Rapid and High-Performance Analysis of Total Nitrogen in Coco-Peat Substrate by Coupling Laser-Induced Breakdown Spectroscopy with Multi-Chemometrics

Nitrogen is an important nutrient element for crop growth. Rapid and accurate acquisition of nitrogen content in cultivation substrate is the key to precise fertilization. In this study, laser-induced breakdown spectroscopy (LIBS) was used to detect the total nitrogen (TN) of coco-peat substrate. A...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 14; no. 6; p. 946
Main Authors Lu, Bing, Wang, Xufeng, Hu, Can, Li, Xiangyou
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2024
Subjects
Online AccessGet full text
ISSN2077-0472
2077-0472
DOI10.3390/agriculture14060946

Cover

Abstract Nitrogen is an important nutrient element for crop growth. Rapid and accurate acquisition of nitrogen content in cultivation substrate is the key to precise fertilization. In this study, laser-induced breakdown spectroscopy (LIBS) was used to detect the total nitrogen (TN) of coco-peat substrate. A LIBS spectrum acquisition system was established to collect the spectral line signal of samples with wavelengths ranging from 200 nm to 860 nm. Synergy interval partial least squares (Si-PLS) algorithm and elimination of uninformative variables (UVE) algorithm were used to select the spectral data of TN characteristic lines in coco-peat substrate. Univariate calibration curve and partial least squares regression (PLSR) were used to build mathematical models for the relationship between the spectral data of univariate characteristic spectral lines, full variables and screened multi-variable characteristic spectral lines of samples and reference measurement values of TN. By comparing the detection performance of calibration curves and multivariate spectral prediction models, it was concluded that UVE was used to simplify the number of spectral input variables for the model and PLSR was applied to construct the simplest multivariate model for the measurement of TN in the substrate samples. The model provided the best measurement performance, with the calibration set determination coefficient (RC2) and calibration set root mean square error (RMSEC) values of 0.9944 and 0.0382%, respectively; the prediction set determination coefficient (RP2) and prediction set root mean square error (RMSEP) had values of 0.9902 and 0.0513%, respectively. These results indicated that the combination of UVE and PLSR could make full use of the variable information related to TN detection in the LIBS spectrum and realize the rapid and high-performance measurement of TN in coco-peat substrate. It would provide a reference for the rapid and quantitative assessment of nutrient elements in other substrate and soil.
AbstractList Nitrogen is an important nutrient element for crop growth. Rapid and accurate acquisition of nitrogen content in cultivation substrate is the key to precise fertilization. In this study, laser-induced breakdown spectroscopy (LIBS) was used to detect the total nitrogen (TN) of coco-peat substrate. A LIBS spectrum acquisition system was established to collect the spectral line signal of samples with wavelengths ranging from 200 nm to 860 nm. Synergy interval partial least squares (Si-PLS) algorithm and elimination of uninformative variables (UVE) algorithm were used to select the spectral data of TN characteristic lines in coco-peat substrate. Univariate calibration curve and partial least squares regression (PLSR) were used to build mathematical models for the relationship between the spectral data of univariate characteristic spectral lines, full variables and screened multi-variable characteristic spectral lines of samples and reference measurement values of TN. By comparing the detection performance of calibration curves and multivariate spectral prediction models, it was concluded that UVE was used to simplify the number of spectral input variables for the model and PLSR was applied to construct the simplest multivariate model for the measurement of TN in the substrate samples. The model provided the best measurement performance, with the calibration set determination coefficient (RC2) and calibration set root mean square error (RMSEC) values of 0.9944 and 0.0382%, respectively; the prediction set determination coefficient (RP2) and prediction set root mean square error (RMSEP) had values of 0.9902 and 0.0513%, respectively. These results indicated that the combination of UVE and PLSR could make full use of the variable information related to TN detection in the LIBS spectrum and realize the rapid and high-performance measurement of TN in coco-peat substrate. It would provide a reference for the rapid and quantitative assessment of nutrient elements in other substrate and soil.
Nitrogen is an important nutrient element for crop growth. Rapid and accurate acquisition of nitrogen content in cultivation substrate is the key to precise fertilization. In this study, laser-induced breakdown spectroscopy (LIBS) was used to detect the total nitrogen (TN) of coco-peat substrate. A LIBS spectrum acquisition system was established to collect the spectral line signal of samples with wavelengths ranging from 200 nm to 860 nm. Synergy interval partial least squares (Si-PLS) algorithm and elimination of uninformative variables (UVE) algorithm were used to select the spectral data of TN characteristic lines in coco-peat substrate. Univariate calibration curve and partial least squares regression (PLSR) were used to build mathematical models for the relationship between the spectral data of univariate characteristic spectral lines, full variables and screened multi-variable characteristic spectral lines of samples and reference measurement values of TN. By comparing the detection performance of calibration curves and multivariate spectral prediction models, it was concluded that UVE was used to simplify the number of spectral input variables for the model and PLSR was applied to construct the simplest multivariate model for the measurement of TN in the substrate samples. The model provided the best measurement performance, with the calibration set determination coefficient (R[sub.C] [sup.2]) and calibration set root mean square error (RMSEC) values of 0.9944 and 0.0382%, respectively; the prediction set determination coefficient (R[sub.P] [sup.2]) and prediction set root mean square error (RMSEP) had values of 0.9902 and 0.0513%, respectively. These results indicated that the combination of UVE and PLSR could make full use of the variable information related to TN detection in the LIBS spectrum and realize the rapid and high-performance measurement of TN in coco-peat substrate. It would provide a reference for the rapid and quantitative assessment of nutrient elements in other substrate and soil.
Audience Academic
Author Wang, Xufeng
Hu, Can
Li, Xiangyou
Lu, Bing
Author_xml – sequence: 1
  givenname: Bing
  surname: Lu
  fullname: Lu, Bing
– sequence: 2
  givenname: Xufeng
  surname: Wang
  fullname: Wang, Xufeng
– sequence: 3
  givenname: Can
  orcidid: 0000-0002-9745-6324
  surname: Hu
  fullname: Hu, Can
– sequence: 4
  givenname: Xiangyou
  orcidid: 0000-0001-7079-1061
  surname: Li
  fullname: Li, Xiangyou
BookMark eNqNUk1v1DAQjVCRKKW_gIslLlxSnDixN8eyArrS8iFaztHEnmS9JHawHa32h_B_mbIIoQoJ7IOtp_fezPj5aXbmvMMse17wKyEa_gqGYPUypiVgUXHJm0o-ys5LrlTOK1We_XF_kl3GuOe0mkKsuDzPvn-G2RoGzrAbO-zyTxh6HyZwGtm1g_EYbWS-Z3c-wcg-2BT8gI5Zx9Zee6JDYrdLF1OAhKw7ErzMo3UD20LEkG-cWTQa9jogfDX-4NjtjJpcovbzkR1s2rH31LzN1zuc_ISJhonPssc9jBEvf50X2Ze3b-7WN_n247vN-nqb60rylPcNaqU6owtpyq6o5EpKAFWBKlFVWHdaoNGqU72om9p00DQliBrqoleoahAX2ebkazzs2znYCcKx9WDbn4APQwshWT1iazhfSRBiBbKuBIm1MbxrpBRFZwggr-rktbgZjgcYx9-GBW_vk2r_khTJXp5kc_DfFoypnWzUOI7g0C-xFUUtqKJclUR98YC690ugkIjFVVmWqigaYl2dWANQ29b1nrLRtA1OVtPX6S3h14reopZNfS9oTgJNqcSAfattgmS9I6Ed_9G9eKD9n5l_ADNi3Yk
CitedBy_id crossref_primary_10_3390_su17030903
Cites_doi 10.1038/s41598-021-91986-7
10.1016/j.optlastec.2022.108386
10.1016/j.geoderma.2018.09.049
10.1016/j.sab.2023.106708
10.1039/D0JA00157K
10.1016/j.foodchem.2022.133481
10.1016/j.still.2021.105109
10.1016/j.aca.2022.340142
10.3390/s20020418
10.1016/j.still.2021.105250
10.3390/plants11091153
10.1016/j.compag.2023.107813
10.1016/j.ijleo.2021.167025
10.1109/JSEN.2021.3123658
10.1039/D2JA00255H
10.1016/j.geoderma.2018.12.021
10.3390/agriculture12122060
10.3390/agriculture12030411
10.3389/fpls.2021.714557
10.1016/j.foodchem.2020.127886
10.1016/j.microc.2021.106530
10.1366/0003702041389201
10.1364/AO.58.003277
10.1016/j.sab.2022.106561
10.1080/00387010.2012.747542
10.1007/s00340-020-7392-8
10.1007/s11801-024-3114-5
10.1016/j.geoderma.2019.113905
10.1016/j.lwt.2021.111978
10.1016/j.sab.2021.106160
10.1016/j.sab.2023.106729
10.1016/j.ijleo.2022.169247
10.1016/j.sab.2022.106478
10.1016/j.microc.2020.105107
10.1038/s41598-021-90624-6
10.1016/j.compag.2022.107231
10.1016/j.foodchem.2017.06.031
10.1111/jtxs.12633
10.3390/agriculture13101975
10.1080/01904167.2018.1425439
10.1038/s41598-019-47751-y
10.3390/agronomy12051012
10.1039/D2JA00200K
10.1063/1.5086351
10.1039/C9AY01030K
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/agriculture14060946
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Agricultural Science Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_d0086a338a654375acdd0b96631bd437
10.3390/agriculture14060946
A799256959
10_3390_agriculture14060946
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c460t-f9ec77bdc16d2b146866aa74a72e74e5bc3edc7b7f3595dba992a35a51f7e75a3
IEDL.DBID DOA
ISSN 2077-0472
IngestDate Fri Oct 03 12:34:19 EDT 2025
Sun Sep 07 11:14:11 EDT 2025
Fri Sep 05 14:04:00 EDT 2025
Mon Jun 30 06:35:44 EDT 2025
Mon Oct 20 16:58:31 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
Thu Oct 16 04:27:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-f9ec77bdc16d2b146866aa74a72e74e5bc3edc7b7f3595dba992a35a51f7e75a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7079-1061
0000-0002-9745-6324
OpenAccessLink https://doaj.org/article/d0086a338a654375acdd0b96631bd437
PQID 3072227119
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_d0086a338a654375acdd0b96631bd437
unpaywall_primary_10_3390_agriculture14060946
proquest_miscellaneous_3153654682
proquest_journals_3072227119
gale_infotracacademiconefile_A799256959
crossref_citationtrail_10_3390_agriculture14060946
crossref_primary_10_3390_agriculture14060946
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Coutinho (ref_12) 2019; 338
Zhou (ref_35) 2022; 155
Zhang (ref_21) 2021; 169
Wang (ref_9) 2021; 213
Xu (ref_32) 2020; 35
ref_36
Dib (ref_44) 2020; 157
Zhong (ref_14) 2023; 209
ref_10
Hossen (ref_24) 2021; 11
Chen (ref_1) 2021; 21
Khater (ref_2) 2021; 11
Xu (ref_15) 2019; 355
Urrestarazu (ref_7) 2021; 45
Lin (ref_18) 2023; 206
Harris (ref_47) 2004; 58
Mishra (ref_41) 2022; 122
Zhang (ref_45) 2023; 206
Dong (ref_46) 2013; 46
Li (ref_5) 2019; 12
Khoso (ref_25) 2022; 261
Wang (ref_48) 2019; 26
Borduchi (ref_20) 2022; 198
Sun (ref_19) 2024; 20
Ghoreishy (ref_4) 2018; 41
He (ref_37) 2022; 53
Chen (ref_34) 2021; 180
Qiao (ref_42) 2017; 237
Cheng (ref_43) 2022; 394
Lin (ref_16) 2022; 37
Xu (ref_17) 2020; 126
Li (ref_22) 2021; 12
Recena (ref_11) 2019; 337
Zhang (ref_29) 2022; 200
Shabbir (ref_33) 2022; 194
ref_40
Yang (ref_39) 2021; 338
ref_3
Ding (ref_27) 2019; 11
Yang (ref_30) 2021; 243
Tavares (ref_23) 2022; 216
ref_26
ref_8
Sun (ref_28) 2019; 9
Hu (ref_38) 2022; 37
Zhang (ref_13) 2019; 58
Zhu (ref_31) 2021; 150
ref_6
References_xml – volume: 11
  start-page: 12754
  year: 2021
  ident: ref_2
  article-title: Production of basil (Ocimum basilicum L.) under different soilless cultures
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-91986-7
– volume: 155
  start-page: 108386
  year: 2022
  ident: ref_35
  article-title: High sensitivity analysis of soil by laser-induced breakdown spectroscopy with Ag nanoparticles
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2022.108386
– volume: 337
  start-page: 368
  year: 2019
  ident: ref_11
  article-title: Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioning rather than availability indices
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.049
– volume: 206
  start-page: 106708
  year: 2023
  ident: ref_45
  article-title: Sensitive and accurate determination of nitrogen in simulated Martian soil and environment with LIBS spectrum fusion and regression based on neural network
  publication-title: Spectroc. Acta Pt. B-Atom. Spectr.
  doi: 10.1016/j.sab.2023.106708
– volume: 35
  start-page: 1641
  year: 2020
  ident: ref_32
  article-title: Total alkali silica classification of rocks with LIBS: Influences of the chemical and physical matrix effects
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D0JA00157K
– volume: 394
  start-page: 133481
  year: 2022
  ident: ref_43
  article-title: Green reduction of silver nanoparticles for cadmium detection in food using surface-enhanced Raman spectroscopy coupled multivariate calibration
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.133481
– volume: 213
  start-page: 105109
  year: 2021
  ident: ref_9
  article-title: Construction of complex features for predicting soil total nitrogen content based on convolution operations
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2021.105109
– volume: 122
  start-page: 340142
  year: 2022
  ident: ref_41
  article-title: META-PLS modelling: An integrated approach to automatic model optimization for near-infrared spectra
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340142
– ident: ref_26
  doi: 10.3390/s20020418
– volume: 216
  start-page: 105250
  year: 2022
  ident: ref_23
  article-title: Laser-Induced Breakdown Spectroscopy (LIBS) for tropical soil fertility analysis
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2021.105250
– volume: 45
  start-page: 113
  year: 2021
  ident: ref_7
  article-title: Effect of ammonium nitrogen on pepper grown under soilless culture
  publication-title: J. Plant Nutr.
– ident: ref_3
  doi: 10.3390/plants11091153
– volume: 209
  start-page: 107813
  year: 2023
  ident: ref_14
  article-title: Fast quantification of matcha adulterants with laser-induced breakdown spectroscopy spectrum and image
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107813
– volume: 243
  start-page: 167025
  year: 2021
  ident: ref_30
  article-title: Spectral enhancement mechanism and analysis of defocused collinear DP-LIBS technology
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.167025
– volume: 21
  start-page: 26856
  year: 2021
  ident: ref_1
  article-title: Compensation methods for pH direct measurement in soilless culture substrates using the all-solid-stated pH sensor
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3123658
– volume: 37
  start-page: 2309
  year: 2022
  ident: ref_38
  article-title: Research on a LIBS-based detection method of medium-and-low alloy steel hardness
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00255H
– volume: 338
  start-page: 401
  year: 2019
  ident: ref_12
  article-title: Influence of soil sample preparation on the quantification of NPK content via spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.021
– ident: ref_40
  doi: 10.3390/agriculture12122060
– ident: ref_10
  doi: 10.3390/agriculture12030411
– volume: 12
  start-page: 714557
  year: 2021
  ident: ref_22
  article-title: Fast identification of soybean seed varieties using laser-induced breakdown spectroscopy combined with convolutional neural network
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.714557
– volume: 338
  start-page: 127886
  year: 2021
  ident: ref_39
  article-title: Building a stable and accurate model for heavy metal detection in mulberry leaves based on a proposed analysis framework and laser-induced breakdown spectroscopy
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.127886
– volume: 169
  start-page: 106530
  year: 2021
  ident: ref_21
  article-title: Accurate identification of soluble solid content in citrus by indirect laser-induced breakdown spectroscopy with its leaves
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2021.106530
– volume: 58
  start-page: 770
  year: 2004
  ident: ref_47
  article-title: Determination of nitrogen in sand using laser-induced breakdown spectroscopy
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702041389201
– volume: 58
  start-page: 3277
  year: 2019
  ident: ref_13
  article-title: Quantitative analysis of nitrogen in ammonium phosphate fertilizers using laser-induced breakdown spectroscopy
  publication-title: Appl. Optics
  doi: 10.1364/AO.58.003277
– volume: 198
  start-page: 106561
  year: 2022
  ident: ref_20
  article-title: Reducing matrix effects on the quantification of Ca, Mg, and Fe in soybean leaf samples using calibration-free LIBS and one-point calibration
  publication-title: Spectroc. Acta Pt. B-Atom. Spectr.
  doi: 10.1016/j.sab.2022.106561
– volume: 46
  start-page: 421
  year: 2013
  ident: ref_46
  article-title: Spectral characterization of nitrogen in farmland soil by laser-induced breakdown spectroscopy
  publication-title: Spectr. Lett.
  doi: 10.1080/00387010.2012.747542
– volume: 126
  start-page: 43
  year: 2020
  ident: ref_17
  article-title: Comparative identification of citrus huanglongbing by analyzing leaves using laser-induced breakdown spectroscopy and near-infrared spectroscopy
  publication-title: Appl. Phys. B-Lasers Opt.
  doi: 10.1007/s00340-020-7392-8
– volume: 20
  start-page: 171
  year: 2024
  ident: ref_19
  article-title: Angelica dahurica using LIBS technology combined with machine learning algorithms
  publication-title: Optoelectron. Lett.
  doi: 10.1007/s11801-024-3114-5
– volume: 355
  start-page: 113905
  year: 2019
  ident: ref_15
  article-title: Detection of soil organic matter from laser-induced breakdown spectroscopy (LIBS) and mid-infrared spectroscopy (FTIR-ATR) coupled with multivariate techniques
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113905
– volume: 150
  start-page: 111978
  year: 2021
  ident: ref_31
  article-title: Au@Ag nanoflowers based SERS coupled chemometric algorithms for determination of organochlorine pesticides in milk
  publication-title: LWT-Food Sci. Technol.
  doi: 10.1016/j.lwt.2021.111978
– volume: 180
  start-page: 106160
  year: 2021
  ident: ref_34
  article-title: High accuracy analysis of fiber-optic laser-induced breakdown spectroscopy by using multivariate regression analytical methods
  publication-title: Spectroc. Acta Pt. B-Atom. Spectr.
  doi: 10.1016/j.sab.2021.106160
– volume: 206
  start-page: 106729
  year: 2023
  ident: ref_18
  article-title: Rapid identification of the geographical origins of crops using laser-induced breakdown spectroscopy combined with transfer learning
  publication-title: Spectroc. Acta Pt. B-Atom. Spectr.
  doi: 10.1016/j.sab.2023.106729
– volume: 261
  start-page: 169247
  year: 2022
  ident: ref_25
  article-title: Comparative elemental analysis of soil of wheat, corn, rice, and okra cropped field using CF-LIBS
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.169247
– volume: 194
  start-page: 106478
  year: 2022
  ident: ref_33
  article-title: Machine learning and transfer learning for correction of the chemical and physical matrix effects in the determination of alkali and alkaline earth metals with LIBS in rocks
  publication-title: Spectroc. Acta Pt. B-Atom. Spectr.
  doi: 10.1016/j.sab.2022.106478
– volume: 157
  start-page: 105107
  year: 2020
  ident: ref_44
  article-title: CN diatomic emission for N determination by LIBS
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2020.105107
– volume: 11
  start-page: 12693
  year: 2021
  ident: ref_24
  article-title: Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-90624-6
– volume: 200
  start-page: 107231
  year: 2022
  ident: ref_29
  article-title: Detection of pears with moldy core using online full-transmittance spectroscopy combined with supervised classifier comparison and variable optimization
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107231
– volume: 237
  start-page: 1179
  year: 2017
  ident: ref_42
  article-title: A feasibility quantification study of total volatile basic nitrogen (TVB-N) content in duck meat for freshness evaluation
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.06.031
– volume: 12
  start-page: 38
  year: 2019
  ident: ref_5
  article-title: Development of transplanting manipulator for hydroponic leafy vegetables
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 53
  start-page: 133
  year: 2022
  ident: ref_37
  article-title: Prediction of tenderness of chicken by using viscoelasticity based on airflow and optical technique
  publication-title: J. Texture Stud.
  doi: 10.1111/jtxs.12633
– ident: ref_8
  doi: 10.3390/agriculture13101975
– volume: 41
  start-page: 766
  year: 2018
  ident: ref_4
  article-title: Using composted wheat residue as a growth medium in culture of tomato
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2018.1425439
– ident: ref_36
– volume: 9
  start-page: 11363
  year: 2019
  ident: ref_28
  article-title: Machine learning allows calibration models to predict trace element concentration in soils with generalized LIBS spectra
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47751-y
– ident: ref_6
  doi: 10.3390/agronomy12051012
– volume: 37
  start-page: 2082
  year: 2022
  ident: ref_16
  article-title: Modified iterative wavelets for background removal in laser-induced breakdown spectroscopy based on fiber laser ablation
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00200K
– volume: 26
  start-page: 073302
  year: 2019
  ident: ref_48
  article-title: Influence of distance between sample surface and geometrical focal point on CN emission intensity from femtosecond laser-induced PMMA plasmas
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5086351
– volume: 11
  start-page: 3657
  year: 2019
  ident: ref_27
  article-title: Accurate quantitative determination of heavy metals in oily soil by laser induced breakdown spectroscopy (LIBS) combined with interval partial least squares (IPLS)
  publication-title: Anal. Methods
  doi: 10.1039/C9AY01030K
SSID ssj0000913806
Score 2.2879665
Snippet Nitrogen is an important nutrient element for crop growth. Rapid and accurate acquisition of nitrogen content in cultivation substrate is the key to precise...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 946
SubjectTerms Agricultural production
agriculture
Algorithms
Analytical chemistry
Artificial intelligence
atomic absorption spectrometry
Breakdowns
Calibration
coco-peat substrate
Crop growth
Crops
Decision making
Environmental law
Fertilization
Fertilizers
Heavy metals
Laser induced breakdown spectroscopy
Lasers
Least squares method
Line spectra
Mathematical models
Multivariate analysis
Nitrogen
Nutrient content
Nutrients
Peat
Performance measurement
prediction
Prediction models
Regression analysis
Root-mean-square errors
soil
spectral analysis
Spectroscopy
Spectrum analysis
Substrates
synergy interval partial least squares
total nitrogen
uninformative variables elimination
Urban agriculture
Variables
Wavelengths
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdd-rD1YeyTeeuGBoO9TDT-kBQ_jJGUljJGKKWFvpnTh0NYZnmpw8gf0v-3d46dbGyUvcoytnSn0510v98x9sEm2pkEvMggk4K4c4Txzgo38lb6PMsstNkWU3V2lX29ltd7bNpjYSitsreJraF2wdIZ-RHqIsE24zj_Uv8UVDWKblf7EhrQlVZwn1uKsQdsPyFmrAHbn5xMzy-2py7Egjkaqg39UIrx_hHMlh3JhcdYQ2G0o_7Yolom_7_t9QF7uKpqWP-CxeK3Den0CXvceZJ8vBH9U7bnq2fsYLz70HN2ewH13HGoHKd8DnG-Qwnwno2Eh5JfBnTB-XTeLAPqE59X_DjYgN2h4WRZWgZbbtbYvCIE74x_w81vKajuh_WOT9Dz_O4wnudUzr4hgsxQrzmd8fIW4SuIlyD8oOpd9uYFuzo9uTw-E10dBmEzNWxEmXurtXE2Vi4xhNVSCkBnoBOvMy-NTVG82uiSUL7OQJ4nkEqQcam9lpC-ZIMqVP4V46mSqYzNSJUlug4qGzk7tOkQtPdSlxYilvRTX9iOpJxqZSwKDFZIXsU_5BWxT9uX6g1Hx_3dJyTTbVci2G4bwnJWdOu1cBTrAcbvQOBbHIR1bmgwNkxj47AhYh9JIwoyA_iDFjo0Aw6TCLWKscZJkCqXecQOe6UpOvtwU-y0OWLvt49xZdN1DVQ-rLAPbkYENRslERNbZfufEb6-_5Nv2KMEXbNNwtshGzTLlX-LrlVj3nXr5Q5FRik2
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4AeeFcEWmQkJC645GV7c9xWrSqEVhXqSuUUjR-pVl2S1W4itPwP_i8zSXZboEXlao-l2B6PZ-L5vmHsnY21MzF4kUIqBXHnCOOdFW7orfRZmlposy3G6mSSfjqX5z3PNmFhrr3fJxiOf4SLRc9B4TEUUBiMqPtsS0l0vAdsazI-HX2l8nGh1oJ4DzteodtG_nb3tBT9fxvibfagKeew-g6z2bWb5vhxB-FetgSFlGByud_UZt_--IO-8Y6TeMIe9R4nH3Uq8pTd8-Uztj26En7Ofn6B-dRxKB2nvA9xeoUm4GvWEl4V_KxCV52Pp_WiQr3j05IfVrZCcag5WaCW6ZabFTY3hPS94J_xklwIqg9iveMH6KFeOoz7OZW9r4lIs5qvOP0L5i0SWBB_QfWNqnzZ5Qs2OT46OzwRfb0GYVMV1qLIvNXaOBspFxvCdCkFoFPQsdepl8YmqAba6ILQwM5AlsWQSJBRob2WkOywQVmV_iXjiZKJjMxQFQW6GCodOhvaJATtvdSFhYDF653MbU9mTjU1ZjkGNbTm-Q1rHrAPm0Hzjsvj3-IHpCIbUSLibhtwa_P-XOeOYkLAOB8IpIuTsM6FBmPIJDIOGwL2nhQsJ3OBH2ihRz3gNIl4Kx9pXASpMpkFbHetg3lvR5Y5WmACK0cRdr_ddKMFoGcdKH3VoAxeWgRJG8YBExvdvcsMX_2n_Gv2MEafrsuU22WDetH4PfTJavOmP4u_ALwzOks
  priority: 102
  providerName: Unpaywall
Title Rapid and High-Performance Analysis of Total Nitrogen in Coco-Peat Substrate by Coupling Laser-Induced Breakdown Spectroscopy with Multi-Chemometrics
URI https://www.proquest.com/docview/3072227119
https://www.proquest.com/docview/3153654682
https://doi.org/10.3390/agriculture14060946
https://doaj.org/article/d0086a338a654375acdd0b96631bd437
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQeIA9ID5FYExGQuIFa0kc28ljO22aEKqqaZXGU3T-yFRRkqpLhfqH8P9yl6RdEQh44DG2o8S-8_kuud_vGHvnUuNtCkFkkClB3DnCBu-Ez4NTocgyB122xURfzLKP1-p6r9QX5YT19MD9wp14croBAykgFKRR4LyPLTrpMrEeG8j6xnmxF0x1NrhIZB7rnmZIYlx_AjergcwiYEyhMarRPx1FHWP_r3b5kD1Y10vYfIPFYu_gOX_MHg0eIx_1b_qE3Qv1U3Y4unvQM_b9EpZzz6H2nPI2xPQODcC3rCO8qfhVg642n8zbVYN6w-c1P21cg8Oh5WRBOqZabjfYvCak7g3_hIfcSlB9Dxc8H6OH-cVj3M6pbH1LRJjNcsPpWy7vkLyC-Aear1Sly90-Z7Pzs6vTCzHUWxAu03ErqiI4Y6x3ifapJUyW1gAmA5MGkwVlnUQxGmsqQvN6C0WRglSgksoElIx8wQ7qpg4vGZdaSZXYXFcVugg6y72LnYzBhKBM5SBi6XbpSzeQkVNNjEWJQQnJq_yNvCL2YXfTsufi-PPwMcl0N5SItLsGVK9yUK_yb-oVsfekESVtd3xBBwNqAadJxFnlyOAiKF2oImJHW6UpBztwW6IFJbBxkmD321037mD6LQN1aNY4Bg8dgpTlacTETtn-ZYav_scMX7OHKTpqffrbETtoV-vwBh2t1h6z--OzyfTyuNtbeDWbTEeffwCsCi3Z
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jD2gLiKwAAjgXghWhLHdvIwoXZs6lipptFJe8t8S1VRktKLqv4Q_g6_jXPSpAWBJl726jgX5xyfi-3vO4S8MZG0OlLOj1XMfeTO8bWzxreJM9ylcWxUddqiJzqX8acrfrVFfjZYGDxW2djEylDb0uAa-QHoIsI2wzD9MP7uY9Uo3F1tSmiourSCPawoxmpgx5lbLiCFmx6efgR5v42ik-P-Ucevqwz4JhbBzM9TZ6TU1oTCRhqRSEIoJWMlIydjx7Vh8PFSyxwxrFarNI0U44qHuXSSKwbPvUN2YhankPzttI975xfrVR5k3UwCsaI7YiwNDtRgUpNqOMhtBGRX4g-XWFUO-Ns_7JHdeTFWy4UajX5zgCf3yb06cqWtlao9IFuueEj2WpsXPSI_LtR4aKkqLMXzI_75BpVAG_YTWua0X0LIT3vD2aQE_aXDgh6VpoTuakbRklWMuVQvoXmOiOEB7YKznfhYZ8Q4S9sQ6X615aKgX8ZVFR_E1iwprinTClHsIw9C-Q2rhZnpY3J5KxJ5QraLsnBPCWWCMx7qROQ5hCoiTqwJDAuUdI7L3CiPRM2vz0xNio61OUYZJEcor-wf8vLI-_VN4xUnyM3d2yjTdVck9K4ayskgq-1DZjG3VIwlCsG-MAhjbaAhF2WhttDgkXeoERmaHfhAo2r0BAwTCbyyloSfwEXKU4_sN0qT1fZomm1mj0dery-DJcHtIVW4cg59wPkhtC2JPOKvle1_Rvjs5le-Irud_udu1j3tnT0ndyMIC1eH7fbJ9mwydy8grJvpl_XcoeT6tqfrLw9AZ5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVgJ6QDyFocAigbiwil-7ax8qlLSNWlpFUWml3tx9OYoIdshDUX4If4pfxYxjJyBQxaXXzSbOembnsTvfN4S8M6G0OlSOxSrmDLlzmHbWMJs4w10ax0ZV1RY9cXwZf77iV1vkZ4OFwbLKxiZWhtqWBs_IW6CLCNsMgrSV12UR_cPup_F3hh2k8Ka1aaeh6jYLdr-iG6tBHqduuYB0brp_cgiyfx-G3aOLg2NWdxxgJhb-jOWpM1JqawJhQ42oJCGUkrGSoZOx49pEsBCpZY54VqtVmoYq4ooHuXSSqwh-9w7ZwcsvMBI7naNe_3x94oMMnIkvVtRHUZT6LTWY1AQbDvIcAZmW-MM9Vl0E_vYVu-TevBir5UKNRr85w-5D8qCOYml7pXaPyJYrHpPd9uZBT8iPczUeWqoKS7GWhPU3CAXaMKHQMqcXJYT_tDecTUrQZTos6EFpSpiuZhStWsWeS_UShueIHh7QM3C8E4Y9R4yztANR71dbLgr6ZVx19EGczZLi-TKt0MUMORHKb9g5zEyfkstbkcgzsl2UhXtOaCR4xAOdiDyHsEXEiTW-iXwlneMyN8ojYfPqM1MTpGOfjlEGiRLKK_uHvDzycf2l8Yof5ObpHZTpeiqSe1cD5WSQ1bYis5hnqihKFAJ_YRHGWl9DXhoF2sKARz6gRmRoguAPGlUjKWCZSOaVtSW8BC5Snnpkr1GarLZN02yzkzzydv0xWBW8KlKFK-cwBxwhwtyS0CNsrWz_s8IXNz_yDbkL2zY7O-mdviT3Q4gQV3V3e2R7Npm7VxDhzfTreutQcn3bu_UXZelrww
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4AeeFcEWmQkJC645GV7c9xWrSqEVhXqSuUUjR-pVl2S1W4itPwP_i8zSXZboEXlao-l2B6PZ-L5vmHsnY21MzF4kUIqBXHnCOOdFW7orfRZmlposy3G6mSSfjqX5z3PNmFhrr3fJxiOf4SLRc9B4TEUUBiMqPtsS0l0vAdsazI-HX2l8nGh1oJ4DzteodtG_nb3tBT9fxvibfagKeew-g6z2bWb5vhxB-FetgSFlGByud_UZt_--IO-8Y6TeMIe9R4nH3Uq8pTd8-Uztj26En7Ofn6B-dRxKB2nvA9xeoUm4GvWEl4V_KxCV52Pp_WiQr3j05IfVrZCcag5WaCW6ZabFTY3hPS94J_xklwIqg9iveMH6KFeOoz7OZW9r4lIs5qvOP0L5i0SWBB_QfWNqnzZ5Qs2OT46OzwRfb0GYVMV1qLIvNXaOBspFxvCdCkFoFPQsdepl8YmqAba6ILQwM5AlsWQSJBRob2WkOywQVmV_iXjiZKJjMxQFQW6GCodOhvaJATtvdSFhYDF653MbU9mTjU1ZjkGNbTm-Q1rHrAPm0Hzjsvj3-IHpCIbUSLibhtwa_P-XOeOYkLAOB8IpIuTsM6FBmPIJDIOGwL2nhQsJ3OBH2ihRz3gNIl4Kx9pXASpMpkFbHetg3lvR5Y5WmACK0cRdr_ddKMFoGcdKH3VoAxeWgRJG8YBExvdvcsMX_2n_Gv2MEafrsuU22WDetH4PfTJavOmP4u_ALwzOks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+and+High-Performance+Analysis+of+Total+Nitrogen+in+Coco-Peat+Substrate+by+Coupling+Laser-Induced+Breakdown+Spectroscopy+with+Multi-Chemometrics&rft.jtitle=Agriculture+%28Basel%29&rft.au=Lu%2C+Bing&rft.au=Wang%2C+Xufeng&rft.au=Hu%2C+Can&rft.au=Li%2C+Xiangyou&rft.date=2024-06-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=14&rft.issue=6&rft_id=info:doi/10.3390%2Fagriculture14060946&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon