Continuous Scoring of Depression From EEG Signals via a Hybrid of Convolutional Neural Networks
Depression score is traditionally determined by taking the Beck depression inventory (BDI) test, which is a qualitative questionnaire. Quantitative scoring of depression has also been achieved by analyzing and classifying pre-recorded electroencephalography (EEG) signals. Here, we go one step furthe...
        Saved in:
      
    
          | Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 176 - 183 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1534-4320 1558-0210 1558-0210  | 
| DOI | 10.1109/TNSRE.2022.3143162 | 
Cover
| Abstract | Depression score is traditionally determined by taking the Beck depression inventory (BDI) test, which is a qualitative questionnaire. Quantitative scoring of depression has also been achieved by analyzing and classifying pre-recorded electroencephalography (EEG) signals. Here, we go one step further and apply raw EEG signals to a proposed hybrid convolutional and temporal-convolutional neural network (CNN-TCN) to continuously estimate the BDI score. In this research, the EEG signals of 119 individuals are captured by 64 scalp electrodes through successive eyes-closed and eyes-open intervals. Moreover, all the subjects take the BDI test and their scores are determined. The proposed CNN-TCN provides mean squared error (MSE) of 5.64±1.6 and mean absolute error (MAE) of 1.73±0.27 for eyes-open state and also provides MSE of 9.53±2.94 and MAE of 2.32±0.35 for the eyes-closed state, which significantly surpasses state-of-the-art deep network methods. In another approach, conventional EEG features are elicited from the EEG signals in successive frames and apply them to the proposed CNN-TCN in conjunction with known statistical regression methods. Our method provides MSE of 10.81±5.14 and MAE of 2.41±0.59 that statistically outperform the statistical regression methods. Moreover, the results with raw EEG are significantly better than those with EEG features. | 
    
|---|---|
| AbstractList | Depression score is traditionally determined by taking the Beck depression inventory (BDI) test, which is a qualitative questionnaire. Quantitative scoring of depression has also been achieved by analyzing and classifying pre-recorded electroencephalography (EEG) signals. Here, we go one step further and apply raw EEG signals to a proposed hybrid convolutional and temporal-convolutional neural network (CNN-TCN) to continuously estimate the BDI score. In this research, the EEG signals of 119 individuals are captured by 64 scalp electrodes through successive eyes-closed and eyes-open intervals. Moreover, all the subjects take the BDI test and their scores are determined. The proposed CNN-TCN provides mean squared error (MSE) of 5.64±1.6 and mean absolute error (MAE) of 1.73±0.27 for eyes-open state and also provides MSE of 9.53±2.94 and MAE of 2.32±0.35 for the eyes-closed state, which significantly surpasses state-of-the-art deep network methods. In another approach, conventional EEG features are elicited from the EEG signals in successive frames and apply them to the proposed CNN-TCN in conjunction with known statistical regression methods. Our method provides MSE of 10.81±5.14 and MAE of 2.41±0.59 that statistically outperform the statistical regression methods. Moreover, the results with raw EEG are significantly better than those with EEG features. Depression score is traditionally determined by taking the Beck depression inventory (BDI) test, which is a qualitative questionnaire. Quantitative scoring of depression has also been achieved by analyzing and classifying pre-recorded electroencephalography (EEG) signals. Here, we go one step further and apply raw EEG signals to a proposed hybrid convolutional and temporal-convolutional neural network (CNN-TCN) to continuously estimate the BDI score. In this research, the EEG signals of 119 individuals are captured by 64 scalp electrodes through successive eyes-closed and eyes-open intervals. Moreover, all the subjects take the BDI test and their scores are determined. The proposed CNN-TCN provides mean squared error (MSE) of 5.64±1.6 and mean absolute error (MAE) of 1.73±0.27 for eyes-open state and also provides MSE of 9.53±2.94 and MAE of 2.32±0.35 for the eyes-closed state, which significantly surpasses state-of-the-art deep network methods. In another approach, conventional EEG features are elicited from the EEG signals in successive frames and apply them to the proposed CNN-TCN in conjunction with known statistical regression methods. Our method provides MSE of 10.81±5.14 and MAE of 2.41±0.59 that statistically outperform the statistical regression methods. Moreover, the results with raw EEG are significantly better than those with EEG features.Depression score is traditionally determined by taking the Beck depression inventory (BDI) test, which is a qualitative questionnaire. Quantitative scoring of depression has also been achieved by analyzing and classifying pre-recorded electroencephalography (EEG) signals. Here, we go one step further and apply raw EEG signals to a proposed hybrid convolutional and temporal-convolutional neural network (CNN-TCN) to continuously estimate the BDI score. In this research, the EEG signals of 119 individuals are captured by 64 scalp electrodes through successive eyes-closed and eyes-open intervals. Moreover, all the subjects take the BDI test and their scores are determined. The proposed CNN-TCN provides mean squared error (MSE) of 5.64±1.6 and mean absolute error (MAE) of 1.73±0.27 for eyes-open state and also provides MSE of 9.53±2.94 and MAE of 2.32±0.35 for the eyes-closed state, which significantly surpasses state-of-the-art deep network methods. In another approach, conventional EEG features are elicited from the EEG signals in successive frames and apply them to the proposed CNN-TCN in conjunction with known statistical regression methods. Our method provides MSE of 10.81±5.14 and MAE of 2.41±0.59 that statistically outperform the statistical regression methods. Moreover, the results with raw EEG are significantly better than those with EEG features.  | 
    
| Author | Hashempour, S. Boostani, R. Mohammadi, M. Sanei, S.  | 
    
| Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0003-3613-3107 surname: Hashempour fullname: Hashempour, S. email: hashempour.sara73@gmail.com organization: CSE & IT Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran – sequence: 2 givenname: R. orcidid: 0000-0003-0055-4452 surname: Boostani fullname: Boostani, R. email: boostani@shirazu.ac.ir organization: CSE & IT Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran – sequence: 3 givenname: M. orcidid: 0000-0002-1393-5062 surname: Mohammadi fullname: Mohammadi, M. email: mukhtar@lfu.edu.krd organization: Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Kurdistan Region, Erbil, Iraq – sequence: 4 givenname: S. orcidid: 0000-0002-1446-5744 surname: Sanei fullname: Sanei, S. email: saeid.sanei@ntu.ac.uk organization: School of Science and Technology, Nottingham Trent University, Nottingham, U.K  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35030081$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kkuL2zAUhU2Z0nm0f6CFYuimG6d6y1qWNPOAYQrNdC1k-ToodaxUsmfIv68cZ7LIQFdXiO8cHc7VZXbW-Q6y7CNGM4yR-vb4sPy1mBFEyIxiRrEgb7ILzHlZIILR2XimrGCUoPPsMsY1QlgKLt9l55QjilCJLzI9913vusEPMV9aH1y3yn2T_4BtgBid7_Lr4Df5YnGTL92qM23Mn5zJTX67q4KrRzY5PPl26BNs2vwBhrAf_bMPf-L77G2TRPDhMK-y39eLx_ltcf_z5m7-_b6wTOC-IIw3lpWVVbUSVnIQQACQwaw2RNqyJlQRwgkvwTBEVCO5ZBVIQJVQqFL0KrubfGtv1nob3MaEnfbG6f2FDyttQu9sCxqUEDVhFkFZM0Z5qQytCE92DZUCQ_Kik9fQbc3u2bTt0RAjPVav-y4G0GP1-lB9Un2dVNvg_w4Qe71x0ULbmg5Su5oIMlbO8Ih-OUHXfghjuSPFJKdSsUR9PlBDtYH6mOFleQkgE2CDjylP8yrm_oecxixPRNb1ZlxeH4xr_y_9NEkdABzfUqLEpcL0H04KxRc | 
    
| CODEN | ITNSB3 | 
    
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107112 crossref_primary_10_1016_j_bspc_2024_106182 crossref_primary_10_1109_ACCESS_2022_3161489 crossref_primary_10_3390_su15021293 crossref_primary_10_3390_brainsci13091340 crossref_primary_10_1016_j_bspc_2024_107271 crossref_primary_10_1109_TNSRE_2023_3320693 crossref_primary_10_1016_j_bspc_2024_106996 crossref_primary_10_1109_ACCESS_2023_3275024 crossref_primary_10_4015_S1016237224500406 crossref_primary_10_1016_j_cmpb_2022_107113 crossref_primary_10_1109_TNSRE_2022_3193666 crossref_primary_10_1109_JBHI_2022_3232497 crossref_primary_10_1109_TII_2023_3337971 crossref_primary_10_2174_1872212117666220801105612 crossref_primary_10_1109_TNSRE_2022_3192988 crossref_primary_10_1145_3597309 crossref_primary_10_3390_e27030317 crossref_primary_10_3390_diagnostics15020210 crossref_primary_10_1016_j_foodchem_2024_141533 crossref_primary_10_1109_TNSRE_2025_3529991  | 
    
| Cites_doi | 10.1016/j.clineuro.2013.08.009 10.1590/1516-4446-2012-1048 10.3390/app9142870 10.1002/acr.20556 10.1109/CVPR.2016.90 10.1142/S0219519414500353 10.1016/j.jneumeth.2019.04.013 10.1016/j.ijpsycho.2012.05.001 10.1016/j.patrec.2020.03.009 10.1142/S0219519412400192 10.1016/j.jad.2014.02.026 10.1109/EMBC44109.2020.9176161 10.1186/s12991-021-00333-7 10.1016/j.bspc.2009.01.004 10.1159/000381950 10.1109/CSPA.2018.8368709 10.3390/s17061385 10.1109/TSP.2018.2844203 10.1016/j.eswa.2018.12.023 10.1177/1550059413480504 10.1016/j.compbiomed.2019.01.013 10.1016/j.jad.2019.03.058 10.1016/j.cmpb.2018.04.012 10.35784/iapgos.1543 10.1088/1741-2552/abd463 10.1145/3274856.3274876 10.1166/jmihi.2017.2204 10.1016/j.eswa.2010.07.128 10.1007/s11517-019-01978-z 10.1016/j.inffus.2018.11.001 10.3389/fpsyg.2016.01342 10.1109/CVPR46437.2021.01352 10.1007/978-981-15-5243-4_29 10.1007/978-981-13-2354-6_5 10.1007/s11517-019-01959-2 10.3389/fninf.2017.00067 10.1007/s10916-019-1345-y 10.1162/cpsy_a_00024 10.1016/j.neunet.2020.01.017 10.1007/s11571-020-09619-0 10.3389/fnhum.2019.00056  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/TNSRE.2022.3143162 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Occupational Therapy & Rehabilitation Statistics  | 
    
| EISSN | 1558-0210 | 
    
| EndPage | 183 | 
    
| ExternalDocumentID | oai_doaj_org_article_e966d24c0e8d443589a3b254bef3761e 10.1109/tnsre.2022.3143162 35030081 10_1109_TNSRE_2022_3143162 9681891  | 
    
| Genre | orig-research Journal Article  | 
    
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c461t-245fc48bc9d96c75e6e2ee0a14da27c8d239225258ea4029f7574be7e0b690b93 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1534-4320 1558-0210  | 
    
| IngestDate | Fri Oct 03 12:43:31 EDT 2025 Wed Oct 01 16:25:11 EDT 2025 Thu Oct 02 06:26:29 EDT 2025 Mon Jul 14 09:12:38 EDT 2025 Wed Feb 19 02:27:17 EST 2025 Wed Oct 01 01:12:31 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Aug 27 02:48:45 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c461t-245fc48bc9d96c75e6e2ee0a14da27c8d239225258ea4029f7574be7e0b690b93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-1446-5744 0000-0003-3613-3107 0000-0003-0055-4452 0000-0002-1393-5062  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/7333/9695946/09681891.pdf | 
    
| PMID | 35030081 | 
    
| PQID | 2624753794 | 
    
| PQPubID | 85423 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | ieee_primary_9681891 proquest_miscellaneous_2620081412 proquest_journals_2624753794 crossref_citationtrail_10_1109_TNSRE_2022_3143162 unpaywall_primary_10_1109_tnsre_2022_3143162 doaj_primary_oai_doaj_org_article_e966d24c0e8d443589a3b254bef3761e crossref_primary_10_1109_TNSRE_2022_3143162 pubmed_primary_35030081  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – year: 2022 text: 20220000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering | 
    
| PublicationTitleAbbrev | TNSRE | 
    
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | van den oord (ref37) 2016 ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref17 ref38 ref16 ref19 ref18 ref46 ref24 ref45 ref23 ref47 ref25 nair (ref39) 2010 ref20 ref42 ref22 ref44 ref21 tohen (ref26) 2015 ref43 (ref1) 2017 ref28 ref27 srivastava (ref40) 2014; 15 ref29 ref8 ref7 ref9 bai (ref41) 2018 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref8 doi: 10.1016/j.clineuro.2013.08.009 – ident: ref5 doi: 10.1590/1516-4446-2012-1048 – ident: ref11 doi: 10.3390/app9142870 – ident: ref6 doi: 10.1002/acr.20556 – ident: ref38 doi: 10.1109/CVPR.2016.90 – ident: ref17 doi: 10.1142/S0219519414500353 – ident: ref13 doi: 10.1016/j.jneumeth.2019.04.013 – ident: ref16 doi: 10.1016/j.ijpsycho.2012.05.001 – year: 2018 ident: ref41 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling publication-title: arXiv 1803 01271 – ident: ref30 doi: 10.1016/j.patrec.2020.03.009 – ident: ref14 doi: 10.1142/S0219519412400192 – volume: 15 start-page: 1929 year: 2014 ident: ref40 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref3 doi: 10.1016/j.jad.2014.02.026 – ident: ref43 doi: 10.1109/EMBC44109.2020.9176161 – year: 2015 ident: ref26 publication-title: Clinical Trial Design Challenges in Mood Disorders – year: 2016 ident: ref37 article-title: WaveNet: A generative model for raw audio publication-title: arXiv 1609 03499 – ident: ref4 doi: 10.1186/s12991-021-00333-7 – ident: ref9 doi: 10.1016/j.bspc.2009.01.004 – year: 2017 ident: ref1 article-title: Depression and other common mental disorders: Global health estimates – ident: ref18 doi: 10.1159/000381950 – ident: ref46 doi: 10.1109/CSPA.2018.8368709 – ident: ref19 doi: 10.3390/s17061385 – ident: ref29 doi: 10.1109/TSP.2018.2844203 – ident: ref31 doi: 10.1016/j.eswa.2018.12.023 – ident: ref15 doi: 10.1177/1550059413480504 – ident: ref34 doi: 10.1016/j.compbiomed.2019.01.013 – ident: ref28 doi: 10.1016/j.jad.2019.03.058 – ident: ref21 doi: 10.1016/j.cmpb.2018.04.012 – ident: ref27 doi: 10.35784/iapgos.1543 – ident: ref32 doi: 10.1088/1741-2552/abd463 – ident: ref10 doi: 10.1145/3274856.3274876 – ident: ref20 doi: 10.1166/jmihi.2017.2204 – ident: ref7 doi: 10.1016/j.eswa.2010.07.128 – ident: ref35 doi: 10.1007/s11517-019-01978-z – ident: ref45 doi: 10.1016/j.inffus.2018.11.001 – ident: ref2 doi: 10.3389/fpsyg.2016.01342 – ident: ref47 doi: 10.1109/CVPR46437.2021.01352 – ident: ref44 doi: 10.1007/978-981-15-5243-4_29 – start-page: 1 year: 2010 ident: ref39 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc ICML – ident: ref33 doi: 10.1007/978-981-13-2354-6_5 – ident: ref22 doi: 10.1007/s11517-019-01959-2 – ident: ref24 doi: 10.3389/fninf.2017.00067 – ident: ref42 doi: 10.1007/s10916-019-1345-y – ident: ref25 doi: 10.1162/cpsy_a_00024 – ident: ref36 doi: 10.1016/j.neunet.2020.01.017 – ident: ref23 doi: 10.1007/s11571-020-09619-0 – ident: ref12 doi: 10.3389/fnhum.2019.00056  | 
    
| SSID | ssj0017657 | 
    
| Score | 2.5296369 | 
    
| Snippet | Depression score is traditionally determined by taking the Beck depression inventory (BDI) test, which is a qualitative questionnaire. Quantitative scoring of... | 
    
| SourceID | doaj unpaywall proquest pubmed crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 176 | 
    
| SubjectTerms | Artificial neural networks Beck depression test CNN Convolution Convolutional neural networks Deep learning Depression EEG Electrodes Electroencephalography Electroencephalography - methods Feature extraction Humans Neural networks Neural Networks, Computer Qualitative analysis Scalp Statistical analysis Statistical methods Statistics TCN  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ABQctHoCAjAReImnhtJz4C3WXFoYfuVurNGjsOWmmbrdrdov57ZhIn2hWIXnqKlEwcj2dsz4vHz4x9qAsDUINLcWr3qcyrPIVypFMFWpkgywy6bIsTPT2TP8_V-dZRX5QT1tEDdw13FDAer4T0WSgriXN7aWDkENW4UGPfyAONvllpejAV1w8KrYp-i0xmjuYns9MxgkEhEKPS5m-xMw21bP3xeJV_RZqP2cNNcwm3v2G53Jp9Jk_Zkxg28q9ddZ-xB6HZZx-3KYL5vOMH4J_46Q779gGzREG1aDYI8vnMtxl3fFXz4z4JtuGTq9UFH49_8NniFxEq85sFcODTW9rPRbJYwk10UvwUMXq0lzaF_Po5O5uM59-naTxYIfVS5-tUSFV7WTpvKqN9oYIOIoQMclmBKHxZCYyahBKqDID40tSFKrDBi5A5BNPOjF6wvWbVhFeMY0DkKBNVewRWDionshDAgFeV9Gi5hOV9O1sf9abDL5a2RR-Zsa1tLNnGRtsk7PPwzmXHufFf6W9kvkGS-LLbG-hFNnqRvcuLEnZAxh8KMRoDGZMn7LB3Bhv79rUVWkgEeTiQJez98Bh7JS21QBPQmCRDwZbMsXovOycayh4pHFjxYcK-DF71l57rBtXf0fP1fej5hj2iMrt_SIdsb321CW8xqlq7d20H-gMtjhrm priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKL8CBV3kECjIScKHZJo7txEceu6yQ6KG7lXqLbGdSrViSqpsUlV_P2HmoCxXilCiZOBnNZ3smnvlMyJsyVVqX2oQ4tduQx0Uc6iyRodBSKOBZpLtsiyM5P-FfT8XpDjkYa2EAwCefwcSd-rX8orat-1V2qCROL65U_Vaaya5Wa1wxSKVn9cQOzEOesGgokInU4fJocTzFUJAxjFBd6bfbwiYRCO8oi7fmI0_b3--zcpPLeZfcbqtzffVTr9fXpqHZffJtUKDLPvk-aRszsb_-4Hb8Xw0fkHu9P0o_dAB6SHagekTeXucepsuOeIC-o8dbtN57JHfcVquqrdsNXVifykfrkn4esmsrOruof9Dp9AtdrM4cUzO9XGmq6fzKFYo5WWzhskc_vspRhfiDz03fPCYns-ny0zzsd2wILZdxEzIuSsszY1WhpE0FSGAAkY55oVlqs4KhO8YEExloDFxVmYqUG0ghMhilG5U8IbtVXcEzQtHTMi7FVVqM2IwuDIsAtNJWFNxKWQQkHuyW215vt6vGOvdhTaRyb_bcmT3vzR6Q9-Mz5x2Zxz-lPzo4jJKOiNtfQIvlfb_OAcPFgnEbQVZwdD0zpRODQbeBEofuGAKy56w8NtIbOCD7A7jyftDY5EwyjtEjjpABeT3exu7u1nB0BWhMJ-NQy2P8vKcdKMe2B0gH5GBE6V96NhWqv6Xn85s_8QW546S63037ZLe5aOElOmCNeeV73m8OoCgk priority: 102 providerName: IEEE  | 
    
| Title | Continuous Scoring of Depression From EEG Signals via a Hybrid of Convolutional Neural Networks | 
    
| URI | https://ieeexplore.ieee.org/document/9681891 https://www.ncbi.nlm.nih.gov/pubmed/35030081 https://www.proquest.com/docview/2624753794 https://www.proquest.com/docview/2620081412 https://ieeexplore.ieee.org/ielx7/7333/9695946/09681891.pdf https://doaj.org/article/e966d24c0e8d443589a3b254bef3761e  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 30 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG94B4GB_jI2hURgJeIG3i2E4snga0VDxUaG2lISFFtnNBFV06re1g_PWcnTRaASHBU6vm6vR057v7NXc_E_KsTJXWpTYhpnYb8riIQ50lMhRaCgU8i3TdbTGWoxn_cCpO98jrdhYGAHzzGfTcW_8sfw6L72k_TZKkr6QSiss-Ft6YaRSGmaK8QfZxXRl1yP5s_PH4U82QykOeeFJGTJhZ6JDNdmQmUv11hfkHwSFjiFndMDjbSUuevb85buVPlectcnNTneurb3qxuJaNhrfJ560edRPK195mbXr2xy8Uj_-p6B1y0FSp9Lh2q7tkD6p75Pl1RmI6rekI6At6skP2fUhyx3g1rzbLzYpOrG_wo8uSvtv23FZ0eLE8o4PBezqZf3H8zfRyrqmmoys3PuZkcYXLZk_grRyBiH_xHeur-2Q2HEzfjsLmHIfQchmvQ8ZFaXlmrCqUtKkACQwg0jEvNEttVjAs0phgIgONcFaVqUi5gRQig9jdqOQB6VTLCh4RivWXcY2v0iKOM7owLALQSltRcCtlEZB4a8bcNnq7szYWuQc7kcqn48nJIHemzxvTB-Rl-53zmuLjr9JvnHe0ko6e23-ABsyb3Z4DgsiCcRtBVnAsSDOlE4NQ3ECJAT2GgBw6o7eLNEYOyNHW1_ImlKxyJhlHTIlxMyBP28sYBNyTHV0BGtPJuNqOx_jzHtY-2q6dCIzjeDEgr1qn_U1PvyF29Hz8b-JHpLO-2MATrNDWpuv_2ej6Ycpusyt_AsqqNXo | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLam8TB44DYugQFGAl5YusSxnfiRS0uBrQ9rJ-3Nsp0TVFHSaW2Gxq_nODetMCGeWrWOk6Pz2T5ffM5nQl4VqTKmMDbEpd2FPM7j0GSJDIWRQgHPItNkW0zk-IR_ORWnW2S_r4UBgDr5DAb-a72Xny9d5V-VHSiJy4svVb8hOOeiqdbq9wxSWet64hDmIU9Y1JXIROpgNpkeD5EMMoYc1Rd_-0NsEoEAj7J4Y0Wqhfvbk1auCzpvkZ2qPDOXP81icWUhGt0hR50JTf7J90G1tgP36w91x_-18S653Uak9F0DoXtkC8r75PVV9WE6a6QH6Bt6vCHsvUu0V7eal9WyWtGpq5P56LKgH7v82pKOzpc_6HD4iU7n37xWM72YG2ro-NKXivm22MNFi3-8lRcLqT_q7PTVA3IyGs4-jMP2zIbQcRmvQ8ZF4XhmncqVdKkACQwgMjHPDUtdljMMyJhgIgOD1FUVqUi5hRQiizzdquQh2S6XJTwmFGMt65NcpUPOZk1uWQRglHEi507KPCBx5zftWrv9uRoLXRObSOna7dq7XbduD8jb_pqzRs7jn63fezj0Lb0Ud_0Deky3I1sDEsaccRdBlnMMPjNlEou020KBk3cMAdn1Xu47aR0ckL0OXLqdNlaaScaRP-IcGZCX_d844P0ujikBnenbeNTyGB_vUQPKvu8O0gHZ71H6l53rEs3fsPPJ9Y_4guyMZ0eH-vDz5OtTctNf0bx82iPb6_MKnmE4trbP61H4G6qiK3E | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG94B44GswggYyEvACaRPHdmLxNKCl4qFCaysNCSmynQuqKOm0JoPx13POl1ZASPCUKLk4Od357n7K-WdCnuax0jrXxsfUbn0eZqGvk0j6QkuhgCeBbrotZnK65O9PxekeedWvhQGAuvkMhu60_pe_gvX3eBRHUTRSUgnF5QgLb8w0CsNMll8j-ziuDAZkfzn7cPyxYUjlPo9qUkZMmInvkE23ZCZQo7LA_IPgkDHErG4xONtJSzV7f7vdyp8qzxvkelWc6ctver2-ko0mt8inTo-mCeXLsCrN0P74heLxPxW9TW62VSo9btzqDtmD4i55dpWRmC4aOgL6nJ7skH0fkNQxXq2KalNt6dzWDX50k9O3Xc9tQSfnm690PH5H56vPjr-ZXqw01XR66ZaPOVkc4aKdE_gqRyBSH-qO9e09spyMF2-mfruPg2-5DEufcZFbnhirMiVtLEACAwh0yDPNYptkDIs0JphIQCOcVXksYm4ghsAgdjcquk8GxaaAB4Ri_WVc46u0iOOMzgwLALTSVmTcSpl5JOzMmNpWb7fXxjqtwU6g0sVsfjJOnenT1vQeedE_c9ZQfPxV-rXzjl7S0XPXF9CAaTvbU0AQmTFuA0gyjgVponRkEIobyDGgh-CRA2f0fpDWyB456nwtbUPJNmWSccSUGDc98qS_jUHA_dnRBaAxnYyr7XiIn3fY-Gg_diQwjuNNj7zsnfY3PesJsaPnw38TPyKD8ryCR1ihleZxOxN_Alo2M4Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Scoring+of+Depression+From+EEG+Signals+via+a+Hybrid+of+Convolutional+Neural+Networks&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Hashempour%2C+S&rft.au=Boostani%2C+R&rft.au=Mohammadi%2C+M&rft.au=Sanei%2C+S&rft.date=2022&rft.eissn=1558-0210&rft.volume=30&rft.spage=176&rft_id=info:doi/10.1109%2FTNSRE.2022.3143162&rft_id=info%3Apmid%2F35030081&rft.externalDocID=35030081 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |