Measurement of physical activity in clinical practice using accelerometers
Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self‐report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways t...
Saved in:
Published in | Journal of internal medicine Vol. 286; no. 2; pp. 137 - 153 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.08.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0954-6820 1365-2796 1365-2796 |
DOI | 10.1111/joim.12908 |
Cover
Abstract | Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self‐report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways to determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip and thigh data, whilst more advanced machine‐learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine‐learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing and calibration techniques, exploring both simple linear and machine‐learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health.
Physical activity measurement requires good methodological knowledge to achieve measures of high precision and accuracy. Interdisciplinary collaboration facilitates implementation of physical activity into clinical practice as a vital sign of equal importance as any other clinical measure. |
---|---|
AbstractList | Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self‐report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways to determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip and thigh data, whilst more advanced machine‐learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine‐learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing and calibration techniques, exploring both simple linear and machine‐learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health. Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self‐report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways to determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip and thigh data, whilst more advanced machine‐learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine‐learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing and calibration techniques, exploring both simple linear and machine‐learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health. Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self‐report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways to determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip and thigh data, whilst more advanced machine‐learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine‐learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing and calibration techniques, exploring both simple linear and machine‐learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health. Physical activity measurement requires good methodological knowledge to achieve measures of high precision and accuracy. Interdisciplinary collaboration facilitates implementation of physical activity into clinical practice as a vital sign of equal importance as any other clinical measure. Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self-report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different waysto determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip andthighdata, whilst more advanced machine-learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine-learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing andcalibration techniques, exploring both simple linear and machine-learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health. Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self-report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways to determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip and thigh data, whilst more advanced machine-learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine-learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing and calibration techniques, exploring both simple linear and machine-learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health.Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self-report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways to determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip and thigh data, whilst more advanced machine-learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine-learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing and calibration techniques, exploring both simple linear and machine-learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health. |
Author | Börjesson, M. Arvidsson, D. Fridolfsson, J. |
Author_xml | – sequence: 1 givenname: D. orcidid: 0000-0002-3112-5434 surname: Arvidsson fullname: Arvidsson, D. email: daniel.arvidsson@gu.se organization: University of Gothenburg – sequence: 2 givenname: J. surname: Fridolfsson fullname: Fridolfsson, J. organization: University of Gothenburg – sequence: 3 givenname: M. surname: Börjesson fullname: Börjesson, M. organization: Sahlgrenska University Hospital/Östra |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30993807$$D View this record in MEDLINE/PubMed https://gup.ub.gu.se/publication/280708$$DView record from Swedish Publication Index |
BookMark | eNp90c1L5DAUAPAgio7uXvwDlsJeloVqPtokPS6yroriRc8hk76OGdqkmzTK_PdmrHoQMZfA4_ce7-MQ7TrvAKFjgk9Ifqdrb4cTQhssd9CCMF6XVDR8Fy1wU1cllxQfoMMY1xgThjneRwcMNw2TWCzQ1Q3omAIM4KbCd8X4sInW6L7QZrKPdtoU1hWmt-4lOIZt2ECRonWrbAz0EPwAE4T4De11uo_w_fU_Qvfnf-_OLsrr23-XZ3-uS1NxIsu2E1IaqUHCsuNCCMbqHGO0FbqSdcdBElmTCjNsWtnKCndUtLTSXBJOjGZHqJzrxicY01KNwQ46bJTXVq3SqHJolVQERfOEWGb_a_Zj8P8TxEkNNubGe-3Ap6goJXlRDeU4058f6Nqn4PI0WdWikbSmTVY_XlVaDtC-N_C21Qx-z8AEH2OA7p0QrLYnU9uTqZeTZYw_YGMnPVnvpqBt_3kKmVOebA-bL4qrq9vLmznnGaeJqFE |
CitedBy_id | crossref_primary_10_1177_01650254241308506 crossref_primary_10_1016_j_cct_2021_106661 crossref_primary_10_1016_j_jchf_2021_05_013 crossref_primary_10_1186_s12891_021_04479_z crossref_primary_10_1136_bmjopen_2022_065953 crossref_primary_10_1111_pedi_13288 crossref_primary_10_1051_bioconf_20202600033 crossref_primary_10_1123_jmpb_2021_0050 crossref_primary_10_1002_lio2_610 crossref_primary_10_1111_cpf_12795 crossref_primary_10_3389_fspor_2023_1294927 crossref_primary_10_1016_j_measurement_2021_109946 crossref_primary_10_1186_s11556_023_00320_9 crossref_primary_10_3390_cancers15153784 crossref_primary_10_2196_68479 crossref_primary_10_2196_39085 crossref_primary_10_1016_j_msard_2021_103081 crossref_primary_10_1080_14017431_2024_2397442 crossref_primary_10_1111_sms_14131 crossref_primary_10_3390_ijerph19138185 crossref_primary_10_1080_1091367X_2022_2065919 crossref_primary_10_1186_s12889_024_20301_6 crossref_primary_10_3390_children10030475 crossref_primary_10_1186_s13102_022_00503_4 crossref_primary_10_3390_jcm12165340 crossref_primary_10_1186_s12877_021_02725_6 crossref_primary_10_24310_riccafd_12_3_2023_17979 crossref_primary_10_1017_S1047951121000627 crossref_primary_10_3390_s21030904 crossref_primary_10_1186_s12877_021_02429_x crossref_primary_10_1186_s44167_024_00053_9 crossref_primary_10_1017_S1355617725000049 crossref_primary_10_1186_s41927_021_00233_z crossref_primary_10_1007_s00296_023_05342_1 crossref_primary_10_1177_08901171221119089 crossref_primary_10_1177_09544119241281976 crossref_primary_10_3390_healthcare11142080 crossref_primary_10_1161_CIRCOUTCOMES_123_010066 crossref_primary_10_1186_s12966_021_01156_1 crossref_primary_10_3390_ijerph20196852 crossref_primary_10_1093_gerona_glab347 crossref_primary_10_1093_gerona_glab103 crossref_primary_10_1123_japa_2023_0384 crossref_primary_10_1007_s42835_022_01258_1 crossref_primary_10_1007_s43465_022_00629_0 crossref_primary_10_1136_bmjopen_2022_070044 crossref_primary_10_3390_children8111022 crossref_primary_10_3390_ijerph20206944 crossref_primary_10_2196_57158 crossref_primary_10_7717_peerj_16815 crossref_primary_10_1088_1361_6579_acf755 crossref_primary_10_1371_journal_pone_0301412 crossref_primary_10_1186_s12874_023_01868_x crossref_primary_10_1111_jjns_12418 crossref_primary_10_1080_07853890_2024_2399963 crossref_primary_10_2196_35701 crossref_primary_10_1007_s00431_023_05014_z crossref_primary_10_1016_j_ijsu_2020_10_032 crossref_primary_10_1016_j_msard_2024_106243 crossref_primary_10_1371_journal_pone_0240604 crossref_primary_10_1002_nur_22077 crossref_primary_10_1186_s12891_023_06458_y crossref_primary_10_1186_s44167_025_00072_0 crossref_primary_10_1007_s00521_020_05504_3 crossref_primary_10_1016_j_mayocp_2024_10_022 crossref_primary_10_1136_bmjopen_2019_036433 crossref_primary_10_1111_hae_14752 crossref_primary_10_1186_s13063_021_05950_x crossref_primary_10_3390_s21072333 crossref_primary_10_3390_s22176598 crossref_primary_10_1136_bmjopen_2020_047522 crossref_primary_10_1186_s12874_021_01350_6 crossref_primary_10_3390_s20164585 crossref_primary_10_1007_s11126_023_10047_6 crossref_primary_10_1097_JCN_0000000000000959 crossref_primary_10_1123_jmpb_2024_0034 crossref_primary_10_3390_s23062951 crossref_primary_10_2196_19789 crossref_primary_10_1371_journal_pone_0309481 crossref_primary_10_1016_j_ergon_2022_103319 crossref_primary_10_1016_j_lana_2025_100996 crossref_primary_10_1016_j_measen_2024_101648 crossref_primary_10_1016_j_ptsp_2023_09_011 crossref_primary_10_1109_TNSRE_2022_3201487 crossref_primary_10_1111_hae_14624 crossref_primary_10_1186_s42490_020_00042_4 crossref_primary_10_1007_s00296_020_04608_2 crossref_primary_10_3390_ani14243628 crossref_primary_10_1123_jmpb_2023_0031 crossref_primary_10_1016_j_mayocpiqo_2021_08_011 crossref_primary_10_3390_s21237853 crossref_primary_10_3389_fspor_2023_1113687 crossref_primary_10_1177_17423953221137889 crossref_primary_10_1111_sms_14052 crossref_primary_10_2196_39442 crossref_primary_10_7717_peerj_16990 crossref_primary_10_1111_cpf_12860 crossref_primary_10_3390_jcm13020325 crossref_primary_10_3390_brainsci11111500 crossref_primary_10_1016_j_jpain_2023_10_021 crossref_primary_10_3390_s23031416 crossref_primary_10_1017_S104795112200141X crossref_primary_10_1080_02701367_2021_1923627 crossref_primary_10_3390_s24020672 crossref_primary_10_7759_cureus_71398 crossref_primary_10_1123_jmpb_2021_0015 crossref_primary_10_1123_jmpb_2024_0017 crossref_primary_10_3390_s23156943 crossref_primary_10_1186_s40814_022_01075_3 crossref_primary_10_1016_j_neubiorev_2023_105365 crossref_primary_10_1123_jmpb_2020_0066 crossref_primary_10_1016_j_jpedsurg_2019_12_003 crossref_primary_10_1371_journal_pone_0260077 crossref_primary_10_3390_ijerph182211951 crossref_primary_10_1038_s41598_022_20327_z crossref_primary_10_1038_s41598_023_48232_z crossref_primary_10_1109_TNSRE_2021_3051093 crossref_primary_10_1186_s12887_023_04256_y crossref_primary_10_1016_j_tsep_2024_102984 crossref_primary_10_1016_j_smhs_2025_02_010 crossref_primary_10_1111_sms_14719 crossref_primary_10_2196_25289 crossref_primary_10_3390_s20041118 crossref_primary_10_1097_HCR_0000000000000642 crossref_primary_10_1016_j_diabres_2021_108833 crossref_primary_10_2139_ssrn_3969403 crossref_primary_10_1186_s13741_022_00260_5 crossref_primary_10_1080_02813432_2024_2373298 crossref_primary_10_1186_s40001_024_01975_5 crossref_primary_10_1136_bmjopen_2022_070597 crossref_primary_10_1186_s13102_023_00717_0 crossref_primary_10_1371_journal_pone_0270265 crossref_primary_10_1016_j_jsams_2024_05_002 crossref_primary_10_2478_pcssr_2022_0022 crossref_primary_10_1016_j_rasd_2022_102043 crossref_primary_10_1186_s42490_023_00071_9 crossref_primary_10_1186_s12966_022_01375_0 crossref_primary_10_1186_s12889_023_17281_4 crossref_primary_10_1136_bjsports_2023_107451 crossref_primary_10_1080_02701367_2022_2148624 crossref_primary_10_1158_1055_9965_EPI_19_1446 crossref_primary_10_1016_j_ajpc_2022_100379 crossref_primary_10_3390_sclerosis1030014 crossref_primary_10_1016_S2213_8587_21_00207_2 crossref_primary_10_1186_s13102_022_00417_1 crossref_primary_10_1111_jar_13260 crossref_primary_10_1111_sms_14541 |
Cites_doi | 10.1111/j.1651-2227.2009.01369.x 10.1111/cpf.12127 10.1111/sms.13244 10.1080/02640414.2018.1527198 10.1016/j.amepre.2010.12.016 10.1016/j.amjcard.2005.07.130 10.1088/0967-3334/33/2/219 10.1186/1479-5868-9-84 10.3390/s18103399 10.1016/0021-9290(85)90043-0 10.1016/j.ypmed.2018.08.001 10.1038/ejcn.2017.78 10.1249/MSS.0b013e3182a0595f 10.1371/journal.pone.0126336 10.1249/MSS.0b013e318213fefb 10.1088/1361-6579/38/2/343 10.1111/sms.12795 10.1016/j.jsams.2017.04.017 10.1371/journal.pone.0139984 10.1371/journal.pone.0169649 10.1080/1091367X.2016.1192038 10.1080/02640414.2016.1255347 10.1249/MSS.0000000000000771 10.1371/journal.pone.0188242 10.1080/02640414.2018.1461322 10.1249/MSS.0000000000001430 10.1016/j.dadm.2016.03.005 10.1186/s12966-015-0201-9 10.1249/MSS.0000000000001134 10.2147/OAJSM.S150596 10.1016/j.jshs.2016.02.002 10.1111/sms.13328 10.1371/journal.pone.0061691 10.1249/MSS.0000000000000365 10.1371/journal.pone.0192117 10.1186/s12966-015-0172-x 10.1016/j.amjmed.2016.05.005 10.1080/17477160802315010 10.1249/MSS.0b013e3182399e5b 10.1249/MSS.0b013e3181fdfc32 10.1097/00005768-200009001-00003 10.1177/2047487315619734 10.1038/sj.ijo.0800883 10.1136/bjsports-2014-093546 10.26530/OAPEN_483279 10.1038/s41366-018-0152-8 10.1002/cncr.31857 10.1249/MSS.0b013e31821ece12 10.1016/j.jot.2018.03.001 10.1249/MSS.0000000000001124 10.1001/jama.2012.156 10.1016/S0140-6736(17)31634-3 10.1016/j.gaitpost.2017.12.028 10.1186/1479-5868-5-56 10.1123/jpah.9.s1.s5 10.3390/informatics5020027 10.1249/MSS.0b013e3182399c0e 10.1007/s40279-017-0716-0 10.1371/journal.pone.0171720 10.1249/MSS.0b013e31820ce174 10.1093/aje/kwp163 10.1249/MSS.0000000000001797 10.1249/MSS.0000000000000289 10.1249/MSS.0000000000001344 10.1002/nur.21694 10.1177/1403494813514143 10.1249/MSS.0b013e31827f0d9c 10.1136/bjsports-2018-099598 10.1109/JBHI.2014.2313039 10.1016/S2214-109X(18)30357-7 10.1111/sms.12920 10.1161/JAHA.116.004665 10.1123/jpah.2011-0347 10.1371/journal.pone.0134606 10.1093/ije/dyy294 |
ContentType | Journal Article |
Copyright | 2019 The Association for the Publication of the Journal of Internal Medicine 2019 The Association for the Publication of the Journal of Internal Medicine. Copyright © 2019 The Association for the Publication of the Journal of Internal Medicine |
Copyright_xml | – notice: 2019 The Association for the Publication of the Journal of Internal Medicine – notice: 2019 The Association for the Publication of the Journal of Internal Medicine. – notice: Copyright © 2019 The Association for the Publication of the Journal of Internal Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL C1K K9. 7X8 ADTPV AOWAS F1U |
DOI | 10.1111/joim.12908 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic SwePub SwePub Articles SWEPUB Göteborgs universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics |
EISSN | 1365-2796 |
EndPage | 153 |
ExternalDocumentID | oai_gup_ub_gu_se_280708 30993807 10_1111_joim_12908 JOIM12908 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29K 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F D-I DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI TR2 UB1 V8K V9Y VH1 VVN W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZCG ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QL C1K K9. 7X8 ADTPV AOWAS F1U |
ID | FETCH-LOGICAL-c4618-df788c8ae8ebf6777335df732d7a485f6e818514030cd8d840f27d24a68161ca3 |
IEDL.DBID | DR2 |
ISSN | 0954-6820 1365-2796 |
IngestDate | Thu Aug 21 06:37:00 EDT 2025 Fri Jul 11 03:24:35 EDT 2025 Fri Jul 25 22:42:07 EDT 2025 Mon Jul 21 05:49:33 EDT 2025 Thu Apr 24 22:51:37 EDT 2025 Tue Jul 01 00:45:37 EDT 2025 Wed Jan 22 16:39:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | clinical protocol measurement accelerometer physical activity |
Language | English |
License | 2019 The Association for the Publication of the Journal of Internal Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4618-df788c8ae8ebf6777335df732d7a485f6e818514030cd8d840f27d24a68161ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3112-5434 |
PMID | 30993807 |
PQID | 2257982529 |
PQPubID | 30713 |
PageCount | 17 |
ParticipantIDs | swepub_primary_oai_gup_ub_gu_se_280708 proquest_miscellaneous_2210959260 proquest_journals_2257982529 pubmed_primary_30993807 crossref_primary_10_1111_joim_12908 crossref_citationtrail_10_1111_joim_12908 wiley_primary_10_1111_joim_12908_JOIM12908 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Journal of internal medicine |
PublicationTitleAlternate | J Intern Med |
PublicationYear | 2019 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2015; 35 1980; 49 2017; 6 2015; 38 2017; 47 2017; 49 2017; 390 2019; 125 2008; 5 2013; 8 2018; 42 2018; 6 2018; 9 1985; 18 2017; 71 2018; 5 2009; 98 2009; 170 2017; 38 2017; 35 1985; 2018 2016; 48 2014; 11 2018; 37 2018; 36 2015; 12 2018; 29 2017; 20 2018; 28 2006; 97 2015; 19 2010 2017; 28 2016; 129 2017; 27 2013; 45 2011; 40 2015; 10 1999; 23 2014; 48 2014; 46 2018; 61 2012; 33 2012; 307 1985; 100 2014; 42 2016; 4 2015; 23 2000; 32 2018; 115 2017; 12 2016; 20 2019 2018 2011; 43 2017 2016 2018; 51 2018; 50 2014 2009; 4 2018; 53 2012; 44 2018; 14 2012; 9 2018; 13 e_1_2_7_5_1 e_1_2_7_9_1 Garson G (e_1_2_7_73_1) 2016 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Montoye AHK (e_1_2_7_47_1) 1985; 2018 Bhattacharya A (e_1_2_7_34_1) 1980; 49 World Health Organization (e_1_2_7_3_1) 2010 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 Physical Activity Guidelines Advisory Report (e_1_2_7_10_1) 2018 e_1_2_7_37_1 e_1_2_7_58_1 Voss C (e_1_2_7_79_1) 2017 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 Caspersen CJ (e_1_2_7_8_1) 1985; 100 e_1_2_7_29_1 Migueles JH (e_1_2_7_39_1) 2018; 51 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 53 start-page: 383 year: 2018 end-page: 8 article-title: Physical activity on prescription in accordance with the Swedish model increases physical activity: a systematic review publication-title: Br J Sports Med – volume: 9 start-page: 1 year: 2018 end-page: 17 article-title: High‐intensity interval training versus moderate‐intensity continuous training within cardiac rehabilitation: a systematic review and meta‐analysis publication-title: Open Access J Sports Med – volume: 43 start-page: 815 year: 2011 end-page: 21 article-title: Self‐reported and objectively measured activity related to biomarkers using NHANES publication-title: Med Sci Sports Exerc – start-page: e004665 year: 2017 article-title: Physical activity and sedentary behavior in children with congenital heart disease publication-title: J Am Heart Assoc – volume: 12 start-page: 42 year: 2015 article-title: The validity of consumer‐level, activity monitors in healthy adults worn in free‐living conditions: a cross‐sectional study publication-title: Int J Behav Nutr Phys Act – year: 2019 article-title: Physical activity of UK adults with chronic disease: cross‐sectional analysis of accelerometer‐measured physical activity in 96 706 UK Biobank participants publication-title: Int J Epidemiol – volume: 49 start-page: 474 year: 2017 end-page: 81 article-title: Physical activity: absolute intensity versus relative‐to‐fitness‐level volumes publication-title: Med Sci Sports Exerc – volume: 32 start-page: S450 year: 2000 end-page: 6 article-title: Estimation of energy expenditure using CSA accelerometers at hip and wrist sites publication-title: Med Sci Sports Exerc – volume: 46 start-page: 2308 year: 2014 end-page: 16 article-title: Children's physical activity assessed with wrist‐ and hip‐worn accelerometers publication-title: Med Sci Sports Exerc – volume: 129 start-page: 903 year: 2016 end-page: 5 article-title: The call for a physical activity vital sign in clinical practice publication-title: Am J Med – volume: 12 start-page: e0169649 year: 2017 article-title: Large scale population assessment of physical activity using Wrist Worn accelerometers: the UK biobank study publication-title: PLoS ONE – volume: 46 start-page: 1816 year: 2014 end-page: 24 article-title: Age group comparability of raw accelerometer output from wrist‐ and hip‐worn monitors publication-title: Med Sci Sports Exerc – volume: 42 start-page: 1639 year: 2018 end-page: 50 article-title: Physical activity intensity, bout‐duration, and cardiometabolic risk markers in children and adolescents publication-title: Int J Obes (Lond) – volume: 29 start-page: 232 year: 2018 end-page: 9 article-title: Decline in cardiorespiratory fitness in the Swedish working force between 1995 and 2017 publication-title: Scand J Med Sci Sports – volume: 6 start-page: e1077 year: 2018 end-page: 86 article-title: Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population‐based surveys with 1·9 million participants publication-title: Lancet Glob Health – volume: 9 start-page: S5 issue: Suppl 1 year: 2012 end-page: 10 article-title: Physical activity by self‐report: a brief history and future issues publication-title: J Phys Act Health – volume: 28 start-page: 2196 year: 2018 end-page: 206 article-title: Aerobic physical activity assessed with accelerometer, diary, questionnaire, and interview in a Finnish population sample publication-title: Scand J Med Sci Sports – year: 2018 – volume: 44 start-page: S5 year: 2012 end-page: 12 article-title: Assessing physical activity using wearable monitors: measures of physical activity publication-title: Med Sci Sports Exerc – year: 2014 – volume: 12 start-page: 11 year: 2015 article-title: Improving wear time compliance with a 24‐hour waist‐worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE) publication-title: Int J Behav Nutr Phys Act – volume: 28 start-page: 487 year: 2017 end-page: 95 article-title: Validation of SenseWear Armband in children, adolescents, and adults publication-title: Scand J Med Sci Sports – volume: 11 start-page: 76 year: 2014 end-page: 84 article-title: Detection of physical activity types using triaxial accelerometers publication-title: J Phys Act Health – volume: 42 start-page: 255 year: 2014 end-page: 62 article-title: Cross‐cultural validation of a simple self‐report instrument of physical activity in immigrants from the Middle East and native Swedes publication-title: Scand J Public Health – volume: 10 start-page: e0134606 year: 2015 article-title: Reliability of the actigraph GT3X+ accelerometer in adults under free‐living conditions publication-title: PLoS ONE – volume: 43 start-page: 1575 year: 2011 end-page: 81 article-title: 2011 Compendium of Physical Activities: a second update of codes and MET values publication-title: Med Sci Sports Exerc – volume: 36 start-page: 2424 year: 2018 end-page: 30 article-title: Wear compliance, sedentary behaviour and activity in free‐living children from hip‐and wrist‐mounted ActiGraph GT3X+ accelerometers publication-title: J Sports Sci – volume: 37 start-page: 779 year: 2018 end-page: 87 article-title: Comparing physical activity estimates in children from hip‐worn Actigraph GT3X+ accelerometers using raw and counts based processing methods publication-title: J Sports Sci – volume: 71 start-page: 1026 year: 2017 article-title: Usefulness of motion sensors to estimate energy expenditure in children and adults: a narrative review of studies using DLW publication-title: Eur J Clin Nutr – volume: 44 start-page: S68 year: 2012 end-page: 76 article-title: Best practices for using physical activity monitors in population‐based research publication-title: Med Sci Sports Exerc – volume: 23 start-page: 967 year: 2015 end-page: 74 article-title: Isotemporal substitution of sedentary time by physical activity of different intensities and bout lengths, and its associations with metabolic risk publication-title: Eur J Prev Cardiol – volume: 38 start-page: 343 year: 2017 end-page: 57 article-title: Comparison of linear and non‐linear models for predicting energy expenditure from raw accelerometer data publication-title: Physiol Meas – volume: 43 start-page: 1334 year: 2011 end-page: 59 article-title: American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise publication-title: Med Sci Sports Exerc – volume: 61 start-page: 98 year: 2018 end-page: 110 article-title: calibration of raw accelerometer data to measure physical activity: a systematic review publication-title: Gait Posture – volume: 47 start-page: 1821 year: 2017 end-page: 45 article-title: Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations publication-title: Sports Med – volume: 20 start-page: 1101 year: 2017 end-page: 6 article-title: Comparability and feasibility of wrist‐ and hip‐worn accelerometers in free‐living adolescents publication-title: J Sci Med Sport – volume: 50 start-page: 246 year: 2018 end-page: 56 article-title: A youth compendium of physical activities: activity codes and metabolic intensities publication-title: Med Sci Sports Exerc – volume: 10 start-page: e0139984 year: 2015 article-title: Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio‐metabolic health markers: a novel compositional data analysis approach publication-title: PLoS ONE – volume: 49 start-page: 617 year: 2017 end-page: 24 article-title: Comparison of accelerometry methods for estimating physical activity publication-title: Med Sci Sports Exerc – volume: 8 start-page: e61691 year: 2013 article-title: Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity publication-title: PLoS ONE – volume: 38 start-page: 492 year: 2015 end-page: 9 article-title: Validation of accelerometer thresholds and inclinometry for measurement of sedentary behavior in young adult university students publication-title: Res Nurs Health – volume: 115 start-page: 12 year: 2018 end-page: 8 article-title: Associations of volumes and patterns of physical activity with metabolic health in children: a multivariate pattern analysis approach publication-title: Prev Med – volume: 98 start-page: 1475 year: 2009 end-page: 82 article-title: Physical activity, sports participation and aerobic fitness in children who have undergone surgery for congenital heart defects publication-title: Acta Paediatr – volume: 5 start-page: 56 year: 2008 article-title: A comparison of direct versus self‐report measures for assessing physical activity in adults: a systematic review publication-title: Int J Behav Nutr Phys Act – volume: 35 start-page: 2067 year: 2017 end-page: 72 article-title: Comparison of children's free‐living physical activity derived from wrist and hip raw accelerations during the segmented week publication-title: J Sports Sci – volume: 18 start-page: 39 year: 1985 end-page: 47 article-title: The frequency content of gait publication-title: J Biomech – volume: 48 start-page: 245 year: 2016 end-page: 53 article-title: Wear compliance and activity in children wearing wrist‐ and hip‐mounted accelerometers publication-title: Med Sci Sports Exerc – volume: 40 start-page: 454 year: 2011 end-page: 61 article-title: Physical activity in U.S. adults compliance with the physical activity guidelines for Americans publication-title: Am J Prev Med – volume: 12 start-page: e0188242 year: 2017 article-title: Effect of ActiGraph's low frequency extension for estimating steps and physical activity intensity publication-title: PLoS ONE – volume: 51 start-page: 590 year: 2018 end-page: 8 article-title: Accelerometer Data Processing and Energy Expenditure Estimation in Preschoolers publication-title: Med Sci Sports Exerc – volume: 14 start-page: 8 year: 2018 end-page: 15 article-title: Are patients with knee osteoarthritis and patients with knee joint replacement as physically active as healthy persons? publication-title: J Orthop Translat – volume: 46 start-page: 99 year: 2014 end-page: 106 article-title: Comparison of self‐reported versus accelerometer‐measured physical activity publication-title: Med Sci Sports Exerc – volume: 307 start-page: 704 year: 2012 end-page: 12 article-title: Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents publication-title: JAMA – volume: 390 start-page: 2643 year: 2017 end-page: 54 article-title: The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high‐income, middle‐income, and low‐income countries: the PURE study publication-title: Lancet – year: 2016 – volume: 97 start-page: 141 year: 2006 end-page: 7 article-title: Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise publication-title: Am J Cardiol – volume: 33 start-page: 219 year: 2012 end-page: 30 article-title: Biomechanical examination of the ‘plateau phenomenon’ in ActiGraph vertical activity counts publication-title: Physiol Meas – volume: 13 start-page: e0192117 year: 2018 article-title: The number of repeated observations needed to estimate the habitual physical activity of an individual to a given level of precision publication-title: PLoS ONE – volume: 49 start-page: 881 year: 1980 end-page: 7 article-title: Body acceleration distribution and O2 uptake in humans during running and jumping publication-title: J Appl Physiol Respir Environ Exerc Physiol – volume: 6 start-page: 162 year: 2017 end-page: 78 article-title: Considerations when using the activPAL monitor in field‐based research with adult populations publication-title: J Sport Health Sci – year: 2010 – volume: 23 start-page: S45 issue: Suppl 3 year: 1999 end-page: 9 article-title: Physical activity assessment with accelerometers publication-title: Int J Obes Relat Metab Disord – volume: 100 start-page: 126 year: 1985 end-page: 31 article-title: Physical activity, exercise, and physical fitness: definitions and distinctions for health‐related research publication-title: Public Health Rep – volume: 49 start-page: 2351 year: 2017 end-page: 60 article-title: Generating ActiGraph counts from raw acceleration recorded by an alternative monitor publication-title: Med Sci Sports Exerc – volume: 170 start-page: 519 year: 2009 end-page: 27 article-title: Isotemporal substitution paradigm for physical activity epidemiology and weight change publication-title: Am J Epidemiol – volume: 48 start-page: 1019 year: 2014 end-page: 23 article-title: Evolution of accelerometer methods for physical activity research publication-title: Br J Sports Med – volume: 45 start-page: 964 year: 2013 end-page: 75 article-title: Estimating activity and sedentary behavior from an accelerometer on the hip or wrist publication-title: Med Sci Sports Exerc – volume: 20 start-page: 173 year: 2016 end-page: 83 article-title: Comparison of activity type classification accuracy from accelerometers worn on the hop, wrist and thigh in young, apparently healthy adults publication-title: Meas Phys Educ Exerc Sci – volume: 4 start-page: 14 year: 2016 end-page: 7 article-title: Meeting physical activity recommendations may be protective against temporal lobe atrophy in older adults at risk for Alzheimer's disease publication-title: Alzheimers Dement (Amst) – volume: 9 start-page: 84 year: 2012 article-title: Validity of activity monitors in health and chronic disease: a systematic review publication-title: Int J Behav Nutr Phys Act – volume: 12 start-page: e0171720 year: 2017 article-title: Assessment of laboratory and daily energy expenditure estimates from consumer multi‐sensor physical activity monitors publication-title: PLoS ONE – volume: 35 start-page: 64 year: 2015 end-page: 70 article-title: A universal, accurate intensity‐based classification of different physical activities using raw data of accelerometer publication-title: Clin Physiol Funct Imaging – volume: 19 start-page: 219 year: 2015 end-page: 26 article-title: Estimating energy expenditure using body‐worn accelerometers: a comparison of methods, sensors number and positioning publication-title: IEEE J Biomed Health Inform – volume: 10 start-page: e0126336 year: 2015 article-title: The daily movement pattern and fulfilment of physical activity recommendations in Swedish middle‐aged adults: the SCAPIS pilot study publication-title: PLoS ONE – volume: 5 start-page: 27 year: 2018 article-title: A comprehensive study of activity recognition using accelerometers publication-title: Informatics – volume: 43 start-page: 1561 year: 2011 end-page: 7 article-title: Validation of wearable monitors for assessing sedentary behavior publication-title: Med Sci Sports Exerc – volume: 125 start-page: 798 year: 2019 end-page: 806 article-title: Levels and patterns of self‐reported and objectively‐measured free‐living physical activity among prostate cancer survivors: a prospective cohort study publication-title: Cancer – volume: 4 start-page: 2 year: 2009 end-page: 27 article-title: A comparison of indirect versus direct measures for assessing physical activity in the pediatric population: a systematic review publication-title: Int J Pediatr Obes – volume: 2018 start-page: 1284 year: 1985 end-page: 93 article-title: Cross‐validation and out‐of‐sample testing of physical activity intensity predictions with a wrist‐worn accelerometer publication-title: J Appl Physiol – volume: 27 start-page: 1814 year: 2017 end-page: 23 article-title: Evaluation of raw acceleration sedentary thresholds in children and adults publication-title: Scand J Med Sci Sports – start-page: E3399 year: 2018 article-title: A biomechanical re‐examination of physical activity measurement with accelerometers publication-title: Sensors (Basel) – ident: e_1_2_7_65_1 doi: 10.1111/j.1651-2227.2009.01369.x – ident: e_1_2_7_31_1 doi: 10.1111/cpf.12127 – ident: e_1_2_7_27_1 doi: 10.1111/sms.13244 – ident: e_1_2_7_50_1 doi: 10.1080/02640414.2018.1527198 – ident: e_1_2_7_25_1 doi: 10.1016/j.amepre.2010.12.016 – ident: e_1_2_7_11_1 doi: 10.1016/j.amjcard.2005.07.130 – ident: e_1_2_7_35_1 doi: 10.1088/0967-3334/33/2/219 – ident: e_1_2_7_48_1 doi: 10.1186/1479-5868-9-84 – ident: e_1_2_7_36_1 doi: 10.3390/s18103399 – volume: 100 start-page: 126 year: 1985 ident: e_1_2_7_8_1 article-title: Physical activity, exercise, and physical fitness: definitions and distinctions for health‐related research publication-title: Public Health Rep – ident: e_1_2_7_30_1 doi: 10.1016/0021-9290(85)90043-0 – ident: e_1_2_7_40_1 doi: 10.1016/j.ypmed.2018.08.001 – ident: e_1_2_7_19_1 doi: 10.1038/ejcn.2017.78 – ident: e_1_2_7_26_1 doi: 10.1249/MSS.0b013e3182a0595f – ident: e_1_2_7_28_1 doi: 10.1371/journal.pone.0126336 – volume: 49 start-page: 881 year: 1980 ident: e_1_2_7_34_1 article-title: Body acceleration distribution and O2 uptake in humans during running and jumping publication-title: J Appl Physiol Respir Environ Exerc Physiol – ident: e_1_2_7_16_1 doi: 10.1249/MSS.0b013e318213fefb – ident: e_1_2_7_46_1 doi: 10.1088/1361-6579/38/2/343 – ident: e_1_2_7_49_1 doi: 10.1111/sms.12795 – ident: e_1_2_7_56_1 doi: 10.1016/j.jsams.2017.04.017 – volume: 2018 start-page: 1284 year: 1985 ident: e_1_2_7_47_1 article-title: Cross‐validation and out‐of‐sample testing of physical activity intensity predictions with a wrist‐worn accelerometer publication-title: J Appl Physiol – ident: e_1_2_7_72_1 doi: 10.1371/journal.pone.0139984 – ident: e_1_2_7_55_1 doi: 10.1371/journal.pone.0169649 – ident: e_1_2_7_67_1 doi: 10.1080/1091367X.2016.1192038 – ident: e_1_2_7_62_1 doi: 10.1080/02640414.2016.1255347 – ident: e_1_2_7_57_1 doi: 10.1249/MSS.0000000000000771 – ident: e_1_2_7_37_1 doi: 10.1371/journal.pone.0188242 – ident: e_1_2_7_58_1 doi: 10.1080/02640414.2018.1461322 – ident: e_1_2_7_13_1 doi: 10.1249/MSS.0000000000001430 – ident: e_1_2_7_78_1 doi: 10.1016/j.dadm.2016.03.005 – ident: e_1_2_7_82_1 doi: 10.1186/s12966-015-0201-9 – ident: e_1_2_7_17_1 doi: 10.1249/MSS.0000000000001134 – ident: e_1_2_7_12_1 doi: 10.2147/OAJSM.S150596 – ident: e_1_2_7_64_1 doi: 10.1016/j.jshs.2016.02.002 – ident: e_1_2_7_5_1 doi: 10.1111/sms.13328 – ident: e_1_2_7_38_1 doi: 10.1371/journal.pone.0061691 – ident: e_1_2_7_63_1 doi: 10.1249/MSS.0000000000000365 – ident: e_1_2_7_75_1 doi: 10.1371/journal.pone.0192117 – ident: e_1_2_7_59_1 doi: 10.1186/s12966-015-0172-x – ident: e_1_2_7_7_1 doi: 10.1016/j.amjmed.2016.05.005 – ident: e_1_2_7_22_1 doi: 10.1080/17477160802315010 – ident: e_1_2_7_74_1 doi: 10.1249/MSS.0b013e3182399e5b – ident: e_1_2_7_29_1 doi: 10.1249/MSS.0b013e3181fdfc32 – ident: e_1_2_7_61_1 doi: 10.1097/00005768-200009001-00003 – ident: e_1_2_7_71_1 doi: 10.1177/2047487315619734 – ident: e_1_2_7_52_1 doi: 10.1038/sj.ijo.0800883 – ident: e_1_2_7_54_1 doi: 10.1136/bjsports-2014-093546 – ident: e_1_2_7_15_1 doi: 10.26530/OAPEN_483279 – ident: e_1_2_7_41_1 doi: 10.1038/s41366-018-0152-8 – volume-title: Partial Least Squares: regression & Structural Equation Models year: 2016 ident: e_1_2_7_73_1 – ident: e_1_2_7_77_1 doi: 10.1002/cncr.31857 – ident: e_1_2_7_14_1 doi: 10.1249/MSS.0b013e31821ece12 – ident: e_1_2_7_80_1 doi: 10.1016/j.jot.2018.03.001 – ident: e_1_2_7_51_1 doi: 10.1249/MSS.0000000000001124 – ident: e_1_2_7_69_1 doi: 10.1001/jama.2012.156 – ident: e_1_2_7_2_1 doi: 10.1016/S0140-6736(17)31634-3 – ident: e_1_2_7_21_1 doi: 10.1016/j.gaitpost.2017.12.028 – ident: e_1_2_7_23_1 doi: 10.1186/1479-5868-5-56 – ident: e_1_2_7_18_1 doi: 10.1123/jpah.9.s1.s5 – ident: e_1_2_7_45_1 doi: 10.3390/informatics5020027 – ident: e_1_2_7_9_1 doi: 10.1249/MSS.0b013e3182399c0e – ident: e_1_2_7_20_1 doi: 10.1007/s40279-017-0716-0 – ident: e_1_2_7_68_1 doi: 10.1371/journal.pone.0171720 – ident: e_1_2_7_43_1 doi: 10.1249/MSS.0b013e31820ce174 – ident: e_1_2_7_70_1 doi: 10.1093/aje/kwp163 – volume: 51 start-page: 590 year: 2018 ident: e_1_2_7_39_1 article-title: Accelerometer Data Processing and Energy Expenditure Estimation in Preschoolers publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0000000000001797 – ident: e_1_2_7_32_1 doi: 10.1249/MSS.0000000000000289 – ident: e_1_2_7_33_1 doi: 10.1249/MSS.0000000000001344 – ident: e_1_2_7_42_1 doi: 10.1002/nur.21694 – ident: e_1_2_7_24_1 doi: 10.1177/1403494813514143 – ident: e_1_2_7_60_1 doi: 10.1249/MSS.0b013e31827f0d9c – ident: e_1_2_7_6_1 doi: 10.1136/bjsports-2018-099598 – ident: e_1_2_7_66_1 doi: 10.1109/JBHI.2014.2313039 – ident: e_1_2_7_4_1 doi: 10.1016/S2214-109X(18)30357-7 – volume-title: Global Recommendations on Physical Activity for Health year: 2010 ident: e_1_2_7_3_1 – ident: e_1_2_7_81_1 doi: 10.1111/sms.12920 – volume-title: 2018 Physical Activity Guidelines Advisory Committee Scientific Report year: 2018 ident: e_1_2_7_10_1 – start-page: e004665 year: 2017 ident: e_1_2_7_79_1 article-title: Physical activity and sedentary behavior in children with congenital heart disease publication-title: J Am Heart Assoc doi: 10.1161/JAHA.116.004665 – ident: e_1_2_7_44_1 doi: 10.1123/jpah.2011-0347 – ident: e_1_2_7_53_1 doi: 10.1371/journal.pone.0134606 – ident: e_1_2_7_76_1 doi: 10.1093/ije/dyy294 |
SSID | ssj0013060 |
Score | 2.6169 |
SecondaryResourceType | review_article |
Snippet | Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of... |
SourceID | swepub proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 137 |
SubjectTerms | Acceleration accelerometer Accelerometers Accelerometry Calibration clinical Data processing Epidemiology Exercise Folkhälsovetenskap, global hälsa och socialmedicin Health Hip Humans Idrottsvetenskap och fitness Learning algorithms Machine Learning measurement Measurement methods Modelling Models, Statistical Nutrition and Dietetics Näringslära och dietkunskap Physical activity Physical training Position measurement protocol Public Health, Global Health and Social Medicine Sport and Fitness Sciences Statistical methods Statistics Thigh Wrist |
Title | Measurement of physical activity in clinical practice using accelerometers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjoim.12908 https://www.ncbi.nlm.nih.gov/pubmed/30993807 https://www.proquest.com/docview/2257982529 https://www.proquest.com/docview/2210959260 https://gup.ub.gu.se/publication/280708 |
Volume | 286 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_EB_Gl1u9t9UipCC3s4W72Iwe-lFq5u3IKUuFeJGQ3ySHq3tG7ffGvdyb74UdFsG9LMsvma3Z-k8z8AnCg8iDo6YzCyjX3I2uFLzgduMZK4wJR3LrrgEZnSf8yGo7j8RIcN7kwFT9Eu-FGmuH-16TgKps_VfLp9V2XdlEo0zfgCRHnn1yEj0cIRy5FGCFE5Cdo52puUhfG07763Br9AzFb_tDn0NXZntM1uGpaXYWc3HTLRdbN718QOv5vtz7ChxqUsh_VKlqHJVNswMqoPnbfhOHocSeRTS2b1ZPLKCuCLp9g1wVrcixZk3jFKKZ-gjI5mjZiRSAizy24PP3152ffry9h8PMoCYSvLTrJuVBGmMwmaZpyHmMZD3WqIhHbxJDJJ9a_o1wLjf6iDVMdRioRCCZzxbdhuZgWZhcYgtMMvSOjySYKrLOBUnGsEFJo7HzqwbdmMmReM5TTRRm3svVUcHCkGxwPvrays4qX41WpvWZOZa2bc4l_sLSHjnHY8-BLW41aRUclqjDTkmQC2iBFZ8-DnWottJ_hCKqJpt-Dw2pxtDVE1T0pZxKLJqWcG0lUQ9SK727G32ioHJ4PRu7p03uEP8MqArheFZC4B8uLv6XZR5C0yDqoDIPfHacSDx6QDb4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xIrG9AGNsC5TNaAhpk1I13-7jNFG1XQPSBBJvlhPbFdqWVrR54a_nzklTytAkeIvii_JhX-53Xz8DnMjc83oqo7JyFbihMdzlASVcI6lwgcjA2O2A0vN4cBWOrqPrujaHemEqfogm4EaaYf_XpOAUkH6o5dObvx0Ko_BXsGkTdISJfvmrJELXNgkjiAjdGC1dzU5qC3maa9ft0T8gs2EQXQev1vr0d6otVueWtJCKTn53ykXWye8eUTq--MV2YbvGpex7tZDewoYu9mArrTPv72CUroKJbGrYrJ5fRo0RtP8EuynYss2SLXuvGJXVT1AmR-tGxAjE5bkPV_2zyx8Dt96Hwc3D2OOuMugn51xqrjMTJ0kSBBGeC3yVyJBHJtZk9Yn4r5srrtBlNH6i_FDGHPFkLoP30Cqmhf4IDPFphg6SVmQWOY4ZT8ookogqFL584sDX5WyIvCYpp70y_ojGWcGPI-zHceBLIzurqDmelGovJ1XU6jkX-BNLeugb-z0HjpthVCzKlshCT0uS8ShGiv6eAx-qxdDcJkBcTUz9DpxWq6MZIbbuSTkTeGpSirkWxDZET_HNTvl_HlSMLoapPTp4jvBneD24TMdiPDz_eQhvEM_1qvrENrQWt6U-Qsy0yD5ZzbgHkxYQ4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSyQxEC48QHzxWo_22siKsEIP9p0BX0QddNxxRRR8WUK6kwyi9gw6_eKvtyp9eC0L61uTVNO5quurpOoLwLbMPK-tUgorV4EbGsNdHtCBayQVLhAZGHsdUO88PrkOuzfRzRjs17kwJT9Es-FGmmH_16TgQ2XeKvng9qFFuyh8HCbDGO0kQaJL__UMYc_mCCOGCN0YDV1FTmrjeJp335ujTxizIRB9j12t8enMwp-62WXMyV2rGKWt7PkDo-NX-zUHMxUqZQflMpqHMZ0vwFSvOnf_Bt3e61YiGxg2rGaXUVoE3T7BbnNWJ1myOvOKUVB9H2UytG1Ei0BMnotw3Tm-Ojxxq1sY3CyMPe4qg15yxqXmOjVxkiRBEGFZ4KtEhjwysSabT7R_e5niCh1G4yfKD2XMEU1mMliCiXyQ6xVgiE5TdI-0IqPIsc54UkaRREyhsPOJAz_ryRBZRVFON2Xci8ZVwcERdnAc-NHIDktijr9KrddzKirlfBL4C0va6Bn7bQe2mmpUKzorkbkeFCTj0Q4pensOLJdroflMgKiaePod2CkXR1NDXN39YiiwqF-IJy2Ia4hasWtn_B8NFd3fpz37tPo_wt9h6uKoI36dnp-twTSCuXYZnLgOE6PHQm8gYBqlm1YvXgBYcQ-S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+physical+activity+in+clinical+practice+using+accelerometers&rft.jtitle=Journal+of+internal+medicine&rft.au=Arvidsson%2C+D.&rft.au=Fridolfsson%2C+J.&rft.au=B%C3%B6rjesson%2C+M.&rft.date=2019-08-01&rft.issn=0954-6820&rft.eissn=1365-2796&rft.volume=286&rft.issue=2&rft.spage=137&rft.epage=153&rft_id=info:doi/10.1111%2Fjoim.12908&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_joim_12908 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-6820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-6820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-6820&client=summon |