Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine

Automated crack detection based on image processing is widely used when inspecting concrete structures. The existing methods for crack detection are not yet accurate enough due to the difficulty and complexity of the problem; thus, more accurate and practical methods should be developed. This paper...

Full description

Saved in:
Bibliographic Details
Published inComputer-aided civil and infrastructure engineering Vol. 36; no. 1; pp. 61 - 72
Main Authors Chun, Pang‐jo, Izumi, Shota, Yamane, Tatsuro
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text
ISSN1093-9687
1467-8667
1467-8667
DOI10.1111/mice.12564

Cover

Abstract Automated crack detection based on image processing is widely used when inspecting concrete structures. The existing methods for crack detection are not yet accurate enough due to the difficulty and complexity of the problem; thus, more accurate and practical methods should be developed. This paper proposes an automated crack detection method based on image processing using the light gradient boosting machine (LightGBM), one of the supervised machine learning methods. In supervised machine learning, appropriate features should be identified to obtain accurate results. In crack detection, the pixel values of the target pixels and geometric features of the cracks that occur when they are connected linearly should be considered. This paper proposes a methodology for generating features based on pixel values and geometric shapes in two stages. The accuracy of the proposed methodology is investigated using photos of concrete structures with adverse conditions, such as shadows and dirt. The proposed methodology achieves an accuracy of 99.7%, sensitivity of 75.71%, specificity of 99.9%, precision of 68.2%, and an F‐measure of 0.6952. The experimental results demonstrate that the proposed method can detect cracks with higher performance than the pix2pix‐based approach. Furthermore, the training time is 7.7 times shorter than that of the XGBoost and 2.3 times shorter than that of the pix2pix. The experimental results demonstrate that the proposed method can detect cracks with high accuracy.
AbstractList Automated crack detection based on image processing is widely used when inspecting concrete structures. The existing methods for crack detection are not yet accurate enough due to the difficulty and complexity of the problem; thus, more accurate and practical methods should be developed. This paper proposes an automated crack detection method based on image processing using the light gradient boosting machine (LightGBM), one of the supervised machine learning methods. In supervised machine learning, appropriate features should be identified to obtain accurate results. In crack detection, the pixel values of the target pixels and geometric features of the cracks that occur when they are connected linearly should be considered. This paper proposes a methodology for generating features based on pixel values and geometric shapes in two stages. The accuracy of the proposed methodology is investigated using photos of concrete structures with adverse conditions, such as shadows and dirt. The proposed methodology achieves an accuracy of 99.7%, sensitivity of 75.71%, specificity of 99.9%, precision of 68.2%, and an F‐measure of 0.6952. The experimental results demonstrate that the proposed method can detect cracks with higher performance than the pix2pix‐based approach. Furthermore, the training time is 7.7 times shorter than that of the XGBoost and 2.3 times shorter than that of the pix2pix. The experimental results demonstrate that the proposed method can detect cracks with high accuracy.
Author Chun, Pang‐jo
Yamane, Tatsuro
Izumi, Shota
Author_xml – sequence: 1
  givenname: Pang‐jo
  surname: Chun
  fullname: Chun, Pang‐jo
  email: chun@i-con.t.u-tokyo.ac.jp
  organization: The University of Tokyo
– sequence: 2
  givenname: Shota
  surname: Izumi
  fullname: Izumi, Shota
  organization: Ehime University
– sequence: 3
  givenname: Tatsuro
  surname: Yamane
  fullname: Yamane, Tatsuro
  organization: The University of Tokyo
BookMark eNp9kMtKxDAYhYMoeN34BAF3SjVp00uWMngDxY2uQy5_Z6JtMiYpw-x8BJ_RJ7FjXYl4Nv-_-M7hcPbRtvMOEDqm5JyOuuithnOalxXbQnuUVXXWVFW9Pf6EFxmvmnoX7cf4QkYxVuyheDkk38tkNTaQQCfrHe4hLbzBvsU6SP0acRt8j7V3OowMjkNopQZsezmHsMZDtG6O08p_vn_EBEvc2fki4XmQxoJLWHkf0wbppV5YB4dop5VdhKOfe4Cer6-eZrfZ_ePN3ezyPtOsoizjTdsw0IpVhkOpyrykXDGiGg0FU5KrxjRGF8SwgpC6ylvJeW2UBMVZIwtTHKCzKXdwS7leya4TyzCWDmtBidjsJTZ7ie-9RvpkopfBvw0Qk3jxQ3BjQZGzmtI6z4typMhE6eBjDNAKbZPcrJaCtN3fwae_LP-2oBO8sh2s_yHFw93savJ8AcXvnd0
CitedBy_id crossref_primary_10_1680_jmaen_2022_027
crossref_primary_10_1111_mice_13164
crossref_primary_10_1016_j_conbuildmat_2022_127562
crossref_primary_10_1016_j_matpr_2023_03_191
crossref_primary_10_1016_j_jobe_2024_110650
crossref_primary_10_1111_mice_12753
crossref_primary_10_1111_mice_12874
crossref_primary_10_1177_14759217241270919
crossref_primary_10_1016_j_tust_2023_105572
crossref_primary_10_1111_mice_12993
crossref_primary_10_1016_j_istruc_2024_105872
crossref_primary_10_1108_SASBE_01_2023_0004
crossref_primary_10_1016_j_ymssp_2024_111131
crossref_primary_10_1617_s11527_023_02156_2
crossref_primary_10_1016_j_asej_2023_102297
crossref_primary_10_1111_mice_12881
crossref_primary_10_1016_j_conbuildmat_2023_130969
crossref_primary_10_3390_app11115074
crossref_primary_10_1016_j_istruc_2022_01_066
crossref_primary_10_1016_j_apenergy_2023_122553
crossref_primary_10_1049_itr2_12173
crossref_primary_10_1016_j_measurement_2021_109538
crossref_primary_10_1016_j_measurement_2022_110939
crossref_primary_10_1016_j_measurement_2021_110641
crossref_primary_10_1080_14680629_2023_2266853
crossref_primary_10_1111_mice_13290
crossref_primary_10_3390_app10228171
crossref_primary_10_3390_bdcc6010010
crossref_primary_10_3390_s22176412
crossref_primary_10_3390_app13169388
crossref_primary_10_1002_rob_22119
crossref_primary_10_3390_s24051647
crossref_primary_10_1111_mice_12971
crossref_primary_10_3390_land14030578
crossref_primary_10_2208_jscejj_23_00112
crossref_primary_10_1021_acsomega_2c02822
crossref_primary_10_3390_electronics13224503
crossref_primary_10_1016_j_autcon_2022_104309
crossref_primary_10_3390_rs14010106
crossref_primary_10_1007_s41062_024_01627_x
crossref_primary_10_1109_ACCESS_2021_3090961
crossref_primary_10_1016_j_jobe_2023_106886
crossref_primary_10_1038_s41598_025_91352_x
crossref_primary_10_7210_jrsj_40_35
crossref_primary_10_1109_ACCESS_2023_3330843
crossref_primary_10_1002_adom_202403516
crossref_primary_10_1111_mice_13152
crossref_primary_10_3390_app13084789
crossref_primary_10_3390_rs15143573
crossref_primary_10_20965_jrm_2020_p1244
crossref_primary_10_1016_j_engstruct_2023_115917
crossref_primary_10_1111_mice_13315
crossref_primary_10_1016_j_autcon_2025_106045
crossref_primary_10_1061_JCCEE5_CPENG_6339
crossref_primary_10_1016_j_autcon_2022_104324
crossref_primary_10_1108_IJQRM_06_2024_0185
crossref_primary_10_1109_TNNLS_2021_3062070
crossref_primary_10_32604_csse_2023_031888
crossref_primary_10_1016_j_istruc_2022_02_003
crossref_primary_10_1016_j_eswa_2023_120614
crossref_primary_10_1016_j_autcon_2022_104712
crossref_primary_10_1177_14759217221147015
crossref_primary_10_1007_s40996_023_01138_2
crossref_primary_10_1016_j_jclepro_2022_135279
crossref_primary_10_1088_1361_6501_ad85f5
crossref_primary_10_1111_mice_12793
crossref_primary_10_1111_mice_13000
crossref_primary_10_1111_mice_13086
crossref_primary_10_1111_mice_13406
crossref_primary_10_1016_j_conbuildmat_2022_128296
crossref_primary_10_3390_s20102780
crossref_primary_10_1016_j_autcon_2024_105346
crossref_primary_10_3390_s24092736
crossref_primary_10_1007_s10999_023_09695_0
crossref_primary_10_1016_j_autcon_2022_104532
crossref_primary_10_1016_j_bspc_2022_104234
crossref_primary_10_3390_s23135850
crossref_primary_10_1016_j_engstruct_2023_115676
crossref_primary_10_1111_mice_12826
crossref_primary_10_1111_mice_12827
crossref_primary_10_3390_coatings13122005
crossref_primary_10_3390_buildings14113402
crossref_primary_10_1109_ACCESS_2023_3321509
crossref_primary_10_1002_stc_2965
crossref_primary_10_1061_JCCEE5_CPENG_5868
crossref_primary_10_3151_jact_18_493
crossref_primary_10_3390_s20164519
crossref_primary_10_32604_cmc_2022_029544
crossref_primary_10_1111_mice_12844
crossref_primary_10_3390_s23010448
crossref_primary_10_1016_j_engappai_2024_108218
crossref_primary_10_21595_jme_2024_23977
crossref_primary_10_3390_s23031419
crossref_primary_10_1016_j_jobe_2023_107391
crossref_primary_10_1111_mice_13014
crossref_primary_10_2208_jscejj_23_15004
crossref_primary_10_1080_15732479_2024_2355929
crossref_primary_10_3390_jcs7040169
crossref_primary_10_1016_j_conbuildmat_2024_136376
crossref_primary_10_1111_mice_12836
crossref_primary_10_1016_j_conbuildmat_2024_138791
crossref_primary_10_14801_jkiit_2024_22_6_55
crossref_primary_10_1007_s11709_024_1090_2
crossref_primary_10_1155_2021_1205473
crossref_primary_10_3390_app14177478
crossref_primary_10_1016_j_measurement_2025_116825
crossref_primary_10_1109_JSEN_2024_3400817
crossref_primary_10_1016_j_engstruct_2025_119854
crossref_primary_10_1016_j_istruc_2021_06_110
crossref_primary_10_1108_IJSI_04_2024_0065
crossref_primary_10_2478_amns_2025_0182
crossref_primary_10_1109_TITS_2023_3331769
crossref_primary_10_1111_mice_12812
crossref_primary_10_1061_JMCEE7_MTENG_15589
crossref_primary_10_18186_thermal_1448571
crossref_primary_10_3390_diagnostics11091714
crossref_primary_10_3390_app11030892
crossref_primary_10_3390_s23031109
crossref_primary_10_1111_mice_13181
crossref_primary_10_1016_j_tust_2023_105428
crossref_primary_10_3390_a16120568
crossref_primary_10_1038_s41598_024_71075_1
crossref_primary_10_1109_TMECH_2021_3106867
crossref_primary_10_1016_j_jobe_2023_106688
crossref_primary_10_1016_j_engappai_2023_107085
crossref_primary_10_1016_j_ndteint_2024_103052
crossref_primary_10_1007_s11709_024_1077_z
crossref_primary_10_1016_j_advengsoft_2024_103796
crossref_primary_10_1016_j_autcon_2024_105892
crossref_primary_10_1016_j_ifacol_2021_10_285
crossref_primary_10_1016_j_jobe_2024_111117
crossref_primary_10_1111_mice_13111
crossref_primary_10_1111_mice_13231
crossref_primary_10_1016_j_measurement_2024_115327
crossref_primary_10_3390_ma16237440
crossref_primary_10_3390_rs13020240
crossref_primary_10_1007_s44290_025_00204_0
crossref_primary_10_1016_j_autcon_2023_105194
crossref_primary_10_1016_j_engappai_2024_108479
crossref_primary_10_1080_01691864_2021_2007167
crossref_primary_10_1016_j_autcon_2022_104364
crossref_primary_10_32604_cmc_2022_019636
crossref_primary_10_1111_mice_13117
crossref_primary_10_1371_journal_pone_0292437
crossref_primary_10_1016_j_tust_2023_105020
crossref_primary_10_3390_math11153277
crossref_primary_10_3390_s24175452
crossref_primary_10_1111_mice_13071
crossref_primary_10_1111_mice_13070
crossref_primary_10_3390_foods12071508
crossref_primary_10_3390_app11146378
Cites_doi 10.1002/tal.1400
10.1109/CVPR.2017.632
10.14359/51689560
10.1111/j.1467-8667.2011.00716.x
10.1016/j.autcon.2005.02.007
10.1111/mice.12440
10.1002/tee.20244
10.1007/978-3-030-20887-5_6
10.1016/j.autcon.2018.11.028
10.1007/s00138-009-0244-5
10.1109/TNNLS.2017.2682102
10.1111/j.1467-8667.2006.00445.x
10.1111/mice.12367
10.1111/j.1467-8667.2005.00376.x
10.1016/j.aei.2015.01.008
10.1016/j.engstruct.2017.10.070
10.1109/TSMC.1979.4310076
10.1061/(ASCE)TE.1943-5436.0000095
10.1061/(ASCE)CO.1943-7862.0001570
10.1111/mice.12497
10.1111/mice.12334
10.1061/(ASCE)CP.1943-5487.0000775
10.3390/ICEM18-05387
10.3390/met9121259
10.1007/978-3-642-02568-6_8
10.1088/1757-899X/371/1/012015
10.1109/TPAMI.1986.4767851
10.1109/ICCV.2017.322
10.1111/mice.12477
10.1061/(ASCE)0887-3801(2006)20:3(210)
10.1109/ICPR.2006.98
10.1002/ecj.10151
10.1061/(ASCE)0887-3801(2003)17:4(255)
10.1111/mice.12412
10.1023/A:1010933404324
10.1080/15732479.2011.593891
10.12989/sss.2014.14.4.719
10.1109/TASE.2014.2354314
10.1109/ICPR.2008.4761627
10.1145/2939672.2939785
10.1111/mice.12501
10.1016/j.neucom.2019.01.036
10.1007/s00138-009-0189-8
10.1016/0029-1021(73)90073-X
10.1111/mice.12263
10.1109/CVPR.2015.7298965
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC on behalf of Editor
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC on behalf of Editor
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1111/mice.12564
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 72
ExternalDocumentID 10.1111/mice.12564
10_1111_mice_12564
MICE12564
Genre article
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
24P
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFSI
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E.L
EAD
EAP
EBS
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RJQFR
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c4614-98f84ecb46d9e5b52519b40b8ce34ba9b8d8dc30d4300762fa997dbaeb948a3d3
IEDL.DBID 24P
ISSN 1093-9687
1467-8667
IngestDate Sun Sep 07 11:04:31 EDT 2025
Fri Jul 25 05:46:47 EDT 2025
Wed Oct 01 04:15:58 EDT 2025
Thu Apr 24 22:59:56 EDT 2025
Wed Jan 22 16:32:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4614-98f84ecb46d9e5b52519b40b8ce34ba9b8d8dc30d4300762fa997dbaeb948a3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12564
PQID 2471172235
PQPubID 2045171
PageCount 12
ParticipantIDs unpaywall_primary_10_1111_mice_12564
proquest_journals_2471172235
crossref_citationtrail_10_1111_mice_12564
crossref_primary_10_1111_mice_12564
wiley_primary_10_1111_mice_12564_MICE12564
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2019; 2019
2019; 99
2017b; 28
2019; 35
2019; 34
2006; 15
2009
2008
1996
2005; 20
2006
2003; 17
2008; 3
2001; 45
2017; 114
2009; 136
2013; 9
2018b; 144
2010; 21
2006; 20
2018; 371
2015; 29
2009; 92
1986; 8
2018a; 156
2006; 21
2019b
2019a
2017; 32
2019
2011; 22
2018
2014; 14
2017a; 26
2017
2014; 13
2005; 6
2016
2015
2012; 27
2019; 338
2018; 33
1973; 6
2018; 32
1979; 9
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
Jiang S. (e_1_2_5_21_1) 2019
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
Li S. (e_1_2_5_26_1) 2019; 2019
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
Tsochantaridis I. (e_1_2_5_48_1) 2005; 6
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – year: 2009
– volume: 6
  start-page: 1453
  year: 2005
  end-page: 1484
  article-title: Large margin methods for structured and interdependent output variables
  publication-title: Journal of Machine Learning Research
– volume: 20
  start-page: 210
  issue: 3
  year: 2006
  end-page: 216
  article-title: Improved image analysis for evaluating concrete damage
  publication-title: Journal of Computing in Civil Engineering
– volume: 33
  start-page: 638
  issue: 8
  year: 2018
  end-page: 654
  article-title: A fast detection method via region‐based fully convolutional neural networks for shield tunnel lining defects
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 33
  start-page: 731
  issue: 9
  year: 2018
  end-page: 747
  article-title: Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 17
  start-page: 255
  issue: 4
  year: 2003
  end-page: 263
  article-title: Analysis of edge‐detection techniques for crack identification in bridges
  publication-title: Journal of Computing in Civil Engineering
– year: 2019a
– year: 2018
– volume: 35
  start-page: 511
  issue: 5
  year: 2019
  end-page: 529
  article-title: Image‐based crack assessment of bridge piers using unmanned aerial vehicles and three‐dimensional scene reconstruction
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2019
  article-title: Real‐time crack assessment using deep neural networks with wall‐climbing unmanned aerial system
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  end-page: 66
  article-title: A threshold selection method from gray‐level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 156
  start-page: 598
  year: 2018a
  end-page: 607
  article-title: A novel unsupervised deep learning model for global and local health condition assessment of structures
  publication-title: Engineering Structures
– volume: 114
  start-page: 237
  issue: 2
  year: 2017
  end-page: 244
  article-title: Supervised deep restricted Boltzmann machine for estimation of concrete
  publication-title: ACI Materials Journal
– volume: 9
  start-page: 567
  issue: 6
  year: 2013
  end-page: 577
  article-title: Automated image processing technique for detecting and analysing concrete surface cracks
  publication-title: Structure and Infrastructure Engineering
– volume: 338
  start-page: 139
  year: 2019
  end-page: 153
  article-title: Deepcrack: A deep hierarchical feature learning architecture for crack segmentation
  publication-title: Neurocomputing
– year: 2008
– volume: 144
  issue: 12
  year: 2018b
  article-title: Novel machine‐learning model for estimating construction costs considering economic variables and indexes
  publication-title: Journal of Construction Engineering and Management
– volume: 21
  start-page: 797
  issue: 5
  year: 2010
  end-page: 809
  article-title: Fast crack detection method for large‐size concrete surface images using percolation‐based image processing
  publication-title: Machine Vision and Applications
– volume: 371
  issue: 1
  year: 2018
  article-title: Development of an automatic crack inspection system for concrete tunnel lining based on computer vision technologies
  publication-title: IOP Conference Series: Materials Science and Engineering
– volume: 15
  start-page: 47
  issue: 1
  year: 2006
  end-page: 57
  article-title: Segmentation of buried concrete pipe images
  publication-title: Automation in Construction
– year: 2019b
– year: 2019
– year: 2015
– volume: 32
  issue: 5
  year: 2018
  article-title: Deep learning‐based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet
  publication-title: Journal of Computing in Civil Engineering
– volume: 136
  start-page: 489
  issue: 6
  year: 2009
  end-page: 499
  article-title: Modeling of crack depths in digital images of concrete pavements using optical reflection properties
  publication-title: Journal of Transportation Engineering
– volume: 9
  start-page: 1259
  issue: 12
  year: 2019
  article-title: Evaluation of tensile performance of steel members by analysis of corroded steel surface using deep learning
  publication-title: Metals
– volume: 14
  start-page: 719
  issue: 4
  year: 2014
  end-page: 741
  article-title: Automated assessment of cracks on concrete surfaces using adaptive digital image processing
  publication-title: Smart Structures and Systems
– volume: 92
  start-page: 1
  issue: 10
  year: 2009
  end-page: 12
  article-title: Practical image measurement of crack width for real concrete structure
  publication-title: Electronics and Communications in Japan
– volume: 13
  start-page: 591
  issue: 2
  year: 2014
  end-page: 599
  article-title: Automated crack detection on concrete bridges
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 26
  issue: 18
  year: 2017a
  article-title: A novel machine learning‐based algorithm to detect damage in high‐rise building structures
  publication-title: The Structural Design of Tall and Special Buildings
– volume: 34
  start-page: 1
  issue: 11
  year: 2019
  end-page: 21
  article-title: Concrete crack detection using context aware deep semantic segmentation network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 8
  start-page: 679
  issue: 6
  year: 1986
  end-page: 698
  article-title: A computational approach to edge detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 1996
– volume: 35
  start-page: 373
  issue: 4
  year: 2019
  end-page: 388
  article-title: Concrete crack detection with handwriting script interferences using faster region‐based convolutional neural network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 20
  start-page: 52
  issue: 1
  year: 2005
  end-page: 61
  article-title: Monitoring crack changes in concrete structures
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2016
– volume: 33
  start-page: 1090
  issue: 12
  year: 2018
  end-page: 1109
  article-title: Automatic pixel‐level crack detection and measurement using fully convolutional network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 34
  start-page: 713
  issue: 8
  year: 2019
  end-page: 727
  article-title: Encoder–decoder network for pixel‐level road crack detection in black‐box images
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 28
  start-page: 3074
  issue: 12
  year: 2017b
  end-page: 3083
  article-title: A new neural dynamic classification algorithm
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  end-page: 378
  article-title: Deep learning‐based crack damage detection using convolutional neural networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2006
– volume: 21
  start-page: 395
  issue: 6
  year: 2006
  end-page: 410
  article-title: Segmentation of pipe images for crack detection in buried sewers
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 29
  start-page: 196
  issue: 2
  year: 2015
  end-page: 210
  article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure
  publication-title: Advanced Engineering Informatics
– volume: 6
  start-page: 258
  issue: 5
  year: 1973
  end-page: 263
  article-title: Holographic detection of cracks in concrete
  publication-title: Non‐Destructive Testing
– volume: 99
  start-page: 52
  year: 2019
  end-page: 58
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Automation in Construction
– volume: 27
  start-page: 29
  issue: 1
  year: 2012
  end-page: 47
  article-title: Concrete crack detection by multiple sequential image filtering
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 22
  start-page: 245
  issue: 2
  year: 2011
  end-page: 254
  article-title: A robust automatic crack detection method from noisy concrete surfaces
  publication-title: Machine Vision and Applications
– year: 2017
– volume: 2019
  start-page: 1
  issue: 2
  year: 2019
  end-page: 12
  article-title: Image‐based concrete crack detection using convolutional neural network and exhaustive search technique
  publication-title: Advances in Civil Engineering
– volume: 3
  start-page: 128
  issue: 1
  year: 2008
  end-page: 135
  article-title: Image‐based crack detection for real concrete surfaces
  publication-title: IEEJ Transactions on Electrical and Electronic Engineering
– ident: e_1_2_5_40_1
  doi: 10.1002/tal.1400
– ident: e_1_2_5_19_1
  doi: 10.1109/CVPR.2017.632
– ident: e_1_2_5_44_1
  doi: 10.14359/51689560
– ident: e_1_2_5_36_1
  doi: 10.1111/j.1467-8667.2011.00716.x
– ident: e_1_2_5_46_1
  doi: 10.1016/j.autcon.2005.02.007
– ident: e_1_2_5_4_1
  doi: 10.1111/mice.12440
– ident: e_1_2_5_53_1
  doi: 10.1002/tee.20244
– ident: e_1_2_5_34_1
– ident: e_1_2_5_23_1
  doi: 10.1007/978-3-030-20887-5_6
– ident: e_1_2_5_12_1
  doi: 10.1016/j.autcon.2018.11.028
– volume: 6
  start-page: 1453
  year: 2005
  ident: e_1_2_5_48_1
  article-title: Large margin methods for structured and interdependent output variables
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_5_15_1
  doi: 10.1007/s00138-009-0244-5
– ident: e_1_2_5_41_1
  doi: 10.1109/TNNLS.2017.2682102
– ident: e_1_2_5_20_1
  doi: 10.1111/j.1467-8667.2006.00445.x
– ident: e_1_2_5_49_1
  doi: 10.1111/mice.12367
– ident: e_1_2_5_47_1
  doi: 10.1111/j.1467-8667.2005.00376.x
– ident: e_1_2_5_24_1
  doi: 10.1016/j.aei.2015.01.008
– ident: e_1_2_5_13_1
– ident: e_1_2_5_42_1
  doi: 10.1016/j.engstruct.2017.10.070
– ident: e_1_2_5_38_1
  doi: 10.1109/TSMC.1979.4310076
– ident: e_1_2_5_3_1
  doi: 10.1061/(ASCE)TE.1943-5436.0000095
– ident: e_1_2_5_43_1
  doi: 10.1061/(ASCE)CO.1943-7862.0001570
– ident: e_1_2_5_11_1
  doi: 10.1111/mice.12497
– ident: e_1_2_5_8_1
  doi: 10.1111/mice.12334
– ident: e_1_2_5_56_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000775
– ident: e_1_2_5_45_1
  doi: 10.3390/ICEM18-05387
– ident: e_1_2_5_10_1
  doi: 10.3390/met9121259
– ident: e_1_2_5_14_1
  doi: 10.1007/978-3-642-02568-6_8
– ident: e_1_2_5_35_1
  doi: 10.1088/1757-899X/371/1/012015
– ident: e_1_2_5_32_1
– ident: e_1_2_5_6_1
  doi: 10.1109/TPAMI.1986.4767851
– ident: e_1_2_5_17_1
  doi: 10.1109/ICCV.2017.322
– ident: e_1_2_5_55_1
  doi: 10.1111/mice.12477
– ident: e_1_2_5_37_1
– ident: e_1_2_5_18_1
  doi: 10.1061/(ASCE)0887-3801(2006)20:3(210)
– volume: 2019
  start-page: 1
  issue: 2
  year: 2019
  ident: e_1_2_5_26_1
  article-title: Image‐based concrete crack detection using convolutional neural network and exhaustive search technique
  publication-title: Advances in Civil Engineering
– ident: e_1_2_5_16_1
  doi: 10.1109/ICPR.2006.98
– ident: e_1_2_5_22_1
– ident: e_1_2_5_51_1
  doi: 10.1002/ecj.10151
– ident: e_1_2_5_33_1
– ident: e_1_2_5_2_1
  doi: 10.1061/(ASCE)0887-3801(2003)17:4(255)
– ident: e_1_2_5_54_1
  doi: 10.1111/mice.12412
– ident: e_1_2_5_5_1
  doi: 10.1023/A:1010933404324
– year: 2019
  ident: e_1_2_5_21_1
  article-title: Real‐time crack assessment using deep neural networks with wall‐climbing unmanned aerial system
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– ident: e_1_2_5_25_1
  doi: 10.1080/15732479.2011.593891
– ident: e_1_2_5_27_1
  doi: 10.12989/sss.2014.14.4.719
– ident: e_1_2_5_39_1
  doi: 10.1109/TASE.2014.2354314
– ident: e_1_2_5_50_1
  doi: 10.1109/ICPR.2008.4761627
– ident: e_1_2_5_9_1
  doi: 10.1145/2939672.2939785
– ident: e_1_2_5_28_1
  doi: 10.1111/mice.12501
– ident: e_1_2_5_29_1
  doi: 10.1016/j.neucom.2019.01.036
– ident: e_1_2_5_52_1
  doi: 10.1007/s00138-009-0189-8
– ident: e_1_2_5_31_1
  doi: 10.1016/0029-1021(73)90073-X
– ident: e_1_2_5_7_1
  doi: 10.1111/mice.12263
– ident: e_1_2_5_30_1
  doi: 10.1109/CVPR.2015.7298965
SSID ssj0000443
Score 2.6318898
Snippet Automated crack detection based on image processing is widely used when inspecting concrete structures. The existing methods for crack detection are not yet...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 61
SubjectTerms Accuracy
Automation
Concrete
Concrete structures
Cracks
Flaw detection
Image processing
Machine learning
Methodology
Pixels
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB7R5dByKJS26lJaWS2XVsoqOI7XPq4QCFUC9dCV6CnyzxhVLNnVJhGCE4_AM_Iktb0JZSu04hZZE8tyZjKfPd_MAOxZKpFLM0w0y13CkLFE4lAlqbKa7mfa0BgxPTnlx2P24yw_W4MvXS7M4_h9YNyEnuwD74Q5ewHrPPd4uwfr49Ofo98xjCmzRPLYBS9avOB82NYgXX552ev8g5Ivm3Kmrq_UZLIMTqN3OdqEg25dC1LJxaCp9cDc_FeycfXCt-B1Cy7JaKENb2ANy23YbIEmac248kNdL4dubBs2HhUmfAvVqKmnsZgrsVhHtlZJFs2mydQRMw-Z-SSkphB_nvbAs0ZSNXOnDJI_l6EsxjUJjPpzUl9N72_vvCrNyCTcA5DzeSSZ1cTD-ypwrsll5HPiOxgfHf46OE7a9gyJYd6pJ1I4wdBoxq3EXOchB1azVAuDGdNKamGFNVlqWRbifdQpKYdWK9SSCZXZ7D30ymmJH4DIXDOdai6tcEy5VKDz_x7EfWcdUur68K37fIVpa5eHFhqTojvDhO0u4nb34euD7GxRseNJqd1OC4rWaquCek_tAR3N8j7sPWjGylm-R6VZIVJ4azqMTzvPm_MjvKKBNxOveXahV88b_OSBT60_t5r_F1gYAbU
  priority: 102
  providerName: Unpaywall
Title Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12564
https://www.proquest.com/docview/2471172235
https://doi.org/10.1111/mice.12564
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8667
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000443
  issn: 1467-8667
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1467-8667
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1467-8667
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3S5ND20Hy0pdukYaC5pODilWWvBLksaUIINISQhfRk9DEKhY13WXsJufUn9Df2l1TS2rsJlEAvxpixDx6N5kl68wbgwDJJhTSDRPPcJZw4TyQNVJIqq1k_04bFE9PvF8XZiJ_f5DdrcNTVwiz0IZYbbiEy4nwdAlzp-lGQh27tX316LvgL2Oh7IBPGN-OXq3mYt_R6mSWyEINWnDTweFbvPk1HK4z5cl5N1cO9Go-fotaYdk634E2LF3G4cPA2rFG1A5stdsQ2Mmv_qGvP0D3bgdePtAbfQj2cN5Ooz4qWmkjAqnDRPxonDs0sFNtjqDZBv0T2WLIhrOczpwzhz7ugdPGAgSR_i8395M-v3350THEclvZ4O4u8sQY9Yq8DjRrvIkWT3sHo9OT6-CxpOy4khvs8nUjhBCejeWEl5ToPZa2ap1oYyrhWUgsrrMlSy7NwhMecknJgtSItuVCZzd7DejWp6AOgzDXXqS6kFY4rlwpyfjoh6jvriDHXg8Pux5emlSMPXTHGZbcsCU4qo5N68HlpO12IcPzTaq_zX9kGYl0yn3w9RmNZ3oODpU-f_cqX6O5nTEofICfx7uP_GO_CKxYIMXH_Zg_Wm9mcPnlE0-j9OHD99dsV24eN0cXl8MdfJxP3fw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BOZQe-CmgLrRgiV5ACso6TtY-VqjVAm3FoZV6i_wzrpC22dUmq6o3HoFn5EnweJ3dVkKVeouscQ4ej-cb-5sZgH3HFVbKjjIjSp8JFCJTONJZrp3hw8JYHl9MT06r8bn4flFeJG4O5cIs60OsLtzIMuJ5TQZOF9K3rJzatX8J_rkSj-GJqIYVxV5c_FwfxCLx61WRqUqOUnVSIvKs5971R2uQubloZvrmWk8md2Fr9DtHL-BZAozsYKnhl_AIm214nsAjS6bZhqG-P0M_tg1bt4oNvoL2YNFNY4FW5rCLDKyGLRtIs6lndk7Z9ozSTViIkQOY7JC1i7nXFtmvKyp1ccOIJX_Juuvp399_wvaYsQnF9uxyHoljHQuQvSUeNbuKHE18DedHh2dfx1lquZDZsIJBT9JLgdaIyiksTUl5rUbkRloshNHKSCedLXInCnrD414rNXJGo1FC6sIVb2CjmTa4A0yVRpjcVMpJL7TPJfpwniAOvfPIuR_Ap37ha5vqkVNbjEndxyWkpDoqaQAfV7KzZRWO_0rt9vqrkyW2NQ_eN4A0XpQD2F_p9N6_fI7qvkekDhZyGL_ePkT4A2yOz06O6-Nvpz_ewVNO7Jh4mbMLG918gXsB3nTmfdzE_wDm5_hS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSFAOFAqoSwtYoheQskodJ2sfK9pV-aoQolJvkT_GFWKbXW0SVeXUn9DfyC-px3G2W4QqwS2yJpGSzHie7TdvCNm2TEIhzSjRPHcJB84TCSOVpMpqtpNpw8KJ6ZfD4uCIfzzOjyM3B2thOn2IxYYbRkaYrzHAYWbdUpRju_ahz88Fv0vu8VwKZPTtfVtSj-KRXy-zRBZiFNVJkchzfe_NfHQNMh-01Uydn6nJ5CZsDXlnvNY1V62DXCHSTX4O20YPza8_xBz_-5Uek0cRkdLdzoWekDtQrZO1iE5pjP3aD_UNIPqxdfJwSc3wKal322YaFGCphSZQvCradaimU0fNHMv5KdazUL8I92i1AVq3c6cM0B-nqKVxTpGGf0Kbs-nvi0vvfzM6wc0DejIPzLSG-jVBjURtehpIoPCMHI33v78_SGJPh8RwjwQSKZzgYDQvrIRc51g4q3mqhYGMayW1sMKaLLU8w0NC5pSUI6sVaMmFymz2nKxU0wo2CJW55jrVhbTCceVSAc5PWAA7zjpgzA3I2_7PliYKnmPfjUnZL3zwc5fhcw_Im4XtrJP5-KvVVu8gZQz1umQ-vXsUyLJ8QLYXTnPrU94FJ7jFpPQhuB-uXvyL8Wty_-veuPz84fDTJlllyL4Jm0VbZKWZt_DSw6dGvwpBcgWljRj7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB7R5dByKJS26lJaWS2XVsoqOI7XPq4QCFUC9dCV6CnyzxhVLNnVJhGCE4_AM_Iktb0JZSu04hZZE8tyZjKfPd_MAOxZKpFLM0w0y13CkLFE4lAlqbKa7mfa0BgxPTnlx2P24yw_W4MvXS7M4_h9YNyEnuwD74Q5ewHrPPd4uwfr49Ofo98xjCmzRPLYBS9avOB82NYgXX552ev8g5Ivm3Kmrq_UZLIMTqN3OdqEg25dC1LJxaCp9cDc_FeycfXCt-B1Cy7JaKENb2ANy23YbIEmac248kNdL4dubBs2HhUmfAvVqKmnsZgrsVhHtlZJFs2mydQRMw-Z-SSkphB_nvbAs0ZSNXOnDJI_l6EsxjUJjPpzUl9N72_vvCrNyCTcA5DzeSSZ1cTD-ypwrsll5HPiOxgfHf46OE7a9gyJYd6pJ1I4wdBoxq3EXOchB1azVAuDGdNKamGFNVlqWRbifdQpKYdWK9SSCZXZ7D30ymmJH4DIXDOdai6tcEy5VKDz_x7EfWcdUur68K37fIVpa5eHFhqTojvDhO0u4nb34euD7GxRseNJqd1OC4rWaquCek_tAR3N8j7sPWjGylm-R6VZIVJ4azqMTzvPm_MjvKKBNxOveXahV88b_OSBT60_t5r_F1gYAbU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+method+of+cracks+from+concrete+surface+imagery+using+two%E2%80%90step+light+gradient+boosting+machine&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Chun%2C+Pang%E2%80%90jo&rft.au=Izumi%2C+Shota&rft.au=Yamane%2C+Tatsuro&rft.date=2021-01-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=36&rft.issue=1&rft.spage=61&rft.epage=72&rft_id=info:doi/10.1111%2Fmice.12564&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_12564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon