Rapid and High-Performance Analysis of Total Nitrogen in Coco-Peat Substrate by Coupling Laser-Induced Breakdown Spectroscopy with Multi-Chemometrics
Nitrogen is an important nutrient element for crop growth. Rapid and accurate acquisition of nitrogen content in cultivation substrate is the key to precise fertilization. In this study, laser-induced breakdown spectroscopy (LIBS) was used to detect the total nitrogen (TN) of coco-peat substrate. A...
Saved in:
| Published in | Agriculture (Basel) Vol. 14; no. 6; p. 946 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2077-0472 2077-0472 |
| DOI | 10.3390/agriculture14060946 |
Cover
| Abstract | Nitrogen is an important nutrient element for crop growth. Rapid and accurate acquisition of nitrogen content in cultivation substrate is the key to precise fertilization. In this study, laser-induced breakdown spectroscopy (LIBS) was used to detect the total nitrogen (TN) of coco-peat substrate. A LIBS spectrum acquisition system was established to collect the spectral line signal of samples with wavelengths ranging from 200 nm to 860 nm. Synergy interval partial least squares (Si-PLS) algorithm and elimination of uninformative variables (UVE) algorithm were used to select the spectral data of TN characteristic lines in coco-peat substrate. Univariate calibration curve and partial least squares regression (PLSR) were used to build mathematical models for the relationship between the spectral data of univariate characteristic spectral lines, full variables and screened multi-variable characteristic spectral lines of samples and reference measurement values of TN. By comparing the detection performance of calibration curves and multivariate spectral prediction models, it was concluded that UVE was used to simplify the number of spectral input variables for the model and PLSR was applied to construct the simplest multivariate model for the measurement of TN in the substrate samples. The model provided the best measurement performance, with the calibration set determination coefficient (RC2) and calibration set root mean square error (RMSEC) values of 0.9944 and 0.0382%, respectively; the prediction set determination coefficient (RP2) and prediction set root mean square error (RMSEP) had values of 0.9902 and 0.0513%, respectively. These results indicated that the combination of UVE and PLSR could make full use of the variable information related to TN detection in the LIBS spectrum and realize the rapid and high-performance measurement of TN in coco-peat substrate. It would provide a reference for the rapid and quantitative assessment of nutrient elements in other substrate and soil. |
|---|---|
| AbstractList | Nitrogen is an important nutrient element for crop growth. Rapid and accurate acquisition of nitrogen content in cultivation substrate is the key to precise fertilization. In this study, laser-induced breakdown spectroscopy (LIBS) was used to detect the total nitrogen (TN) of coco-peat substrate. A LIBS spectrum acquisition system was established to collect the spectral line signal of samples with wavelengths ranging from 200 nm to 860 nm. Synergy interval partial least squares (Si-PLS) algorithm and elimination of uninformative variables (UVE) algorithm were used to select the spectral data of TN characteristic lines in coco-peat substrate. Univariate calibration curve and partial least squares regression (PLSR) were used to build mathematical models for the relationship between the spectral data of univariate characteristic spectral lines, full variables and screened multi-variable characteristic spectral lines of samples and reference measurement values of TN. By comparing the detection performance of calibration curves and multivariate spectral prediction models, it was concluded that UVE was used to simplify the number of spectral input variables for the model and PLSR was applied to construct the simplest multivariate model for the measurement of TN in the substrate samples. The model provided the best measurement performance, with the calibration set determination coefficient (RC2) and calibration set root mean square error (RMSEC) values of 0.9944 and 0.0382%, respectively; the prediction set determination coefficient (RP2) and prediction set root mean square error (RMSEP) had values of 0.9902 and 0.0513%, respectively. These results indicated that the combination of UVE and PLSR could make full use of the variable information related to TN detection in the LIBS spectrum and realize the rapid and high-performance measurement of TN in coco-peat substrate. It would provide a reference for the rapid and quantitative assessment of nutrient elements in other substrate and soil. Nitrogen is an important nutrient element for crop growth. Rapid and accurate acquisition of nitrogen content in cultivation substrate is the key to precise fertilization. In this study, laser-induced breakdown spectroscopy (LIBS) was used to detect the total nitrogen (TN) of coco-peat substrate. A LIBS spectrum acquisition system was established to collect the spectral line signal of samples with wavelengths ranging from 200 nm to 860 nm. Synergy interval partial least squares (Si-PLS) algorithm and elimination of uninformative variables (UVE) algorithm were used to select the spectral data of TN characteristic lines in coco-peat substrate. Univariate calibration curve and partial least squares regression (PLSR) were used to build mathematical models for the relationship between the spectral data of univariate characteristic spectral lines, full variables and screened multi-variable characteristic spectral lines of samples and reference measurement values of TN. By comparing the detection performance of calibration curves and multivariate spectral prediction models, it was concluded that UVE was used to simplify the number of spectral input variables for the model and PLSR was applied to construct the simplest multivariate model for the measurement of TN in the substrate samples. The model provided the best measurement performance, with the calibration set determination coefficient (R[sub.C] [sup.2]) and calibration set root mean square error (RMSEC) values of 0.9944 and 0.0382%, respectively; the prediction set determination coefficient (R[sub.P] [sup.2]) and prediction set root mean square error (RMSEP) had values of 0.9902 and 0.0513%, respectively. These results indicated that the combination of UVE and PLSR could make full use of the variable information related to TN detection in the LIBS spectrum and realize the rapid and high-performance measurement of TN in coco-peat substrate. It would provide a reference for the rapid and quantitative assessment of nutrient elements in other substrate and soil. |
| Audience | Academic |
| Author | Wang, Xufeng Hu, Can Li, Xiangyou Lu, Bing |
| Author_xml | – sequence: 1 givenname: Bing surname: Lu fullname: Lu, Bing – sequence: 2 givenname: Xufeng surname: Wang fullname: Wang, Xufeng – sequence: 3 givenname: Can orcidid: 0000-0002-9745-6324 surname: Hu fullname: Hu, Can – sequence: 4 givenname: Xiangyou orcidid: 0000-0001-7079-1061 surname: Li fullname: Li, Xiangyou |
| BookMark | eNqNUk1v1DAQjVCRKKW_gIslLlxSnDixN8eyArrS8iFaztHEnmS9JHawHa32h_B_mbIIoQoJ7IOtp_fezPj5aXbmvMMse17wKyEa_gqGYPUypiVgUXHJm0o-ys5LrlTOK1We_XF_kl3GuOe0mkKsuDzPvn-G2RoGzrAbO-zyTxh6HyZwGtm1g_EYbWS-Z3c-wcg-2BT8gI5Zx9Zee6JDYrdLF1OAhKw7ErzMo3UD20LEkG-cWTQa9jogfDX-4NjtjJpcovbzkR1s2rH31LzN1zuc_ISJhonPssc9jBEvf50X2Ze3b-7WN_n247vN-nqb60rylPcNaqU6owtpyq6o5EpKAFWBKlFVWHdaoNGqU72om9p00DQliBrqoleoahAX2ebkazzs2znYCcKx9WDbn4APQwshWT1iazhfSRBiBbKuBIm1MbxrpBRFZwggr-rktbgZjgcYx9-GBW_vk2r_khTJXp5kc_DfFoypnWzUOI7g0C-xFUUtqKJclUR98YC690ugkIjFVVmWqigaYl2dWANQ29b1nrLRtA1OVtPX6S3h14reopZNfS9oTgJNqcSAfattgmS9I6Ed_9G9eKD9n5l_ADNi3Yk |
| CitedBy_id | crossref_primary_10_3390_su17030903 |
| Cites_doi | 10.1038/s41598-021-91986-7 10.1016/j.optlastec.2022.108386 10.1016/j.geoderma.2018.09.049 10.1016/j.sab.2023.106708 10.1039/D0JA00157K 10.1016/j.foodchem.2022.133481 10.1016/j.still.2021.105109 10.1016/j.aca.2022.340142 10.3390/s20020418 10.1016/j.still.2021.105250 10.3390/plants11091153 10.1016/j.compag.2023.107813 10.1016/j.ijleo.2021.167025 10.1109/JSEN.2021.3123658 10.1039/D2JA00255H 10.1016/j.geoderma.2018.12.021 10.3390/agriculture12122060 10.3390/agriculture12030411 10.3389/fpls.2021.714557 10.1016/j.foodchem.2020.127886 10.1016/j.microc.2021.106530 10.1366/0003702041389201 10.1364/AO.58.003277 10.1016/j.sab.2022.106561 10.1080/00387010.2012.747542 10.1007/s00340-020-7392-8 10.1007/s11801-024-3114-5 10.1016/j.geoderma.2019.113905 10.1016/j.lwt.2021.111978 10.1016/j.sab.2021.106160 10.1016/j.sab.2023.106729 10.1016/j.ijleo.2022.169247 10.1016/j.sab.2022.106478 10.1016/j.microc.2020.105107 10.1038/s41598-021-90624-6 10.1016/j.compag.2022.107231 10.1016/j.foodchem.2017.06.031 10.1111/jtxs.12633 10.3390/agriculture13101975 10.1080/01904167.2018.1425439 10.1038/s41598-019-47751-y 10.3390/agronomy12051012 10.1039/D2JA00200K 10.1063/1.5086351 10.1039/C9AY01030K |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/agriculture14060946 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 2077-0472 |
| ExternalDocumentID | oai_doaj_org_article_d0086a338a654375acdd0b96631bd437 10.3390/agriculture14060946 A799256959 10_3390_agriculture14060946 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c460t-f9ec77bdc16d2b146866aa74a72e74e5bc3edc7b7f3595dba992a35a51f7e75a3 |
| IEDL.DBID | DOA |
| ISSN | 2077-0472 |
| IngestDate | Fri Oct 03 12:34:19 EDT 2025 Sun Sep 07 11:14:11 EDT 2025 Fri Sep 05 14:04:00 EDT 2025 Mon Jun 30 06:35:44 EDT 2025 Mon Oct 20 16:58:31 EDT 2025 Thu Apr 24 22:56:32 EDT 2025 Thu Oct 16 04:27:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-f9ec77bdc16d2b146866aa74a72e74e5bc3edc7b7f3595dba992a35a51f7e75a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7079-1061 0000-0002-9745-6324 |
| OpenAccessLink | https://doaj.org/article/d0086a338a654375acdd0b96631bd437 |
| PQID | 3072227119 |
| PQPubID | 2032441 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d0086a338a654375acdd0b96631bd437 unpaywall_primary_10_3390_agriculture14060946 proquest_miscellaneous_3153654682 proquest_journals_3072227119 gale_infotracacademiconefile_A799256959 crossref_citationtrail_10_3390_agriculture14060946 crossref_primary_10_3390_agriculture14060946 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Agriculture (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Coutinho (ref_12) 2019; 338 Zhou (ref_35) 2022; 155 Zhang (ref_21) 2021; 169 Wang (ref_9) 2021; 213 Xu (ref_32) 2020; 35 ref_36 Dib (ref_44) 2020; 157 Zhong (ref_14) 2023; 209 ref_10 Hossen (ref_24) 2021; 11 Chen (ref_1) 2021; 21 Khater (ref_2) 2021; 11 Xu (ref_15) 2019; 355 Urrestarazu (ref_7) 2021; 45 Lin (ref_18) 2023; 206 Harris (ref_47) 2004; 58 Mishra (ref_41) 2022; 122 Zhang (ref_45) 2023; 206 Dong (ref_46) 2013; 46 Li (ref_5) 2019; 12 Khoso (ref_25) 2022; 261 Wang (ref_48) 2019; 26 Borduchi (ref_20) 2022; 198 Sun (ref_19) 2024; 20 Ghoreishy (ref_4) 2018; 41 He (ref_37) 2022; 53 Chen (ref_34) 2021; 180 Qiao (ref_42) 2017; 237 Cheng (ref_43) 2022; 394 Lin (ref_16) 2022; 37 Xu (ref_17) 2020; 126 Li (ref_22) 2021; 12 Recena (ref_11) 2019; 337 Zhang (ref_29) 2022; 200 Shabbir (ref_33) 2022; 194 ref_40 Yang (ref_39) 2021; 338 ref_3 Ding (ref_27) 2019; 11 Yang (ref_30) 2021; 243 Tavares (ref_23) 2022; 216 ref_26 ref_8 Sun (ref_28) 2019; 9 Hu (ref_38) 2022; 37 Zhang (ref_13) 2019; 58 Zhu (ref_31) 2021; 150 ref_6 |
| References_xml | – volume: 11 start-page: 12754 year: 2021 ident: ref_2 article-title: Production of basil (Ocimum basilicum L.) under different soilless cultures publication-title: Sci. Rep. doi: 10.1038/s41598-021-91986-7 – volume: 155 start-page: 108386 year: 2022 ident: ref_35 article-title: High sensitivity analysis of soil by laser-induced breakdown spectroscopy with Ag nanoparticles publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2022.108386 – volume: 337 start-page: 368 year: 2019 ident: ref_11 article-title: Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioning rather than availability indices publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.049 – volume: 206 start-page: 106708 year: 2023 ident: ref_45 article-title: Sensitive and accurate determination of nitrogen in simulated Martian soil and environment with LIBS spectrum fusion and regression based on neural network publication-title: Spectroc. Acta Pt. B-Atom. Spectr. doi: 10.1016/j.sab.2023.106708 – volume: 35 start-page: 1641 year: 2020 ident: ref_32 article-title: Total alkali silica classification of rocks with LIBS: Influences of the chemical and physical matrix effects publication-title: J. Anal. At. Spectrom. doi: 10.1039/D0JA00157K – volume: 394 start-page: 133481 year: 2022 ident: ref_43 article-title: Green reduction of silver nanoparticles for cadmium detection in food using surface-enhanced Raman spectroscopy coupled multivariate calibration publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.133481 – volume: 213 start-page: 105109 year: 2021 ident: ref_9 article-title: Construction of complex features for predicting soil total nitrogen content based on convolution operations publication-title: Soil Tillage Res. doi: 10.1016/j.still.2021.105109 – volume: 122 start-page: 340142 year: 2022 ident: ref_41 article-title: META-PLS modelling: An integrated approach to automatic model optimization for near-infrared spectra publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.340142 – ident: ref_26 doi: 10.3390/s20020418 – volume: 216 start-page: 105250 year: 2022 ident: ref_23 article-title: Laser-Induced Breakdown Spectroscopy (LIBS) for tropical soil fertility analysis publication-title: Soil Tillage Res. doi: 10.1016/j.still.2021.105250 – volume: 45 start-page: 113 year: 2021 ident: ref_7 article-title: Effect of ammonium nitrogen on pepper grown under soilless culture publication-title: J. Plant Nutr. – ident: ref_3 doi: 10.3390/plants11091153 – volume: 209 start-page: 107813 year: 2023 ident: ref_14 article-title: Fast quantification of matcha adulterants with laser-induced breakdown spectroscopy spectrum and image publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107813 – volume: 243 start-page: 167025 year: 2021 ident: ref_30 article-title: Spectral enhancement mechanism and analysis of defocused collinear DP-LIBS technology publication-title: Optik doi: 10.1016/j.ijleo.2021.167025 – volume: 21 start-page: 26856 year: 2021 ident: ref_1 article-title: Compensation methods for pH direct measurement in soilless culture substrates using the all-solid-stated pH sensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3123658 – volume: 37 start-page: 2309 year: 2022 ident: ref_38 article-title: Research on a LIBS-based detection method of medium-and-low alloy steel hardness publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00255H – volume: 338 start-page: 401 year: 2019 ident: ref_12 article-title: Influence of soil sample preparation on the quantification of NPK content via spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2018.12.021 – ident: ref_40 doi: 10.3390/agriculture12122060 – ident: ref_10 doi: 10.3390/agriculture12030411 – volume: 12 start-page: 714557 year: 2021 ident: ref_22 article-title: Fast identification of soybean seed varieties using laser-induced breakdown spectroscopy combined with convolutional neural network publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.714557 – volume: 338 start-page: 127886 year: 2021 ident: ref_39 article-title: Building a stable and accurate model for heavy metal detection in mulberry leaves based on a proposed analysis framework and laser-induced breakdown spectroscopy publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.127886 – volume: 169 start-page: 106530 year: 2021 ident: ref_21 article-title: Accurate identification of soluble solid content in citrus by indirect laser-induced breakdown spectroscopy with its leaves publication-title: Microchem. J. doi: 10.1016/j.microc.2021.106530 – volume: 58 start-page: 770 year: 2004 ident: ref_47 article-title: Determination of nitrogen in sand using laser-induced breakdown spectroscopy publication-title: Appl. Spectrosc. doi: 10.1366/0003702041389201 – volume: 58 start-page: 3277 year: 2019 ident: ref_13 article-title: Quantitative analysis of nitrogen in ammonium phosphate fertilizers using laser-induced breakdown spectroscopy publication-title: Appl. Optics doi: 10.1364/AO.58.003277 – volume: 198 start-page: 106561 year: 2022 ident: ref_20 article-title: Reducing matrix effects on the quantification of Ca, Mg, and Fe in soybean leaf samples using calibration-free LIBS and one-point calibration publication-title: Spectroc. Acta Pt. B-Atom. Spectr. doi: 10.1016/j.sab.2022.106561 – volume: 46 start-page: 421 year: 2013 ident: ref_46 article-title: Spectral characterization of nitrogen in farmland soil by laser-induced breakdown spectroscopy publication-title: Spectr. Lett. doi: 10.1080/00387010.2012.747542 – volume: 126 start-page: 43 year: 2020 ident: ref_17 article-title: Comparative identification of citrus huanglongbing by analyzing leaves using laser-induced breakdown spectroscopy and near-infrared spectroscopy publication-title: Appl. Phys. B-Lasers Opt. doi: 10.1007/s00340-020-7392-8 – volume: 20 start-page: 171 year: 2024 ident: ref_19 article-title: Angelica dahurica using LIBS technology combined with machine learning algorithms publication-title: Optoelectron. Lett. doi: 10.1007/s11801-024-3114-5 – volume: 355 start-page: 113905 year: 2019 ident: ref_15 article-title: Detection of soil organic matter from laser-induced breakdown spectroscopy (LIBS) and mid-infrared spectroscopy (FTIR-ATR) coupled with multivariate techniques publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113905 – volume: 150 start-page: 111978 year: 2021 ident: ref_31 article-title: Au@Ag nanoflowers based SERS coupled chemometric algorithms for determination of organochlorine pesticides in milk publication-title: LWT-Food Sci. Technol. doi: 10.1016/j.lwt.2021.111978 – volume: 180 start-page: 106160 year: 2021 ident: ref_34 article-title: High accuracy analysis of fiber-optic laser-induced breakdown spectroscopy by using multivariate regression analytical methods publication-title: Spectroc. Acta Pt. B-Atom. Spectr. doi: 10.1016/j.sab.2021.106160 – volume: 206 start-page: 106729 year: 2023 ident: ref_18 article-title: Rapid identification of the geographical origins of crops using laser-induced breakdown spectroscopy combined with transfer learning publication-title: Spectroc. Acta Pt. B-Atom. Spectr. doi: 10.1016/j.sab.2023.106729 – volume: 261 start-page: 169247 year: 2022 ident: ref_25 article-title: Comparative elemental analysis of soil of wheat, corn, rice, and okra cropped field using CF-LIBS publication-title: Optik doi: 10.1016/j.ijleo.2022.169247 – volume: 194 start-page: 106478 year: 2022 ident: ref_33 article-title: Machine learning and transfer learning for correction of the chemical and physical matrix effects in the determination of alkali and alkaline earth metals with LIBS in rocks publication-title: Spectroc. Acta Pt. B-Atom. Spectr. doi: 10.1016/j.sab.2022.106478 – volume: 157 start-page: 105107 year: 2020 ident: ref_44 article-title: CN diatomic emission for N determination by LIBS publication-title: Microchem. J. doi: 10.1016/j.microc.2020.105107 – volume: 11 start-page: 12693 year: 2021 ident: ref_24 article-title: Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS publication-title: Sci. Rep. doi: 10.1038/s41598-021-90624-6 – volume: 200 start-page: 107231 year: 2022 ident: ref_29 article-title: Detection of pears with moldy core using online full-transmittance spectroscopy combined with supervised classifier comparison and variable optimization publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107231 – volume: 237 start-page: 1179 year: 2017 ident: ref_42 article-title: A feasibility quantification study of total volatile basic nitrogen (TVB-N) content in duck meat for freshness evaluation publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.06.031 – volume: 12 start-page: 38 year: 2019 ident: ref_5 article-title: Development of transplanting manipulator for hydroponic leafy vegetables publication-title: Int. J. Agric. Biol. Eng. – volume: 53 start-page: 133 year: 2022 ident: ref_37 article-title: Prediction of tenderness of chicken by using viscoelasticity based on airflow and optical technique publication-title: J. Texture Stud. doi: 10.1111/jtxs.12633 – ident: ref_8 doi: 10.3390/agriculture13101975 – volume: 41 start-page: 766 year: 2018 ident: ref_4 article-title: Using composted wheat residue as a growth medium in culture of tomato publication-title: J. Plant Nutr. doi: 10.1080/01904167.2018.1425439 – ident: ref_36 – volume: 9 start-page: 11363 year: 2019 ident: ref_28 article-title: Machine learning allows calibration models to predict trace element concentration in soils with generalized LIBS spectra publication-title: Sci. Rep. doi: 10.1038/s41598-019-47751-y – ident: ref_6 doi: 10.3390/agronomy12051012 – volume: 37 start-page: 2082 year: 2022 ident: ref_16 article-title: Modified iterative wavelets for background removal in laser-induced breakdown spectroscopy based on fiber laser ablation publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00200K – volume: 26 start-page: 073302 year: 2019 ident: ref_48 article-title: Influence of distance between sample surface and geometrical focal point on CN emission intensity from femtosecond laser-induced PMMA plasmas publication-title: Phys. Plasmas doi: 10.1063/1.5086351 – volume: 11 start-page: 3657 year: 2019 ident: ref_27 article-title: Accurate quantitative determination of heavy metals in oily soil by laser induced breakdown spectroscopy (LIBS) combined with interval partial least squares (IPLS) publication-title: Anal. Methods doi: 10.1039/C9AY01030K |
| SSID | ssj0000913806 |
| Score | 2.2879665 |
| Snippet | Nitrogen is an important nutrient element for crop growth. Rapid and accurate acquisition of nitrogen content in cultivation substrate is the key to precise... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 946 |
| SubjectTerms | Agricultural production agriculture Algorithms Analytical chemistry Artificial intelligence atomic absorption spectrometry Breakdowns Calibration coco-peat substrate Crop growth Crops Decision making Environmental law Fertilization Fertilizers Heavy metals Laser induced breakdown spectroscopy Lasers Least squares method Line spectra Mathematical models Multivariate analysis Nitrogen Nutrient content Nutrients Peat Performance measurement prediction Prediction models Regression analysis Root-mean-square errors soil spectral analysis Spectroscopy Spectrum analysis Substrates synergy interval partial least squares total nitrogen uninformative variables elimination Urban agriculture Variables Wavelengths |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdd-rD1YeyTeeuGBoO9TDT-kBQ_jJGUljJGKKWFvpnTh0NYZnmpw8gf0v-3d46dbGyUvcoytnSn0510v98x9sEm2pkEvMggk4K4c4Txzgo38lb6PMsstNkWU3V2lX29ltd7bNpjYSitsreJraF2wdIZ-RHqIsE24zj_Uv8UVDWKblf7EhrQlVZwn1uKsQdsPyFmrAHbn5xMzy-2py7Egjkaqg39UIrx_hHMlh3JhcdYQ2G0o_7Yolom_7_t9QF7uKpqWP-CxeK3Den0CXvceZJ8vBH9U7bnq2fsYLz70HN2ewH13HGoHKd8DnG-Qwnwno2Eh5JfBnTB-XTeLAPqE59X_DjYgN2h4WRZWgZbbtbYvCIE74x_w81vKajuh_WOT9Dz_O4wnudUzr4hgsxQrzmd8fIW4SuIlyD8oOpd9uYFuzo9uTw-E10dBmEzNWxEmXurtXE2Vi4xhNVSCkBnoBOvMy-NTVG82uiSUL7OQJ4nkEqQcam9lpC-ZIMqVP4V46mSqYzNSJUlug4qGzk7tOkQtPdSlxYilvRTX9iOpJxqZSwKDFZIXsU_5BWxT9uX6g1Hx_3dJyTTbVci2G4bwnJWdOu1cBTrAcbvQOBbHIR1bmgwNkxj47AhYh9JIwoyA_iDFjo0Aw6TCLWKscZJkCqXecQOe6UpOvtwU-y0OWLvt49xZdN1DVQ-rLAPbkYENRslERNbZfufEb6-_5Nv2KMEXbNNwtshGzTLlX-LrlVj3nXr5Q5FRik2 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4AeeFcEWmQkJC645GV7c9xWrSqEVhXqSuUUjR-pVl2S1W4itPwP_i8zSXZboEXlao-l2B6PZ-L5vmHsnY21MzF4kUIqBXHnCOOdFW7orfRZmlposy3G6mSSfjqX5z3PNmFhrr3fJxiOf4SLRc9B4TEUUBiMqPtsS0l0vAdsazI-HX2l8nGh1oJ4DzteodtG_nb3tBT9fxvibfagKeew-g6z2bWb5vhxB-FetgSFlGByud_UZt_--IO-8Y6TeMIe9R4nH3Uq8pTd8-Uztj26En7Ofn6B-dRxKB2nvA9xeoUm4GvWEl4V_KxCV52Pp_WiQr3j05IfVrZCcag5WaCW6ZabFTY3hPS94J_xklwIqg9iveMH6KFeOoz7OZW9r4lIs5qvOP0L5i0SWBB_QfWNqnzZ5Qs2OT46OzwRfb0GYVMV1qLIvNXaOBspFxvCdCkFoFPQsdepl8YmqAba6ILQwM5AlsWQSJBRob2WkOywQVmV_iXjiZKJjMxQFQW6GCodOhvaJATtvdSFhYDF653MbU9mTjU1ZjkGNbTm-Q1rHrAPm0Hzjsvj3-IHpCIbUSLibhtwa_P-XOeOYkLAOB8IpIuTsM6FBmPIJDIOGwL2nhQsJ3OBH2ihRz3gNIl4Kx9pXASpMpkFbHetg3lvR5Y5WmACK0cRdr_ddKMFoGcdKH3VoAxeWgRJG8YBExvdvcsMX_2n_Gv2MEafrsuU22WDetH4PfTJavOmP4u_ALwzOks priority: 102 providerName: Unpaywall |
| Title | Rapid and High-Performance Analysis of Total Nitrogen in Coco-Peat Substrate by Coupling Laser-Induced Breakdown Spectroscopy with Multi-Chemometrics |
| URI | https://www.proquest.com/docview/3072227119 https://www.proquest.com/docview/3153654682 https://doi.org/10.3390/agriculture14060946 https://doaj.org/article/d0086a338a654375acdd0b96631bd437 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQeIA9ID5FYExGQuIFa0kc28ljO22aEKqqaZXGU3T-yFRRkqpLhfqH8P9yl6RdEQh44DG2o8S-8_kuud_vGHvnUuNtCkFkkClB3DnCBu-Ez4NTocgyB122xURfzLKP1-p6r9QX5YT19MD9wp14croBAykgFKRR4LyPLTrpMrEeG8j6xnmxF0x1NrhIZB7rnmZIYlx_AjergcwiYEyhMarRPx1FHWP_r3b5kD1Y10vYfIPFYu_gOX_MHg0eIx_1b_qE3Qv1U3Y4unvQM_b9EpZzz6H2nPI2xPQODcC3rCO8qfhVg642n8zbVYN6w-c1P21cg8Oh5WRBOqZabjfYvCak7g3_hIfcSlB9Dxc8H6OH-cVj3M6pbH1LRJjNcsPpWy7vkLyC-Aear1Sly90-Z7Pzs6vTCzHUWxAu03ErqiI4Y6x3ifapJUyW1gAmA5MGkwVlnUQxGmsqQvN6C0WRglSgksoElIx8wQ7qpg4vGZdaSZXYXFcVugg6y72LnYzBhKBM5SBi6XbpSzeQkVNNjEWJQQnJq_yNvCL2YXfTsufi-PPwMcl0N5SItLsGVK9yUK_yb-oVsfekESVtd3xBBwNqAadJxFnlyOAiKF2oImJHW6UpBztwW6IFJbBxkmD321037mD6LQN1aNY4Bg8dgpTlacTETtn-ZYav_scMX7OHKTpqffrbETtoV-vwBh2t1h6z--OzyfTyuNtbeDWbTEeffwCsCi3Z |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jD2gLiKwAAjgXghWhLHdvIwoXZs6lipptFJe8t8S1VRktKLqv4Q_g6_jXPSpAWBJl726jgX5xyfi-3vO4S8MZG0OlLOj1XMfeTO8bWzxreJM9ylcWxUddqiJzqX8acrfrVFfjZYGDxW2djEylDb0uAa-QHoIsI2wzD9MP7uY9Uo3F1tSmiourSCPawoxmpgx5lbLiCFmx6efgR5v42ik-P-Ucevqwz4JhbBzM9TZ6TU1oTCRhqRSEIoJWMlIydjx7Vh8PFSyxwxrFarNI0U44qHuXSSKwbPvUN2YhankPzttI975xfrVR5k3UwCsaI7YiwNDtRgUpNqOMhtBGRX4g-XWFUO-Ns_7JHdeTFWy4UajX5zgCf3yb06cqWtlao9IFuueEj2WpsXPSI_LtR4aKkqLMXzI_75BpVAG_YTWua0X0LIT3vD2aQE_aXDgh6VpoTuakbRklWMuVQvoXmOiOEB7YKznfhYZ8Q4S9sQ6X615aKgX8ZVFR_E1iwprinTClHsIw9C-Q2rhZnpY3J5KxJ5QraLsnBPCWWCMx7qROQ5hCoiTqwJDAuUdI7L3CiPRM2vz0xNio61OUYZJEcor-wf8vLI-_VN4xUnyM3d2yjTdVck9K4ayskgq-1DZjG3VIwlCsG-MAhjbaAhF2WhttDgkXeoERmaHfhAo2r0BAwTCbyyloSfwEXKU4_sN0qT1fZomm1mj0dery-DJcHtIVW4cg59wPkhtC2JPOKvle1_Rvjs5le-Irud_udu1j3tnT0ndyMIC1eH7fbJ9mwydy8grJvpl_XcoeT6tqfrLw9AZ5Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVgJ6QDyFocAigbiwil-7ax8qlLSNWlpFUWml3tx9OYoIdshDUX4If4pfxYxjJyBQxaXXzSbOembnsTvfN4S8M6G0OlSOxSrmDLlzmHbWMJs4w10ax0ZV1RY9cXwZf77iV1vkZ4OFwbLKxiZWhtqWBs_IW6CLCNsMgrSV12UR_cPup_F3hh2k8Ka1aaeh6jYLdr-iG6tBHqduuYB0brp_cgiyfx-G3aOLg2NWdxxgJhb-jOWpM1JqawJhQ42oJCGUkrGSoZOx49pEsBCpZY54VqtVmoYq4ooHuXSSqwh-9w7ZwcsvMBI7naNe_3x94oMMnIkvVtRHUZT6LTWY1AQbDvIcAZmW-MM9Vl0E_vYVu-TevBir5UKNRr85w-5D8qCOYml7pXaPyJYrHpPd9uZBT8iPczUeWqoKS7GWhPU3CAXaMKHQMqcXJYT_tDecTUrQZTos6EFpSpiuZhStWsWeS_UShueIHh7QM3C8E4Y9R4yztANR71dbLgr6ZVx19EGczZLi-TKt0MUMORHKb9g5zEyfkstbkcgzsl2UhXtOaCR4xAOdiDyHsEXEiTW-iXwlneMyN8ojYfPqM1MTpGOfjlEGiRLKK_uHvDzycf2l8Yof5ObpHZTpeiqSe1cD5WSQ1bYis5hnqihKFAJ_YRHGWl9DXhoF2sKARz6gRmRoguAPGlUjKWCZSOaVtSW8BC5Snnpkr1GarLZN02yzkzzydv0xWBW8KlKFK-cwBxwhwtyS0CNsrWz_s8IXNz_yDbkL2zY7O-mdviT3Q4gQV3V3e2R7Npm7VxDhzfTreutQcn3bu_UXZelrww |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4AeeFcEWmQkJC645GV7c9xWrSqEVhXqSuUUjR-pVl2S1W4itPwP_i8zSXZboEXlao-l2B6PZ-L5vmHsnY21MzF4kUIqBXHnCOOdFW7orfRZmlposy3G6mSSfjqX5z3PNmFhrr3fJxiOf4SLRc9B4TEUUBiMqPtsS0l0vAdsazI-HX2l8nGh1oJ4DzteodtG_nb3tBT9fxvibfagKeew-g6z2bWb5vhxB-FetgSFlGByud_UZt_--IO-8Y6TeMIe9R4nH3Uq8pTd8-Uztj26En7Ofn6B-dRxKB2nvA9xeoUm4GvWEl4V_KxCV52Pp_WiQr3j05IfVrZCcag5WaCW6ZabFTY3hPS94J_xklwIqg9iveMH6KFeOoz7OZW9r4lIs5qvOP0L5i0SWBB_QfWNqnzZ5Qs2OT46OzwRfb0GYVMV1qLIvNXaOBspFxvCdCkFoFPQsdepl8YmqAba6ILQwM5AlsWQSJBRob2WkOywQVmV_iXjiZKJjMxQFQW6GCodOhvaJATtvdSFhYDF653MbU9mTjU1ZjkGNbTm-Q1rHrAPm0Hzjsvj3-IHpCIbUSLibhtwa_P-XOeOYkLAOB8IpIuTsM6FBmPIJDIOGwL2nhQsJ3OBH2ihRz3gNIl4Kx9pXASpMpkFbHetg3lvR5Y5WmACK0cRdr_ddKMFoGcdKH3VoAxeWgRJG8YBExvdvcsMX_2n_Gv2MEafrsuU22WDetH4PfTJavOmP4u_ALwzOks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+and+High-Performance+Analysis+of+Total+Nitrogen+in+Coco-Peat+Substrate+by+Coupling+Laser-Induced+Breakdown+Spectroscopy+with+Multi-Chemometrics&rft.jtitle=Agriculture+%28Basel%29&rft.au=Lu%2C+Bing&rft.au=Wang%2C+Xufeng&rft.au=Hu%2C+Can&rft.au=Li%2C+Xiangyou&rft.date=2024-06-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=14&rft.issue=6&rft_id=info:doi/10.3390%2Fagriculture14060946&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |