Measurement of physical activity in clinical practice using accelerometers

Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self‐report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways t...

Full description

Saved in:
Bibliographic Details
Published inJournal of internal medicine Vol. 286; no. 2; pp. 137 - 153
Main Authors Arvidsson, D., Fridolfsson, J., Börjesson, M.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.08.2019
Subjects
Online AccessGet full text
ISSN0954-6820
1365-2796
1365-2796
DOI10.1111/joim.12908

Cover

Abstract Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self‐report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways to determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip and thigh data, whilst more advanced machine‐learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine‐learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing and calibration techniques, exploring both simple linear and machine‐learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health. Physical activity measurement requires good methodological knowledge to achieve measures of high precision and accuracy. Interdisciplinary collaboration facilitates implementation of physical activity into clinical practice as a vital sign of equal importance as any other clinical measure.
AbstractList Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self‐report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways to determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip and thigh data, whilst more advanced machine‐learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine‐learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing and calibration techniques, exploring both simple linear and machine‐learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health.
Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self‐report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways to determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip and thigh data, whilst more advanced machine‐learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine‐learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing and calibration techniques, exploring both simple linear and machine‐learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health.
Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self‐report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways to determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip and thigh data, whilst more advanced machine‐learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine‐learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing and calibration techniques, exploring both simple linear and machine‐learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health. Physical activity measurement requires good methodological knowledge to achieve measures of high precision and accuracy. Interdisciplinary collaboration facilitates implementation of physical activity into clinical practice as a vital sign of equal importance as any other clinical measure.
Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self-report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different waysto determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip andthighdata, whilst more advanced machine-learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine-learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing andcalibration techniques, exploring both simple linear and machine-learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health.
Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self-report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways to determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip and thigh data, whilst more advanced machine-learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine-learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing and calibration techniques, exploring both simple linear and machine-learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health.Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of self-report methods. Sensors are attached at the hip, wrist and thigh, and the acceleration data are processed and calibrated in different ways to determine activity intensity, body position and/or activity type. Simple linear modelling can be used to assess activity intensity from hip and thigh data, whilst more advanced machine-learning modelling is to prefer for the wrist. The thigh position is most optimal to assess body position and activity type using machine-learning modelling. Frequency filtering and measurement resolution needs to be considered for correct assessment of activity intensity. Simple physical activity measures and statistical methods are mostly used to investigate relationship with health, but do not take advantage of all information provided by accelerometers and do not consider all components of the physical activity behaviour and their interrelationships. More advanced statistical methods are suggested that analyse patterns of multiple measures of physical activity to demonstrate stronger and more specific relationships with health. However, evaluations of accelerometer methods show considerable measurement errors, especially at individual level, which interferes with their use in clinical research and practice. Therefore, better objective methods are needed with improved data processing and calibration techniques, exploring both simple linear and machine-learning alternatives. Development and implementation of accelerometer methods into clinical research and practice requires interdisciplinary collaboration to cover all aspects contributing to useful and accurate measures of physical activity behaviours related to health.
Author Börjesson, M.
Arvidsson, D.
Fridolfsson, J.
Author_xml – sequence: 1
  givenname: D.
  orcidid: 0000-0002-3112-5434
  surname: Arvidsson
  fullname: Arvidsson, D.
  email: daniel.arvidsson@gu.se
  organization: University of Gothenburg
– sequence: 2
  givenname: J.
  surname: Fridolfsson
  fullname: Fridolfsson, J.
  organization: University of Gothenburg
– sequence: 3
  givenname: M.
  surname: Börjesson
  fullname: Börjesson, M.
  organization: Sahlgrenska University Hospital/Östra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30993807$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/280708$$DView record from Swedish Publication Index
BookMark eNp90c1L5DAUAPAgio7uXvwDlsJeloVqPtokPS6yroriRc8hk76OGdqkmzTK_PdmrHoQMZfA4_ce7-MQ7TrvAKFjgk9Ifqdrb4cTQhssd9CCMF6XVDR8Fy1wU1cllxQfoMMY1xgThjneRwcMNw2TWCzQ1Q3omAIM4KbCd8X4sInW6L7QZrKPdtoU1hWmt-4lOIZt2ECRonWrbAz0EPwAE4T4De11uo_w_fU_Qvfnf-_OLsrr23-XZ3-uS1NxIsu2E1IaqUHCsuNCCMbqHGO0FbqSdcdBElmTCjNsWtnKCndUtLTSXBJOjGZHqJzrxicY01KNwQ46bJTXVq3SqHJolVQERfOEWGb_a_Zj8P8TxEkNNubGe-3Ap6goJXlRDeU4058f6Nqn4PI0WdWikbSmTVY_XlVaDtC-N_C21Qx-z8AEH2OA7p0QrLYnU9uTqZeTZYw_YGMnPVnvpqBt_3kKmVOebA-bL4qrq9vLmznnGaeJqFE
CitedBy_id crossref_primary_10_1177_01650254241308506
crossref_primary_10_1016_j_cct_2021_106661
crossref_primary_10_1016_j_jchf_2021_05_013
crossref_primary_10_1186_s12891_021_04479_z
crossref_primary_10_1136_bmjopen_2022_065953
crossref_primary_10_1111_pedi_13288
crossref_primary_10_1051_bioconf_20202600033
crossref_primary_10_1123_jmpb_2021_0050
crossref_primary_10_1002_lio2_610
crossref_primary_10_1111_cpf_12795
crossref_primary_10_3389_fspor_2023_1294927
crossref_primary_10_1016_j_measurement_2021_109946
crossref_primary_10_1186_s11556_023_00320_9
crossref_primary_10_3390_cancers15153784
crossref_primary_10_2196_68479
crossref_primary_10_2196_39085
crossref_primary_10_1016_j_msard_2021_103081
crossref_primary_10_1080_14017431_2024_2397442
crossref_primary_10_1111_sms_14131
crossref_primary_10_3390_ijerph19138185
crossref_primary_10_1080_1091367X_2022_2065919
crossref_primary_10_1186_s12889_024_20301_6
crossref_primary_10_3390_children10030475
crossref_primary_10_1186_s13102_022_00503_4
crossref_primary_10_3390_jcm12165340
crossref_primary_10_1186_s12877_021_02725_6
crossref_primary_10_24310_riccafd_12_3_2023_17979
crossref_primary_10_1017_S1047951121000627
crossref_primary_10_3390_s21030904
crossref_primary_10_1186_s12877_021_02429_x
crossref_primary_10_1186_s44167_024_00053_9
crossref_primary_10_1017_S1355617725000049
crossref_primary_10_1186_s41927_021_00233_z
crossref_primary_10_1007_s00296_023_05342_1
crossref_primary_10_1177_08901171221119089
crossref_primary_10_1177_09544119241281976
crossref_primary_10_3390_healthcare11142080
crossref_primary_10_1161_CIRCOUTCOMES_123_010066
crossref_primary_10_1186_s12966_021_01156_1
crossref_primary_10_3390_ijerph20196852
crossref_primary_10_1093_gerona_glab347
crossref_primary_10_1093_gerona_glab103
crossref_primary_10_1123_japa_2023_0384
crossref_primary_10_1007_s42835_022_01258_1
crossref_primary_10_1007_s43465_022_00629_0
crossref_primary_10_1136_bmjopen_2022_070044
crossref_primary_10_3390_children8111022
crossref_primary_10_3390_ijerph20206944
crossref_primary_10_2196_57158
crossref_primary_10_7717_peerj_16815
crossref_primary_10_1088_1361_6579_acf755
crossref_primary_10_1371_journal_pone_0301412
crossref_primary_10_1186_s12874_023_01868_x
crossref_primary_10_1111_jjns_12418
crossref_primary_10_1080_07853890_2024_2399963
crossref_primary_10_2196_35701
crossref_primary_10_1007_s00431_023_05014_z
crossref_primary_10_1016_j_ijsu_2020_10_032
crossref_primary_10_1016_j_msard_2024_106243
crossref_primary_10_1371_journal_pone_0240604
crossref_primary_10_1002_nur_22077
crossref_primary_10_1186_s12891_023_06458_y
crossref_primary_10_1186_s44167_025_00072_0
crossref_primary_10_1007_s00521_020_05504_3
crossref_primary_10_1016_j_mayocp_2024_10_022
crossref_primary_10_1136_bmjopen_2019_036433
crossref_primary_10_1111_hae_14752
crossref_primary_10_1186_s13063_021_05950_x
crossref_primary_10_3390_s21072333
crossref_primary_10_3390_s22176598
crossref_primary_10_1136_bmjopen_2020_047522
crossref_primary_10_1186_s12874_021_01350_6
crossref_primary_10_3390_s20164585
crossref_primary_10_1007_s11126_023_10047_6
crossref_primary_10_1097_JCN_0000000000000959
crossref_primary_10_1123_jmpb_2024_0034
crossref_primary_10_3390_s23062951
crossref_primary_10_2196_19789
crossref_primary_10_1371_journal_pone_0309481
crossref_primary_10_1016_j_ergon_2022_103319
crossref_primary_10_1016_j_lana_2025_100996
crossref_primary_10_1016_j_measen_2024_101648
crossref_primary_10_1016_j_ptsp_2023_09_011
crossref_primary_10_1109_TNSRE_2022_3201487
crossref_primary_10_1111_hae_14624
crossref_primary_10_1186_s42490_020_00042_4
crossref_primary_10_1007_s00296_020_04608_2
crossref_primary_10_3390_ani14243628
crossref_primary_10_1123_jmpb_2023_0031
crossref_primary_10_1016_j_mayocpiqo_2021_08_011
crossref_primary_10_3390_s21237853
crossref_primary_10_3389_fspor_2023_1113687
crossref_primary_10_1177_17423953221137889
crossref_primary_10_1111_sms_14052
crossref_primary_10_2196_39442
crossref_primary_10_7717_peerj_16990
crossref_primary_10_1111_cpf_12860
crossref_primary_10_3390_jcm13020325
crossref_primary_10_3390_brainsci11111500
crossref_primary_10_1016_j_jpain_2023_10_021
crossref_primary_10_3390_s23031416
crossref_primary_10_1017_S104795112200141X
crossref_primary_10_1080_02701367_2021_1923627
crossref_primary_10_3390_s24020672
crossref_primary_10_7759_cureus_71398
crossref_primary_10_1123_jmpb_2021_0015
crossref_primary_10_1123_jmpb_2024_0017
crossref_primary_10_3390_s23156943
crossref_primary_10_1186_s40814_022_01075_3
crossref_primary_10_1016_j_neubiorev_2023_105365
crossref_primary_10_1123_jmpb_2020_0066
crossref_primary_10_1016_j_jpedsurg_2019_12_003
crossref_primary_10_1371_journal_pone_0260077
crossref_primary_10_3390_ijerph182211951
crossref_primary_10_1038_s41598_022_20327_z
crossref_primary_10_1038_s41598_023_48232_z
crossref_primary_10_1109_TNSRE_2021_3051093
crossref_primary_10_1186_s12887_023_04256_y
crossref_primary_10_1016_j_tsep_2024_102984
crossref_primary_10_1016_j_smhs_2025_02_010
crossref_primary_10_1111_sms_14719
crossref_primary_10_2196_25289
crossref_primary_10_3390_s20041118
crossref_primary_10_1097_HCR_0000000000000642
crossref_primary_10_1016_j_diabres_2021_108833
crossref_primary_10_2139_ssrn_3969403
crossref_primary_10_1186_s13741_022_00260_5
crossref_primary_10_1080_02813432_2024_2373298
crossref_primary_10_1186_s40001_024_01975_5
crossref_primary_10_1136_bmjopen_2022_070597
crossref_primary_10_1186_s13102_023_00717_0
crossref_primary_10_1371_journal_pone_0270265
crossref_primary_10_1016_j_jsams_2024_05_002
crossref_primary_10_2478_pcssr_2022_0022
crossref_primary_10_1016_j_rasd_2022_102043
crossref_primary_10_1186_s42490_023_00071_9
crossref_primary_10_1186_s12966_022_01375_0
crossref_primary_10_1186_s12889_023_17281_4
crossref_primary_10_1136_bjsports_2023_107451
crossref_primary_10_1080_02701367_2022_2148624
crossref_primary_10_1158_1055_9965_EPI_19_1446
crossref_primary_10_1016_j_ajpc_2022_100379
crossref_primary_10_3390_sclerosis1030014
crossref_primary_10_1016_S2213_8587_21_00207_2
crossref_primary_10_1186_s13102_022_00417_1
crossref_primary_10_1111_jar_13260
crossref_primary_10_1111_sms_14541
Cites_doi 10.1111/j.1651-2227.2009.01369.x
10.1111/cpf.12127
10.1111/sms.13244
10.1080/02640414.2018.1527198
10.1016/j.amepre.2010.12.016
10.1016/j.amjcard.2005.07.130
10.1088/0967-3334/33/2/219
10.1186/1479-5868-9-84
10.3390/s18103399
10.1016/0021-9290(85)90043-0
10.1016/j.ypmed.2018.08.001
10.1038/ejcn.2017.78
10.1249/MSS.0b013e3182a0595f
10.1371/journal.pone.0126336
10.1249/MSS.0b013e318213fefb
10.1088/1361-6579/38/2/343
10.1111/sms.12795
10.1016/j.jsams.2017.04.017
10.1371/journal.pone.0139984
10.1371/journal.pone.0169649
10.1080/1091367X.2016.1192038
10.1080/02640414.2016.1255347
10.1249/MSS.0000000000000771
10.1371/journal.pone.0188242
10.1080/02640414.2018.1461322
10.1249/MSS.0000000000001430
10.1016/j.dadm.2016.03.005
10.1186/s12966-015-0201-9
10.1249/MSS.0000000000001134
10.2147/OAJSM.S150596
10.1016/j.jshs.2016.02.002
10.1111/sms.13328
10.1371/journal.pone.0061691
10.1249/MSS.0000000000000365
10.1371/journal.pone.0192117
10.1186/s12966-015-0172-x
10.1016/j.amjmed.2016.05.005
10.1080/17477160802315010
10.1249/MSS.0b013e3182399e5b
10.1249/MSS.0b013e3181fdfc32
10.1097/00005768-200009001-00003
10.1177/2047487315619734
10.1038/sj.ijo.0800883
10.1136/bjsports-2014-093546
10.26530/OAPEN_483279
10.1038/s41366-018-0152-8
10.1002/cncr.31857
10.1249/MSS.0b013e31821ece12
10.1016/j.jot.2018.03.001
10.1249/MSS.0000000000001124
10.1001/jama.2012.156
10.1016/S0140-6736(17)31634-3
10.1016/j.gaitpost.2017.12.028
10.1186/1479-5868-5-56
10.1123/jpah.9.s1.s5
10.3390/informatics5020027
10.1249/MSS.0b013e3182399c0e
10.1007/s40279-017-0716-0
10.1371/journal.pone.0171720
10.1249/MSS.0b013e31820ce174
10.1093/aje/kwp163
10.1249/MSS.0000000000001797
10.1249/MSS.0000000000000289
10.1249/MSS.0000000000001344
10.1002/nur.21694
10.1177/1403494813514143
10.1249/MSS.0b013e31827f0d9c
10.1136/bjsports-2018-099598
10.1109/JBHI.2014.2313039
10.1016/S2214-109X(18)30357-7
10.1111/sms.12920
10.1161/JAHA.116.004665
10.1123/jpah.2011-0347
10.1371/journal.pone.0134606
10.1093/ije/dyy294
ContentType Journal Article
Copyright 2019 The Association for the Publication of the Journal of Internal Medicine
2019 The Association for the Publication of the Journal of Internal Medicine.
Copyright © 2019 The Association for the Publication of the Journal of Internal Medicine
Copyright_xml – notice: 2019 The Association for the Publication of the Journal of Internal Medicine
– notice: 2019 The Association for the Publication of the Journal of Internal Medicine.
– notice: Copyright © 2019 The Association for the Publication of the Journal of Internal Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
K9.
7X8
ADTPV
AOWAS
F1U
DOI 10.1111/joim.12908
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 1365-2796
EndPage 153
ExternalDocumentID oai_gup_ub_gu_se_280708
30993807
10_1111_joim_12908
JOIM12908
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29K
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
TR2
UB1
V8K
V9Y
VH1
VVN
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZCG
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
K9.
7X8
ADTPV
AOWAS
F1U
ID FETCH-LOGICAL-c4618-df788c8ae8ebf6777335df732d7a485f6e818514030cd8d840f27d24a68161ca3
IEDL.DBID DR2
ISSN 0954-6820
1365-2796
IngestDate Thu Aug 21 06:37:00 EDT 2025
Fri Jul 11 03:24:35 EDT 2025
Fri Jul 25 22:42:07 EDT 2025
Mon Jul 21 05:49:33 EDT 2025
Thu Apr 24 22:51:37 EDT 2025
Tue Jul 01 00:45:37 EDT 2025
Wed Jan 22 16:39:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords clinical
protocol
measurement
accelerometer
physical activity
Language English
License 2019 The Association for the Publication of the Journal of Internal Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4618-df788c8ae8ebf6777335df732d7a485f6e818514030cd8d840f27d24a68161ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3112-5434
PMID 30993807
PQID 2257982529
PQPubID 30713
PageCount 17
ParticipantIDs swepub_primary_oai_gup_ub_gu_se_280708
proquest_miscellaneous_2210959260
proquest_journals_2257982529
pubmed_primary_30993807
crossref_primary_10_1111_joim_12908
crossref_citationtrail_10_1111_joim_12908
wiley_primary_10_1111_joim_12908_JOIM12908
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Journal of internal medicine
PublicationTitleAlternate J Intern Med
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 35
1980; 49
2017; 6
2015; 38
2017; 47
2017; 49
2017; 390
2019; 125
2008; 5
2013; 8
2018; 42
2018; 6
2018; 9
1985; 18
2017; 71
2018; 5
2009; 98
2009; 170
2017; 38
2017; 35
1985; 2018
2016; 48
2014; 11
2018; 37
2018; 36
2015; 12
2018; 29
2017; 20
2018; 28
2006; 97
2015; 19
2010
2017; 28
2016; 129
2017; 27
2013; 45
2011; 40
2015; 10
1999; 23
2014; 48
2014; 46
2018; 61
2012; 33
2012; 307
1985; 100
2014; 42
2016; 4
2015; 23
2000; 32
2018; 115
2017; 12
2016; 20
2019
2018
2011; 43
2017
2016
2018; 51
2018; 50
2014
2009; 4
2018; 53
2012; 44
2018; 14
2012; 9
2018; 13
e_1_2_7_5_1
e_1_2_7_9_1
Garson G (e_1_2_7_73_1) 2016
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Montoye AHK (e_1_2_7_47_1) 1985; 2018
Bhattacharya A (e_1_2_7_34_1) 1980; 49
World Health Organization (e_1_2_7_3_1) 2010
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Physical Activity Guidelines Advisory Report (e_1_2_7_10_1) 2018
e_1_2_7_37_1
e_1_2_7_58_1
Voss C (e_1_2_7_79_1) 2017
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
Caspersen CJ (e_1_2_7_8_1) 1985; 100
e_1_2_7_29_1
Migueles JH (e_1_2_7_39_1) 2018; 51
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 53
  start-page: 383
  year: 2018
  end-page: 8
  article-title: Physical activity on prescription in accordance with the Swedish model increases physical activity: a systematic review
  publication-title: Br J Sports Med
– volume: 9
  start-page: 1
  year: 2018
  end-page: 17
  article-title: High‐intensity interval training versus moderate‐intensity continuous training within cardiac rehabilitation: a systematic review and meta‐analysis
  publication-title: Open Access J Sports Med
– volume: 43
  start-page: 815
  year: 2011
  end-page: 21
  article-title: Self‐reported and objectively measured activity related to biomarkers using NHANES
  publication-title: Med Sci Sports Exerc
– start-page: e004665
  year: 2017
  article-title: Physical activity and sedentary behavior in children with congenital heart disease
  publication-title: J Am Heart Assoc
– volume: 12
  start-page: 42
  year: 2015
  article-title: The validity of consumer‐level, activity monitors in healthy adults worn in free‐living conditions: a cross‐sectional study
  publication-title: Int J Behav Nutr Phys Act
– year: 2019
  article-title: Physical activity of UK adults with chronic disease: cross‐sectional analysis of accelerometer‐measured physical activity in 96 706 UK Biobank participants
  publication-title: Int J Epidemiol
– volume: 49
  start-page: 474
  year: 2017
  end-page: 81
  article-title: Physical activity: absolute intensity versus relative‐to‐fitness‐level volumes
  publication-title: Med Sci Sports Exerc
– volume: 32
  start-page: S450
  year: 2000
  end-page: 6
  article-title: Estimation of energy expenditure using CSA accelerometers at hip and wrist sites
  publication-title: Med Sci Sports Exerc
– volume: 46
  start-page: 2308
  year: 2014
  end-page: 16
  article-title: Children's physical activity assessed with wrist‐ and hip‐worn accelerometers
  publication-title: Med Sci Sports Exerc
– volume: 129
  start-page: 903
  year: 2016
  end-page: 5
  article-title: The call for a physical activity vital sign in clinical practice
  publication-title: Am J Med
– volume: 12
  start-page: e0169649
  year: 2017
  article-title: Large scale population assessment of physical activity using Wrist Worn accelerometers: the UK biobank study
  publication-title: PLoS ONE
– volume: 46
  start-page: 1816
  year: 2014
  end-page: 24
  article-title: Age group comparability of raw accelerometer output from wrist‐ and hip‐worn monitors
  publication-title: Med Sci Sports Exerc
– volume: 42
  start-page: 1639
  year: 2018
  end-page: 50
  article-title: Physical activity intensity, bout‐duration, and cardiometabolic risk markers in children and adolescents
  publication-title: Int J Obes (Lond)
– volume: 29
  start-page: 232
  year: 2018
  end-page: 9
  article-title: Decline in cardiorespiratory fitness in the Swedish working force between 1995 and 2017
  publication-title: Scand J Med Sci Sports
– volume: 6
  start-page: e1077
  year: 2018
  end-page: 86
  article-title: Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population‐based surveys with 1·9 million participants
  publication-title: Lancet Glob Health
– volume: 9
  start-page: S5
  issue: Suppl 1
  year: 2012
  end-page: 10
  article-title: Physical activity by self‐report: a brief history and future issues
  publication-title: J Phys Act Health
– volume: 28
  start-page: 2196
  year: 2018
  end-page: 206
  article-title: Aerobic physical activity assessed with accelerometer, diary, questionnaire, and interview in a Finnish population sample
  publication-title: Scand J Med Sci Sports
– year: 2018
– volume: 44
  start-page: S5
  year: 2012
  end-page: 12
  article-title: Assessing physical activity using wearable monitors: measures of physical activity
  publication-title: Med Sci Sports Exerc
– year: 2014
– volume: 12
  start-page: 11
  year: 2015
  article-title: Improving wear time compliance with a 24‐hour waist‐worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE)
  publication-title: Int J Behav Nutr Phys Act
– volume: 28
  start-page: 487
  year: 2017
  end-page: 95
  article-title: Validation of SenseWear Armband in children, adolescents, and adults
  publication-title: Scand J Med Sci Sports
– volume: 11
  start-page: 76
  year: 2014
  end-page: 84
  article-title: Detection of physical activity types using triaxial accelerometers
  publication-title: J Phys Act Health
– volume: 42
  start-page: 255
  year: 2014
  end-page: 62
  article-title: Cross‐cultural validation of a simple self‐report instrument of physical activity in immigrants from the Middle East and native Swedes
  publication-title: Scand J Public Health
– volume: 10
  start-page: e0134606
  year: 2015
  article-title: Reliability of the actigraph GT3X+ accelerometer in adults under free‐living conditions
  publication-title: PLoS ONE
– volume: 43
  start-page: 1575
  year: 2011
  end-page: 81
  article-title: 2011 Compendium of Physical Activities: a second update of codes and MET values
  publication-title: Med Sci Sports Exerc
– volume: 36
  start-page: 2424
  year: 2018
  end-page: 30
  article-title: Wear compliance, sedentary behaviour and activity in free‐living children from hip‐and wrist‐mounted ActiGraph GT3X+ accelerometers
  publication-title: J Sports Sci
– volume: 37
  start-page: 779
  year: 2018
  end-page: 87
  article-title: Comparing physical activity estimates in children from hip‐worn Actigraph GT3X+ accelerometers using raw and counts based processing methods
  publication-title: J Sports Sci
– volume: 71
  start-page: 1026
  year: 2017
  article-title: Usefulness of motion sensors to estimate energy expenditure in children and adults: a narrative review of studies using DLW
  publication-title: Eur J Clin Nutr
– volume: 44
  start-page: S68
  year: 2012
  end-page: 76
  article-title: Best practices for using physical activity monitors in population‐based research
  publication-title: Med Sci Sports Exerc
– volume: 23
  start-page: 967
  year: 2015
  end-page: 74
  article-title: Isotemporal substitution of sedentary time by physical activity of different intensities and bout lengths, and its associations with metabolic risk
  publication-title: Eur J Prev Cardiol
– volume: 38
  start-page: 343
  year: 2017
  end-page: 57
  article-title: Comparison of linear and non‐linear models for predicting energy expenditure from raw accelerometer data
  publication-title: Physiol Meas
– volume: 43
  start-page: 1334
  year: 2011
  end-page: 59
  article-title: American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise
  publication-title: Med Sci Sports Exerc
– volume: 61
  start-page: 98
  year: 2018
  end-page: 110
  article-title: calibration of raw accelerometer data to measure physical activity: a systematic review
  publication-title: Gait Posture
– volume: 47
  start-page: 1821
  year: 2017
  end-page: 45
  article-title: Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations
  publication-title: Sports Med
– volume: 20
  start-page: 1101
  year: 2017
  end-page: 6
  article-title: Comparability and feasibility of wrist‐ and hip‐worn accelerometers in free‐living adolescents
  publication-title: J Sci Med Sport
– volume: 50
  start-page: 246
  year: 2018
  end-page: 56
  article-title: A youth compendium of physical activities: activity codes and metabolic intensities
  publication-title: Med Sci Sports Exerc
– volume: 10
  start-page: e0139984
  year: 2015
  article-title: Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio‐metabolic health markers: a novel compositional data analysis approach
  publication-title: PLoS ONE
– volume: 49
  start-page: 617
  year: 2017
  end-page: 24
  article-title: Comparison of accelerometry methods for estimating physical activity
  publication-title: Med Sci Sports Exerc
– volume: 8
  start-page: e61691
  year: 2013
  article-title: Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity
  publication-title: PLoS ONE
– volume: 38
  start-page: 492
  year: 2015
  end-page: 9
  article-title: Validation of accelerometer thresholds and inclinometry for measurement of sedentary behavior in young adult university students
  publication-title: Res Nurs Health
– volume: 115
  start-page: 12
  year: 2018
  end-page: 8
  article-title: Associations of volumes and patterns of physical activity with metabolic health in children: a multivariate pattern analysis approach
  publication-title: Prev Med
– volume: 98
  start-page: 1475
  year: 2009
  end-page: 82
  article-title: Physical activity, sports participation and aerobic fitness in children who have undergone surgery for congenital heart defects
  publication-title: Acta Paediatr
– volume: 5
  start-page: 56
  year: 2008
  article-title: A comparison of direct versus self‐report measures for assessing physical activity in adults: a systematic review
  publication-title: Int J Behav Nutr Phys Act
– volume: 35
  start-page: 2067
  year: 2017
  end-page: 72
  article-title: Comparison of children's free‐living physical activity derived from wrist and hip raw accelerations during the segmented week
  publication-title: J Sports Sci
– volume: 18
  start-page: 39
  year: 1985
  end-page: 47
  article-title: The frequency content of gait
  publication-title: J Biomech
– volume: 48
  start-page: 245
  year: 2016
  end-page: 53
  article-title: Wear compliance and activity in children wearing wrist‐ and hip‐mounted accelerometers
  publication-title: Med Sci Sports Exerc
– volume: 40
  start-page: 454
  year: 2011
  end-page: 61
  article-title: Physical activity in U.S. adults compliance with the physical activity guidelines for Americans
  publication-title: Am J Prev Med
– volume: 12
  start-page: e0188242
  year: 2017
  article-title: Effect of ActiGraph's low frequency extension for estimating steps and physical activity intensity
  publication-title: PLoS ONE
– volume: 51
  start-page: 590
  year: 2018
  end-page: 8
  article-title: Accelerometer Data Processing and Energy Expenditure Estimation in Preschoolers
  publication-title: Med Sci Sports Exerc
– volume: 14
  start-page: 8
  year: 2018
  end-page: 15
  article-title: Are patients with knee osteoarthritis and patients with knee joint replacement as physically active as healthy persons?
  publication-title: J Orthop Translat
– volume: 46
  start-page: 99
  year: 2014
  end-page: 106
  article-title: Comparison of self‐reported versus accelerometer‐measured physical activity
  publication-title: Med Sci Sports Exerc
– volume: 307
  start-page: 704
  year: 2012
  end-page: 12
  article-title: Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents
  publication-title: JAMA
– volume: 390
  start-page: 2643
  year: 2017
  end-page: 54
  article-title: The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high‐income, middle‐income, and low‐income countries: the PURE study
  publication-title: Lancet
– year: 2016
– volume: 97
  start-page: 141
  year: 2006
  end-page: 7
  article-title: Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise
  publication-title: Am J Cardiol
– volume: 33
  start-page: 219
  year: 2012
  end-page: 30
  article-title: Biomechanical examination of the ‘plateau phenomenon’ in ActiGraph vertical activity counts
  publication-title: Physiol Meas
– volume: 13
  start-page: e0192117
  year: 2018
  article-title: The number of repeated observations needed to estimate the habitual physical activity of an individual to a given level of precision
  publication-title: PLoS ONE
– volume: 49
  start-page: 881
  year: 1980
  end-page: 7
  article-title: Body acceleration distribution and O2 uptake in humans during running and jumping
  publication-title: J Appl Physiol Respir Environ Exerc Physiol
– volume: 6
  start-page: 162
  year: 2017
  end-page: 78
  article-title: Considerations when using the activPAL monitor in field‐based research with adult populations
  publication-title: J Sport Health Sci
– year: 2010
– volume: 23
  start-page: S45
  issue: Suppl 3
  year: 1999
  end-page: 9
  article-title: Physical activity assessment with accelerometers
  publication-title: Int J Obes Relat Metab Disord
– volume: 100
  start-page: 126
  year: 1985
  end-page: 31
  article-title: Physical activity, exercise, and physical fitness: definitions and distinctions for health‐related research
  publication-title: Public Health Rep
– volume: 49
  start-page: 2351
  year: 2017
  end-page: 60
  article-title: Generating ActiGraph counts from raw acceleration recorded by an alternative monitor
  publication-title: Med Sci Sports Exerc
– volume: 170
  start-page: 519
  year: 2009
  end-page: 27
  article-title: Isotemporal substitution paradigm for physical activity epidemiology and weight change
  publication-title: Am J Epidemiol
– volume: 48
  start-page: 1019
  year: 2014
  end-page: 23
  article-title: Evolution of accelerometer methods for physical activity research
  publication-title: Br J Sports Med
– volume: 45
  start-page: 964
  year: 2013
  end-page: 75
  article-title: Estimating activity and sedentary behavior from an accelerometer on the hip or wrist
  publication-title: Med Sci Sports Exerc
– volume: 20
  start-page: 173
  year: 2016
  end-page: 83
  article-title: Comparison of activity type classification accuracy from accelerometers worn on the hop, wrist and thigh in young, apparently healthy adults
  publication-title: Meas Phys Educ Exerc Sci
– volume: 4
  start-page: 14
  year: 2016
  end-page: 7
  article-title: Meeting physical activity recommendations may be protective against temporal lobe atrophy in older adults at risk for Alzheimer's disease
  publication-title: Alzheimers Dement (Amst)
– volume: 9
  start-page: 84
  year: 2012
  article-title: Validity of activity monitors in health and chronic disease: a systematic review
  publication-title: Int J Behav Nutr Phys Act
– volume: 12
  start-page: e0171720
  year: 2017
  article-title: Assessment of laboratory and daily energy expenditure estimates from consumer multi‐sensor physical activity monitors
  publication-title: PLoS ONE
– volume: 35
  start-page: 64
  year: 2015
  end-page: 70
  article-title: A universal, accurate intensity‐based classification of different physical activities using raw data of accelerometer
  publication-title: Clin Physiol Funct Imaging
– volume: 19
  start-page: 219
  year: 2015
  end-page: 26
  article-title: Estimating energy expenditure using body‐worn accelerometers: a comparison of methods, sensors number and positioning
  publication-title: IEEE J Biomed Health Inform
– volume: 10
  start-page: e0126336
  year: 2015
  article-title: The daily movement pattern and fulfilment of physical activity recommendations in Swedish middle‐aged adults: the SCAPIS pilot study
  publication-title: PLoS ONE
– volume: 5
  start-page: 27
  year: 2018
  article-title: A comprehensive study of activity recognition using accelerometers
  publication-title: Informatics
– volume: 43
  start-page: 1561
  year: 2011
  end-page: 7
  article-title: Validation of wearable monitors for assessing sedentary behavior
  publication-title: Med Sci Sports Exerc
– volume: 125
  start-page: 798
  year: 2019
  end-page: 806
  article-title: Levels and patterns of self‐reported and objectively‐measured free‐living physical activity among prostate cancer survivors: a prospective cohort study
  publication-title: Cancer
– volume: 4
  start-page: 2
  year: 2009
  end-page: 27
  article-title: A comparison of indirect versus direct measures for assessing physical activity in the pediatric population: a systematic review
  publication-title: Int J Pediatr Obes
– volume: 2018
  start-page: 1284
  year: 1985
  end-page: 93
  article-title: Cross‐validation and out‐of‐sample testing of physical activity intensity predictions with a wrist‐worn accelerometer
  publication-title: J Appl Physiol
– volume: 27
  start-page: 1814
  year: 2017
  end-page: 23
  article-title: Evaluation of raw acceleration sedentary thresholds in children and adults
  publication-title: Scand J Med Sci Sports
– start-page: E3399
  year: 2018
  article-title: A biomechanical re‐examination of physical activity measurement with accelerometers
  publication-title: Sensors (Basel)
– ident: e_1_2_7_65_1
  doi: 10.1111/j.1651-2227.2009.01369.x
– ident: e_1_2_7_31_1
  doi: 10.1111/cpf.12127
– ident: e_1_2_7_27_1
  doi: 10.1111/sms.13244
– ident: e_1_2_7_50_1
  doi: 10.1080/02640414.2018.1527198
– ident: e_1_2_7_25_1
  doi: 10.1016/j.amepre.2010.12.016
– ident: e_1_2_7_11_1
  doi: 10.1016/j.amjcard.2005.07.130
– ident: e_1_2_7_35_1
  doi: 10.1088/0967-3334/33/2/219
– ident: e_1_2_7_48_1
  doi: 10.1186/1479-5868-9-84
– ident: e_1_2_7_36_1
  doi: 10.3390/s18103399
– volume: 100
  start-page: 126
  year: 1985
  ident: e_1_2_7_8_1
  article-title: Physical activity, exercise, and physical fitness: definitions and distinctions for health‐related research
  publication-title: Public Health Rep
– ident: e_1_2_7_30_1
  doi: 10.1016/0021-9290(85)90043-0
– ident: e_1_2_7_40_1
  doi: 10.1016/j.ypmed.2018.08.001
– ident: e_1_2_7_19_1
  doi: 10.1038/ejcn.2017.78
– ident: e_1_2_7_26_1
  doi: 10.1249/MSS.0b013e3182a0595f
– ident: e_1_2_7_28_1
  doi: 10.1371/journal.pone.0126336
– volume: 49
  start-page: 881
  year: 1980
  ident: e_1_2_7_34_1
  article-title: Body acceleration distribution and O2 uptake in humans during running and jumping
  publication-title: J Appl Physiol Respir Environ Exerc Physiol
– ident: e_1_2_7_16_1
  doi: 10.1249/MSS.0b013e318213fefb
– ident: e_1_2_7_46_1
  doi: 10.1088/1361-6579/38/2/343
– ident: e_1_2_7_49_1
  doi: 10.1111/sms.12795
– ident: e_1_2_7_56_1
  doi: 10.1016/j.jsams.2017.04.017
– volume: 2018
  start-page: 1284
  year: 1985
  ident: e_1_2_7_47_1
  article-title: Cross‐validation and out‐of‐sample testing of physical activity intensity predictions with a wrist‐worn accelerometer
  publication-title: J Appl Physiol
– ident: e_1_2_7_72_1
  doi: 10.1371/journal.pone.0139984
– ident: e_1_2_7_55_1
  doi: 10.1371/journal.pone.0169649
– ident: e_1_2_7_67_1
  doi: 10.1080/1091367X.2016.1192038
– ident: e_1_2_7_62_1
  doi: 10.1080/02640414.2016.1255347
– ident: e_1_2_7_57_1
  doi: 10.1249/MSS.0000000000000771
– ident: e_1_2_7_37_1
  doi: 10.1371/journal.pone.0188242
– ident: e_1_2_7_58_1
  doi: 10.1080/02640414.2018.1461322
– ident: e_1_2_7_13_1
  doi: 10.1249/MSS.0000000000001430
– ident: e_1_2_7_78_1
  doi: 10.1016/j.dadm.2016.03.005
– ident: e_1_2_7_82_1
  doi: 10.1186/s12966-015-0201-9
– ident: e_1_2_7_17_1
  doi: 10.1249/MSS.0000000000001134
– ident: e_1_2_7_12_1
  doi: 10.2147/OAJSM.S150596
– ident: e_1_2_7_64_1
  doi: 10.1016/j.jshs.2016.02.002
– ident: e_1_2_7_5_1
  doi: 10.1111/sms.13328
– ident: e_1_2_7_38_1
  doi: 10.1371/journal.pone.0061691
– ident: e_1_2_7_63_1
  doi: 10.1249/MSS.0000000000000365
– ident: e_1_2_7_75_1
  doi: 10.1371/journal.pone.0192117
– ident: e_1_2_7_59_1
  doi: 10.1186/s12966-015-0172-x
– ident: e_1_2_7_7_1
  doi: 10.1016/j.amjmed.2016.05.005
– ident: e_1_2_7_22_1
  doi: 10.1080/17477160802315010
– ident: e_1_2_7_74_1
  doi: 10.1249/MSS.0b013e3182399e5b
– ident: e_1_2_7_29_1
  doi: 10.1249/MSS.0b013e3181fdfc32
– ident: e_1_2_7_61_1
  doi: 10.1097/00005768-200009001-00003
– ident: e_1_2_7_71_1
  doi: 10.1177/2047487315619734
– ident: e_1_2_7_52_1
  doi: 10.1038/sj.ijo.0800883
– ident: e_1_2_7_54_1
  doi: 10.1136/bjsports-2014-093546
– ident: e_1_2_7_15_1
  doi: 10.26530/OAPEN_483279
– ident: e_1_2_7_41_1
  doi: 10.1038/s41366-018-0152-8
– volume-title: Partial Least Squares: regression & Structural Equation Models
  year: 2016
  ident: e_1_2_7_73_1
– ident: e_1_2_7_77_1
  doi: 10.1002/cncr.31857
– ident: e_1_2_7_14_1
  doi: 10.1249/MSS.0b013e31821ece12
– ident: e_1_2_7_80_1
  doi: 10.1016/j.jot.2018.03.001
– ident: e_1_2_7_51_1
  doi: 10.1249/MSS.0000000000001124
– ident: e_1_2_7_69_1
  doi: 10.1001/jama.2012.156
– ident: e_1_2_7_2_1
  doi: 10.1016/S0140-6736(17)31634-3
– ident: e_1_2_7_21_1
  doi: 10.1016/j.gaitpost.2017.12.028
– ident: e_1_2_7_23_1
  doi: 10.1186/1479-5868-5-56
– ident: e_1_2_7_18_1
  doi: 10.1123/jpah.9.s1.s5
– ident: e_1_2_7_45_1
  doi: 10.3390/informatics5020027
– ident: e_1_2_7_9_1
  doi: 10.1249/MSS.0b013e3182399c0e
– ident: e_1_2_7_20_1
  doi: 10.1007/s40279-017-0716-0
– ident: e_1_2_7_68_1
  doi: 10.1371/journal.pone.0171720
– ident: e_1_2_7_43_1
  doi: 10.1249/MSS.0b013e31820ce174
– ident: e_1_2_7_70_1
  doi: 10.1093/aje/kwp163
– volume: 51
  start-page: 590
  year: 2018
  ident: e_1_2_7_39_1
  article-title: Accelerometer Data Processing and Energy Expenditure Estimation in Preschoolers
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0000000000001797
– ident: e_1_2_7_32_1
  doi: 10.1249/MSS.0000000000000289
– ident: e_1_2_7_33_1
  doi: 10.1249/MSS.0000000000001344
– ident: e_1_2_7_42_1
  doi: 10.1002/nur.21694
– ident: e_1_2_7_24_1
  doi: 10.1177/1403494813514143
– ident: e_1_2_7_60_1
  doi: 10.1249/MSS.0b013e31827f0d9c
– ident: e_1_2_7_6_1
  doi: 10.1136/bjsports-2018-099598
– ident: e_1_2_7_66_1
  doi: 10.1109/JBHI.2014.2313039
– ident: e_1_2_7_4_1
  doi: 10.1016/S2214-109X(18)30357-7
– volume-title: Global Recommendations on Physical Activity for Health
  year: 2010
  ident: e_1_2_7_3_1
– ident: e_1_2_7_81_1
  doi: 10.1111/sms.12920
– volume-title: 2018 Physical Activity Guidelines Advisory Committee Scientific Report
  year: 2018
  ident: e_1_2_7_10_1
– start-page: e004665
  year: 2017
  ident: e_1_2_7_79_1
  article-title: Physical activity and sedentary behavior in children with congenital heart disease
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.116.004665
– ident: e_1_2_7_44_1
  doi: 10.1123/jpah.2011-0347
– ident: e_1_2_7_53_1
  doi: 10.1371/journal.pone.0134606
– ident: e_1_2_7_76_1
  doi: 10.1093/ije/dyy294
SSID ssj0013060
Score 2.6169
SecondaryResourceType review_article
Snippet Accelerometers are commonly used in clinical and epidemiological research for more detailed measures of physical activity and to target the limitations of...
SourceID swepub
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 137
SubjectTerms Acceleration
accelerometer
Accelerometers
Accelerometry
Calibration
clinical
Data processing
Epidemiology
Exercise
Folkhälsovetenskap, global hälsa och socialmedicin
Health
Hip
Humans
Idrottsvetenskap och fitness
Learning algorithms
Machine Learning
measurement
Measurement methods
Modelling
Models, Statistical
Nutrition and Dietetics
Näringslära och dietkunskap
Physical activity
Physical training
Position measurement
protocol
Public Health, Global Health and Social Medicine
Sport and Fitness Sciences
Statistical methods
Statistics
Thigh
Wrist
Title Measurement of physical activity in clinical practice using accelerometers
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjoim.12908
https://www.ncbi.nlm.nih.gov/pubmed/30993807
https://www.proquest.com/docview/2257982529
https://www.proquest.com/docview/2210959260
https://gup.ub.gu.se/publication/280708
Volume 286
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_EB_Gl1u9t9UipCC3s4W72Iwe-lFq5u3IKUuFeJGQ3ySHq3tG7ffGvdyb74UdFsG9LMsvma3Z-k8z8AnCg8iDo6YzCyjX3I2uFLzgduMZK4wJR3LrrgEZnSf8yGo7j8RIcN7kwFT9Eu-FGmuH-16TgKps_VfLp9V2XdlEo0zfgCRHnn1yEj0cIRy5FGCFE5Cdo52puUhfG07763Br9AzFb_tDn0NXZntM1uGpaXYWc3HTLRdbN718QOv5vtz7ChxqUsh_VKlqHJVNswMqoPnbfhOHocSeRTS2b1ZPLKCuCLp9g1wVrcixZk3jFKKZ-gjI5mjZiRSAizy24PP3152ffry9h8PMoCYSvLTrJuVBGmMwmaZpyHmMZD3WqIhHbxJDJJ9a_o1wLjf6iDVMdRioRCCZzxbdhuZgWZhcYgtMMvSOjySYKrLOBUnGsEFJo7HzqwbdmMmReM5TTRRm3svVUcHCkGxwPvrays4qX41WpvWZOZa2bc4l_sLSHjnHY8-BLW41aRUclqjDTkmQC2iBFZ8-DnWottJ_hCKqJpt-Dw2pxtDVE1T0pZxKLJqWcG0lUQ9SK727G32ioHJ4PRu7p03uEP8MqArheFZC4B8uLv6XZR5C0yDqoDIPfHacSDx6QDb4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xIrG9AGNsC5TNaAhpk1I13-7jNFG1XQPSBBJvlhPbFdqWVrR54a_nzklTytAkeIvii_JhX-53Xz8DnMjc83oqo7JyFbihMdzlASVcI6lwgcjA2O2A0vN4cBWOrqPrujaHemEqfogm4EaaYf_XpOAUkH6o5dObvx0Ko_BXsGkTdISJfvmrJELXNgkjiAjdGC1dzU5qC3maa9ft0T8gs2EQXQev1vr0d6otVueWtJCKTn53ykXWye8eUTq--MV2YbvGpex7tZDewoYu9mArrTPv72CUroKJbGrYrJ5fRo0RtP8EuynYss2SLXuvGJXVT1AmR-tGxAjE5bkPV_2zyx8Dt96Hwc3D2OOuMugn51xqrjMTJ0kSBBGeC3yVyJBHJtZk9Yn4r5srrtBlNH6i_FDGHPFkLoP30Cqmhf4IDPFphg6SVmQWOY4ZT8ookogqFL584sDX5WyIvCYpp70y_ojGWcGPI-zHceBLIzurqDmelGovJ1XU6jkX-BNLeugb-z0HjpthVCzKlshCT0uS8ShGiv6eAx-qxdDcJkBcTUz9DpxWq6MZIbbuSTkTeGpSirkWxDZET_HNTvl_HlSMLoapPTp4jvBneD24TMdiPDz_eQhvEM_1qvrENrQWt6U-Qsy0yD5ZzbgHkxYQ4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSyQxEC48QHzxWo_22siKsEIP9p0BX0QddNxxRRR8WUK6kwyi9gw6_eKvtyp9eC0L61uTVNO5quurpOoLwLbMPK-tUgorV4EbGsNdHtCBayQVLhAZGHsdUO88PrkOuzfRzRjs17kwJT9Es-FGmmH_16TgQ2XeKvng9qFFuyh8HCbDGO0kQaJL__UMYc_mCCOGCN0YDV1FTmrjeJp335ujTxizIRB9j12t8enMwp-62WXMyV2rGKWt7PkDo-NX-zUHMxUqZQflMpqHMZ0vwFSvOnf_Bt3e61YiGxg2rGaXUVoE3T7BbnNWJ1myOvOKUVB9H2UytG1Ei0BMnotw3Tm-Ojxxq1sY3CyMPe4qg15yxqXmOjVxkiRBEGFZ4KtEhjwysSabT7R_e5niCh1G4yfKD2XMEU1mMliCiXyQ6xVgiE5TdI-0IqPIsc54UkaRREyhsPOJAz_ryRBZRVFON2Xci8ZVwcERdnAc-NHIDktijr9KrddzKirlfBL4C0va6Bn7bQe2mmpUKzorkbkeFCTj0Q4pensOLJdroflMgKiaePod2CkXR1NDXN39YiiwqF-IJy2Ia4hasWtn_B8NFd3fpz37tPo_wt9h6uKoI36dnp-twTSCuXYZnLgOE6PHQm8gYBqlm1YvXgBYcQ-S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+physical+activity+in+clinical+practice+using+accelerometers&rft.jtitle=Journal+of+internal+medicine&rft.au=Arvidsson%2C+D.&rft.au=Fridolfsson%2C+J.&rft.au=B%C3%B6rjesson%2C+M.&rft.date=2019-08-01&rft.issn=0954-6820&rft.eissn=1365-2796&rft.volume=286&rft.issue=2&rft.spage=137&rft.epage=153&rft_id=info:doi/10.1111%2Fjoim.12908&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_joim_12908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-6820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-6820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-6820&client=summon