Automatic segmentation and supervised learning‐based selection of nuclei in cancer tissue images

Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100–200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large‐scale...

Full description

Saved in:
Bibliographic Details
Published inCytometry. Part A Vol. 81A; no. 9; pp. 743 - 754
Main Authors Nandy, Kaustav, Gudla, Prabhakar R., Amundsen, Ryan, Meaburn, Karen J., Misteli, Tom, Lockett, Stephen J.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.09.2012
Subjects
Online AccessGet full text
ISSN1552-4922
1552-4930
1552-4930
DOI10.1002/cyto.a.22097

Cover

Abstract Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100–200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large‐scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization‐labeled genes of interest. Segmentation was performed by a multistage watershed‐based algorithm and screening by an artificial neural network‐based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well‐segmented nuclei relative to a 2D dynamic programming‐based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. © Published 2012 Wiley Periodicals, Inc.
AbstractList Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach.
Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100–200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large‐scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization‐labeled genes of interest. Segmentation was performed by a multistage watershed‐based algorithm and screening by an artificial neural network‐based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well‐segmented nuclei relative to a 2D dynamic programming‐based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. © Published 2012 Wiley Periodicals, Inc.
Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach.Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach.
Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100–200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large‐scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization‐labeled genes of interest. Segmentation was performed by a multistage watershed‐based algorithm and screening by an artificial neural network‐based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well‐segmented nuclei relative to a 2D dynamic programming‐based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. © Published 2012 Wiley Periodicals, Inc.
Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. copyright Published 2012 Wiley Periodicals, Inc.
Author Nandy, Kaustav
Lockett, Stephen J.
Gudla, Prabhakar R.
Amundsen, Ryan
Misteli, Tom
Meaburn, Karen J.
AuthorAffiliation 1 Optical Microscopy and Analysis Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
3 Cell Biology of Genomes Group, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
2 Department of Assymetric Operations, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723-6099
AuthorAffiliation_xml – name: 1 Optical Microscopy and Analysis Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
– name: 3 Cell Biology of Genomes Group, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
– name: 2 Department of Assymetric Operations, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723-6099
Author_xml – sequence: 1
  givenname: Kaustav
  surname: Nandy
  fullname: Nandy, Kaustav
  email: nandyk@mail.nih.gov
– sequence: 2
  givenname: Prabhakar R.
  surname: Gudla
  fullname: Gudla, Prabhakar R.
– sequence: 3
  givenname: Ryan
  surname: Amundsen
  fullname: Amundsen, Ryan
– sequence: 4
  givenname: Karen J.
  surname: Meaburn
  fullname: Meaburn, Karen J.
– sequence: 5
  givenname: Tom
  surname: Misteli
  fullname: Misteli, Tom
– sequence: 6
  givenname: Stephen J.
  surname: Lockett
  fullname: Lockett, Stephen J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22899462$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtuFTEQhi2UiFygo0YuKdiDb3trkKIjCEiR0iQFleX1jg9GXvtg7yY6HY_AM_Ik8WZDgEgkjT2yv_n1zz9HaM8HDwi9omRFCWHv9G4MK7VijLT1M3RIy5IVouVk775m7AAdpfSNEF4Szp6jA8aathUVO0TdyTSGQY1W4wSbAfyY6-Cx8j1O0xbilU3QYwcqeus3v3787NT8kMCBviWDwX7SDiy2HmvlNUQ82pQmwHZQG0gv0L5RLsHLu_sYXX78cLH-VJydn35en5wVWlS0Lpq6ao0oSwPM5FP0ytCaV3XTAK9IV1aGtLruGyF4D6BpK2qiO6CiMQIEdPwYFYvu5Ldqd62ck9uYLcSdpETOWck5K6nkbVaZf7_w26kboNd59qj-9ARl5b8_3n6Vm3AlK16xhs8Cb-4EYvg-QRrlYJMG55SHMCVJc_RVSSkTT6N5NZTQppxVX_9t697P751lgC2AjiGlCEZqu2wtu7Tuf8O-fdD0RDZ8wa-tg92jrFx_uThfum4AymzN7Q
CitedBy_id crossref_primary_10_1002_cyto_a_22280
crossref_primary_10_1109_TMI_2013_2255309
crossref_primary_10_1016_j_jocs_2019_07_001
crossref_primary_10_1002_cyto_a_23124
crossref_primary_10_1002_jemt_22373
crossref_primary_10_1002_cyto_a_22482
crossref_primary_10_1126_science_abj1966
crossref_primary_10_1016_j_ymeth_2017_02_007
crossref_primary_10_4103_jpi_jpi_82_18
crossref_primary_10_1109_JSTSP_2015_2505148
crossref_primary_10_1186_s12859_014_0431_x
crossref_primary_10_4103_jpi_jpi_43_17
crossref_primary_10_1142_S0129065715500331
crossref_primary_10_1002_cyto_a_22424
crossref_primary_10_3390_app10196806
crossref_primary_10_1038_nprot_2015_016
crossref_primary_10_1002_ima_70058
crossref_primary_10_1038_s41598_019_54244_5
crossref_primary_10_1016_j_cell_2015_07_035
crossref_primary_10_1016_j_compbiomed_2022_106193
crossref_primary_10_1186_1471_2105_13_232
Cites_doi 10.1083/jcb.200708204
10.1016/j.autrev.2009.02.033
10.1002/cyto.a.20430
10.1016/j.conb.2009.10.002
10.1109/TBME.2010.2041232
10.1186/1471-2105-8-340
10.1038/445379a
10.1002/cyto.a.21028
10.1016/S0092-8674(01)00259-8
10.1016/S0167-7012(00)00201-3
10.1109/ICNN.1993.298623
10.1002/cyto.a.20099
10.1126/science.3541204
10.1007/978-3-540-88458-3_82
10.1016/S0962-8924(02)02351-6
10.1109/TIP.2005.852806
10.1109/PROC.1979.11328
10.1080/01621459.1971.10482356
10.2307/1932409
10.1016/S0074-7696(06)49004-5
10.1007/BF01593790
10.1073/pnas.87.23.9193
10.1186/1471-2105-8-210
10.1083/jcb.200909127
10.1016/0165-1684(94)90060-4
10.1016/j.cmpb.2010.02.002
10.1046/j.1365-2818.2001.00854.x
10.1162/153244303322753616
10.1137/0111030
10.1002/cyto.10138
10.1002/cyto.a.20612
10.1016/j.jbi.2008.04.007
10.1109/TSP.2004.830991
10.1109/TBME.2009.2035102
10.1002/cyto.a.20550
10.1016/S1084-9521(02)00179-9
10.1111/j.1365-2818.2008.02016.x
10.1002/cyto.a.20162
10.1109/34.19041
10.1016/S0032-5910(97)03257-9
10.1109/TSMC.1978.4310039
10.1109/TBME.2008.2008635
10.1016/S0167-8655(00)00112-4
10.1186/1471-2105-11-372
10.1146/annurev-bioeng-070909-105235
10.1002/cncr.24948
10.1146/annurev.bb.09.060180.002141
10.1109/TMI.2007.913135
10.1109/TIP.2009.2021081
ContentType Journal Article
Copyright Published 2012 Wiley Periodicals, Inc.
Copyright_xml – notice: Published 2012 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ADTOC
UNPAY
DOI 10.1002/cyto.a.22097
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE

MEDLINE - Academic

CrossRef
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 754
ExternalDocumentID oai:europepmc.org:5342722
PMC6362837
22899462
10_1002_cyto_a_22097
CYTO22097
Genre article
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Center for Cancer Research
– fundername: National Cancer Institute, National Institutes of Health
  funderid: HHSN261200800001E
– fundername: Intramural Research Program of the National Institutes of Health
– fundername: Department of Defense Breast Cancer Idea Award to Tom Misteli
– fundername: National Cancer Institute
– fundername: Intramural NIH HHS
  grantid: ZIA BC010309
– fundername: CCR NIH HHS
  grantid: HHSN261200800001C
– fundername: NCI NIH HHS
  grantid: HHSN261200800001E
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4617-8769f455fe2f55f4daf1736788e360b56f09c7d8443deec19470cbe148f4e4eb3
IEDL.DBID UNPAY
ISSN 1552-4922
1552-4930
IngestDate Sun Oct 26 04:12:19 EDT 2025
Thu Aug 21 14:07:37 EDT 2025
Tue Oct 07 09:36:25 EDT 2025
Fri Jul 11 07:09:57 EDT 2025
Mon Jul 21 05:50:41 EDT 2025
Wed Oct 01 01:25:30 EDT 2025
Thu Apr 24 23:12:32 EDT 2025
Wed Jan 22 16:50:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Published 2012 Wiley Periodicals, Inc.
This article is a US government work and, as such, is in the public domain in the United States of America.
public-domain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4617-8769f455fe2f55f4daf1736788e360b56f09c7d8443deec19470cbe148f4e4eb3
Notes This article is a US government work and, as such, is in the public domain in the United States of America.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=http://europepmc.org/pmc/articles/PMC6362837
PMID 22899462
PQID 1035101857
PQPubID 23479
PageCount 1
ParticipantIDs unpaywall_primary_10_1002_cyto_a_22097
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6362837
proquest_miscellaneous_1492651124
proquest_miscellaneous_1035101857
pubmed_primary_22899462
crossref_citationtrail_10_1002_cyto_a_22097
crossref_primary_10_1002_cyto_a_22097
wiley_primary_10_1002_cyto_a_22097_CYTO22097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2012
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: September 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References 2010; 12
2010; 11
2010; 57
2009; 42
2002; 12
2000; 43
2011; 79A
2010; 100
2003; 14
2001; 104
1978; 8
2005; 67
2009; 56
1990; 87
1979; 67
1997; 93
2000
1987; 235
2010; 116
2008; 27
2007; 8
2003; 3
1994; 38
2009; 19
2008; 231
2006; 249
2009; 18
2007; 445
2001; 201
1971; 66
2008; 5259
2011
1998–2004
2009
2008
2007
1993
2002; 49A
1992
1991
2002
2001; 22
2005; 63A
2008; 180
2004; 52
1989; 11
2008; 73A
1963; 11
2009; 31
1945; 26
2009; 187
2009; 9
1980; 9
2007; 71A
1977; 12
2005; 14
e_1_2_6_51_2
American Cancer Society (e_1_2_6_2_2) 2011
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
Nandy K (e_1_2_6_57_2) 2009
Korde VR (e_1_2_6_9_2) 2009; 31
Soille P (e_1_2_6_37_2) 2002
Li F (e_1_2_6_10_2) 2007
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_56_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
Duda RO (e_1_2_6_38_2) 2000
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
Matlab 2008a (e_1_2_6_49_2) 2008
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – year: 2011
– volume: 14
  start-page: 113
  year: 2003
  end-page: 119
  article-title: An overview of the notch signalling pathway
  publication-title: Semin Cell Dev Biol
– volume: 19
  start-page: 537
  year: 2009
  end-page: 543
  article-title: High‐content screening of primary neurons: Ready for prime time
  publication-title: Curr Opin Neurobiol
– start-page: 6718
  year: 2009
  end-page: 6721
  article-title: Automatic nuclei segmentation and spatial fish analysis for cancer detection
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 201
  start-page: 404
  issue: Pt 1
  year: 2001
  end-page: 415
  article-title: Segmentation of nuclei and cells using membrane related protein markers
  publication-title: J Microsc
– volume: 79A
  start-page: 192
  year: 2011
  end-page: 202
  article-title: Cell cycle dependent TN‐C promoter activity determined by live cell imaging
  publication-title: Cytometry A
– start-page: 7:66. doi:10.1186/1472‐6750‐7‐66
  year: 2007
  article-title: High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles
  publication-title: BMC Biotechnol
– volume: 11
  start-page: 425
  year: 1989
  end-page: 429
  article-title: An efficient uniform cost algorithm applied to distance transforms
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 93
  start-page: 47
  year: 1997
  end-page: 53
  article-title: A shape factor to assess the shape of particles using image analysis
  publication-title: Powder Technol
– volume: 31
  start-page: 83
  year: 2009
  end-page: 89
  article-title: Automatic segmentation of cell nuclei in bladder and skin tissue for karyometric analysis
  publication-title: Anal Quant Cytol Histol
– volume: 231
  start-page: 47
  issue: Pt 1
  year: 2008
  end-page: 58
  article-title: Segmentation of touching cell nuclei using gradient flow tracking
  publication-title: J Microsc
– volume: 5259
  start-page: 903
  year: 2008
  end-page: 914
  article-title: Fuzzy clustering and active contours for histopathology image segmentation and nuclei detection
  publication-title: Lect Notes Comput Sci
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  article-title: An algorithm for least‐squares estimation of nonlinear parameters
  publication-title: J Soc Ind Appl Math
– volume: 100
  start-page: 1
  year: 2010
  end-page: 15
  article-title: Automated segmentation of tissue images for computerized ihc analysis
  publication-title: Comput Methods Programs Biomed
– volume: 12
  start-page: 315
  year: 2010
  end-page: 344
  article-title: Characterization of biological processes through automated image analysis
  publication-title: Ann Rev Biomed Eng
– volume: 8
  start-page: 630
  year: 1978
  end-page: 632
  article-title: Picture thresholding using an iterative selection method
  publication-title: IEEE Trans System Man Cybernatics
– volume: 18
  start-page: 1817
  year: 2009
  end-page: 1829
  article-title: Active mask segmentation of fluorescence microscope images
  publication-title: IEEE Trans Image Process
– volume: 73A
  start-page: 451
  year: 2008
  end-page: 466
  article-title: A high‐throughput system for segmenting nuclei using multiscale techniques
  publication-title: Cytometry A
– volume: 27
  start-page: 723
  year: 2008
  end-page: 734
  article-title: Segmentation of whole cells and cell nuclei from 3‐D optical microscope images using dynamic programming
  publication-title: IEEE Trans Med Imaging
– volume: 187
  start-page: 801
  year: 2009
  end-page: 812
  article-title: Disease‐specific gene repositioning in breast cancer
  publication-title: J Cell Biol
– volume: 63A
  start-page: 20
  year: 2005
  end-page: 33
  article-title: Hierarchical, model‐based merging of multiple fragments for improved three dimensional segmentation of nuclei
  publication-title: Cytometry A
– volume: 49A
  start-page: 12
  year: 2002
  end-page: 21
  article-title: Confocal DNA cytometry: A contour‐based segmentation algorithm for automated three‐dimensional image segmentation
  publication-title: Cytometry A
– volume: 445
  start-page: 379
  year: 2007
  end-page: 381
  article-title: Cell biology: Chromosome territories
  publication-title: Nature
– volume: 56
  start-page: 741
  year: 2009
  end-page: 748
  article-title: Segmentation of clustered nuclei with shape markers and marking function
  publication-title: IEEE Trans Biomed Eng
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Lear Res
– year: 2008
– volume: 66
  start-page: 846
  year: 1971
  end-page: 850
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J Am Stat Assoc
– volume: 8
  start-page: 340
  year: 2007
  article-title: Impact of image segmentation on high‐content screening data quality for SK‐BR‐3 cells
  publication-title: BMC Bioinformatics
– start-page: 586
  year: 1993
  end-page: 591
– volume: 73A
  start-page: 816
  year: 2008
  end-page: 824
  article-title: Segmentation and analysis of the three‐dimensional redistribution of nuclear components in human mesenchymal stem cells
  publication-title: Cytometry A
– volume: 14
  start-page: 1288
  year: 2005
  end-page: 1299
  article-title: Automated evaluation of her‐2/neu status in breast tissue from fluorescent in situ hybridization images
  publication-title: IEEE Trans Image Process.
– volume: 180
  start-page: 39
  year: 2008
  end-page: 50
  article-title: Locus‐specific and activity‐independent gene repositioning during early tumorigenesis
  publication-title: J Cell Biol
– volume: 71A
  start-page: 724
  year: 2007
  end-page: 736
  article-title: A multi‐model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images
  publication-title: Cytometry A
– year: 1998–2004
– volume: 67
  start-page: 137
  year: 2005
  end-page: 143
  article-title: Whole cell segmentation in solid tissue sections
  publication-title: Cytometry A
– volume: 9
  start-page: 17.22
  year: 2009
  article-title: Challenges of automated screening and differentiation of non‐organ specific autoantibodies on HEp‐2 cells
  publication-title: Autoimmun Rev
– volume: 38
  start-page: 113
  year: 1994
  end-page: 125
  article-title: Topographic distance and watershed lines
  publication-title: Signal Process
– volume: 57
  start-page: 1676
  year: 2010
  end-page: 1689
  article-title: Expectation maximization—Driven geodesic active contour with overlap resolution (EMaGACOR): Application to lymphocyte segmentation on breast cancer histopathology
  publication-title: IEEE Trans Biomed Eng
– volume: 104
  start-page: 639
  year: 2001
  end-page: 642
  article-title: Positions of potential:nuclear organization and gene expression
  publication-title: Cell
– volume: 11
  start-page: 372
  year: 2010
  article-title: Beyond co‐localization: Inferring spatial interactions between subcellular structures from microscopy images
  publication-title: BMC Bioinformatics
– year: 2000
– volume: 249
  start-page: 193
  year: 2006
  end-page: 227
  article-title: Automated interpretation of protein subcellular location patterns
  publication-title: Int Rev Cytol
– year: 1992
– volume: 22
  start-page: 563
  year: 2001
  end-page: 582
  article-title: Feature normalization and likelihood‐based similarity measures for image retrieval
  publication-title: Pattern Recogn Lett
– volume: 67
  start-page: 786
  year: 1979
  end-page: 804
  article-title: Statistical and structural approaches to texture
  publication-title: Proc IEEE
– volume: 57
  start-page: 841
  year: 2010
  end-page: 852
  article-title: Improved automatic detection and segmentation of cell nuclei in histopathology images
  publication-title: IEEE Trans Biomed Eng
– volume: 12
  start-page: 425
  year: 2002
  end-page: 432
  article-title: Chromosome positioning in the interphase nucleus
  publication-title: Trends Cell Biol
– volume: 235
  start-page: 305
  year: 1987
  end-page: 311
  article-title: The molecular genetics of cancer
  publication-title: Science
– volume: 12
  start-page: 241
  year: 1977
  end-page: 254
  article-title: Restart procedures for the conjugate gradient method
  publication-title: Math Program
– year: 2002
– volume: 8
  start-page: 210
  year: 2007
  article-title: A multiresolution approach to automated classification of protein subcellular location images
  publication-title: BMC Bioinformatics
– volume: 52
  start-page: 2165
  year: 2004
  end-page: 2176
  article-title: Online learning with kernels
  publication-title: IEEE Trans Signal Process
– volume: 9
  start-page: 393
  year: 1980
  end-page: 436
  article-title: Machine‐assisted pattern classification in medicine and biology
  publication-title: Annu Rev Biophys Bioeng
– volume: 87
  start-page: 9193
  year: 1990
  end-page: 9196
  article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology
  publication-title: Proc Nat Acad Sci USA
– year: 1991
– volume: 42
  start-page: 32
  year: 2009
  end-page: 40
  article-title: An image score inference system for RNAi genome‐wide screening based on fuzzy mixture regression modeling
  publication-title: J Biomed Inform
– volume: 116
  start-page: 2011
  year: 2010
  end-page: 2019
  article-title: Nuclear grading of primary pulmonary adenocarcinomas: Correlation between nuclear size and prognosis
  publication-title: Cancer
– volume: 43
  start-page: 3
  year: 2000
  end-page: 31
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: J Microbiol Methods
– ident: e_1_2_6_7_2
  doi: 10.1083/jcb.200708204
– ident: e_1_2_6_29_2
  doi: 10.1016/j.autrev.2009.02.033
– ident: e_1_2_6_18_2
  doi: 10.1002/cyto.a.20430
– ident: e_1_2_6_25_2
  doi: 10.1016/j.conb.2009.10.002
– ident: e_1_2_6_20_2
  doi: 10.1109/TBME.2010.2041232
– ident: e_1_2_6_31_2
  doi: 10.1186/1471-2105-8-340
– ident: e_1_2_6_5_2
  doi: 10.1038/445379a
– ident: e_1_2_6_51_2
  doi: 10.1002/cyto.a.21028
– ident: e_1_2_6_4_2
  doi: 10.1016/S0092-8674(01)00259-8
– ident: e_1_2_6_43_2
  doi: 10.1016/S0167-7012(00)00201-3
– ident: e_1_2_6_48_2
  doi: 10.1109/ICNN.1993.298623
– ident: e_1_2_6_40_2
  doi: 10.1002/cyto.a.20099
– ident: e_1_2_6_3_2
  doi: 10.1126/science.3541204
– ident: e_1_2_6_19_2
  doi: 10.1007/978-3-540-88458-3_82
– ident: e_1_2_6_6_2
  doi: 10.1016/S0962-8924(02)02351-6
– ident: e_1_2_6_16_2
  doi: 10.1109/TIP.2005.852806
– ident: e_1_2_6_42_2
  doi: 10.1109/PROC.1979.11328
– ident: e_1_2_6_52_2
  doi: 10.1080/01621459.1971.10482356
– volume-title: Pattern Classification
  year: 2000
  ident: e_1_2_6_38_2
– ident: e_1_2_6_53_2
  doi: 10.2307/1932409
– ident: e_1_2_6_27_2
  doi: 10.1016/S0074-7696(06)49004-5
– volume-title: Morphological Image Analysis: Principles and Applications
  year: 2002
  ident: e_1_2_6_37_2
– ident: e_1_2_6_47_2
  doi: 10.1007/BF01593790
– ident: e_1_2_6_24_2
  doi: 10.1073/pnas.87.23.9193
– ident: e_1_2_6_28_2
  doi: 10.1186/1471-2105-8-210
– ident: e_1_2_6_33_2
– ident: e_1_2_6_8_2
  doi: 10.1083/jcb.200909127
– ident: e_1_2_6_36_2
  doi: 10.1016/0165-1684(94)90060-4
– start-page: 6718
  year: 2009
  ident: e_1_2_6_57_2
  article-title: Automatic nuclei segmentation and spatial fish analysis for cancer detection
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: e_1_2_6_54_2
  doi: 10.1016/j.cmpb.2010.02.002
– ident: e_1_2_6_14_2
  doi: 10.1046/j.1365-2818.2001.00854.x
– ident: e_1_2_6_45_2
  doi: 10.1162/153244303322753616
– volume-title: Cancer Facts & Figures 2011
  year: 2011
  ident: e_1_2_6_2_2
– ident: e_1_2_6_46_2
  doi: 10.1137/0111030
– ident: e_1_2_6_60_2
  doi: 10.1002/cyto.10138
– ident: e_1_2_6_56_2
  doi: 10.1002/cyto.a.20612
– ident: e_1_2_6_26_2
  doi: 10.1016/j.jbi.2008.04.007
– ident: e_1_2_6_58_2
  doi: 10.1109/TSP.2004.830991
– ident: e_1_2_6_12_2
  doi: 10.1109/TBME.2009.2035102
– volume: 31
  start-page: 83
  year: 2009
  ident: e_1_2_6_9_2
  article-title: Automatic segmentation of cell nuclei in bladder and skin tissue for karyometric analysis
  publication-title: Anal Quant Cytol Histol
– ident: e_1_2_6_32_2
  doi: 10.1002/cyto.a.20550
– ident: e_1_2_6_55_2
  doi: 10.1016/S1084-9521(02)00179-9
– ident: e_1_2_6_34_2
– ident: e_1_2_6_13_2
  doi: 10.1111/j.1365-2818.2008.02016.x
– ident: e_1_2_6_23_2
– ident: e_1_2_6_15_2
  doi: 10.1002/cyto.a.20162
– ident: e_1_2_6_39_2
  doi: 10.1109/34.19041
– ident: e_1_2_6_41_2
  doi: 10.1016/S0032-5910(97)03257-9
– ident: e_1_2_6_35_2
  doi: 10.1109/TSMC.1978.4310039
– ident: e_1_2_6_17_2
  doi: 10.1109/TBME.2008.2008635
– volume-title: Neural Network Toolbox
  year: 2008
  ident: e_1_2_6_49_2
– ident: e_1_2_6_44_2
  doi: 10.1016/S0167-8655(00)00112-4
– ident: e_1_2_6_30_2
  doi: 10.1186/1471-2105-11-372
– ident: e_1_2_6_21_2
  doi: 10.1146/annurev-bioeng-070909-105235
– ident: e_1_2_6_59_2
  doi: 10.1002/cncr.24948
– ident: e_1_2_6_22_2
  doi: 10.1146/annurev.bb.09.060180.002141
– ident: e_1_2_6_11_2
  doi: 10.1109/TMI.2007.913135
– start-page: 7:66. doi:10.11
  year: 2007
  ident: e_1_2_6_10_2
  article-title: High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles
  publication-title: BMC Biotechnol
– ident: e_1_2_6_50_2
  doi: 10.1109/TIP.2009.2021081
SSID ssj0035032
Score 2.127149
Snippet Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 743
SubjectTerms Algorithms
artificial neural network
Automation, Laboratory
Basic Helix-Loop-Helix Transcription Factors - genetics
Breast Neoplasms - diagnosis
Breast Neoplasms - genetics
Breast Neoplasms - pathology
cancer diagnosis
Cell Nucleus - pathology
Cell Nucleus Shape
Cytogenetic Analysis - methods
Female
Humans
image analysis
Image Interpretation, Computer-Assisted
In Situ Hybridization, Fluorescence
Mammary Glands, Human - pathology
Models, Biological
Neural Networks, Computer
pattern classification
Repressor Proteins - genetics
tissue segmentation
watershed
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA6yIPri_TLeiKC-aGfbNJfp47K4LIIKsgvrU0maZHdwNh22LTI--RP8jf4Sz0k71XFxRV9KISeEpN_JOSc9-Q4hzwxDO5zZxLpUQIAieWIYg80QTK0Qyhrm8Rzy7Tu5f8jfHImj4cAN78L0_BDjgRtqRtyvUcG1abZ_koZWq7ae6iljaYGXybNcxojqw8gelYs01idDkrGEF4wNee_QffvXzpsW6ZybeT5b8koXlnr1WS8Wmx5tNEl710m5nkyfifJp2rVmWn35jefx_2d7g1wbvFW608PrJrnkwi1yua9fubpNzE7X1pHzlTbu-HS4xhSoDpY23RK3ocZZOlSmOP7-9RsaTWiLxXdQsvY0IKPynM4DrRCBZ7SNWKDzU9jqmjvkcO_1we5-MhRtSCou0eIpWXguhHfMw5Nb7TOVg0mcuVymRkifFpWyM85z61yVFVyllXEQlXnuOIT2d8lWqIO7T6hlqbcQkiqPvISZLFSuUp9luuCzQnk5IS_XH66sBkZzLKyxKHsuZlbiqpW6jKs2Ic9H6WXP5PEHuadrDJSgavj_RAdXdw2I5pHgTFwkgwSM6MTyCbnX42YcjWFwyyWbELWBqFEAqb43W8L8JFJ-S_AzZjmM-2LE3l8m8Sqi6UKhcvfjwfv49uDfxB-Sq-A3sj7V7hHZas869xh8s9Y8iRr4A_XQOCc
  priority: 102
  providerName: Wiley-Blackwell
Title Automatic segmentation and supervised learning‐based selection of nuclei in cancer tissue images
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.22097
https://www.ncbi.nlm.nih.gov/pubmed/22899462
https://www.proquest.com/docview/1035101857
https://www.proquest.com/docview/1492651124
https://pubmed.ncbi.nlm.nih.gov/PMC6362837
http://europepmc.org/pmc/articles/PMC6362837
UnpaywallVersion submittedVersion
Volume 81A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1552-4930
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0035032
  issn: 1552-4930
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1552-4930
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1552-4930
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035032
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJwQv4zoWLpORgBdImzi-NI9VxTRAHRNape0pSmJ7VLROtSRC5YmfwG_kl3DsJBVVxdiLbclHiaxzfC728XcQepURa4dD6UsVMAhQOPUzQkAZgqllTMiMaHsOOTnhx1P68Zyd76CulJxyR9DLRQMRDP2gyw8bnE7GHLQtBFS30C5n4Hn30O705HR04SBRGfFp7C4N2nEUtHnusOcH-aoq-mmfEIfu9LcF2nIrt7Mj79Rmma6-p_P5pgfrTNDRPTTpHvI0mSff-nWV9fMf27iON1rdfbTX-qJ41Mw-QDvKPES3m-qUq0coG9VV4RBdcakuF-0jJYNTI3FZL62SKZXEbd2Jy98_f1mTCHOutI6lLDQ2Fi95hmcG51a-rnDlOI1nC1Bk5WM0PXp_Nj7225IMfk65tWeCx5oyphXR0FKZ6lBEYPCGKuJBxrgO4lzIIaWRVCoPYyqCPFMQc2mqKATu-6hnCqMOEJYk0BICTqEt6mDIYxGJQIdhGtNhLDT30NuOTUne4pXbshnzpEFaJollapImjqkeer2mXjY4Hf-ge9lxPIGNZG9HUqOKugTSyMGXsetoLLyidVGph540UrL-G7GhK-XEQ2JDftYEFsh7c8bMvjpA75bzHnqzlrT_LOKdE8NriZLxxdlnN3p60-8-Q3fBHyRNCt1z1KuuavUCfK4qO4Ro48Mn234hh-22-wO6uS8T
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BESoX3tDlaSTgAtkmjh-bY1VRLdAWCW2lcgpJbJdVt86qSYSWEz-B38gvweNkA0tFEeISRfJYlp1vPDPO-BuApzlFOxypQOmQuwBFsCCn1G2GztRyLlVODZ5D7u2L8QF7c8gPuzqneBem5YfoD9xQM_x-jQqOB9KbP1lDi0VdDrMhpWEiL8IlJlyogl7R-54_Kuahr1CGNGMBSyjtMt9d_81fe6_apDOO5tl8yfXGzrPF52w2W_VpvVHauQYfl9Npc1GOh02dD4svvzE9_sd8r8PVzmElWy3CbsAFbW_C5baE5eIW5FtNXXraV1Lpo5PuJpMlmVWkaua4E1Vaka44xdH3r9_Qbro2X38HJUtDLJIqT8nUkgJBeEpqDwcyPXG7XXUbDnZeTbbHQVe3ISiYQKMnRWIY50ZT455MZSaSsbOKIx2LMOfChEkh1YixWGldRAmTYZFrF5gZppmL7u_Ami2t3gCiaGiUi0qlQWrCSCQylqGJoixho0QaMYAXyy-XFh2pOdbWmKUtHTNNcdXSLPWrNoBnvfS8JfP4g9yTJQhSp234CyWzumwqJxp7jjN-ngxyMKIfywZwtwVOPxrF-JYJOgC5AqleANm-V1vs9JNn_RbO1RjFbtznPfj-MomXHk7nCqXbHybv_Nu9fxN_DOvjyd5uuvt6_-19uOLcSNpm3j2Atfq00Q-dq1bnj7w6_gBXuzxI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMqlPAtbXkYCLpBt4vgRH6uWVXkVhFqpPYUktsuKrbNqEqHtqT-B38gvweNkA0tFEeISRfJYlp1vPDPO-BuEnuQE7HCkAqVD5gIUToOcELcZOlPLmFA5MXAO-W6Hb-_R1_tsv6tzCndhWn6I_sANNMPv16DgeqrM-k_W0GJWl8NsSEgoxUV0iTKZQE7f1seePypmoa9QBjRjAZWEdJnvrv_6r70XbdIZR_NsvuRyY6fZ7Gs2mSz6tN4oja6hT_PptLkoX4ZNnQ-Lk9-YHv9jvtfRSuew4o0WYTfQBW1vosttCcvZLZRvNHXpaV9xpQ-PuptMFmdW4aqZwk5UaYW74hSH30-_gd10bb7-DkiWBlsgVR7jscUFgPAY1x4OeHzkdrvqNtobvdzd3A66ug1BQTkYPcGloYwZTYx7UpWZSMTOKiY65mHOuAllIVRCaay0LiJJRVjk2gVmhmrqovtVtGRLq-8irEholItKhQFqwohLEYvQRFEmaSKF4QP0fP7l0qIjNYfaGpO0pWMmKaxamqV-1QboaS89bck8_iD3eA6C1Gkb_ELJrC6byonGnuOMnScDHIzgx9IButMCpx-NQHxLORkgsQCpXgDYvhdb7PizZ_3mztVIYjfusx58f5nECw-nc4XSzYPd9_5t7d_EH6ErH7ZG6dtXO2_uoavOiyRt4t19tFQfN_qB89Tq_KHXxh-xATvM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6lLG9rPuut25osO1lc2LL-ogfQ2gpg3R9aKB9MrYltWGJHGqbkj3tT9jfuL9kkmyHhrCuL7bgDhtxp_uQTr8D-Jhh64dD4QsZUJOgMOJnGBtjaFwtpVxkWNl9yMkJO56Sb-f0fAe6VnLSbUEvFw1EsHkPuvqwwelkzIy1NQnVA9hl1ETePdidnpyOLhwkKsU-id2hQTuOgrbO3az5Qb6qin7ax9ihO932QFth5XZ15KNaL9PVTTqfb0awzgUd7cGku8jTVJ786NdV1s9_buM63mt2T-FJG4uiUUN9BjtSP4eHTXfK1QvIRnVVOERXVMrLRXtJSaNUC1TWS2tkSilQ23fi8s-v39YlGpprrWM5C4W0xUueoZlGudWva1Q5SaPZwhiy8iVMjw7Pxsd-25LBzwmz_oyzWBFKlcTKPIlIVcgj4_CGMmJBRpkK4pyLISGRkDIPY8KDPJMm51JEEpO4v4KeLrTcByRwoIRJOLmyqIMhi3nEAxWGaUyGMVfMgy-dmJK8xSu3bTPmSYO0jBMr1CRNnFA9-LTmXjY4Hf_g-9BJPDELyZ6OpFoWdWlYIwdfRu_isfCKNkQlHrxutGT9N2xTV8KwB3xDf9YMFsh7k6JnVw7Qu5W8B5_XmvafSXx1angnUzK-OPvuRm_u-9238NjEg7gpoTuAXnVdy3cm5qqy9-1S-wuW3i0x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Segmentation+and+Supervised+Learning-Based+Selection+of+Nuclei+in+Cancer+Tissue+Images&rft.jtitle=Cytometry.+Part+A&rft.au=Nandy%2C+Kaustav&rft.au=Gudla%2C+Prabhakar+R.&rft.au=Amundsen%2C+Ryan&rft.au=Meaburn%2C+Karen+J.&rft.date=2012-09-01&rft.issn=1552-4922&rft.eissn=1552-4930&rft.volume=81&rft.issue=9&rft.spage=743&rft.epage=754&rft_id=info:doi/10.1002%2Fcyto.a.22097&rft_id=info%3Apmid%2F22899462&rft.externalDocID=PMC6362837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon