Accelerating joint species distribution modelling with Hmsc-HPC by GPU porting

Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 20; no. 9; p. e1011914
Main Authors Rahman, Anis Ur, Tikhonov, Gleb, Oksanen, Jari, Rossi, Tuomas, Ovaskainen, Otso
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.09.2024
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1011914

Cover

Abstract Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction.
AbstractList Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction.Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction.
Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction.
Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction.
Audience Academic
Author Rossi, Tuomas
Oksanen, Jari
Rahman, Anis Ur
Tikhonov, Gleb
Ovaskainen, Otso
Author_xml – sequence: 1
  givenname: Anis Ur
  orcidid: 0000-0002-8306-475X
  surname: Rahman
  fullname: Rahman, Anis Ur
– sequence: 2
  givenname: Gleb
  orcidid: 0000-0003-3040-0307
  surname: Tikhonov
  fullname: Tikhonov, Gleb
– sequence: 3
  givenname: Jari
  surname: Oksanen
  fullname: Oksanen, Jari
– sequence: 4
  givenname: Tuomas
  orcidid: 0000-0002-8713-4559
  surname: Rossi
  fullname: Rossi, Tuomas
– sequence: 5
  givenname: Otso
  orcidid: 0000-0001-9750-4421
  surname: Ovaskainen
  fullname: Ovaskainen, Otso
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39226337$$D View this record in MEDLINE/PubMed
BookMark eNqVkc1u3CAURlGVqvlp36CqvGwXnoKxAXc3GjWZSFEatc0aYcBTRhhcwErm7YM1kyrJpq1YcIXOd3U59xQcOe80AO8RXCBM0eetn4ITdjHKziwQRKhF9StwgpoGlxQ37OhJfQxOY9xCmMuWvAHHuK0qgjE9AddLKbXVQSTjNsXWG5eKOGppdCyUiSmYbkrGu2LwSls7Q3cm_SrWQ5Tl-mZVdLvi4ua2GH2YO7wFr3tho353uM_A7fnXn6t1efXt4nK1vCplTWAqNWNQQKplRbVQUhMmRF91mMm6Z5TWglAoKGWENa1SVEEEccsUYrBnlexbfAaafd_JjWJ3J6zlYzCDCDuOIJ_98IMfPvvhBz8593GfG4P_PemY-GBiFmCF036KHCMIG1IRyDK62KMbYTU3rvcpCJmP0oOReRe9ye9LhlDdIMLm3p-eBTKT9H3aiClGfvnj-3-w18_ZD4eZp27Q6s9HH5eYgS97QAYfY9A9lyaJeWt5YmP_ZqR-Ef4nkQ88HsY1
CitedBy_id crossref_primary_10_21105_joss_07540
crossref_primary_10_1111_mec_17675
Cites_doi 10.1016/j.tree.2015.09.007
10.1111/2041-210X.12501
10.1111/2041-210X.12514
10.1002/ecy.2929
10.1017/9781108591720
10.1080/10618600.2018.1537924
10.1111/2041-210X.13496
10.1111/2041-210X.13733
10.1111/2041-210X.13687
10.1007/s11222-018-9809-3
10.1109/FCCM.2013.31
10.1186/s13071-015-0915-1
10.1111/ele.12757
10.1111/2041-210X.12502
10.1111/2041-210X.13303
10.1111/2041-210X.13345
10.1007/s11222-023-10227-1
10.1111/2041-210X.12180
10.1080/01621459.2015.1044091
10.1080/01621459.2023.2260053
10.1111/geb.12464
10.1111/2041-210X.14184
10.1111/2041-210X.13897
10.1109/MCSE.2013.1
10.1111/j.1467-9868.2008.00663.x
10.1002/ecm.1370
10.1080/01621459.2020.1833889
10.1214/ss/1177011136
ContentType Journal Article
Copyright Copyright: © 2024 Rahman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
Copyright_xml – notice: Copyright: © 2024 Rahman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
ADTOC
UNPAY
DOI 10.1371/journal.pcbi.1011914
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1553-7358
ExternalDocumentID 10.1371/journal.pcbi.1011914
A811451684
39226337
10_1371_journal_pcbi_1011914
Genre Journal Article
GeographicLocations Finland
GeographicLocations_xml – name: Finland
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c460t-e880a07ec27eadce68aaf2b38c4f8774a670a7786859dd7d010398d180f82cf93
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Oct 26 03:59:39 EDT 2025
Fri Sep 05 08:41:43 EDT 2025
Mon Oct 20 16:59:27 EDT 2025
Thu Oct 16 15:49:42 EDT 2025
Thu Oct 16 15:50:37 EDT 2025
Mon Jul 21 06:03:31 EDT 2025
Thu Apr 24 23:06:14 EDT 2025
Wed Oct 01 01:50:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Copyright: © 2024 Rahman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-e880a07ec27eadce68aaf2b38c4f8774a670a7786859dd7d010398d180f82cf93
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9750-4421
0000-0003-3040-0307
0000-0002-8713-4559
0000-0002-8306-475X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pcbi.1011914
PMID 39226337
PQID 3100562608
PQPubID 23479
PageCount e1011914
ParticipantIDs unpaywall_primary_10_1371_journal_pcbi_1011914
proquest_miscellaneous_3100562608
gale_infotracacademiconefile_A811451684
gale_incontextgauss_ISR_A811451684
gale_incontextgauss_ISN_A811451684
pubmed_primary_39226337
crossref_citationtrail_10_1371_journal_pcbi_1011914
crossref_primary_10_1371_journal_pcbi_1011914
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240903
PublicationDateYYYYMMDD 2024-09-03
PublicationDate_xml – month: 09
  year: 2024
  text: 20240903
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2024
Publisher Public Library of Science
Publisher_xml – name: Public Library of Science
References O Ovaskainen (pcbi.1011914.ref012) 2016; 7
L Kidzinski (pcbi.1011914.ref016) 2022; 23
JW Doser (pcbi.1011914.ref011) 2022; 13
M Abadi (pcbi.1011914.ref027) 2017
F Hartig (pcbi.1011914.ref001) 2023
M Peruzzi (pcbi.1011914.ref033) 2022; 117
G Tikhonov (pcbi.1011914.ref014) 2020; 101
O Ovaskainen (pcbi.1011914.ref007) 2017; 20
pcbi.1011914.ref028
AO Finley (pcbi.1011914.ref031) 2019; 28
RM Neal (pcbi.1011914.ref035) 2011
JS Clark (pcbi.1011914.ref006) 2017
M Ingram (pcbi.1011914.ref022) 2020; 11
pcbi.1011914.ref023
A Terenin (pcbi.1011914.ref026) 2019; 29
FKC Hui (pcbi.1011914.ref005) 2016; 7
K Hinsen (pcbi.1011914.ref025) 2013; 15
A Datta (pcbi.1011914.ref030) 2016; 111
LL Duan (pcbi.1011914.ref036) 2018; 19
LJ Pollock (pcbi.1011914.ref002) 2014; 5
ZC Quiroz (pcbi.1011914.ref032) 2023; 33
N Golding (pcbi.1011914.ref004) 2015; 8
A Chakraborty (pcbi.1011914.ref017) 2023
DI Warton (pcbi.1011914.ref003) 2015; 30
FKC Hui (pcbi.1011914.ref015) 2023; 14
JT Thorson (pcbi.1011914.ref013) 2016; 25
G Tikhonov (pcbi.1011914.ref020) 2020; 11
GC Popovic (pcbi.1011914.ref009) 2021; 13
J Niku (pcbi.1011914.ref008) 2019; 10
M Pichler (pcbi.1011914.ref010) 2021; 12
O Ovaskainen (pcbi.1011914.ref018) 2016; 7
A Norberg (pcbi.1011914.ref021) 2019; 89
S Banerjee (pcbi.1011914.ref029) 2008; 70
pcbi.1011914.ref034
O Ovaskainen (pcbi.1011914.ref019) 2020
A Gelman (pcbi.1011914.ref024) 1992; 7
References_xml – volume: 30
  start-page: 766
  issue: 12
  year: 2015
  ident: pcbi.1011914.ref003
  article-title: So Many Variables: Joint Modeling in Community Ecology
  publication-title: Trends in Ecology and Evolution
  doi: 10.1016/j.tree.2015.09.007
– volume: 7
  start-page: 549
  issue: 5
  year: 2016
  ident: pcbi.1011914.ref018
  article-title: Using latent variable models to identify large networks of species-to-species associations at different spatial scales
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12501
– volume-title: Handbook of Markov Chain Monte Carlo
  year: 2011
  ident: pcbi.1011914.ref035
– volume: 7
  start-page: 744
  year: 2016
  ident: pcbi.1011914.ref005
  article-title: boral: Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in R
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12514
– volume: 101
  start-page: e02929
  issue: 2
  year: 2020
  ident: pcbi.1011914.ref014
  article-title: Computationally efficient joint species distribution modeling of big spatial data
  publication-title: Ecology
  doi: 10.1002/ecy.2929
– volume-title: Joint Species Distribution Modelling—With Applications in R
  year: 2020
  ident: pcbi.1011914.ref019
  doi: 10.1017/9781108591720
– volume: 28
  start-page: 401
  issue: 2
  year: 2019
  ident: pcbi.1011914.ref031
  article-title: Efficient algorithms for Bayesian nearest neighbor Gaussian processes
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2018.1537924
– volume: 11
  start-page: 1587
  issue: 12
  year: 2020
  ident: pcbi.1011914.ref022
  article-title: Multi-output Gaussian processes for species distribution modelling
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13496
– volume: 13
  start-page: 194
  issue: 1
  year: 2021
  ident: pcbi.1011914.ref009
  article-title: Fast model-based ordination with copulas
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13733
– volume: 12
  start-page: 2159
  issue: 11
  year: 2021
  ident: pcbi.1011914.ref010
  article-title: A new joint species distribution model for faster and more accurate inference of species associations from big community data
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13687
– ident: pcbi.1011914.ref028
– year: 2023
  ident: pcbi.1011914.ref001
  article-title: Novel community data in ecology—properties and prospects
  publication-title: Trends in Ecology and Evolution
– volume: 29
  start-page: 301
  year: 2019
  ident: pcbi.1011914.ref026
  article-title: GPU-accelerated Gibbs sampling: a case study of the Horseshoe Probit model
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-018-9809-3
– ident: pcbi.1011914.ref034
  doi: 10.1109/FCCM.2013.31
– volume: 8
  start-page: 1
  year: 2015
  ident: pcbi.1011914.ref004
  article-title: Identifying biotic interactions which drive the spatial distribution of a mosquito community
  publication-title: Parasites & vectors
  doi: 10.1186/s13071-015-0915-1
– volume: 20
  start-page: 561
  issue: 5
  year: 2017
  ident: pcbi.1011914.ref007
  article-title: How to make more out of community data? A conceptual framework and its implementation as models and software
  publication-title: Ecology Letters
  doi: 10.1111/ele.12757
– volume: 7
  start-page: 428
  issue: 4
  year: 2016
  ident: pcbi.1011914.ref012
  article-title: Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12502
– volume: 10
  start-page: 2173
  year: 2019
  ident: pcbi.1011914.ref008
  article-title: gllvm—Fast analysis of multivariate abundance data with generalized linear latent variable models in R
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13303
– volume: 11
  start-page: 442
  issue: 3
  year: 2020
  ident: pcbi.1011914.ref020
  article-title: Joint species distribution modelling with the R-package Hmsc
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13345
– ident: pcbi.1011914.ref023
– volume: 33
  start-page: 54
  issue: 2
  year: 2023
  ident: pcbi.1011914.ref032
  article-title: Fast Bayesian inference of block Nearest Neighbor Gaussian models for large data
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-023-10227-1
– volume: 5
  start-page: 397
  issue: 5
  year: 2014
  ident: pcbi.1011914.ref002
  article-title: Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM)
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12180
– volume: 111
  start-page: 800
  issue: 514
  year: 2016
  ident: pcbi.1011914.ref030
  article-title: Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2015.1044091
– start-page: 1
  year: 2023
  ident: pcbi.1011914.ref017
  article-title: Bayesian Inference on High-Dimensional Multivariate Binary Responses
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2023.2260053
– start-page: 1
  volume-title: Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learning and Programming Languages
  year: 2017
  ident: pcbi.1011914.ref027
– volume: 25
  start-page: 1144
  issue: 9
  year: 2016
  ident: pcbi.1011914.ref013
  article-title: Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/geb.12464
– volume: 19
  start-page: 1
  issue: 64
  year: 2018
  ident: pcbi.1011914.ref036
  article-title: Scaling up Data Augmentation MCMC via Calibration
  publication-title: Journal of Machine Learning Research
– volume: 14
  start-page: 2150
  issue: 8
  year: 2023
  ident: pcbi.1011914.ref015
  article-title: Spatiotemporal joint species distribution modelling: A basis function approach
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.14184
– volume: 13
  start-page: 1670
  year: 2022
  ident: pcbi.1011914.ref011
  article-title: spOccupancy: An R package for single-species, multi-species, and integrated spatial occupancy models
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13897
– volume: 23
  start-page: 1
  issue: 291
  year: 2022
  ident: pcbi.1011914.ref016
  article-title: Generalized Matrix Factorization: efficient algorithms for fitting generalized linear latent variable models to large data arrays
  publication-title: Journal of Machine Learning Research
– volume: 15
  start-page: 84
  issue: 01
  year: 2013
  ident: pcbi.1011914.ref025
  article-title: A glimpse of the future of scientific programming
  publication-title: Computing in Science & Engineering
  doi: 10.1109/MCSE.2013.1
– volume: 70
  start-page: 825
  issue: 4
  year: 2008
  ident: pcbi.1011914.ref029
  article-title: Gaussian predictive process models for large spatial data sets
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.1467-9868.2008.00663.x
– volume: 89
  start-page: e01370
  issue: 3
  year: 2019
  ident: pcbi.1011914.ref021
  article-title: A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels
  publication-title: Ecological Monographs
  doi: 10.1002/ecm.1370
– volume: 117
  start-page: 969
  issue: 538
  year: 2022
  ident: pcbi.1011914.ref033
  article-title: Highly scalable Bayesian geostatistical modeling via meshed Gaussian processes on partitioned domains
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2020.1833889
– year: 2017
  ident: pcbi.1011914.ref006
  article-title: Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data
  publication-title: Ecological Monographs
– volume: 7
  start-page: 457
  year: 1992
  ident: pcbi.1011914.ref024
  article-title: Inference from Iterative Simulation Using Multiple Sequences
  publication-title: Statistical Science
  doi: 10.1214/ss/1177011136
SSID ssj0035896
Score 2.4641252
Snippet Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking...
SourceID unpaywall
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1011914
SubjectTerms Algorithms
Analysis
Computational Biology - methods
Computer Graphics
Distribution
Electronic data processing
Geospatial data
Graphics coprocessors
Humans
Machine Learning
Mathematical models
Methods
Models, Biological
Models, Statistical
Software
Species
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgheNr4pDGQQEi-4S-LEdh-riVGQVlVApfJkOY49DUpa0URT-evxJW5pJ02Mt0g5W77zOXeX8_0O4E2cFkXBTER15hhNM2apTPKExrFwBvOHJsZq5LMRH07ST9Nsugfv1rUw2_l7JuLjINHewuQXGGkiHNkt2OeZ97w7sD8ZjQffGkjUjFHB0unf50yGSrnrptmxRFe_x1sG6U5dLvTqUs9mW5bn9BDO1mtuL5z86NVV3jO_r8A53pSpe3AQXFAyaHXmPuzZ8gHcbptSrh7CaGCMt0WoGeU5-T6_KCuC9Zg-pCYFwuyGDlmkaaKD1ewEf-aS4c-locPxCclX5MN4QtCx9y8fweT0_deTIQ1dF6hJeVRR60-0joQ1ifBaZiyXWrskZ9KkTnpnUXMRaUSdk1m_KESBjSL6sohl5GRiXJ89hk45L-1TIN7_0LnVjmMY6iIjnfUzxCyVfcldxLvA1jugTIAkx84YM9Xk2YQPTVqRKJSUCpLqAt2MWrSQHP-gf42bqxDtosTrNOe6Xi7Vxy8jNZBx06lYXk_0eYfobSByc79Oo0MJg-cWUbR2KF-tNUn584pJGF3aeb1UmFDJMIqUXXjSqtiGC--rJpwx0YXeRuduxOKz_x3wHO4m3jtrLsuxI-hUv2r7wntXVf4yHKo_qmUgsg
  priority: 102
  providerName: Unpaywall
Title Accelerating joint species distribution modelling with Hmsc-HPC by GPU porting
URI https://www.ncbi.nlm.nih.gov/pubmed/39226337
https://www.proquest.com/docview/3100562608
https://doi.org/10.1371/journal.pcbi.1011914
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 8FG
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M48
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2IQQviM9RPiqDkHhylcRJ7DwglI51BWlRNYhUniLHsaehkpalFfS_5y5xqxUxsZdESs6RfT7n7ny--xHy1g-rquLaYyqynIURN0wGZcB8X1iN8UPtYzbyWRaP8_DzNJrukQ1mq2Ng80_XDvGk8qvZ4PfP9QdY8O9b1AbhbxoNFrq8RG8US5btk0PQVQmCOZyF27gCj2SL2IVgOUzwcOqS6W76yo6y-vuXfU1n3V3VC7X-pWaza8pp9IDcd1YlTTsxeEj2TP2I3OlwJtePSZZqDeoFJ7u-oN_nl_WSYooleMm0wsq5DvSKtrg4mKBOcX-Wjn80mo0nx7Rc09NJTpFN8PIJyUcnX4_HzAEpMB3G3pIZWKTKE0YHAgRHm1gqZYOSSx1aCfafioWnsJCcjJKqEhViPySy8qVnZaBtwp-Sg3pem2eEgkmhSqNsjJ6l9bS0Br7g81AmMrZe3CN8w7FCuyrjCHYxK9rQmQBvo2NJgXwuHJ97hG1bLboqG_-hf4OTUWABixpPyFyoVdMUn75kRSr9FnxY3kx0vkP0zhHZOfRTK5eVAKPFwlg7lK83M1_AEsS4iqrNfNUUGCOJ0DGUPXLUicR2FGB-BjHnokcGWxm51RCf36b3L8i9AIys9swbf0kOllcr8wqMpGXZJ_tiKuAqR6d9cpgOPw5HcB-eZJPzfrvx0G9XBjzLs0n67Q-NBxc7
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgheNr4pDGQQEi-4S-LEdh-riVGQVlVApfJkOY49DUpa0URT-evxJW5pJ02Mt0g5W77zOXeX8_0O4E2cFkXBTER15hhNM2apTPKExrFwBvOHJsZq5LMRH07ST9Nsugfv1rUw2_l7JuLjINHewuQXGGkiHNkt2OeZ97w7sD8ZjQffGkjUjFHB0unf50yGSrnrptmxRFe_x1sG6U5dLvTqUs9mW5bn9BDO1mtuL5z86NVV3jO_r8A53pSpe3AQXFAyaHXmPuzZ8gHcbptSrh7CaGCMt0WoGeU5-T6_KCuC9Zg-pCYFwuyGDlmkaaKD1ewEf-aS4c-locPxCclX5MN4QtCx9y8fweT0_deTIQ1dF6hJeVRR60-0joQ1ifBaZiyXWrskZ9KkTnpnUXMRaUSdk1m_KESBjSL6sohl5GRiXJ89hk45L-1TIN7_0LnVjmMY6iIjnfUzxCyVfcldxLvA1jugTIAkx84YM9Xk2YQPTVqRKJSUCpLqAt2MWrSQHP-gf42bqxDtosTrNOe6Xi7Vxy8jNZBx06lYXk_0eYfobSByc79Oo0MJg-cWUbR2KF-tNUn584pJGF3aeb1UmFDJMIqUXXjSqtiGC--rJpwx0YXeRuduxOKz_x3wHO4m3jtrLsuxI-hUv2r7wntXVf4yHKo_qmUgsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+joint+species+distribution+modelling+with+Hmsc-HPC+by+GPU+porting&rft.jtitle=PLoS+computational+biology&rft.au=Rahman%2C+Anis+Ur&rft.au=Tikhonov%2C+Gleb&rft.au=Oksanen%2C+Jari&rft.au=Rossi%2C+Tuomas&rft.date=2024-09-03&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=20&rft.issue=9&rft.spage=e1011914&rft_id=info:doi/10.1371%2Fjournal.pcbi.1011914&rft.externalDBID=ISR&rft.externalDocID=A811451684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon