Automatic segmentation and supervised learning‐based selection of nuclei in cancer tissue images
Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100–200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large‐scale...
Saved in:
| Published in | Cytometry. Part A Vol. 81A; no. 9; pp. 743 - 754 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.09.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1552-4922 1552-4930 1552-4930 |
| DOI | 10.1002/cyto.a.22097 |
Cover
| Abstract | Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100–200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large‐scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization‐labeled genes of interest. Segmentation was performed by a multistage watershed‐based algorithm and screening by an artificial neural network‐based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well‐segmented nuclei relative to a 2D dynamic programming‐based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. © Published 2012 Wiley Periodicals, Inc. |
|---|---|
| AbstractList | Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100–200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large‐scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization‐labeled genes of interest. Segmentation was performed by a multistage watershed‐based algorithm and screening by an artificial neural network‐based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well‐segmented nuclei relative to a 2D dynamic programming‐based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. © Published 2012 Wiley Periodicals, Inc. Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach.Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100–200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large‐scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization‐labeled genes of interest. Segmentation was performed by a multistage watershed‐based algorithm and screening by an artificial neural network‐based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well‐segmented nuclei relative to a 2D dynamic programming‐based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. © Published 2012 Wiley Periodicals, Inc. Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. copyright Published 2012 Wiley Periodicals, Inc. |
| Author | Nandy, Kaustav Lockett, Stephen J. Gudla, Prabhakar R. Amundsen, Ryan Misteli, Tom Meaburn, Karen J. |
| AuthorAffiliation | 1 Optical Microscopy and Analysis Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702 3 Cell Biology of Genomes Group, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 2 Department of Assymetric Operations, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723-6099 |
| AuthorAffiliation_xml | – name: 1 Optical Microscopy and Analysis Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702 – name: 3 Cell Biology of Genomes Group, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 – name: 2 Department of Assymetric Operations, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723-6099 |
| Author_xml | – sequence: 1 givenname: Kaustav surname: Nandy fullname: Nandy, Kaustav email: nandyk@mail.nih.gov – sequence: 2 givenname: Prabhakar R. surname: Gudla fullname: Gudla, Prabhakar R. – sequence: 3 givenname: Ryan surname: Amundsen fullname: Amundsen, Ryan – sequence: 4 givenname: Karen J. surname: Meaburn fullname: Meaburn, Karen J. – sequence: 5 givenname: Tom surname: Misteli fullname: Misteli, Tom – sequence: 6 givenname: Stephen J. surname: Lockett fullname: Lockett, Stephen J. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22899462$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkbtuFTEQhi2UiFygo0YuKdiDb3trkKIjCEiR0iQFleX1jg9GXvtg7yY6HY_AM_Ik8WZDgEgkjT2yv_n1zz9HaM8HDwi9omRFCWHv9G4MK7VijLT1M3RIy5IVouVk775m7AAdpfSNEF4Szp6jA8aathUVO0TdyTSGQY1W4wSbAfyY6-Cx8j1O0xbilU3QYwcqeus3v3787NT8kMCBviWDwX7SDiy2HmvlNUQ82pQmwHZQG0gv0L5RLsHLu_sYXX78cLH-VJydn35en5wVWlS0Lpq6ao0oSwPM5FP0ytCaV3XTAK9IV1aGtLruGyF4D6BpK2qiO6CiMQIEdPwYFYvu5Ldqd62ck9uYLcSdpETOWck5K6nkbVaZf7_w26kboNd59qj-9ARl5b8_3n6Vm3AlK16xhs8Cb-4EYvg-QRrlYJMG55SHMCVJc_RVSSkTT6N5NZTQppxVX_9t697P751lgC2AjiGlCEZqu2wtu7Tuf8O-fdD0RDZ8wa-tg92jrFx_uThfum4AymzN7Q |
| CitedBy_id | crossref_primary_10_1002_cyto_a_22280 crossref_primary_10_1109_TMI_2013_2255309 crossref_primary_10_1016_j_jocs_2019_07_001 crossref_primary_10_1002_cyto_a_23124 crossref_primary_10_1002_jemt_22373 crossref_primary_10_1002_cyto_a_22482 crossref_primary_10_1126_science_abj1966 crossref_primary_10_1016_j_ymeth_2017_02_007 crossref_primary_10_4103_jpi_jpi_82_18 crossref_primary_10_1109_JSTSP_2015_2505148 crossref_primary_10_1186_s12859_014_0431_x crossref_primary_10_4103_jpi_jpi_43_17 crossref_primary_10_1142_S0129065715500331 crossref_primary_10_1002_cyto_a_22424 crossref_primary_10_3390_app10196806 crossref_primary_10_1038_nprot_2015_016 crossref_primary_10_1002_ima_70058 crossref_primary_10_1038_s41598_019_54244_5 crossref_primary_10_1016_j_cell_2015_07_035 crossref_primary_10_1016_j_compbiomed_2022_106193 crossref_primary_10_1186_1471_2105_13_232 |
| Cites_doi | 10.1083/jcb.200708204 10.1016/j.autrev.2009.02.033 10.1002/cyto.a.20430 10.1016/j.conb.2009.10.002 10.1109/TBME.2010.2041232 10.1186/1471-2105-8-340 10.1038/445379a 10.1002/cyto.a.21028 10.1016/S0092-8674(01)00259-8 10.1016/S0167-7012(00)00201-3 10.1109/ICNN.1993.298623 10.1002/cyto.a.20099 10.1126/science.3541204 10.1007/978-3-540-88458-3_82 10.1016/S0962-8924(02)02351-6 10.1109/TIP.2005.852806 10.1109/PROC.1979.11328 10.1080/01621459.1971.10482356 10.2307/1932409 10.1016/S0074-7696(06)49004-5 10.1007/BF01593790 10.1073/pnas.87.23.9193 10.1186/1471-2105-8-210 10.1083/jcb.200909127 10.1016/0165-1684(94)90060-4 10.1016/j.cmpb.2010.02.002 10.1046/j.1365-2818.2001.00854.x 10.1162/153244303322753616 10.1137/0111030 10.1002/cyto.10138 10.1002/cyto.a.20612 10.1016/j.jbi.2008.04.007 10.1109/TSP.2004.830991 10.1109/TBME.2009.2035102 10.1002/cyto.a.20550 10.1016/S1084-9521(02)00179-9 10.1111/j.1365-2818.2008.02016.x 10.1002/cyto.a.20162 10.1109/34.19041 10.1016/S0032-5910(97)03257-9 10.1109/TSMC.1978.4310039 10.1109/TBME.2008.2008635 10.1016/S0167-8655(00)00112-4 10.1186/1471-2105-11-372 10.1146/annurev-bioeng-070909-105235 10.1002/cncr.24948 10.1146/annurev.bb.09.060180.002141 10.1109/TMI.2007.913135 10.1109/TIP.2009.2021081 |
| ContentType | Journal Article |
| Copyright | Published 2012 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: Published 2012 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM ADTOC UNPAY |
| DOI | 10.1002/cyto.a.22097 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1552-4930 |
| EndPage | 754 |
| ExternalDocumentID | oai:europepmc.org:5342722 PMC6362837 22899462 10_1002_cyto_a_22097 CYTO22097 |
| Genre | article Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Center for Cancer Research – fundername: National Cancer Institute, National Institutes of Health funderid: HHSN261200800001E – fundername: Intramural Research Program of the National Institutes of Health – fundername: Department of Defense Breast Cancer Idea Award to Tom Misteli – fundername: National Cancer Institute – fundername: Intramural NIH HHS grantid: ZIA BC010309 – fundername: CCR NIH HHS grantid: HHSN261200800001C – fundername: NCI NIH HHS grantid: HHSN261200800001E |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 2WC 31~ 33P 3SF 4.4 4ZD 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N QB0 QRW R.K RNS ROL RWI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4617-8769f455fe2f55f4daf1736788e360b56f09c7d8443deec19470cbe148f4e4eb3 |
| IEDL.DBID | UNPAY |
| ISSN | 1552-4922 1552-4930 |
| IngestDate | Sun Oct 26 04:12:19 EDT 2025 Thu Aug 21 14:07:37 EDT 2025 Tue Oct 07 09:36:25 EDT 2025 Fri Jul 11 07:09:57 EDT 2025 Mon Jul 21 05:50:41 EDT 2025 Wed Oct 01 01:25:30 EDT 2025 Thu Apr 24 23:12:32 EDT 2025 Wed Jan 22 16:50:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Published 2012 Wiley Periodicals, Inc. This article is a US government work and, as such, is in the public domain in the United States of America. public-domain |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4617-8769f455fe2f55f4daf1736788e360b56f09c7d8443deec19470cbe148f4e4eb3 |
| Notes | This article is a US government work and, as such, is in the public domain in the United States of America. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://europepmc.org/pmc/articles/PMC6362837 |
| PMID | 22899462 |
| PQID | 1035101857 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1002_cyto_a_22097 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6362837 proquest_miscellaneous_1492651124 proquest_miscellaneous_1035101857 pubmed_primary_22899462 crossref_citationtrail_10_1002_cyto_a_22097 crossref_primary_10_1002_cyto_a_22097 wiley_primary_10_1002_cyto_a_22097_CYTO22097 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2012 |
| PublicationDateYYYYMMDD | 2012-09-01 |
| PublicationDate_xml | – month: 09 year: 2012 text: September 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Cytometry. Part A |
| PublicationTitleAlternate | Cytometry A |
| PublicationYear | 2012 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | 2010; 12 2010; 11 2010; 57 2009; 42 2002; 12 2000; 43 2011; 79A 2010; 100 2003; 14 2001; 104 1978; 8 2005; 67 2009; 56 1990; 87 1979; 67 1997; 93 2000 1987; 235 2010; 116 2008; 27 2007; 8 2003; 3 1994; 38 2009; 19 2008; 231 2006; 249 2009; 18 2007; 445 2001; 201 1971; 66 2008; 5259 2011 1998–2004 2009 2008 2007 1993 2002; 49A 1992 1991 2002 2001; 22 2005; 63A 2008; 180 2004; 52 1989; 11 2008; 73A 1963; 11 2009; 31 1945; 26 2009; 187 2009; 9 1980; 9 2007; 71A 1977; 12 2005; 14 e_1_2_6_51_2 American Cancer Society (e_1_2_6_2_2) 2011 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 Nandy K (e_1_2_6_57_2) 2009 Korde VR (e_1_2_6_9_2) 2009; 31 Soille P (e_1_2_6_37_2) 2002 Li F (e_1_2_6_10_2) 2007 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_56_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 Duda RO (e_1_2_6_38_2) 2000 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 Matlab 2008a (e_1_2_6_49_2) 2008 e_1_2_6_25_2 e_1_2_6_46_2 |
| References_xml | – year: 2011 – volume: 14 start-page: 113 year: 2003 end-page: 119 article-title: An overview of the notch signalling pathway publication-title: Semin Cell Dev Biol – volume: 19 start-page: 537 year: 2009 end-page: 543 article-title: High‐content screening of primary neurons: Ready for prime time publication-title: Curr Opin Neurobiol – start-page: 6718 year: 2009 end-page: 6721 article-title: Automatic nuclei segmentation and spatial fish analysis for cancer detection publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 201 start-page: 404 issue: Pt 1 year: 2001 end-page: 415 article-title: Segmentation of nuclei and cells using membrane related protein markers publication-title: J Microsc – volume: 79A start-page: 192 year: 2011 end-page: 202 article-title: Cell cycle dependent TN‐C promoter activity determined by live cell imaging publication-title: Cytometry A – start-page: 7:66. doi:10.1186/1472‐6750‐7‐66 year: 2007 article-title: High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles publication-title: BMC Biotechnol – volume: 11 start-page: 425 year: 1989 end-page: 429 article-title: An efficient uniform cost algorithm applied to distance transforms publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 93 start-page: 47 year: 1997 end-page: 53 article-title: A shape factor to assess the shape of particles using image analysis publication-title: Powder Technol – volume: 31 start-page: 83 year: 2009 end-page: 89 article-title: Automatic segmentation of cell nuclei in bladder and skin tissue for karyometric analysis publication-title: Anal Quant Cytol Histol – volume: 231 start-page: 47 issue: Pt 1 year: 2008 end-page: 58 article-title: Segmentation of touching cell nuclei using gradient flow tracking publication-title: J Microsc – volume: 5259 start-page: 903 year: 2008 end-page: 914 article-title: Fuzzy clustering and active contours for histopathology image segmentation and nuclei detection publication-title: Lect Notes Comput Sci – volume: 26 start-page: 297 year: 1945 end-page: 302 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 11 start-page: 431 year: 1963 end-page: 441 article-title: An algorithm for least‐squares estimation of nonlinear parameters publication-title: J Soc Ind Appl Math – volume: 100 start-page: 1 year: 2010 end-page: 15 article-title: Automated segmentation of tissue images for computerized ihc analysis publication-title: Comput Methods Programs Biomed – volume: 12 start-page: 315 year: 2010 end-page: 344 article-title: Characterization of biological processes through automated image analysis publication-title: Ann Rev Biomed Eng – volume: 8 start-page: 630 year: 1978 end-page: 632 article-title: Picture thresholding using an iterative selection method publication-title: IEEE Trans System Man Cybernatics – volume: 18 start-page: 1817 year: 2009 end-page: 1829 article-title: Active mask segmentation of fluorescence microscope images publication-title: IEEE Trans Image Process – volume: 73A start-page: 451 year: 2008 end-page: 466 article-title: A high‐throughput system for segmenting nuclei using multiscale techniques publication-title: Cytometry A – volume: 27 start-page: 723 year: 2008 end-page: 734 article-title: Segmentation of whole cells and cell nuclei from 3‐D optical microscope images using dynamic programming publication-title: IEEE Trans Med Imaging – volume: 187 start-page: 801 year: 2009 end-page: 812 article-title: Disease‐specific gene repositioning in breast cancer publication-title: J Cell Biol – volume: 63A start-page: 20 year: 2005 end-page: 33 article-title: Hierarchical, model‐based merging of multiple fragments for improved three dimensional segmentation of nuclei publication-title: Cytometry A – volume: 49A start-page: 12 year: 2002 end-page: 21 article-title: Confocal DNA cytometry: A contour‐based segmentation algorithm for automated three‐dimensional image segmentation publication-title: Cytometry A – volume: 445 start-page: 379 year: 2007 end-page: 381 article-title: Cell biology: Chromosome territories publication-title: Nature – volume: 56 start-page: 741 year: 2009 end-page: 748 article-title: Segmentation of clustered nuclei with shape markers and marking function publication-title: IEEE Trans Biomed Eng – volume: 3 start-page: 1157 year: 2003 end-page: 1182 article-title: An introduction to variable and feature selection publication-title: J Mach Lear Res – year: 2008 – volume: 66 start-page: 846 year: 1971 end-page: 850 article-title: Objective criteria for the evaluation of clustering methods publication-title: J Am Stat Assoc – volume: 8 start-page: 340 year: 2007 article-title: Impact of image segmentation on high‐content screening data quality for SK‐BR‐3 cells publication-title: BMC Bioinformatics – start-page: 586 year: 1993 end-page: 591 – volume: 73A start-page: 816 year: 2008 end-page: 824 article-title: Segmentation and analysis of the three‐dimensional redistribution of nuclear components in human mesenchymal stem cells publication-title: Cytometry A – volume: 14 start-page: 1288 year: 2005 end-page: 1299 article-title: Automated evaluation of her‐2/neu status in breast tissue from fluorescent in situ hybridization images publication-title: IEEE Trans Image Process. – volume: 180 start-page: 39 year: 2008 end-page: 50 article-title: Locus‐specific and activity‐independent gene repositioning during early tumorigenesis publication-title: J Cell Biol – volume: 71A start-page: 724 year: 2007 end-page: 736 article-title: A multi‐model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images publication-title: Cytometry A – year: 1998–2004 – volume: 67 start-page: 137 year: 2005 end-page: 143 article-title: Whole cell segmentation in solid tissue sections publication-title: Cytometry A – volume: 9 start-page: 17.22 year: 2009 article-title: Challenges of automated screening and differentiation of non‐organ specific autoantibodies on HEp‐2 cells publication-title: Autoimmun Rev – volume: 38 start-page: 113 year: 1994 end-page: 125 article-title: Topographic distance and watershed lines publication-title: Signal Process – volume: 57 start-page: 1676 year: 2010 end-page: 1689 article-title: Expectation maximization—Driven geodesic active contour with overlap resolution (EMaGACOR): Application to lymphocyte segmentation on breast cancer histopathology publication-title: IEEE Trans Biomed Eng – volume: 104 start-page: 639 year: 2001 end-page: 642 article-title: Positions of potential:nuclear organization and gene expression publication-title: Cell – volume: 11 start-page: 372 year: 2010 article-title: Beyond co‐localization: Inferring spatial interactions between subcellular structures from microscopy images publication-title: BMC Bioinformatics – year: 2000 – volume: 249 start-page: 193 year: 2006 end-page: 227 article-title: Automated interpretation of protein subcellular location patterns publication-title: Int Rev Cytol – year: 1992 – volume: 22 start-page: 563 year: 2001 end-page: 582 article-title: Feature normalization and likelihood‐based similarity measures for image retrieval publication-title: Pattern Recogn Lett – volume: 67 start-page: 786 year: 1979 end-page: 804 article-title: Statistical and structural approaches to texture publication-title: Proc IEEE – volume: 57 start-page: 841 year: 2010 end-page: 852 article-title: Improved automatic detection and segmentation of cell nuclei in histopathology images publication-title: IEEE Trans Biomed Eng – volume: 12 start-page: 425 year: 2002 end-page: 432 article-title: Chromosome positioning in the interphase nucleus publication-title: Trends Cell Biol – volume: 235 start-page: 305 year: 1987 end-page: 311 article-title: The molecular genetics of cancer publication-title: Science – volume: 12 start-page: 241 year: 1977 end-page: 254 article-title: Restart procedures for the conjugate gradient method publication-title: Math Program – year: 2002 – volume: 8 start-page: 210 year: 2007 article-title: A multiresolution approach to automated classification of protein subcellular location images publication-title: BMC Bioinformatics – volume: 52 start-page: 2165 year: 2004 end-page: 2176 article-title: Online learning with kernels publication-title: IEEE Trans Signal Process – volume: 9 start-page: 393 year: 1980 end-page: 436 article-title: Machine‐assisted pattern classification in medicine and biology publication-title: Annu Rev Biophys Bioeng – volume: 87 start-page: 9193 year: 1990 end-page: 9196 article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology publication-title: Proc Nat Acad Sci USA – year: 1991 – volume: 42 start-page: 32 year: 2009 end-page: 40 article-title: An image score inference system for RNAi genome‐wide screening based on fuzzy mixture regression modeling publication-title: J Biomed Inform – volume: 116 start-page: 2011 year: 2010 end-page: 2019 article-title: Nuclear grading of primary pulmonary adenocarcinomas: Correlation between nuclear size and prognosis publication-title: Cancer – volume: 43 start-page: 3 year: 2000 end-page: 31 article-title: Artificial neural networks: fundamentals, computing, design, and application publication-title: J Microbiol Methods – ident: e_1_2_6_7_2 doi: 10.1083/jcb.200708204 – ident: e_1_2_6_29_2 doi: 10.1016/j.autrev.2009.02.033 – ident: e_1_2_6_18_2 doi: 10.1002/cyto.a.20430 – ident: e_1_2_6_25_2 doi: 10.1016/j.conb.2009.10.002 – ident: e_1_2_6_20_2 doi: 10.1109/TBME.2010.2041232 – ident: e_1_2_6_31_2 doi: 10.1186/1471-2105-8-340 – ident: e_1_2_6_5_2 doi: 10.1038/445379a – ident: e_1_2_6_51_2 doi: 10.1002/cyto.a.21028 – ident: e_1_2_6_4_2 doi: 10.1016/S0092-8674(01)00259-8 – ident: e_1_2_6_43_2 doi: 10.1016/S0167-7012(00)00201-3 – ident: e_1_2_6_48_2 doi: 10.1109/ICNN.1993.298623 – ident: e_1_2_6_40_2 doi: 10.1002/cyto.a.20099 – ident: e_1_2_6_3_2 doi: 10.1126/science.3541204 – ident: e_1_2_6_19_2 doi: 10.1007/978-3-540-88458-3_82 – ident: e_1_2_6_6_2 doi: 10.1016/S0962-8924(02)02351-6 – ident: e_1_2_6_16_2 doi: 10.1109/TIP.2005.852806 – ident: e_1_2_6_42_2 doi: 10.1109/PROC.1979.11328 – ident: e_1_2_6_52_2 doi: 10.1080/01621459.1971.10482356 – volume-title: Pattern Classification year: 2000 ident: e_1_2_6_38_2 – ident: e_1_2_6_53_2 doi: 10.2307/1932409 – ident: e_1_2_6_27_2 doi: 10.1016/S0074-7696(06)49004-5 – volume-title: Morphological Image Analysis: Principles and Applications year: 2002 ident: e_1_2_6_37_2 – ident: e_1_2_6_47_2 doi: 10.1007/BF01593790 – ident: e_1_2_6_24_2 doi: 10.1073/pnas.87.23.9193 – ident: e_1_2_6_28_2 doi: 10.1186/1471-2105-8-210 – ident: e_1_2_6_33_2 – ident: e_1_2_6_8_2 doi: 10.1083/jcb.200909127 – ident: e_1_2_6_36_2 doi: 10.1016/0165-1684(94)90060-4 – start-page: 6718 year: 2009 ident: e_1_2_6_57_2 article-title: Automatic nuclei segmentation and spatial fish analysis for cancer detection publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: e_1_2_6_54_2 doi: 10.1016/j.cmpb.2010.02.002 – ident: e_1_2_6_14_2 doi: 10.1046/j.1365-2818.2001.00854.x – ident: e_1_2_6_45_2 doi: 10.1162/153244303322753616 – volume-title: Cancer Facts & Figures 2011 year: 2011 ident: e_1_2_6_2_2 – ident: e_1_2_6_46_2 doi: 10.1137/0111030 – ident: e_1_2_6_60_2 doi: 10.1002/cyto.10138 – ident: e_1_2_6_56_2 doi: 10.1002/cyto.a.20612 – ident: e_1_2_6_26_2 doi: 10.1016/j.jbi.2008.04.007 – ident: e_1_2_6_58_2 doi: 10.1109/TSP.2004.830991 – ident: e_1_2_6_12_2 doi: 10.1109/TBME.2009.2035102 – volume: 31 start-page: 83 year: 2009 ident: e_1_2_6_9_2 article-title: Automatic segmentation of cell nuclei in bladder and skin tissue for karyometric analysis publication-title: Anal Quant Cytol Histol – ident: e_1_2_6_32_2 doi: 10.1002/cyto.a.20550 – ident: e_1_2_6_55_2 doi: 10.1016/S1084-9521(02)00179-9 – ident: e_1_2_6_34_2 – ident: e_1_2_6_13_2 doi: 10.1111/j.1365-2818.2008.02016.x – ident: e_1_2_6_23_2 – ident: e_1_2_6_15_2 doi: 10.1002/cyto.a.20162 – ident: e_1_2_6_39_2 doi: 10.1109/34.19041 – ident: e_1_2_6_41_2 doi: 10.1016/S0032-5910(97)03257-9 – ident: e_1_2_6_35_2 doi: 10.1109/TSMC.1978.4310039 – ident: e_1_2_6_17_2 doi: 10.1109/TBME.2008.2008635 – volume-title: Neural Network Toolbox year: 2008 ident: e_1_2_6_49_2 – ident: e_1_2_6_44_2 doi: 10.1016/S0167-8655(00)00112-4 – ident: e_1_2_6_30_2 doi: 10.1186/1471-2105-11-372 – ident: e_1_2_6_21_2 doi: 10.1146/annurev-bioeng-070909-105235 – ident: e_1_2_6_59_2 doi: 10.1002/cncr.24948 – ident: e_1_2_6_22_2 doi: 10.1146/annurev.bb.09.060180.002141 – ident: e_1_2_6_11_2 doi: 10.1109/TMI.2007.913135 – start-page: 7:66. doi:10.11 year: 2007 ident: e_1_2_6_10_2 article-title: High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles publication-title: BMC Biotechnol – ident: e_1_2_6_50_2 doi: 10.1109/TIP.2009.2021081 |
| SSID | ssj0035032 |
| Score | 2.127149 |
| Snippet | Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 743 |
| SubjectTerms | Algorithms artificial neural network Automation, Laboratory Basic Helix-Loop-Helix Transcription Factors - genetics Breast Neoplasms - diagnosis Breast Neoplasms - genetics Breast Neoplasms - pathology cancer diagnosis Cell Nucleus - pathology Cell Nucleus Shape Cytogenetic Analysis - methods Female Humans image analysis Image Interpretation, Computer-Assisted In Situ Hybridization, Fluorescence Mammary Glands, Human - pathology Models, Biological Neural Networks, Computer pattern classification Repressor Proteins - genetics tissue segmentation watershed |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA6yIPri_TLeiKC-aGfbNJfp47K4LIIKsgvrU0maZHdwNh22LTI--RP8jf4Sz0k71XFxRV9KISeEpN_JOSc9-Q4hzwxDO5zZxLpUQIAieWIYg80QTK0Qyhrm8Rzy7Tu5f8jfHImj4cAN78L0_BDjgRtqRtyvUcG1abZ_koZWq7ae6iljaYGXybNcxojqw8gelYs01idDkrGEF4wNee_QffvXzpsW6ZybeT5b8koXlnr1WS8Wmx5tNEl710m5nkyfifJp2rVmWn35jefx_2d7g1wbvFW608PrJrnkwi1yua9fubpNzE7X1pHzlTbu-HS4xhSoDpY23RK3ocZZOlSmOP7-9RsaTWiLxXdQsvY0IKPynM4DrRCBZ7SNWKDzU9jqmjvkcO_1we5-MhRtSCou0eIpWXguhHfMw5Nb7TOVg0mcuVymRkifFpWyM85z61yVFVyllXEQlXnuOIT2d8lWqIO7T6hlqbcQkiqPvISZLFSuUp9luuCzQnk5IS_XH66sBkZzLKyxKHsuZlbiqpW6jKs2Ic9H6WXP5PEHuadrDJSgavj_RAdXdw2I5pHgTFwkgwSM6MTyCbnX42YcjWFwyyWbELWBqFEAqb43W8L8JFJ-S_AzZjmM-2LE3l8m8Sqi6UKhcvfjwfv49uDfxB-Sq-A3sj7V7hHZas869xh8s9Y8iRr4A_XQOCc priority: 102 providerName: Wiley-Blackwell |
| Title | Automatic segmentation and supervised learning‐based selection of nuclei in cancer tissue images |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.22097 https://www.ncbi.nlm.nih.gov/pubmed/22899462 https://www.proquest.com/docview/1035101857 https://www.proquest.com/docview/1492651124 https://pubmed.ncbi.nlm.nih.gov/PMC6362837 http://europepmc.org/pmc/articles/PMC6362837 |
| UnpaywallVersion | submittedVersion |
| Volume | 81A |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1552-4930 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0035032 issn: 1552-4930 databaseCode: DIK dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1552-4930 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1552-4930 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035032 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJwQv4zoWLpORgBdImzi-NI9VxTRAHRNape0pSmJ7VLROtSRC5YmfwG_kl3DsJBVVxdiLbclHiaxzfC728XcQepURa4dD6UsVMAhQOPUzQkAZgqllTMiMaHsOOTnhx1P68Zyd76CulJxyR9DLRQMRDP2gyw8bnE7GHLQtBFS30C5n4Hn30O705HR04SBRGfFp7C4N2nEUtHnusOcH-aoq-mmfEIfu9LcF2nIrt7Mj79Rmma6-p_P5pgfrTNDRPTTpHvI0mSff-nWV9fMf27iON1rdfbTX-qJ41Mw-QDvKPES3m-qUq0coG9VV4RBdcakuF-0jJYNTI3FZL62SKZXEbd2Jy98_f1mTCHOutI6lLDQ2Fi95hmcG51a-rnDlOI1nC1Bk5WM0PXp_Nj7225IMfk65tWeCx5oyphXR0FKZ6lBEYPCGKuJBxrgO4lzIIaWRVCoPYyqCPFMQc2mqKATu-6hnCqMOEJYk0BICTqEt6mDIYxGJQIdhGtNhLDT30NuOTUne4pXbshnzpEFaJollapImjqkeer2mXjY4Hf-ge9lxPIGNZG9HUqOKugTSyMGXsetoLLyidVGph540UrL-G7GhK-XEQ2JDftYEFsh7c8bMvjpA75bzHnqzlrT_LOKdE8NriZLxxdlnN3p60-8-Q3fBHyRNCt1z1KuuavUCfK4qO4Ro48Mn234hh-22-wO6uS8T |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BESoX3tDlaSTgAtkmjh-bY1VRLdAWCW2lcgpJbJdVt86qSYSWEz-B38gvweNkA0tFEeISRfJYlp1vPDPO-BuApzlFOxypQOmQuwBFsCCn1G2GztRyLlVODZ5D7u2L8QF7c8gPuzqneBem5YfoD9xQM_x-jQqOB9KbP1lDi0VdDrMhpWEiL8IlJlyogl7R-54_Kuahr1CGNGMBSyjtMt9d_81fe6_apDOO5tl8yfXGzrPF52w2W_VpvVHauQYfl9Npc1GOh02dD4svvzE9_sd8r8PVzmElWy3CbsAFbW_C5baE5eIW5FtNXXraV1Lpo5PuJpMlmVWkaua4E1Vaka44xdH3r9_Qbro2X38HJUtDLJIqT8nUkgJBeEpqDwcyPXG7XXUbDnZeTbbHQVe3ISiYQKMnRWIY50ZT455MZSaSsbOKIx2LMOfChEkh1YixWGldRAmTYZFrF5gZppmL7u_Ami2t3gCiaGiUi0qlQWrCSCQylqGJoixho0QaMYAXyy-XFh2pOdbWmKUtHTNNcdXSLPWrNoBnvfS8JfP4g9yTJQhSp234CyWzumwqJxp7jjN-ngxyMKIfywZwtwVOPxrF-JYJOgC5AqleANm-V1vs9JNn_RbO1RjFbtznPfj-MomXHk7nCqXbHybv_Nu9fxN_DOvjyd5uuvt6_-19uOLcSNpm3j2Atfq00Q-dq1bnj7w6_gBXuzxI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMqlPAtbXkYCLpBt4vgRH6uWVXkVhFqpPYUktsuKrbNqEqHtqT-B38gvweNkA0tFEeISRfJYlp1vPDPO-BuEnuQE7HCkAqVD5gIUToOcELcZOlPLmFA5MXAO-W6Hb-_R1_tsv6tzCndhWn6I_sANNMPv16DgeqrM-k_W0GJWl8NsSEgoxUV0iTKZQE7f1seePypmoa9QBjRjAZWEdJnvrv_6r70XbdIZR_NsvuRyY6fZ7Gs2mSz6tN4oja6hT_PptLkoX4ZNnQ-Lk9-YHv9jvtfRSuew4o0WYTfQBW1vosttCcvZLZRvNHXpaV9xpQ-PuptMFmdW4aqZwk5UaYW74hSH30-_gd10bb7-DkiWBlsgVR7jscUFgPAY1x4OeHzkdrvqNtobvdzd3A66ug1BQTkYPcGloYwZTYx7UpWZSMTOKiY65mHOuAllIVRCaay0LiJJRVjk2gVmhmrqovtVtGRLq-8irEholItKhQFqwohLEYvQRFEmaSKF4QP0fP7l0qIjNYfaGpO0pWMmKaxamqV-1QboaS89bck8_iD3eA6C1Gkb_ELJrC6byonGnuOMnScDHIzgx9IButMCpx-NQHxLORkgsQCpXgDYvhdb7PizZ_3mztVIYjfusx58f5nECw-nc4XSzYPd9_5t7d_EH6ErH7ZG6dtXO2_uoavOiyRt4t19tFQfN_qB89Tq_KHXxh-xATvM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6lLG9rPuut25osO1lc2LL-ogfQ2gpg3R9aKB9MrYltWGJHGqbkj3tT9jfuL9kkmyHhrCuL7bgDhtxp_uQTr8D-Jhh64dD4QsZUJOgMOJnGBtjaFwtpVxkWNl9yMkJO56Sb-f0fAe6VnLSbUEvFw1EsHkPuvqwwelkzIy1NQnVA9hl1ETePdidnpyOLhwkKsU-id2hQTuOgrbO3az5Qb6qin7ax9ihO932QFth5XZ15KNaL9PVTTqfb0awzgUd7cGku8jTVJ786NdV1s9_buM63mt2T-FJG4uiUUN9BjtSP4eHTXfK1QvIRnVVOERXVMrLRXtJSaNUC1TWS2tkSilQ23fi8s-v39YlGpprrWM5C4W0xUueoZlGudWva1Q5SaPZwhiy8iVMjw7Pxsd-25LBzwmz_oyzWBFKlcTKPIlIVcgj4_CGMmJBRpkK4pyLISGRkDIPY8KDPJMm51JEEpO4v4KeLrTcByRwoIRJOLmyqIMhi3nEAxWGaUyGMVfMgy-dmJK8xSu3bTPmSYO0jBMr1CRNnFA9-LTmXjY4Hf_g-9BJPDELyZ6OpFoWdWlYIwdfRu_isfCKNkQlHrxutGT9N2xTV8KwB3xDf9YMFsh7k6JnVw7Qu5W8B5_XmvafSXx1angnUzK-OPvuRm_u-9238NjEg7gpoTuAXnVdy3cm5qqy9-1S-wuW3i0x |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Segmentation+and+Supervised+Learning-Based+Selection+of+Nuclei+in+Cancer+Tissue+Images&rft.jtitle=Cytometry.+Part+A&rft.au=Nandy%2C+Kaustav&rft.au=Gudla%2C+Prabhakar+R.&rft.au=Amundsen%2C+Ryan&rft.au=Meaburn%2C+Karen+J.&rft.date=2012-09-01&rft.issn=1552-4922&rft.eissn=1552-4930&rft.volume=81&rft.issue=9&rft.spage=743&rft.epage=754&rft_id=info:doi/10.1002%2Fcyto.a.22097&rft_id=info%3Apmid%2F22899462&rft.externalDocID=PMC6362837 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon |