Accelerating joint species distribution modelling with Hmsc-HPC by GPU porting
Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally...
        Saved in:
      
    
          | Published in | PLoS computational biology Vol. 20; no. 9; p. e1011914 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        03.09.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1553-7358 1553-734X 1553-7358  | 
| DOI | 10.1371/journal.pcbi.1011914 | 
Cover
| Abstract | Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the
Hmsc
R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the
TensorFlow
library. Despite these changes, our enhanced framework retains the original user interface of the
Hmsc
R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline
Hmsc
R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction. | 
    
|---|---|
| AbstractList | Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction.Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction. Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction. Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction.  | 
    
| Audience | Academic | 
    
| Author | Rossi, Tuomas Oksanen, Jari Rahman, Anis Ur Tikhonov, Gleb Ovaskainen, Otso  | 
    
| Author_xml | – sequence: 1 givenname: Anis Ur orcidid: 0000-0002-8306-475X surname: Rahman fullname: Rahman, Anis Ur – sequence: 2 givenname: Gleb orcidid: 0000-0003-3040-0307 surname: Tikhonov fullname: Tikhonov, Gleb – sequence: 3 givenname: Jari surname: Oksanen fullname: Oksanen, Jari – sequence: 4 givenname: Tuomas orcidid: 0000-0002-8713-4559 surname: Rossi fullname: Rossi, Tuomas – sequence: 5 givenname: Otso orcidid: 0000-0001-9750-4421 surname: Ovaskainen fullname: Ovaskainen, Otso  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39226337$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqVkc1u3CAURlGVqvlp36CqvGwXnoKxAXc3GjWZSFEatc0aYcBTRhhcwErm7YM1kyrJpq1YcIXOd3U59xQcOe80AO8RXCBM0eetn4ITdjHKziwQRKhF9StwgpoGlxQ37OhJfQxOY9xCmMuWvAHHuK0qgjE9AddLKbXVQSTjNsXWG5eKOGppdCyUiSmYbkrGu2LwSls7Q3cm_SrWQ5Tl-mZVdLvi4ua2GH2YO7wFr3tho353uM_A7fnXn6t1efXt4nK1vCplTWAqNWNQQKplRbVQUhMmRF91mMm6Z5TWglAoKGWENa1SVEEEccsUYrBnlexbfAaafd_JjWJ3J6zlYzCDCDuOIJ_98IMfPvvhBz8593GfG4P_PemY-GBiFmCF036KHCMIG1IRyDK62KMbYTU3rvcpCJmP0oOReRe9ye9LhlDdIMLm3p-eBTKT9H3aiClGfvnj-3-w18_ZD4eZp27Q6s9HH5eYgS97QAYfY9A9lyaJeWt5YmP_ZqR-Ef4nkQ88HsY1 | 
    
| CitedBy_id | crossref_primary_10_21105_joss_07540 crossref_primary_10_1111_mec_17675  | 
    
| Cites_doi | 10.1016/j.tree.2015.09.007 10.1111/2041-210X.12501 10.1111/2041-210X.12514 10.1002/ecy.2929 10.1017/9781108591720 10.1080/10618600.2018.1537924 10.1111/2041-210X.13496 10.1111/2041-210X.13733 10.1111/2041-210X.13687 10.1007/s11222-018-9809-3 10.1109/FCCM.2013.31 10.1186/s13071-015-0915-1 10.1111/ele.12757 10.1111/2041-210X.12502 10.1111/2041-210X.13303 10.1111/2041-210X.13345 10.1007/s11222-023-10227-1 10.1111/2041-210X.12180 10.1080/01621459.2015.1044091 10.1080/01621459.2023.2260053 10.1111/geb.12464 10.1111/2041-210X.14184 10.1111/2041-210X.13897 10.1109/MCSE.2013.1 10.1111/j.1467-9868.2008.00663.x 10.1002/ecm.1370 10.1080/01621459.2020.1833889 10.1214/ss/1177011136  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright: © 2024 Rahman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science  | 
    
| Copyright_xml | – notice: Copyright: © 2024 Rahman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1371/journal.pcbi.1011914 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1553-7358 | 
    
| ExternalDocumentID | 10.1371/journal.pcbi.1011914 A811451684 39226337 10_1371_journal_pcbi_1011914  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Finland | 
    
| GeographicLocations_xml | – name: Finland | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c460t-e880a07ec27eadce68aaf2b38c4f8774a670a7786859dd7d010398d180f82cf93 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1553-7358 1553-734X  | 
    
| IngestDate | Sun Oct 26 03:59:39 EDT 2025 Fri Sep 05 08:41:43 EDT 2025 Mon Oct 20 16:59:27 EDT 2025 Thu Oct 16 15:49:42 EDT 2025 Thu Oct 16 15:50:37 EDT 2025 Mon Jul 21 06:03:31 EDT 2025 Thu Apr 24 23:06:14 EDT 2025 Wed Oct 01 01:50:09 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| License | Copyright: © 2024 Rahman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c460t-e880a07ec27eadce68aaf2b38c4f8774a670a7786859dd7d010398d180f82cf93 | 
    
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0001-9750-4421 0000-0003-3040-0307 0000-0002-8713-4559 0000-0002-8306-475X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pcbi.1011914 | 
    
| PMID | 39226337 | 
    
| PQID | 3100562608 | 
    
| PQPubID | 23479 | 
    
| PageCount | e1011914 | 
    
| ParticipantIDs | unpaywall_primary_10_1371_journal_pcbi_1011914 proquest_miscellaneous_3100562608 gale_infotracacademiconefile_A811451684 gale_incontextgauss_ISR_A811451684 gale_incontextgauss_ISN_A811451684 pubmed_primary_39226337 crossref_citationtrail_10_1371_journal_pcbi_1011914 crossref_primary_10_1371_journal_pcbi_1011914  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240903 | 
    
| PublicationDateYYYYMMDD | 2024-09-03 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: 20240903 day: 03  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | PLoS computational biology | 
    
| PublicationTitleAlternate | PLoS Comput Biol | 
    
| PublicationYear | 2024 | 
    
| Publisher | Public Library of Science | 
    
| Publisher_xml | – name: Public Library of Science | 
    
| References | O Ovaskainen (pcbi.1011914.ref012) 2016; 7 L Kidzinski (pcbi.1011914.ref016) 2022; 23 JW Doser (pcbi.1011914.ref011) 2022; 13 M Abadi (pcbi.1011914.ref027) 2017 F Hartig (pcbi.1011914.ref001) 2023 M Peruzzi (pcbi.1011914.ref033) 2022; 117 G Tikhonov (pcbi.1011914.ref014) 2020; 101 O Ovaskainen (pcbi.1011914.ref007) 2017; 20 pcbi.1011914.ref028 AO Finley (pcbi.1011914.ref031) 2019; 28 RM Neal (pcbi.1011914.ref035) 2011 JS Clark (pcbi.1011914.ref006) 2017 M Ingram (pcbi.1011914.ref022) 2020; 11 pcbi.1011914.ref023 A Terenin (pcbi.1011914.ref026) 2019; 29 FKC Hui (pcbi.1011914.ref005) 2016; 7 K Hinsen (pcbi.1011914.ref025) 2013; 15 A Datta (pcbi.1011914.ref030) 2016; 111 LL Duan (pcbi.1011914.ref036) 2018; 19 LJ Pollock (pcbi.1011914.ref002) 2014; 5 ZC Quiroz (pcbi.1011914.ref032) 2023; 33 N Golding (pcbi.1011914.ref004) 2015; 8 A Chakraborty (pcbi.1011914.ref017) 2023 DI Warton (pcbi.1011914.ref003) 2015; 30 FKC Hui (pcbi.1011914.ref015) 2023; 14 JT Thorson (pcbi.1011914.ref013) 2016; 25 G Tikhonov (pcbi.1011914.ref020) 2020; 11 GC Popovic (pcbi.1011914.ref009) 2021; 13 J Niku (pcbi.1011914.ref008) 2019; 10 M Pichler (pcbi.1011914.ref010) 2021; 12 O Ovaskainen (pcbi.1011914.ref018) 2016; 7 A Norberg (pcbi.1011914.ref021) 2019; 89 S Banerjee (pcbi.1011914.ref029) 2008; 70 pcbi.1011914.ref034 O Ovaskainen (pcbi.1011914.ref019) 2020 A Gelman (pcbi.1011914.ref024) 1992; 7  | 
    
| References_xml | – volume: 30 start-page: 766 issue: 12 year: 2015 ident: pcbi.1011914.ref003 article-title: So Many Variables: Joint Modeling in Community Ecology publication-title: Trends in Ecology and Evolution doi: 10.1016/j.tree.2015.09.007 – volume: 7 start-page: 549 issue: 5 year: 2016 ident: pcbi.1011914.ref018 article-title: Using latent variable models to identify large networks of species-to-species associations at different spatial scales publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12501 – volume-title: Handbook of Markov Chain Monte Carlo year: 2011 ident: pcbi.1011914.ref035 – volume: 7 start-page: 744 year: 2016 ident: pcbi.1011914.ref005 article-title: boral: Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in R publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12514 – volume: 101 start-page: e02929 issue: 2 year: 2020 ident: pcbi.1011914.ref014 article-title: Computationally efficient joint species distribution modeling of big spatial data publication-title: Ecology doi: 10.1002/ecy.2929 – volume-title: Joint Species Distribution Modelling—With Applications in R year: 2020 ident: pcbi.1011914.ref019 doi: 10.1017/9781108591720 – volume: 28 start-page: 401 issue: 2 year: 2019 ident: pcbi.1011914.ref031 article-title: Efficient algorithms for Bayesian nearest neighbor Gaussian processes publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2018.1537924 – volume: 11 start-page: 1587 issue: 12 year: 2020 ident: pcbi.1011914.ref022 article-title: Multi-output Gaussian processes for species distribution modelling publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.13496 – volume: 13 start-page: 194 issue: 1 year: 2021 ident: pcbi.1011914.ref009 article-title: Fast model-based ordination with copulas publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.13733 – volume: 12 start-page: 2159 issue: 11 year: 2021 ident: pcbi.1011914.ref010 article-title: A new joint species distribution model for faster and more accurate inference of species associations from big community data publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.13687 – ident: pcbi.1011914.ref028 – year: 2023 ident: pcbi.1011914.ref001 article-title: Novel community data in ecology—properties and prospects publication-title: Trends in Ecology and Evolution – volume: 29 start-page: 301 year: 2019 ident: pcbi.1011914.ref026 article-title: GPU-accelerated Gibbs sampling: a case study of the Horseshoe Probit model publication-title: Statistics and Computing doi: 10.1007/s11222-018-9809-3 – ident: pcbi.1011914.ref034 doi: 10.1109/FCCM.2013.31 – volume: 8 start-page: 1 year: 2015 ident: pcbi.1011914.ref004 article-title: Identifying biotic interactions which drive the spatial distribution of a mosquito community publication-title: Parasites & vectors doi: 10.1186/s13071-015-0915-1 – volume: 20 start-page: 561 issue: 5 year: 2017 ident: pcbi.1011914.ref007 article-title: How to make more out of community data? A conceptual framework and its implementation as models and software publication-title: Ecology Letters doi: 10.1111/ele.12757 – volume: 7 start-page: 428 issue: 4 year: 2016 ident: pcbi.1011914.ref012 article-title: Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12502 – volume: 10 start-page: 2173 year: 2019 ident: pcbi.1011914.ref008 article-title: gllvm—Fast analysis of multivariate abundance data with generalized linear latent variable models in R publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.13303 – volume: 11 start-page: 442 issue: 3 year: 2020 ident: pcbi.1011914.ref020 article-title: Joint species distribution modelling with the R-package Hmsc publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.13345 – ident: pcbi.1011914.ref023 – volume: 33 start-page: 54 issue: 2 year: 2023 ident: pcbi.1011914.ref032 article-title: Fast Bayesian inference of block Nearest Neighbor Gaussian models for large data publication-title: Statistics and Computing doi: 10.1007/s11222-023-10227-1 – volume: 5 start-page: 397 issue: 5 year: 2014 ident: pcbi.1011914.ref002 article-title: Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM) publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12180 – volume: 111 start-page: 800 issue: 514 year: 2016 ident: pcbi.1011914.ref030 article-title: Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2015.1044091 – start-page: 1 year: 2023 ident: pcbi.1011914.ref017 article-title: Bayesian Inference on High-Dimensional Multivariate Binary Responses publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2023.2260053 – start-page: 1 volume-title: Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learning and Programming Languages year: 2017 ident: pcbi.1011914.ref027 – volume: 25 start-page: 1144 issue: 9 year: 2016 ident: pcbi.1011914.ref013 article-title: Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring publication-title: Global Ecology and Biogeography doi: 10.1111/geb.12464 – volume: 19 start-page: 1 issue: 64 year: 2018 ident: pcbi.1011914.ref036 article-title: Scaling up Data Augmentation MCMC via Calibration publication-title: Journal of Machine Learning Research – volume: 14 start-page: 2150 issue: 8 year: 2023 ident: pcbi.1011914.ref015 article-title: Spatiotemporal joint species distribution modelling: A basis function approach publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.14184 – volume: 13 start-page: 1670 year: 2022 ident: pcbi.1011914.ref011 article-title: spOccupancy: An R package for single-species, multi-species, and integrated spatial occupancy models publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.13897 – volume: 23 start-page: 1 issue: 291 year: 2022 ident: pcbi.1011914.ref016 article-title: Generalized Matrix Factorization: efficient algorithms for fitting generalized linear latent variable models to large data arrays publication-title: Journal of Machine Learning Research – volume: 15 start-page: 84 issue: 01 year: 2013 ident: pcbi.1011914.ref025 article-title: A glimpse of the future of scientific programming publication-title: Computing in Science & Engineering doi: 10.1109/MCSE.2013.1 – volume: 70 start-page: 825 issue: 4 year: 2008 ident: pcbi.1011914.ref029 article-title: Gaussian predictive process models for large spatial data sets publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology doi: 10.1111/j.1467-9868.2008.00663.x – volume: 89 start-page: e01370 issue: 3 year: 2019 ident: pcbi.1011914.ref021 article-title: A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels publication-title: Ecological Monographs doi: 10.1002/ecm.1370 – volume: 117 start-page: 969 issue: 538 year: 2022 ident: pcbi.1011914.ref033 article-title: Highly scalable Bayesian geostatistical modeling via meshed Gaussian processes on partitioned domains publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2020.1833889 – year: 2017 ident: pcbi.1011914.ref006 article-title: Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data publication-title: Ecological Monographs – volume: 7 start-page: 457 year: 1992 ident: pcbi.1011914.ref024 article-title: Inference from Iterative Simulation Using Multiple Sequences publication-title: Statistical Science doi: 10.1214/ss/1177011136  | 
    
| SSID | ssj0035896 | 
    
| Score | 2.4641252 | 
    
| Snippet | Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking... | 
    
| SourceID | unpaywall proquest gale pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e1011914 | 
    
| SubjectTerms | Algorithms Analysis Computational Biology - methods Computer Graphics Distribution Electronic data processing Geospatial data Graphics coprocessors Humans Machine Learning Mathematical models Methods Models, Biological Models, Statistical Software Species  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgheNr4pDGQQEi-4S-LEdh-riVGQVlVApfJkOY49DUpa0URT-evxJW5pJ02Mt0g5W77zOXeX8_0O4E2cFkXBTER15hhNM2apTPKExrFwBvOHJsZq5LMRH07ST9Nsugfv1rUw2_l7JuLjINHewuQXGGkiHNkt2OeZ97w7sD8ZjQffGkjUjFHB0unf50yGSrnrptmxRFe_x1sG6U5dLvTqUs9mW5bn9BDO1mtuL5z86NVV3jO_r8A53pSpe3AQXFAyaHXmPuzZ8gHcbptSrh7CaGCMt0WoGeU5-T6_KCuC9Zg-pCYFwuyGDlmkaaKD1ewEf-aS4c-locPxCclX5MN4QtCx9y8fweT0_deTIQ1dF6hJeVRR60-0joQ1ifBaZiyXWrskZ9KkTnpnUXMRaUSdk1m_KESBjSL6sohl5GRiXJ89hk45L-1TIN7_0LnVjmMY6iIjnfUzxCyVfcldxLvA1jugTIAkx84YM9Xk2YQPTVqRKJSUCpLqAt2MWrSQHP-gf42bqxDtosTrNOe6Xi7Vxy8jNZBx06lYXk_0eYfobSByc79Oo0MJg-cWUbR2KF-tNUn584pJGF3aeb1UmFDJMIqUXXjSqtiGC--rJpwx0YXeRuduxOKz_x3wHO4m3jtrLsuxI-hUv2r7wntXVf4yHKo_qmUgsg priority: 102 providerName: Unpaywall  | 
    
| Title | Accelerating joint species distribution modelling with Hmsc-HPC by GPU porting | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39226337 https://www.proquest.com/docview/3100562608 https://doi.org/10.1371/journal.pcbi.1011914  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050601 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: ABDBF dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: GX1 dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 8FG dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1553-7358 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M48 dateStart: 20050601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2IQQviM9RPiqDkHhylcRJ7DwglI51BWlRNYhUniLHsaehkpalFfS_5y5xqxUxsZdESs6RfT7n7ny--xHy1g-rquLaYyqynIURN0wGZcB8X1iN8UPtYzbyWRaP8_DzNJrukQ1mq2Ng80_XDvGk8qvZ4PfP9QdY8O9b1AbhbxoNFrq8RG8US5btk0PQVQmCOZyF27gCj2SL2IVgOUzwcOqS6W76yo6y-vuXfU1n3V3VC7X-pWaza8pp9IDcd1YlTTsxeEj2TP2I3OlwJtePSZZqDeoFJ7u-oN_nl_WSYooleMm0wsq5DvSKtrg4mKBOcX-Wjn80mo0nx7Rc09NJTpFN8PIJyUcnX4_HzAEpMB3G3pIZWKTKE0YHAgRHm1gqZYOSSx1aCfafioWnsJCcjJKqEhViPySy8qVnZaBtwp-Sg3pem2eEgkmhSqNsjJ6l9bS0Br7g81AmMrZe3CN8w7FCuyrjCHYxK9rQmQBvo2NJgXwuHJ97hG1bLboqG_-hf4OTUWABixpPyFyoVdMUn75kRSr9FnxY3kx0vkP0zhHZOfRTK5eVAKPFwlg7lK83M1_AEsS4iqrNfNUUGCOJ0DGUPXLUicR2FGB-BjHnokcGWxm51RCf36b3L8i9AIys9swbf0kOllcr8wqMpGXZJ_tiKuAqR6d9cpgOPw5HcB-eZJPzfrvx0G9XBjzLs0n67Q-NBxc7 | 
    
| linkProvider | Scholars Portal | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgheNr4pDGQQEi-4S-LEdh-riVGQVlVApfJkOY49DUpa0URT-evxJW5pJ02Mt0g5W77zOXeX8_0O4E2cFkXBTER15hhNM2apTPKExrFwBvOHJsZq5LMRH07ST9Nsugfv1rUw2_l7JuLjINHewuQXGGkiHNkt2OeZ97w7sD8ZjQffGkjUjFHB0unf50yGSrnrptmxRFe_x1sG6U5dLvTqUs9mW5bn9BDO1mtuL5z86NVV3jO_r8A53pSpe3AQXFAyaHXmPuzZ8gHcbptSrh7CaGCMt0WoGeU5-T6_KCuC9Zg-pCYFwuyGDlmkaaKD1ewEf-aS4c-locPxCclX5MN4QtCx9y8fweT0_deTIQ1dF6hJeVRR60-0joQ1ifBaZiyXWrskZ9KkTnpnUXMRaUSdk1m_KESBjSL6sohl5GRiXJ89hk45L-1TIN7_0LnVjmMY6iIjnfUzxCyVfcldxLvA1jugTIAkx84YM9Xk2YQPTVqRKJSUCpLqAt2MWrSQHP-gf42bqxDtosTrNOe6Xi7Vxy8jNZBx06lYXk_0eYfobSByc79Oo0MJg-cWUbR2KF-tNUn584pJGF3aeb1UmFDJMIqUXXjSqtiGC--rJpwx0YXeRuduxOKz_x3wHO4m3jtrLsuxI-hUv2r7wntXVf4yHKo_qmUgsg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+joint+species+distribution+modelling+with+Hmsc-HPC+by+GPU+porting&rft.jtitle=PLoS+computational+biology&rft.au=Rahman%2C+Anis+Ur&rft.au=Tikhonov%2C+Gleb&rft.au=Oksanen%2C+Jari&rft.au=Rossi%2C+Tuomas&rft.date=2024-09-03&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=20&rft.issue=9&rft.spage=e1011914&rft_id=info:doi/10.1371%2Fjournal.pcbi.1011914&rft.externalDBID=ISR&rft.externalDocID=A811451684 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |