Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine
Automated crack detection based on image processing is widely used when inspecting concrete structures. The existing methods for crack detection are not yet accurate enough due to the difficulty and complexity of the problem; thus, more accurate and practical methods should be developed. This paper...
        Saved in:
      
    
          | Published in | Computer-aided civil and infrastructure engineering Vol. 36; no. 1; pp. 61 - 72 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken
          Wiley Subscription Services, Inc
    
        01.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1093-9687 1467-8667 1467-8667  | 
| DOI | 10.1111/mice.12564 | 
Cover
| Abstract | Automated crack detection based on image processing is widely used when inspecting concrete structures. The existing methods for crack detection are not yet accurate enough due to the difficulty and complexity of the problem; thus, more accurate and practical methods should be developed. This paper proposes an automated crack detection method based on image processing using the light gradient boosting machine (LightGBM), one of the supervised machine learning methods. In supervised machine learning, appropriate features should be identified to obtain accurate results. In crack detection, the pixel values of the target pixels and geometric features of the cracks that occur when they are connected linearly should be considered. This paper proposes a methodology for generating features based on pixel values and geometric shapes in two stages. The accuracy of the proposed methodology is investigated using photos of concrete structures with adverse conditions, such as shadows and dirt. The proposed methodology achieves an accuracy of 99.7%, sensitivity of 75.71%, specificity of 99.9%, precision of 68.2%, and an F‐measure of 0.6952. The experimental results demonstrate that the proposed method can detect cracks with higher performance than the pix2pix‐based approach. Furthermore, the training time is 7.7 times shorter than that of the XGBoost and 2.3 times shorter than that of the pix2pix. The experimental results demonstrate that the proposed method can detect cracks with high accuracy. | 
    
|---|---|
| AbstractList | Automated crack detection based on image processing is widely used when inspecting concrete structures. The existing methods for crack detection are not yet accurate enough due to the difficulty and complexity of the problem; thus, more accurate and practical methods should be developed. This paper proposes an automated crack detection method based on image processing using the light gradient boosting machine (LightGBM), one of the supervised machine learning methods. In supervised machine learning, appropriate features should be identified to obtain accurate results. In crack detection, the pixel values of the target pixels and geometric features of the cracks that occur when they are connected linearly should be considered. This paper proposes a methodology for generating features based on pixel values and geometric shapes in two stages. The accuracy of the proposed methodology is investigated using photos of concrete structures with adverse conditions, such as shadows and dirt. The proposed methodology achieves an accuracy of 99.7%, sensitivity of 75.71%, specificity of 99.9%, precision of 68.2%, and an F‐measure of 0.6952. The experimental results demonstrate that the proposed method can detect cracks with higher performance than the pix2pix‐based approach. Furthermore, the training time is 7.7 times shorter than that of the XGBoost and 2.3 times shorter than that of the pix2pix. The experimental results demonstrate that the proposed method can detect cracks with high accuracy. | 
    
| Author | Chun, Pang‐jo Yamane, Tatsuro Izumi, Shota  | 
    
| Author_xml | – sequence: 1 givenname: Pang‐jo surname: Chun fullname: Chun, Pang‐jo email: chun@i-con.t.u-tokyo.ac.jp organization: The University of Tokyo – sequence: 2 givenname: Shota surname: Izumi fullname: Izumi, Shota organization: Ehime University – sequence: 3 givenname: Tatsuro surname: Yamane fullname: Yamane, Tatsuro organization: The University of Tokyo  | 
    
| BookMark | eNp9kMtKxDAYhYMoeN34BAF3SjVp00uWMngDxY2uQy5_Z6JtMiYpw-x8BJ_RJ7FjXYl4Nv-_-M7hcPbRtvMOEDqm5JyOuuithnOalxXbQnuUVXXWVFW9Pf6EFxmvmnoX7cf4QkYxVuyheDkk38tkNTaQQCfrHe4hLbzBvsU6SP0acRt8j7V3OowMjkNopQZsezmHsMZDtG6O08p_vn_EBEvc2fki4XmQxoJLWHkf0wbppV5YB4dop5VdhKOfe4Cer6-eZrfZ_ePN3ezyPtOsoizjTdsw0IpVhkOpyrykXDGiGg0FU5KrxjRGF8SwgpC6ylvJeW2UBMVZIwtTHKCzKXdwS7leya4TyzCWDmtBidjsJTZ7ie-9RvpkopfBvw0Qk3jxQ3BjQZGzmtI6z4typMhE6eBjDNAKbZPcrJaCtN3fwae_LP-2oBO8sh2s_yHFw93savJ8AcXvnd0 | 
    
| CitedBy_id | crossref_primary_10_1680_jmaen_2022_027 crossref_primary_10_1111_mice_13164 crossref_primary_10_1016_j_conbuildmat_2022_127562 crossref_primary_10_1016_j_matpr_2023_03_191 crossref_primary_10_1016_j_jobe_2024_110650 crossref_primary_10_1111_mice_12753 crossref_primary_10_1111_mice_12874 crossref_primary_10_1177_14759217241270919 crossref_primary_10_1016_j_tust_2023_105572 crossref_primary_10_1111_mice_12993 crossref_primary_10_1016_j_istruc_2024_105872 crossref_primary_10_1108_SASBE_01_2023_0004 crossref_primary_10_1016_j_ymssp_2024_111131 crossref_primary_10_1617_s11527_023_02156_2 crossref_primary_10_1016_j_asej_2023_102297 crossref_primary_10_1111_mice_12881 crossref_primary_10_1016_j_conbuildmat_2023_130969 crossref_primary_10_3390_app11115074 crossref_primary_10_1016_j_istruc_2022_01_066 crossref_primary_10_1016_j_apenergy_2023_122553 crossref_primary_10_1049_itr2_12173 crossref_primary_10_1016_j_measurement_2021_109538 crossref_primary_10_1016_j_measurement_2022_110939 crossref_primary_10_1016_j_measurement_2021_110641 crossref_primary_10_1080_14680629_2023_2266853 crossref_primary_10_1111_mice_13290 crossref_primary_10_3390_app10228171 crossref_primary_10_3390_bdcc6010010 crossref_primary_10_3390_s22176412 crossref_primary_10_3390_app13169388 crossref_primary_10_1002_rob_22119 crossref_primary_10_3390_s24051647 crossref_primary_10_1111_mice_12971 crossref_primary_10_3390_land14030578 crossref_primary_10_2208_jscejj_23_00112 crossref_primary_10_1021_acsomega_2c02822 crossref_primary_10_3390_electronics13224503 crossref_primary_10_1016_j_autcon_2022_104309 crossref_primary_10_3390_rs14010106 crossref_primary_10_1007_s41062_024_01627_x crossref_primary_10_1109_ACCESS_2021_3090961 crossref_primary_10_1016_j_jobe_2023_106886 crossref_primary_10_1038_s41598_025_91352_x crossref_primary_10_7210_jrsj_40_35 crossref_primary_10_1109_ACCESS_2023_3330843 crossref_primary_10_1002_adom_202403516 crossref_primary_10_1111_mice_13152 crossref_primary_10_3390_app13084789 crossref_primary_10_3390_rs15143573 crossref_primary_10_20965_jrm_2020_p1244 crossref_primary_10_1016_j_engstruct_2023_115917 crossref_primary_10_1111_mice_13315 crossref_primary_10_1016_j_autcon_2025_106045 crossref_primary_10_1061_JCCEE5_CPENG_6339 crossref_primary_10_1016_j_autcon_2022_104324 crossref_primary_10_1108_IJQRM_06_2024_0185 crossref_primary_10_1109_TNNLS_2021_3062070 crossref_primary_10_32604_csse_2023_031888 crossref_primary_10_1016_j_istruc_2022_02_003 crossref_primary_10_1016_j_eswa_2023_120614 crossref_primary_10_1016_j_autcon_2022_104712 crossref_primary_10_1177_14759217221147015 crossref_primary_10_1007_s40996_023_01138_2 crossref_primary_10_1016_j_jclepro_2022_135279 crossref_primary_10_1088_1361_6501_ad85f5 crossref_primary_10_1111_mice_12793 crossref_primary_10_1111_mice_13000 crossref_primary_10_1111_mice_13086 crossref_primary_10_1111_mice_13406 crossref_primary_10_1016_j_conbuildmat_2022_128296 crossref_primary_10_3390_s20102780 crossref_primary_10_1016_j_autcon_2024_105346 crossref_primary_10_3390_s24092736 crossref_primary_10_1007_s10999_023_09695_0 crossref_primary_10_1016_j_autcon_2022_104532 crossref_primary_10_1016_j_bspc_2022_104234 crossref_primary_10_3390_s23135850 crossref_primary_10_1016_j_engstruct_2023_115676 crossref_primary_10_1111_mice_12826 crossref_primary_10_1111_mice_12827 crossref_primary_10_3390_coatings13122005 crossref_primary_10_3390_buildings14113402 crossref_primary_10_1109_ACCESS_2023_3321509 crossref_primary_10_1002_stc_2965 crossref_primary_10_1061_JCCEE5_CPENG_5868 crossref_primary_10_3151_jact_18_493 crossref_primary_10_3390_s20164519 crossref_primary_10_32604_cmc_2022_029544 crossref_primary_10_1111_mice_12844 crossref_primary_10_3390_s23010448 crossref_primary_10_1016_j_engappai_2024_108218 crossref_primary_10_21595_jme_2024_23977 crossref_primary_10_3390_s23031419 crossref_primary_10_1016_j_jobe_2023_107391 crossref_primary_10_1111_mice_13014 crossref_primary_10_2208_jscejj_23_15004 crossref_primary_10_1080_15732479_2024_2355929 crossref_primary_10_3390_jcs7040169 crossref_primary_10_1016_j_conbuildmat_2024_136376 crossref_primary_10_1111_mice_12836 crossref_primary_10_1016_j_conbuildmat_2024_138791 crossref_primary_10_14801_jkiit_2024_22_6_55 crossref_primary_10_1007_s11709_024_1090_2 crossref_primary_10_1155_2021_1205473 crossref_primary_10_3390_app14177478 crossref_primary_10_1016_j_measurement_2025_116825 crossref_primary_10_1109_JSEN_2024_3400817 crossref_primary_10_1016_j_engstruct_2025_119854 crossref_primary_10_1016_j_istruc_2021_06_110 crossref_primary_10_1108_IJSI_04_2024_0065 crossref_primary_10_2478_amns_2025_0182 crossref_primary_10_1109_TITS_2023_3331769 crossref_primary_10_1111_mice_12812 crossref_primary_10_1061_JMCEE7_MTENG_15589 crossref_primary_10_18186_thermal_1448571 crossref_primary_10_3390_diagnostics11091714 crossref_primary_10_3390_app11030892 crossref_primary_10_3390_s23031109 crossref_primary_10_1111_mice_13181 crossref_primary_10_1016_j_tust_2023_105428 crossref_primary_10_3390_a16120568 crossref_primary_10_1038_s41598_024_71075_1 crossref_primary_10_1109_TMECH_2021_3106867 crossref_primary_10_1016_j_jobe_2023_106688 crossref_primary_10_1016_j_engappai_2023_107085 crossref_primary_10_1016_j_ndteint_2024_103052 crossref_primary_10_1007_s11709_024_1077_z crossref_primary_10_1016_j_advengsoft_2024_103796 crossref_primary_10_1016_j_autcon_2024_105892 crossref_primary_10_1016_j_ifacol_2021_10_285 crossref_primary_10_1016_j_jobe_2024_111117 crossref_primary_10_1111_mice_13111 crossref_primary_10_1111_mice_13231 crossref_primary_10_1016_j_measurement_2024_115327 crossref_primary_10_3390_ma16237440 crossref_primary_10_3390_rs13020240 crossref_primary_10_1007_s44290_025_00204_0 crossref_primary_10_1016_j_autcon_2023_105194 crossref_primary_10_1016_j_engappai_2024_108479 crossref_primary_10_1080_01691864_2021_2007167 crossref_primary_10_1016_j_autcon_2022_104364 crossref_primary_10_32604_cmc_2022_019636 crossref_primary_10_1111_mice_13117 crossref_primary_10_1371_journal_pone_0292437 crossref_primary_10_1016_j_tust_2023_105020 crossref_primary_10_3390_math11153277 crossref_primary_10_3390_s24175452 crossref_primary_10_1111_mice_13071 crossref_primary_10_1111_mice_13070 crossref_primary_10_3390_foods12071508 crossref_primary_10_3390_app11146378  | 
    
| Cites_doi | 10.1002/tal.1400 10.1109/CVPR.2017.632 10.14359/51689560 10.1111/j.1467-8667.2011.00716.x 10.1016/j.autcon.2005.02.007 10.1111/mice.12440 10.1002/tee.20244 10.1007/978-3-030-20887-5_6 10.1016/j.autcon.2018.11.028 10.1007/s00138-009-0244-5 10.1109/TNNLS.2017.2682102 10.1111/j.1467-8667.2006.00445.x 10.1111/mice.12367 10.1111/j.1467-8667.2005.00376.x 10.1016/j.aei.2015.01.008 10.1016/j.engstruct.2017.10.070 10.1109/TSMC.1979.4310076 10.1061/(ASCE)TE.1943-5436.0000095 10.1061/(ASCE)CO.1943-7862.0001570 10.1111/mice.12497 10.1111/mice.12334 10.1061/(ASCE)CP.1943-5487.0000775 10.3390/ICEM18-05387 10.3390/met9121259 10.1007/978-3-642-02568-6_8 10.1088/1757-899X/371/1/012015 10.1109/TPAMI.1986.4767851 10.1109/ICCV.2017.322 10.1111/mice.12477 10.1061/(ASCE)0887-3801(2006)20:3(210) 10.1109/ICPR.2006.98 10.1002/ecj.10151 10.1061/(ASCE)0887-3801(2003)17:4(255) 10.1111/mice.12412 10.1023/A:1010933404324 10.1080/15732479.2011.593891 10.12989/sss.2014.14.4.719 10.1109/TASE.2014.2354314 10.1109/ICPR.2008.4761627 10.1145/2939672.2939785 10.1111/mice.12501 10.1016/j.neucom.2019.01.036 10.1007/s00138-009-0189-8 10.1016/0029-1021(73)90073-X 10.1111/mice.12263 10.1109/CVPR.2015.7298965  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 The Authors. published by Wiley Periodicals LLC on behalf of Editor 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC on behalf of Editor – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1111/mice.12564 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | CrossRef Civil Engineering Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering Computer Science  | 
    
| EISSN | 1467-8667 | 
    
| EndPage | 72 | 
    
| ExternalDocumentID | 10.1111/mice.12564 10_1111_mice_12564 MICE12564  | 
    
| Genre | article | 
    
| GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OB 1OC 24P 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABFSI ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 E.L EAD EAP EBS EDO EJD EMK EST ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RJQFR RX1 SAMSI SUPJJ TN5 TUS UB1 VH1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4614-98f84ecb46d9e5b52519b40b8ce34ba9b8d8dc30d4300762fa997dbaeb948a3d3 | 
    
| IEDL.DBID | 24P | 
    
| ISSN | 1093-9687 1467-8667  | 
    
| IngestDate | Sun Sep 07 11:04:31 EDT 2025 Fri Jul 25 05:46:47 EDT 2025 Wed Oct 01 04:15:58 EDT 2025 Thu Apr 24 22:59:56 EDT 2025 Wed Jan 22 16:32:40 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | Attribution cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4614-98f84ecb46d9e5b52519b40b8ce34ba9b8d8dc30d4300762fa997dbaeb948a3d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12564 | 
    
| PQID | 2471172235 | 
    
| PQPubID | 2045171 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_1111_mice_12564 proquest_journals_2471172235 crossref_citationtrail_10_1111_mice_12564 crossref_primary_10_1111_mice_12564 wiley_primary_10_1111_mice_12564_MICE12564  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2021 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken | 
    
| PublicationPlace_xml | – name: Hoboken | 
    
| PublicationTitle | Computer-aided civil and infrastructure engineering | 
    
| PublicationYear | 2021 | 
    
| Publisher | Wiley Subscription Services, Inc | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc | 
    
| References | 2019; 9 2019; 2019 2019; 99 2017b; 28 2019; 35 2019; 34 2006; 15 2009 2008 1996 2005; 20 2006 2003; 17 2008; 3 2001; 45 2017; 114 2009; 136 2013; 9 2018b; 144 2010; 21 2006; 20 2018; 371 2015; 29 2009; 92 1986; 8 2018a; 156 2006; 21 2019b 2019a 2017; 32 2019 2011; 22 2018 2014; 14 2017a; 26 2017 2014; 13 2005; 6 2016 2015 2012; 27 2019; 338 2018; 33 1973; 6 2018; 32 1979; 9 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 Jiang S. (e_1_2_5_21_1) 2019 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 Li S. (e_1_2_5_26_1) 2019; 2019 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 Tsochantaridis I. (e_1_2_5_48_1) 2005; 6 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1  | 
    
| References_xml | – year: 2009 – volume: 6 start-page: 1453 year: 2005 end-page: 1484 article-title: Large margin methods for structured and interdependent output variables publication-title: Journal of Machine Learning Research – volume: 20 start-page: 210 issue: 3 year: 2006 end-page: 216 article-title: Improved image analysis for evaluating concrete damage publication-title: Journal of Computing in Civil Engineering – volume: 33 start-page: 638 issue: 8 year: 2018 end-page: 654 article-title: A fast detection method via region‐based fully convolutional neural networks for shield tunnel lining defects publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 33 start-page: 731 issue: 9 year: 2018 end-page: 747 article-title: Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 17 start-page: 255 issue: 4 year: 2003 end-page: 263 article-title: Analysis of edge‐detection techniques for crack identification in bridges publication-title: Journal of Computing in Civil Engineering – year: 2019a – year: 2018 – volume: 35 start-page: 511 issue: 5 year: 2019 end-page: 529 article-title: Image‐based crack assessment of bridge piers using unmanned aerial vehicles and three‐dimensional scene reconstruction publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2019 article-title: Real‐time crack assessment using deep neural networks with wall‐climbing unmanned aerial system publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 9 start-page: 62 issue: 1 year: 1979 end-page: 66 article-title: A threshold selection method from gray‐level histograms publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 156 start-page: 598 year: 2018a end-page: 607 article-title: A novel unsupervised deep learning model for global and local health condition assessment of structures publication-title: Engineering Structures – volume: 114 start-page: 237 issue: 2 year: 2017 end-page: 244 article-title: Supervised deep restricted Boltzmann machine for estimation of concrete publication-title: ACI Materials Journal – volume: 9 start-page: 567 issue: 6 year: 2013 end-page: 577 article-title: Automated image processing technique for detecting and analysing concrete surface cracks publication-title: Structure and Infrastructure Engineering – volume: 338 start-page: 139 year: 2019 end-page: 153 article-title: Deepcrack: A deep hierarchical feature learning architecture for crack segmentation publication-title: Neurocomputing – year: 2008 – volume: 144 issue: 12 year: 2018b article-title: Novel machine‐learning model for estimating construction costs considering economic variables and indexes publication-title: Journal of Construction Engineering and Management – volume: 21 start-page: 797 issue: 5 year: 2010 end-page: 809 article-title: Fast crack detection method for large‐size concrete surface images using percolation‐based image processing publication-title: Machine Vision and Applications – volume: 371 issue: 1 year: 2018 article-title: Development of an automatic crack inspection system for concrete tunnel lining based on computer vision technologies publication-title: IOP Conference Series: Materials Science and Engineering – volume: 15 start-page: 47 issue: 1 year: 2006 end-page: 57 article-title: Segmentation of buried concrete pipe images publication-title: Automation in Construction – year: 2019b – year: 2019 – year: 2015 – volume: 32 issue: 5 year: 2018 article-title: Deep learning‐based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet publication-title: Journal of Computing in Civil Engineering – volume: 136 start-page: 489 issue: 6 year: 2009 end-page: 499 article-title: Modeling of crack depths in digital images of concrete pavements using optical reflection properties publication-title: Journal of Transportation Engineering – volume: 9 start-page: 1259 issue: 12 year: 2019 article-title: Evaluation of tensile performance of steel members by analysis of corroded steel surface using deep learning publication-title: Metals – volume: 14 start-page: 719 issue: 4 year: 2014 end-page: 741 article-title: Automated assessment of cracks on concrete surfaces using adaptive digital image processing publication-title: Smart Structures and Systems – volume: 92 start-page: 1 issue: 10 year: 2009 end-page: 12 article-title: Practical image measurement of crack width for real concrete structure publication-title: Electronics and Communications in Japan – volume: 13 start-page: 591 issue: 2 year: 2014 end-page: 599 article-title: Automated crack detection on concrete bridges publication-title: IEEE Transactions on Automation Science and Engineering – volume: 26 issue: 18 year: 2017a article-title: A novel machine learning‐based algorithm to detect damage in high‐rise building structures publication-title: The Structural Design of Tall and Special Buildings – volume: 34 start-page: 1 issue: 11 year: 2019 end-page: 21 article-title: Concrete crack detection using context aware deep semantic segmentation network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 8 start-page: 679 issue: 6 year: 1986 end-page: 698 article-title: A computational approach to edge detection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 1996 – volume: 35 start-page: 373 issue: 4 year: 2019 end-page: 388 article-title: Concrete crack detection with handwriting script interferences using faster region‐based convolutional neural network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 20 start-page: 52 issue: 1 year: 2005 end-page: 61 article-title: Monitoring crack changes in concrete structures publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2016 – volume: 33 start-page: 1090 issue: 12 year: 2018 end-page: 1109 article-title: Automatic pixel‐level crack detection and measurement using fully convolutional network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 34 start-page: 713 issue: 8 year: 2019 end-page: 727 article-title: Encoder–decoder network for pixel‐level road crack detection in black‐box images publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 28 start-page: 3074 issue: 12 year: 2017b end-page: 3083 article-title: A new neural dynamic classification algorithm publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 32 start-page: 361 issue: 5 year: 2017 end-page: 378 article-title: Deep learning‐based crack damage detection using convolutional neural networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2006 – volume: 21 start-page: 395 issue: 6 year: 2006 end-page: 410 article-title: Segmentation of pipe images for crack detection in buried sewers publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 29 start-page: 196 issue: 2 year: 2015 end-page: 210 article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure publication-title: Advanced Engineering Informatics – volume: 6 start-page: 258 issue: 5 year: 1973 end-page: 263 article-title: Holographic detection of cracks in concrete publication-title: Non‐Destructive Testing – volume: 99 start-page: 52 year: 2019 end-page: 58 article-title: Autonomous concrete crack detection using deep fully convolutional neural network publication-title: Automation in Construction – volume: 27 start-page: 29 issue: 1 year: 2012 end-page: 47 article-title: Concrete crack detection by multiple sequential image filtering publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 22 start-page: 245 issue: 2 year: 2011 end-page: 254 article-title: A robust automatic crack detection method from noisy concrete surfaces publication-title: Machine Vision and Applications – year: 2017 – volume: 2019 start-page: 1 issue: 2 year: 2019 end-page: 12 article-title: Image‐based concrete crack detection using convolutional neural network and exhaustive search technique publication-title: Advances in Civil Engineering – volume: 3 start-page: 128 issue: 1 year: 2008 end-page: 135 article-title: Image‐based crack detection for real concrete surfaces publication-title: IEEJ Transactions on Electrical and Electronic Engineering – ident: e_1_2_5_40_1 doi: 10.1002/tal.1400 – ident: e_1_2_5_19_1 doi: 10.1109/CVPR.2017.632 – ident: e_1_2_5_44_1 doi: 10.14359/51689560 – ident: e_1_2_5_36_1 doi: 10.1111/j.1467-8667.2011.00716.x – ident: e_1_2_5_46_1 doi: 10.1016/j.autcon.2005.02.007 – ident: e_1_2_5_4_1 doi: 10.1111/mice.12440 – ident: e_1_2_5_53_1 doi: 10.1002/tee.20244 – ident: e_1_2_5_34_1 – ident: e_1_2_5_23_1 doi: 10.1007/978-3-030-20887-5_6 – ident: e_1_2_5_12_1 doi: 10.1016/j.autcon.2018.11.028 – volume: 6 start-page: 1453 year: 2005 ident: e_1_2_5_48_1 article-title: Large margin methods for structured and interdependent output variables publication-title: Journal of Machine Learning Research – ident: e_1_2_5_15_1 doi: 10.1007/s00138-009-0244-5 – ident: e_1_2_5_41_1 doi: 10.1109/TNNLS.2017.2682102 – ident: e_1_2_5_20_1 doi: 10.1111/j.1467-8667.2006.00445.x – ident: e_1_2_5_49_1 doi: 10.1111/mice.12367 – ident: e_1_2_5_47_1 doi: 10.1111/j.1467-8667.2005.00376.x – ident: e_1_2_5_24_1 doi: 10.1016/j.aei.2015.01.008 – ident: e_1_2_5_13_1 – ident: e_1_2_5_42_1 doi: 10.1016/j.engstruct.2017.10.070 – ident: e_1_2_5_38_1 doi: 10.1109/TSMC.1979.4310076 – ident: e_1_2_5_3_1 doi: 10.1061/(ASCE)TE.1943-5436.0000095 – ident: e_1_2_5_43_1 doi: 10.1061/(ASCE)CO.1943-7862.0001570 – ident: e_1_2_5_11_1 doi: 10.1111/mice.12497 – ident: e_1_2_5_8_1 doi: 10.1111/mice.12334 – ident: e_1_2_5_56_1 doi: 10.1061/(ASCE)CP.1943-5487.0000775 – ident: e_1_2_5_45_1 doi: 10.3390/ICEM18-05387 – ident: e_1_2_5_10_1 doi: 10.3390/met9121259 – ident: e_1_2_5_14_1 doi: 10.1007/978-3-642-02568-6_8 – ident: e_1_2_5_35_1 doi: 10.1088/1757-899X/371/1/012015 – ident: e_1_2_5_32_1 – ident: e_1_2_5_6_1 doi: 10.1109/TPAMI.1986.4767851 – ident: e_1_2_5_17_1 doi: 10.1109/ICCV.2017.322 – ident: e_1_2_5_55_1 doi: 10.1111/mice.12477 – ident: e_1_2_5_37_1 – ident: e_1_2_5_18_1 doi: 10.1061/(ASCE)0887-3801(2006)20:3(210) – volume: 2019 start-page: 1 issue: 2 year: 2019 ident: e_1_2_5_26_1 article-title: Image‐based concrete crack detection using convolutional neural network and exhaustive search technique publication-title: Advances in Civil Engineering – ident: e_1_2_5_16_1 doi: 10.1109/ICPR.2006.98 – ident: e_1_2_5_22_1 – ident: e_1_2_5_51_1 doi: 10.1002/ecj.10151 – ident: e_1_2_5_33_1 – ident: e_1_2_5_2_1 doi: 10.1061/(ASCE)0887-3801(2003)17:4(255) – ident: e_1_2_5_54_1 doi: 10.1111/mice.12412 – ident: e_1_2_5_5_1 doi: 10.1023/A:1010933404324 – year: 2019 ident: e_1_2_5_21_1 article-title: Real‐time crack assessment using deep neural networks with wall‐climbing unmanned aerial system publication-title: Computer‐Aided Civil and Infrastructure Engineering – ident: e_1_2_5_25_1 doi: 10.1080/15732479.2011.593891 – ident: e_1_2_5_27_1 doi: 10.12989/sss.2014.14.4.719 – ident: e_1_2_5_39_1 doi: 10.1109/TASE.2014.2354314 – ident: e_1_2_5_50_1 doi: 10.1109/ICPR.2008.4761627 – ident: e_1_2_5_9_1 doi: 10.1145/2939672.2939785 – ident: e_1_2_5_28_1 doi: 10.1111/mice.12501 – ident: e_1_2_5_29_1 doi: 10.1016/j.neucom.2019.01.036 – ident: e_1_2_5_52_1 doi: 10.1007/s00138-009-0189-8 – ident: e_1_2_5_31_1 doi: 10.1016/0029-1021(73)90073-X – ident: e_1_2_5_7_1 doi: 10.1111/mice.12263 – ident: e_1_2_5_30_1 doi: 10.1109/CVPR.2015.7298965  | 
    
| SSID | ssj0000443 | 
    
| Score | 2.6318898 | 
    
| Snippet | Automated crack detection based on image processing is widely used when inspecting concrete structures. The existing methods for crack detection are not yet... | 
    
| SourceID | unpaywall proquest crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 61 | 
    
| SubjectTerms | Accuracy Automation Concrete Concrete structures Cracks Flaw detection Image processing Machine learning Methodology Pixels  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB7R5dByKJS26lJaWS2XVsoqOI7XPq4QCFUC9dCV6CnyzxhVLNnVJhGCE4_AM_Iktb0JZSu04hZZE8tyZjKfPd_MAOxZKpFLM0w0y13CkLFE4lAlqbKa7mfa0BgxPTnlx2P24yw_W4MvXS7M4_h9YNyEnuwD74Q5ewHrPPd4uwfr49Ofo98xjCmzRPLYBS9avOB82NYgXX552ev8g5Ivm3Kmrq_UZLIMTqN3OdqEg25dC1LJxaCp9cDc_FeycfXCt-B1Cy7JaKENb2ANy23YbIEmac248kNdL4dubBs2HhUmfAvVqKmnsZgrsVhHtlZJFs2mydQRMw-Z-SSkphB_nvbAs0ZSNXOnDJI_l6EsxjUJjPpzUl9N72_vvCrNyCTcA5DzeSSZ1cTD-ypwrsll5HPiOxgfHf46OE7a9gyJYd6pJ1I4wdBoxq3EXOchB1azVAuDGdNKamGFNVlqWRbifdQpKYdWK9SSCZXZ7D30ymmJH4DIXDOdai6tcEy5VKDz_x7EfWcdUur68K37fIVpa5eHFhqTojvDhO0u4nb34euD7GxRseNJqd1OC4rWaquCek_tAR3N8j7sPWjGylm-R6VZIVJ4azqMTzvPm_MjvKKBNxOveXahV88b_OSBT60_t5r_F1gYAbU priority: 102 providerName: Unpaywall  | 
    
| Title | Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12564 https://www.proquest.com/docview/2471172235 https://doi.org/10.1111/mice.12564  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 36 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8667 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000443 issn: 1467-8667 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8667 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0000443 issn: 1467-8667 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1467-8667 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3S5ND20Hy0pdukYaC5pODilWWvBLksaUIINISQhfRk9DEKhY13WXsJufUn9Df2l1TS2rsJlEAvxpixDx6N5kl68wbgwDJJhTSDRPPcJZw4TyQNVJIqq1k_04bFE9PvF8XZiJ_f5DdrcNTVwiz0IZYbbiEy4nwdAlzp-lGQh27tX316LvgL2Oh7IBPGN-OXq3mYt_R6mSWyEINWnDTweFbvPk1HK4z5cl5N1cO9Go-fotaYdk634E2LF3G4cPA2rFG1A5stdsQ2Mmv_qGvP0D3bgdePtAbfQj2cN5Ooz4qWmkjAqnDRPxonDs0sFNtjqDZBv0T2WLIhrOczpwzhz7ugdPGAgSR_i8395M-v3350THEclvZ4O4u8sQY9Yq8DjRrvIkWT3sHo9OT6-CxpOy4khvs8nUjhBCejeWEl5ToPZa2ap1oYyrhWUgsrrMlSy7NwhMecknJgtSItuVCZzd7DejWp6AOgzDXXqS6kFY4rlwpyfjoh6jvriDHXg8Pux5emlSMPXTHGZbcsCU4qo5N68HlpO12IcPzTaq_zX9kGYl0yn3w9RmNZ3oODpU-f_cqX6O5nTEofICfx7uP_GO_CKxYIMXH_Zg_Wm9mcPnlE0-j9OHD99dsV24eN0cXl8MdfJxP3fw | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BOZQe-CmgLrRgiV5ACso6TtY-VqjVAm3FoZV6i_wzrpC22dUmq6o3HoFn5EnweJ3dVkKVeouscQ4ej-cb-5sZgH3HFVbKjjIjSp8JFCJTONJZrp3hw8JYHl9MT06r8bn4flFeJG4O5cIs60OsLtzIMuJ5TQZOF9K3rJzatX8J_rkSj-GJqIYVxV5c_FwfxCLx61WRqUqOUnVSIvKs5971R2uQubloZvrmWk8md2Fr9DtHL-BZAozsYKnhl_AIm214nsAjS6bZhqG-P0M_tg1bt4oNvoL2YNFNY4FW5rCLDKyGLRtIs6lndk7Z9ozSTViIkQOY7JC1i7nXFtmvKyp1ccOIJX_Juuvp399_wvaYsQnF9uxyHoljHQuQvSUeNbuKHE18DedHh2dfx1lquZDZsIJBT9JLgdaIyiksTUl5rUbkRloshNHKSCedLXInCnrD414rNXJGo1FC6sIVb2CjmTa4A0yVRpjcVMpJL7TPJfpwniAOvfPIuR_Ap37ha5vqkVNbjEndxyWkpDoqaQAfV7KzZRWO_0rt9vqrkyW2NQ_eN4A0XpQD2F_p9N6_fI7qvkekDhZyGL_ePkT4A2yOz06O6-Nvpz_ewVNO7Jh4mbMLG918gXsB3nTmfdzE_wDm5_hS | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSFAOFAqoSwtYoheQskodJ2sfK9pV-aoQolJvkT_GFWKbXW0SVeXUn9DfyC-px3G2W4QqwS2yJpGSzHie7TdvCNm2TEIhzSjRPHcJB84TCSOVpMpqtpNpw8KJ6ZfD4uCIfzzOjyM3B2thOn2IxYYbRkaYrzHAYWbdUpRju_ahz88Fv0vu8VwKZPTtfVtSj-KRXy-zRBZiFNVJkchzfe_NfHQNMh-01Uydn6nJ5CZsDXlnvNY1V62DXCHSTX4O20YPza8_xBz_-5Uek0cRkdLdzoWekDtQrZO1iE5pjP3aD_UNIPqxdfJwSc3wKal322YaFGCphSZQvCradaimU0fNHMv5KdazUL8I92i1AVq3c6cM0B-nqKVxTpGGf0Kbs-nvi0vvfzM6wc0DejIPzLSG-jVBjURtehpIoPCMHI33v78_SGJPh8RwjwQSKZzgYDQvrIRc51g4q3mqhYGMayW1sMKaLLU8w0NC5pSUI6sVaMmFymz2nKxU0wo2CJW55jrVhbTCceVSAc5PWAA7zjpgzA3I2_7PliYKnmPfjUnZL3zwc5fhcw_Im4XtrJP5-KvVVu8gZQz1umQ-vXsUyLJ8QLYXTnPrU94FJ7jFpPQhuB-uXvyL8Wty_-veuPz84fDTJlllyL4Jm0VbZKWZt_DSw6dGvwpBcgWljRj7 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB7R5dByKJS26lJaWS2XVsoqOI7XPq4QCFUC9dCV6CnyzxhVLNnVJhGCE4_AM_Iktb0JZSu04hZZE8tyZjKfPd_MAOxZKpFLM0w0y13CkLFE4lAlqbKa7mfa0BgxPTnlx2P24yw_W4MvXS7M4_h9YNyEnuwD74Q5ewHrPPd4uwfr49Ofo98xjCmzRPLYBS9avOB82NYgXX552ev8g5Ivm3Kmrq_UZLIMTqN3OdqEg25dC1LJxaCp9cDc_FeycfXCt-B1Cy7JaKENb2ANy23YbIEmac248kNdL4dubBs2HhUmfAvVqKmnsZgrsVhHtlZJFs2mydQRMw-Z-SSkphB_nvbAs0ZSNXOnDJI_l6EsxjUJjPpzUl9N72_vvCrNyCTcA5DzeSSZ1cTD-ypwrsll5HPiOxgfHf46OE7a9gyJYd6pJ1I4wdBoxq3EXOchB1azVAuDGdNKamGFNVlqWRbifdQpKYdWK9SSCZXZ7D30ymmJH4DIXDOdai6tcEy5VKDz_x7EfWcdUur68K37fIVpa5eHFhqTojvDhO0u4nb34euD7GxRseNJqd1OC4rWaquCek_tAR3N8j7sPWjGylm-R6VZIVJ4azqMTzvPm_MjvKKBNxOveXahV88b_OSBT60_t5r_F1gYAbU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+method+of+cracks+from+concrete+surface+imagery+using+two%E2%80%90step+light+gradient+boosting+machine&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Chun%2C+Pang%E2%80%90jo&rft.au=Izumi%2C+Shota&rft.au=Yamane%2C+Tatsuro&rft.date=2021-01-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=36&rft.issue=1&rft.spage=61&rft.epage=72&rft_id=info:doi/10.1111%2Fmice.12564&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_12564 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |