj_org_article_e966d24c0e8d443589a3b254bef3761e
crossref_primary_10_1109_TNSRE_2022_3143162
pubmed_primary_35030081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References van den oord (ref37) 2016
ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref17
ref38
ref16
ref19
ref18
ref46
ref24
ref45
ref23
ref47
ref25
nair (ref39) 2010
ref20
ref42
ref22
ref44
ref21
tohen (ref26) 2015
ref43
(ref1) 2017
ref28
ref27
srivastava (ref40) 2014; 15
ref29
ref8
ref7
ref9
bai (ref41) 2018
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1016/j.clineuro.2013.08.009
– ident: ref5
  doi: 10.1590/1516-4446-2012-1048
– ident: ref11
  doi: 10.3390/app9142870
– ident: ref6
  doi: 10.1002/acr.20556
– ident: ref38
  doi: 10.1109/CVPR.2016.90
– ident: ref17
  doi: 10.1142/S0219519414500353
– ident: ref13
  doi: 10.1016/j.jneumeth.2019.04.013
– ident: ref16
  doi: 10.1016/j.ijpsycho.2012.05.001
– year: 2018
  ident: ref41
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
  publication-title: arXiv 1803 01271
– ident: ref30
  doi: 10.1016/j.patrec.2020.03.009
– ident: ref14
  doi: 10.1142/S0219519412400192
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref40
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1016/j.jad.2014.02.026
– ident: ref43
  doi: 10.1109/EMBC44109.2020.9176161
– year: 2015
  ident: ref26
  publication-title: Clinical Trial Design Challenges in Mood Disorders
– year: 2016
  ident: ref37
  article-title: WaveNet: A generative model for raw audio
  publication-title: arXiv 1609 03499
– ident: ref4
  doi: 10.1186/s12991-021-00333-7
– ident: ref9
  doi: 10.1016/j.bspc.2009.01.004
– year: 2017
  ident: ref1
  article-title: Depression and other common mental disorders: Global health estimates
– ident: ref18
  doi: 10.1159/000381950
– ident: ref46
  doi: 10.1109/CSPA.2018.8368709
– ident: ref19
  doi: 10.3390/s17061385
– ident: ref29
  doi: 10.1109/TSP.2018.2844203
– ident: ref31
  doi: 10.1016/j.eswa.2018.12.023
– ident: ref15
  doi: 10.1177/1550059413480504
– ident: ref34
  doi: 10.1016/j.compbiomed.2019.01.013
– ident: ref28
  doi: 10.1016/j.jad.2019.03.058
– ident: ref21
  doi: 10.1016/j.cmpb.2018.04.012
– ident: ref27
  doi: 10.35784/iapgos.1543
– ident: ref32
  doi: 10.1088/1741-2552/abd463
– ident: ref10
  doi: 10.1145/3274856.3274876
– ident: ref20
  doi: 10.1166/jmihi.2017.2204
– ident: ref7
  doi: 10.1016/j.eswa.2010.07.128
– ident: ref35
  doi: 10.1007/s11517-019-01978-z
– ident: ref45
  doi: 10.1016/j.inffus.2018.11.001
– ident: ref2
  doi: 10.3389/fpsyg.2016.01342
– ident: ref47
  doi: 10.1109/CVPR46437.2021.01352
– ident: ref44
  doi: 10.1007/978-981-15-5243-4_29
– start-page: 1
  year: 2010
  ident: ref39
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc ICML
– ident: ref33
  doi: 10.1007/978-981-13-2354-6_5
– ident: ref22
  doi: 10.1007/s11517-019-01959-2
– ident: ref24
  doi: 10.3389/fninf.2017.00067
– ident: ref42
  doi: 10.1007/s10916-019-1345-y
– ident: ref25
  doi: 10.1162/cpsy_a_00024
– ident: ref36
  doi: 10.1016/j.neunet.2020.01.017
– ident: ref23
  doi: 10.1007/s11571-020-09619-0
– ident: ref12
  doi: 10.3389/fnhum.2019.00056
SSID ssj0017657
Score 2.5296369
Snippet Depression score is traditionally determined by taking the Beck depression inventory (BDI) test, which is a qualitative questionnaire. Quantitative scoring of...
SourceID doaj
unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 176
SubjectTerms Artificial neural networks
Beck depression test
CNN
Convolution
Convolutional neural networks
Deep learning
Depression
EEG
Electrodes
Electroencephalography
Electroencephalography - methods
Feature extraction
Humans
Neural networks
Neural Networks, Computer
Qualitative analysis
Scalp
Statistical analysis
Statistical methods
Statistics
TCN
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ABQctHoCAjAReImnhtJz4C3WXFoYfuVurNGjsOWmmbrdrdov57ZhIn2hWIXnqKlEwcj2dsz4vHz4x9qAsDUINLcWr3qcyrPIVypFMFWpkgywy6bIsTPT2TP8_V-dZRX5QT1tEDdw13FDAer4T0WSgriXN7aWDkENW4UGPfyAONvllpejAV1w8KrYp-i0xmjuYns9MxgkEhEKPS5m-xMw21bP3xeJV_RZqP2cNNcwm3v2G53Jp9Jk_Zkxg28q9ddZ-xB6HZZx-3KYL5vOMH4J_46Q779gGzREG1aDYI8vnMtxl3fFXz4z4JtuGTq9UFH49_8NniFxEq85sFcODTW9rPRbJYwk10UvwUMXq0lzaF_Po5O5uM59-naTxYIfVS5-tUSFV7WTpvKqN9oYIOIoQMclmBKHxZCYyahBKqDID40tSFKrDBi5A5BNPOjF6wvWbVhFeMY0DkKBNVewRWDionshDAgFeV9Gi5hOV9O1sf9abDL5a2RR-Zsa1tLNnGRtsk7PPwzmXHufFf6W9kvkGS-LLbG-hFNnqRvcuLEnZAxh8KMRoDGZMn7LB3Bhv79rUVWkgEeTiQJez98Bh7JS21QBPQmCRDwZbMsXovOycayh4pHFjxYcK-DF71l57rBtXf0fP1fej5hj2iMrt_SIdsb321CW8xqlq7d20H-gMtjhrm
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKL8CBV3kECjIScKHZJo7txEceu6yQ6KG7lXqLbGdSrViSqpsUlV_P2HmoCxXilCiZOBnNZ3smnvlMyJsyVVqX2oQ4tduQx0Uc6iyRodBSKOBZpLtsiyM5P-FfT8XpDjkYa2EAwCefwcSd-rX8orat-1V2qCROL65U_Vaaya5Wa1wxSKVn9cQOzEOesGgokInU4fJocTzFUJAxjFBd6bfbwiYRCO8oi7fmI0_b3--zcpPLeZfcbqtzffVTr9fXpqHZffJtUKDLPvk-aRszsb_-4Hb8Xw0fkHu9P0o_dAB6SHagekTeXucepsuOeIC-o8dbtN57JHfcVquqrdsNXVifykfrkn4esmsrOruof9Dp9AtdrM4cUzO9XGmq6fzKFYo5WWzhskc_vspRhfiDz03fPCYns-ny0zzsd2wILZdxEzIuSsszY1WhpE0FSGAAkY55oVlqs4KhO8YEExloDFxVmYqUG0ghMhilG5U8IbtVXcEzQtHTMi7FVVqM2IwuDIsAtNJWFNxKWQQkHuyW215vt6vGOvdhTaRyb_bcmT3vzR6Q9-Mz5x2Zxz-lPzo4jJKOiNtfQIvlfb_OAcPFgnEbQVZwdD0zpRODQbeBEofuGAKy56w8NtIbOCD7A7jyftDY5EwyjtEjjpABeT3exu7u1nB0BWhMJ-NQy2P8vKcdKMe2B0gH5GBE6V96NhWqv6Xn85s_8QW546S63037ZLe5aOElOmCNeeV73m8OoCgk
  priority: 102
  providerName: IEEE
Title Continuous Scoring of Depression From EEG Signals via a Hybrid of Convolutional Neural Networks
URI https://ieeexplore.ieee.org/document/9681891
https://www.ncbi.nlm.nih.gov/pubmed/35030081
https://www.proquest.com/docview/2624753794
https://www.proquest.com/docview/2620081412
https://ieeexplore.ieee.org/ielx7/7333/9695946/09681891.pdf
https://doaj.org/article/e966d24c0e8d443589a3b254bef3761e
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG94B4GB_jI2hURgJeIG3i2E4snga0VDxUaG2lISFFtnNBFV06re1g_PWcnTRaASHBU6vm6vR057v7NXc_E_KsTJXWpTYhpnYb8riIQ50lMhRaCgU8i3TdbTGWoxn_cCpO98jrdhYGAHzzGfTcW_8sfw6L72k_TZKkr6QSiss-Ft6YaRSGmaK8QfZxXRl1yP5s_PH4U82QykOeeFJGTJhZ6JDNdmQmUv11hfkHwSFjiFndMDjbSUuevb85buVPlectcnNTneurb3qxuJaNhrfJ560edRPK195mbXr2xy8Uj_-p6B1y0FSp9Lh2q7tkD6p75Pl1RmI6rekI6At6skP2fUhyx3g1rzbLzYpOrG_wo8uSvtv23FZ0eLE8o4PBezqZf3H8zfRyrqmmoys3PuZkcYXLZk_grRyBiH_xHeur-2Q2HEzfjsLmHIfQchmvQ8ZFaXlmrCqUtKkACQwg0jEvNEttVjAs0phgIgONcFaVqUi5gRQig9jdqOQB6VTLCh4RivWXcY2v0iKOM7owLALQSltRcCtlEZB4a8bcNnq7szYWuQc7kcqn48nJIHemzxvTB-Rl-53zmuLjr9JvnHe0ko6e23-ABsyb3Z4DgsiCcRtBVnAsSDOlE4NQ3ECJAT2GgBw6o7eLNEYOyNHW1_ImlKxyJhlHTIlxMyBP28sYBNyTHV0BGtPJuNqOx_jzHtY-2q6dCIzjeDEgr1qn_U1PvyF29Hz8b-JHpLO-2MATrNDWpuv_2ej6Ycpusyt_AsqqNXo
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLam8TB44DYugQFGAl5YusSxnfiRS0uBrQ9rJ-3Nsp0TVFHSaW2Gxq_nODetMCGeWrWOk6Pz2T5ffM5nQl4VqTKmMDbEpd2FPM7j0GSJDIWRQgHPItNkW0zk-IR_ORWnW2S_r4UBgDr5DAb-a72Xny9d5V-VHSiJy4svVb8hOOeiqdbq9wxSWet64hDmIU9Y1JXIROpgNpkeD5EMMoYc1Rd_-0NsEoEAj7J4Y0Wqhfvbk1auCzpvkZ2qPDOXP81icWUhGt0hR50JTf7J90G1tgP36w91x_-18S653Uak9F0DoXtkC8r75PVV9WE6a6QH6Bt6vCHsvUu0V7eal9WyWtGpq5P56LKgH7v82pKOzpc_6HD4iU7n37xWM72YG2ro-NKXivm22MNFi3-8lRcLqT_q7PTVA3IyGs4-jMP2zIbQcRmvQ8ZF4XhmncqVdKkACQwgMjHPDUtdljMMyJhgIgOD1FUVqUi5hRQiizzdquQh2S6XJTwmFGMt65NcpUPOZk1uWQRglHEi507KPCBx5zftWrv9uRoLXRObSOna7dq7XbduD8jb_pqzRs7jn63fezj0Lb0Ud_0Deky3I1sDEsaccRdBlnMMPjNlEou020KBk3cMAdn1Xu47aR0ckL0OXLqdNlaaScaRP-IcGZCX_d844P0ujikBnenbeNTyGB_vUQPKvu8O0gHZ71H6l53rEs3fsPPJ9Y_4guyMZ0eH-vDz5OtTctNf0bx82iPb6_MKnmE4trbP61H4G6qiK3E
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG94B44GswggYyEvACaRPHdmLxNKCl4qFCaysNCSmynQuqKOm0JoPx13POl1ZASPCUKLk4Od357n7K-WdCnuax0jrXxsfUbn0eZqGvk0j6QkuhgCeBbrotZnK65O9PxekeedWvhQGAuvkMhu60_pe_gvX3eBRHUTRSUgnF5QgLb8w0CsNMll8j-ziuDAZkfzn7cPyxYUjlPo9qUkZMmInvkE23ZCZQo7LA_IPgkDHErG4xONtJSzV7f7vdyp8qzxvkelWc6ctver2-ko0mt8inTo-mCeXLsCrN0P74heLxPxW9TW62VSo9btzqDtmD4i55dpWRmC4aOgL6nJ7skH0fkNQxXq2KalNt6dzWDX50k9O3Xc9tQSfnm690PH5H56vPjr-ZXqw01XR66ZaPOVkc4aKdE_gqRyBSH-qO9e09spyMF2-mfruPg2-5DEufcZFbnhirMiVtLEACAwh0yDPNYptkDIs0JphIQCOcVXksYm4ghsAgdjcquk8GxaaAB4Ri_WVc46u0iOOMzgwLALTSVmTcSpl5JOzMmNpWb7fXxjqtwU6g0sVsfjJOnenT1vQeedE_c9ZQfPxV-rXzjl7S0XPXF9CAaTvbU0AQmTFuA0gyjgVponRkEIobyDGgh-CRA2f0fpDWyB456nwtbUPJNmWSccSUGDc98qS_jUHA_dnRBaAxnYyr7XiIn3fY-Gg_diQwjuNNj7zsnfY3PesJsaPnw38TPyKD8ryCR1ihleZxOxN_Alo2M4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Scoring+of+Depression+From+EEG+Signals+via+a+Hybrid+of+Convolutional+Neural+Networks&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Hashempour%2C+S&rft.au=Boostani%2C+R&rft.au=Mohammadi%2C+M&rft.au=Sanei%2C+S&rft.date=2022&rft.eissn=1558-0210&rft.volume=30&rft.spage=176&rft_id=info:doi/10.1109%2FTNSRE.2022.3143162&rft_id=info%3Apmid%2F35030081&rft.externalDocID=35030081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon