Role of Lnc-RNAs in the Pathogenesis and Development of Diabetic Retinopathy
Important advances in diabetic retinopathy (DR) research and management have occurred in the last few years. Neurodegenerative changes before the onset of microvascular alterations have been well established. So, new strategies are required for earlier and more effective treatment of DR, which still...
Saved in:
Published in | International journal of molecular sciences Vol. 24; no. 18; p. 13947 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms241813947 |
Cover
Abstract | Important advances in diabetic retinopathy (DR) research and management have occurred in the last few years. Neurodegenerative changes before the onset of microvascular alterations have been well established. So, new strategies are required for earlier and more effective treatment of DR, which still is the first cause of blindness in working age. We describe herein gene regulation through Lnc-RNAs as an interesting subject related to DR. Long non-coding RNAs (Lnc-RNAs) are non-protein-coding transcripts larger than 200 nucleotides. Lnc-RNAs regulate gene expression and protein formation at the epigenetic, transcriptional, and translational levels and can impact cell proliferation, apoptosis, immune response, and oxidative stress. These changes are known to take part in the mechanism of DR. Recent investigations pointed out that Lnc-RNAs might play a role in retinopathy development as Metastasis-Associated Lung Adenocarcinoma Transcript (Lnc-MALAT1), Maternally expressed gene 3 (Lnc-MEG3), myocardial-infarction-associated transcript (Lnc-MIAT), Lnc-RNA H19, Lnc-RNA HOTAIR, Lnc-RNA ANRIL B-Raf proto-oncogene (Lnc-RNA BANCR), small nucleolar RNA host gene 16 (Lnc-RNA SNHG16) and others. Several molecular pathways are impacted. Some of them play a role in DR pathophysiology, including the PI3K-Akt signaling axis, NAD-dependent deacetylase sirtuin-1 (Sirti1), p38 mitogen-activated protein kinase (P38/mapk), transforming growth factor beta signaling (TGF-β) and nuclear factor erythroid 2-related factor 2 (Nrf2). The way Lnc-RNAs affect diabetic retinopathy is a question of great relevance. Performing a more in-depth analysis seems to be crucial for researchers if they want to target Lnc-RNAs. New knowledge on gene regulation and biomarkers will enable investigators to develop more specialized therapies for diabetic retinopathy, particularly in the current growing context of precision medicine. |
---|---|
AbstractList | Important advances in diabetic retinopathy (DR) research and management have occurred in the last few years. Neurodegenerative changes before the onset of microvascular alterations have been well established. So, new strategies are required for earlier and more effective treatment of DR, which still is the first cause of blindness in working age. We describe herein gene regulation through Lnc-RNAs as an interesting subject related to DR. Long non-coding RNAs (Lnc-RNAs) are non-protein-coding transcripts larger than 200 nucleotides. Lnc-RNAs regulate gene expression and protein formation at the epigenetic, transcriptional, and translational levels and can impact cell proliferation, apoptosis, immune response, and oxidative stress. These changes are known to take part in the mechanism of DR. Recent investigations pointed out that Lnc-RNAs might play a role in retinopathy development as Metastasis-Associated Lung Adenocarcinoma Transcript (Lnc-MALAT1), Maternally expressed gene 3 (Lnc-MEG3), myocardial-infarction-associated transcript (Lnc-MIAT), Lnc-RNA H19, Lnc-RNA HOTAIR, Lnc-RNA ANRIL B-Raf proto-oncogene (Lnc-RNA BANCR), small nucleolar RNA host gene 16 (Lnc-RNA SNHG16) and others. Several molecular pathways are impacted. Some of them play a role in DR pathophysiology, including the PI3K-Akt signaling axis, NAD-dependent deacetylase sirtuin-1 (Sirti1), p38 mitogen-activated protein kinase (P38/mapk), transforming growth factor beta signaling (TGF-β) and nuclear factor erythroid 2-related factor 2 (Nrf2). The way Lnc-RNAs affect diabetic retinopathy is a question of great relevance. Performing a more in-depth analysis seems to be crucial for researchers if they want to target Lnc-RNAs. New knowledge on gene regulation and biomarkers will enable investigators to develop more specialized therapies for diabetic retinopathy, particularly in the current growing context of precision medicine.Important advances in diabetic retinopathy (DR) research and management have occurred in the last few years. Neurodegenerative changes before the onset of microvascular alterations have been well established. So, new strategies are required for earlier and more effective treatment of DR, which still is the first cause of blindness in working age. We describe herein gene regulation through Lnc-RNAs as an interesting subject related to DR. Long non-coding RNAs (Lnc-RNAs) are non-protein-coding transcripts larger than 200 nucleotides. Lnc-RNAs regulate gene expression and protein formation at the epigenetic, transcriptional, and translational levels and can impact cell proliferation, apoptosis, immune response, and oxidative stress. These changes are known to take part in the mechanism of DR. Recent investigations pointed out that Lnc-RNAs might play a role in retinopathy development as Metastasis-Associated Lung Adenocarcinoma Transcript (Lnc-MALAT1), Maternally expressed gene 3 (Lnc-MEG3), myocardial-infarction-associated transcript (Lnc-MIAT), Lnc-RNA H19, Lnc-RNA HOTAIR, Lnc-RNA ANRIL B-Raf proto-oncogene (Lnc-RNA BANCR), small nucleolar RNA host gene 16 (Lnc-RNA SNHG16) and others. Several molecular pathways are impacted. Some of them play a role in DR pathophysiology, including the PI3K-Akt signaling axis, NAD-dependent deacetylase sirtuin-1 (Sirti1), p38 mitogen-activated protein kinase (P38/mapk), transforming growth factor beta signaling (TGF-β) and nuclear factor erythroid 2-related factor 2 (Nrf2). The way Lnc-RNAs affect diabetic retinopathy is a question of great relevance. Performing a more in-depth analysis seems to be crucial for researchers if they want to target Lnc-RNAs. New knowledge on gene regulation and biomarkers will enable investigators to develop more specialized therapies for diabetic retinopathy, particularly in the current growing context of precision medicine. Important advances in diabetic retinopathy (DR) research and management have occurred in the last few years. Neurodegenerative changes before the onset of microvascular alterations have been well established. So, new strategies are required for earlier and more effective treatment of DR, which still is the first cause of blindness in working age. We describe herein gene regulation through Lnc-RNAs as an interesting subject related to DR. Long non-coding RNAs (Lnc-RNAs) are non-protein-coding transcripts larger than 200 nucleotides. Lnc-RNAs regulate gene expression and protein formation at the epigenetic, transcriptional, and translational levels and can impact cell proliferation, apoptosis, immune response, and oxidative stress. These changes are known to take part in the mechanism of DR. Recent investigations pointed out that Lnc-RNAs might play a role in retinopathy development as Metastasis-Associated Lung Adenocarcinoma Transcript (Lnc-MALAT1), Maternally expressed gene 3 (Lnc-MEG3), myocardial-infarction-associated transcript (Lnc-MIAT), Lnc-RNA H19, Lnc-RNA HOTAIR, Lnc-RNA ANRIL B-Raf proto-oncogene (Lnc-RNA BANCR), small nucleolar RNA host gene 16 (Lnc-RNA SNHG16) and others. Several molecular pathways are impacted. Some of them play a role in DR pathophysiology, including the PI3K-Akt signaling axis, NAD-dependent deacetylase sirtuin-1 (Sirti1), p38 mitogen-activated protein kinase (P38/mapk), transforming growth factor beta signaling (TGF-β) and nuclear factor erythroid 2-related factor 2 (Nrf2). The way Lnc-RNAs affect diabetic retinopathy is a question of great relevance. Performing a more in-depth analysis seems to be crucial for researchers if they want to target Lnc-RNAs. New knowledge on gene regulation and biomarkers will enable investigators to develop more specialized therapies for diabetic retinopathy, particularly in the current growing context of precision medicine. |
Audience | Academic |
Author | Potilinski, M. Constanza Gallo, Juan E. Perisset, Sofia |
AuthorAffiliation | 1 Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Universidad Austral—CONICET, Pilar B1629, Buenos Aires, Argentina; sofiaperisset@gmail.com (S.P.); cpotilinski@austral.edu.ar (M.C.P.) 2 Departamento de Oftalmología, Hospital Universitario Austral, Pilar B1629, Buenos Aires, Argentina |
AuthorAffiliation_xml | – name: 1 Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Universidad Austral—CONICET, Pilar B1629, Buenos Aires, Argentina; sofiaperisset@gmail.com (S.P.); cpotilinski@austral.edu.ar (M.C.P.) – name: 2 Departamento de Oftalmología, Hospital Universitario Austral, Pilar B1629, Buenos Aires, Argentina |
Author_xml | – sequence: 1 givenname: Sofia surname: Perisset fullname: Perisset, Sofia – sequence: 2 givenname: M. Constanza surname: Potilinski fullname: Potilinski, M. Constanza – sequence: 3 givenname: Juan E. orcidid: 0000-0002-7502-6323 surname: Gallo fullname: Gallo, Juan E. |
BookMark | eNp1kU1r3DAQhkVJoUnaY--GXnpxKmlkyzqVJUk_YGnKkp7FWB7varGlreUN5N9XS0LTDQ1CGiE97yvNzBk7CTEQY-8FvwAw_JPfjkkq0QgwSr9ip0JJWXJe65N_9m_YWUpbziXIypyy5SoOVMS-WAZXrn4sUuFDMW-o-InzJq4pUPKpwNAVV3RHQ9yNFOYDf-Wxpdm7YpXXEHcZv3_LXvc4JHr3GM_Zry_Xt5ffyuXN1--Xi2XpVM3nkpRCQQabplPgeCWcQaPbpnVG6Mq0soOaK45CdaKSYLToNDmpEBABuhrO2ecH392-Halz-UsTDnY3-RGnexvR2-Ob4Dd2He-s4BXk2WSHj48OU_y9pzTb0SdHw4CB4j5Z2WieywjKZPTDM3Qb91PI-WWqNqA5aPlErXEg60Mf88PuYGoXWouGQ6N4pi7-Q-XR0ehd7mbv8_mRoHwQuCmmNFH_N0nB7aHp9qjpmYdnvPMzzj4e6uCHF1R_ALYNsEk |
CitedBy_id | crossref_primary_10_3390_biomedicines13010233 crossref_primary_10_3390_jcm14041343 crossref_primary_10_1016_j_imlet_2025_106972 crossref_primary_10_1016_j_lfs_2024_123123 crossref_primary_10_1186_s40246_024_00692_8 |
Cites_doi | 10.1016/j.jacc.2015.12.051 10.1167/iovs.10-6293 10.1016/j.ebiom.2019.10.004 10.1007/s00011-019-01312-1 10.3390/ijms19061816 10.1016/j.preteyeres.2015.08.001 10.1080/09168451.2019.1569499 10.1161/CIRCRESAHA.116.305510 10.1038/sj.onc.1206928 10.1167/iovs.16-20569 10.4239/wjd.v1.i1.12 10.7150/ijms.38078 10.1080/13813455.2021.1900873 10.1016/j.redox.2020.101799 10.1136/thoraxjnl-2021-218359 10.1002/jcb.26245 10.1002/jcp.29716 10.1016/j.freeradbiomed.2021.03.016 10.1007/s00125-018-4797-6 10.18632/oncotarget.7578 10.12659/MSM.911787 10.1097/FJC.0000000000001039 10.1038/cddis.2014.466 10.1016/j.biopha.2018.12.080 10.1016/j.exer.2020.108300 10.1007/s00592-020-01663-w 10.4149/neo_2016_617 10.11613/BM.2020.030502 10.1007/s12035-016-0270-z 10.1016/j.bbrc.2017.02.043 10.1016/j.omtn.2021.01.035 10.1002/jcp.28344 10.1042/CS20200694 10.4161/rna.21089 10.1111/febs.14827 10.1002/iub.2102 10.1016/j.biopha.2018.02.105 10.1177/1479164117749382 10.1016/j.ophtha.2021.04.027 10.1139/cjpp-2019-0489 10.1002/kjm2.12302 10.12659/MSM.913359 10.1152/ajpendo.00089.2020 10.1016/j.ophtha.2017.02.004 10.1016/j.exer.2006.03.024 10.2174/09298673113209990022 10.14336/AD.2016.0530 10.3390/ijms21072351 10.1038/bjc.2016.123 10.1007/s00011-018-1184-1 10.1042/BSR20181469 10.1002/hep.21328 10.1167/iovs.10-5768 10.1167/iovs.13-12428 10.1002/jcb.25575 10.3390/jcm8071033 10.1186/s13045-018-0606-4 10.1038/s41598-018-24907-w 10.1016/j.yexmp.2018.12.003 10.1167/iovs.17-22698 10.1371/journal.pone.0228895 10.2337/db20-0375 10.1002/jcp.29740 10.1016/j.lfs.2021.119232 10.3389/fphar.2019.01703 10.1016/j.neuroscience.2017.04.017 10.1038/s41419-017-0047-y 10.1016/j.jstrokecerebrovasdis.2017.09.009 10.1074/jbc.M805464200 10.1016/j.biopha.2019.109699 10.18632/oncotarget.6806 10.2337/diabetes.51.7.2241 10.1189/jlb.0207114 10.2337/db10-1160 10.1167/iovs.62.3.20 10.1073/pnas.1814874116 10.1111/jdi.13617 10.1042/BSR20194370 10.1016/j.bbrc.2019.04.141 10.3892/etm.2020.9376 10.1016/j.exer.2018.05.013 10.1186/s12886-022-02317-x 10.1111/jcmm.12576 10.2174/1381612827666210202141541 10.17219/acem/31805 10.3390/ijms20246313 10.1002/jcp.29047 10.1016/j.biocel.2019.105574 10.1097/JTO.0b013e3182307eac 10.1016/j.bbrc.2016.01.164 10.3390/genes8080207 10.1016/j.ajpath.2020.05.008 10.1007/s12032-011-0004-z 10.1042/BSR20170036 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms241813947 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC10531058 A771803840 10_3390_ijms241813947 |
GrantInformation_xml | – fundername: Austral University grantid: 2021-01 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M PMFND 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c460t-e44a1e9a88d43c051c9a97b8bc91759b2d36040a14d1523971d7ec24a3aa33d63 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:36:26 EDT 2025 Mon Sep 08 14:29:27 EDT 2025 Fri Jul 25 21:32:32 EDT 2025 Tue Jun 17 22:23:58 EDT 2025 Tue Jun 10 21:17:36 EDT 2025 Tue Jul 01 02:22:43 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-e44a1e9a88d43c051c9a97b8bc91759b2d36040a14d1523971d7ec24a3aa33d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7502-6323 |
OpenAccessLink | https://www.proquest.com/docview/2869370372?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2869370372 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10531058 proquest_miscellaneous_2870139349 proquest_journals_2869370372 gale_infotracmisc_A771803840 gale_infotracacademiconefile_A771803840 crossref_primary_10_3390_ijms241813947 crossref_citationtrail_10_3390_ijms241813947 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhao (ref_40) 2019; 23 Biswas (ref_31) 2018; 8 ref_14 Dong (ref_33) 2018; 67 Eissmann (ref_95) 2012; 9 Puthanveetil (ref_32) 2015; 19 Chen (ref_93) 2017; 485 Zhang (ref_65) 2019; 17 Shao (ref_70) 2020; 235 Ke (ref_74) 2019; 514 Luo (ref_101) 2006; 44 Beltramo (ref_10) 2013; 20 Cui (ref_9) 2006; 83 Luo (ref_48) 2021; 37 Biswas (ref_61) 2021; 62 Cao (ref_75) 2021; 272 Shi (ref_80) 2019; 83 Yan (ref_82) 2021; 12 Sivkova (ref_16) 2011; 53 Wei (ref_63) 2019; 23 ref_28 Stuart (ref_6) 2017; 124 (ref_24) 2020; 30 ref_27 Han (ref_37) 2020; 235 Fu (ref_50) 2021; 169 Yin (ref_64) 2019; 25 Tong (ref_41) 2018; 107 Liu (ref_30) 2014; 5 Liou (ref_19) 2010; 1 Ji (ref_96) 2003; 22 Wawrzyniak (ref_29) 2018; 65 Zhu (ref_56) 2019; 49 Schmidt (ref_97) 2011; 6 Shi (ref_49) 2018; 101 ref_77 Li (ref_104) 2016; 63 Ortiz (ref_1) 2018; 174 Yu (ref_73) 2019; 71 Gong (ref_81) 2020; 10 Luo (ref_102) 2016; 7 Langmann (ref_20) 2007; 81 Barber (ref_11) 2011; 52 Yan (ref_55) 2015; 116 Amodio (ref_105) 2018; 11 Li (ref_71) 2018; 119 Desco (ref_8) 2019; 2019 ref_85 Teo (ref_7) 2021; 128 Shao (ref_79) 2019; 234 Qiu (ref_44) 2016; 471 Niu (ref_78) 2020; 20 Zhang (ref_26) 2019; 286 Zhao (ref_60) 2020; 134 Xiao (ref_42) 2020; 40 Zhu (ref_91) 2018; 27 Cheng (ref_23) 2013; 54 Zhang (ref_76) 2021; 78 Wang (ref_90) 2017; 8 Yang (ref_100) 2015; 19 Zhang (ref_52) 2019; 114 Tu (ref_39) 2020; 235 Wang (ref_83) 2020; 124 Thomas (ref_46) 2019; 62 Liu (ref_94) 2017; 54 Soares (ref_5) 2016; 117 Gysens (ref_87) 2022; 77 Radhakrishnan (ref_34) 2021; 70 Li (ref_38) 2018; 24 Liu (ref_84) 2019; 116 (ref_12) 2015; 24 Zhao (ref_72) 2019; 12 Li (ref_89) 2017; 354 Sun (ref_86) 2021; 58 He (ref_45) 2021; 320 Romeo (ref_18) 2002; 51 Qiu (ref_88) 2019; 111 Boon (ref_25) 2016; 67 Sun (ref_68) 2018; 22 Luo (ref_58) 2020; 69 Hajjari (ref_59) 2015; 12 Cai (ref_67) 2021; 24 Ibrahim (ref_15) 2011; 60 Yu (ref_51) 2020; 17 Zhang (ref_54) 2017; 37 Huang (ref_17) 2011; 52 Shelton (ref_21) 2009; 284 Feng (ref_99) 2016; 7 Stitt (ref_4) 2015; 51 Li (ref_69) 2018; 15 Meseure (ref_98) 2016; 114 Kang (ref_13) 2020; 37 Yu (ref_36) 2020; 98 Lai (ref_103) 2012; 29 Taurone (ref_22) 2020; 24 Luo (ref_43) 2020; 190 ref_47 Yan (ref_92) 2017; 8 Yu (ref_53) 2020; 202 Thomas (ref_62) 2017; 58 ref_3 ref_2 Liu (ref_35) 2019; 39 Zhang (ref_66) 2021; 27 Zhang (ref_57) 2017; 58 |
References_xml | – volume: 67 start-page: 1214 year: 2016 ident: ref_25 article-title: Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets? publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2015.12.051 – volume: 52 start-page: 1156 year: 2011 ident: ref_11 article-title: The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.10-6293 – volume: 49 start-page: 341 year: 2019 ident: ref_56 article-title: Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.10.004 – volume: 69 start-page: 255 year: 2020 ident: ref_58 article-title: lncRNA H19 sponging miR-93 to regulate inflammation in retinal epithelial cells under hyperglycemia via XBP1s publication-title: Inflamm. Res. doi: 10.1007/s00011-019-01312-1 – ident: ref_3 doi: 10.3390/ijms19061816 – volume: 51 start-page: 156 year: 2015 ident: ref_4 article-title: The progress in understanding and treatment of diabetic retinopathy publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2015.08.001 – volume: 83 start-page: 869 year: 2019 ident: ref_80 article-title: LncRNA FENDRR promotes high-glucose-induced proliferation and angiogenesis of human retinal endothelial cells publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2019.1569499 – volume: 116 start-page: 1143 year: 2015 ident: ref_55 article-title: lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous, RNA publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.305510 – volume: 22 start-page: 8031 year: 2003 ident: ref_96 article-title: MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer publication-title: Oncogene doi: 10.1038/sj.onc.1206928 – volume: 58 start-page: 470 year: 2017 ident: ref_62 article-title: ANRIL: A Regulator of VEGF in Diabetic Retinopathy publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.16-20569 – volume: 1 start-page: 12 year: 2010 ident: ref_19 article-title: Diabetic retinopathy: Role of inflammation and potential therapies for anti-inflammation publication-title: World J. Diabetes doi: 10.4239/wjd.v1.i1.12 – volume: 17 start-page: 591 year: 2020 ident: ref_51 article-title: Downregulation of Long Noncoding RNA MIAT in the Retina of Diabetic Rats with Tail-vein Injection of Human Umbilical-cord Mesenchymal Stem Cells publication-title: Int. J. Med. Sci. doi: 10.7150/ijms.38078 – ident: ref_77 doi: 10.1080/13813455.2021.1900873 – volume: 37 start-page: 101799 year: 2020 ident: ref_13 article-title: Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101799 – volume: 77 start-page: 514 year: 2022 ident: ref_87 article-title: Unlocking the secrets of long non-coding RNAs in asthma publication-title: Thorax doi: 10.1136/thoraxjnl-2021-218359 – volume: 23 start-page: 7732 year: 2019 ident: ref_63 article-title: LncRNA ANRIL knockdown ameliorates retinopathy in diabetic rats by inhibiting the NF-κB pathway publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 119 start-page: 817 year: 2018 ident: ref_71 article-title: Long noncoding RNA BDNF-AS inversely regulated BDNF and modulated high-glucose induced apoptosis in human retinal pigment epithelial cells publication-title: J. Cell Biochem. doi: 10.1002/jcb.26245 – volume: 12 start-page: 1 year: 2015 ident: ref_59 article-title: HOTAIR: An oncogenic long non-coding RNA in different cancers publication-title: Cancer Biol. Med. – volume: 65 start-page: 497 year: 2018 ident: ref_29 article-title: Circular and long non-coding RNAs and their role in ophthalmologic diseases publication-title: Acta Biochim. Pol. – volume: 235 start-page: 8724 year: 2020 ident: ref_39 article-title: Melatonin inhibits Müller cell activation and pro-inflammatory cytokine production via upregulating the MEG3/miR-204/Sirt1 axis in experimental diabetic retinopathy publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29716 – volume: 169 start-page: 361 year: 2021 ident: ref_50 article-title: Suppressing long noncoding RNA OGRU ameliorates diabetic retinopathy by inhibition of oxidative stress and inflammation via miR-320/USP14 axis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2021.03.016 – volume: 62 start-page: 517 year: 2019 ident: ref_46 article-title: lncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy publication-title: Diabetologia doi: 10.1007/s00125-018-4797-6 – volume: 7 start-page: 16205 year: 2016 ident: ref_99 article-title: miR-124 downregulation leads to breast cancer progression via LncRNA-MALAT1 regulation and CDK4/E2F1 signal activation publication-title: Oncotarget doi: 10.18632/oncotarget.7578 – volume: 22 start-page: 2941 year: 2018 ident: ref_68 article-title: LncRNA HOTTIP improves diabetic retinopathy by regulating the p38-MAPK pathway publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 24 start-page: 9497 year: 2018 ident: ref_38 article-title: Long Non-Coding RNA of Myocardial Infarction Associated Transcript (LncRNA-MIAT) Promotes Diabetic Retinopathy by Upregulating Transforming Growth Factor-β1 (TGF-β1) Signaling publication-title: Med. Sci. Monit. doi: 10.12659/MSM.911787 – volume: 78 start-page: e112 year: 2021 ident: ref_76 article-title: Circ_0084043 Facilitates High Glucose-Induced Retinal Pigment Epithelial Cell Injury by Activating miR-128-3p/TXNIP-Mediated Wnt/β-Catenin Signaling Pathway publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/FJC.0000000000001039 – volume: 5 start-page: e1506 year: 2014 ident: ref_30 article-title: Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.466 – volume: 111 start-page: 386 year: 2019 ident: ref_88 article-title: LncRNA-MEG3 functions as a competing endogenous RNA to regulate Treg/Th17 balance in patients with asthma by targeting microRNA-17/ RORγt publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.12.080 – volume: 202 start-page: 108300 year: 2020 ident: ref_53 article-title: Long noncoding RNA MIAT regulates primary human retinal pericyte pyroptosis by modulating miR-342–3p targeting of CASP1 in diabetic retinopathy publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2020.108300 – volume: 58 start-page: 759 year: 2021 ident: ref_86 article-title: TPTEP1 suppresses high glucose-induced dysfunction in retinal vascular endothelial cells by interacting with STAT3 and targeting VEGFA publication-title: Acta Diabetol. doi: 10.1007/s00592-020-01663-w – volume: 63 start-page: 977 year: 2016 ident: ref_104 article-title: Differentially expressed long non-coding RNAs and the prognostic potential in colorectal cancer publication-title: Neoplasma doi: 10.4149/neo_2016_617 – volume: 30 start-page: 385 year: 2020 ident: ref_24 article-title: Inflammatory and angiogenic biomarkers in diabetic retinopathy publication-title: Biochem. Med. doi: 10.11613/BM.2020.030502 – volume: 12 start-page: 2022 year: 2019 ident: ref_72 article-title: Long non-coding RNA HEIH contributes to diabetic retinopathy by regulating miR-939/VEGF axis publication-title: Int. J. Clin. Exp. Pathol. – volume: 54 start-page: 8179 year: 2017 ident: ref_94 article-title: Downregulation of the long non-coding RNA Meg3 promotes angiogenesis after ischemic brain injury by activating notch signaling publication-title: Mol. Neurobiol. doi: 10.1007/s12035-016-0270-z – volume: 485 start-page: 167 year: 2017 ident: ref_93 article-title: LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.02.043 – volume: 24 start-page: 512 year: 2021 ident: ref_67 article-title: Upregulation of long non-coding RNA SNHG16 promotes diabetes-related RMEC dysfunction via activating NF-κB and PI3K/AKT pathways publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2021.01.035 – volume: 234 start-page: 17269 year: 2019 ident: ref_79 article-title: KCNQ1OT1 affects the progression of diabetic retinopathy by regulating miR-1470 and epidermal growth factor receptor publication-title: J. Cell Physiol. doi: 10.1002/jcp.28344 – volume: 134 start-page: 2419 year: 2020 ident: ref_60 article-title: Long noncoding RNA Hotair facilitates retinal endothelial cell dysfunction in diabetic retinopathy publication-title: Clin. Sci. doi: 10.1042/CS20200694 – volume: 9 start-page: 1076 year: 2012 ident: ref_95 article-title: Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development publication-title: RNA Biol. doi: 10.4161/rna.21089 – volume: 286 start-page: 2261 year: 2019 ident: ref_26 article-title: Long non-coding RNAs in ocular diseases: New and potential therapeutic targets publication-title: FEBS J. doi: 10.1111/febs.14827 – volume: 71 start-page: 1611 year: 2019 ident: ref_73 article-title: Long noncoding RNA IGF2AS regulates high-glucose induced apoptosis in human retinal pigment epithelial cells publication-title: IUBMB Life doi: 10.1002/iub.2102 – volume: 101 start-page: 510 year: 2018 ident: ref_49 article-title: Involvement of growth factors in diabetes mellitus and its complications: A general review publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.02.105 – volume: 19 start-page: 3187 year: 2015 ident: ref_100 article-title: High MALAT1 expression predicts a poor prognosis of cervical cancer and promotes cancer cell growth and invasion publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 15 start-page: 204 year: 2018 ident: ref_69 article-title: Long non-coding RNA nuclear paraspeckle assembly transcript 1 inhibits the apoptosis of retina Müller cells after diabetic retinopathy through regulating miR-497/brain-derived neurotrophic factor axis publication-title: Diabetes Vasc. Dis. Res. doi: 10.1177/1479164117749382 – volume: 128 start-page: 1580 year: 2021 ident: ref_7 article-title: Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and Meta-Analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2021.04.027 – volume: 98 start-page: 219 year: 2020 ident: ref_36 article-title: Long noncoding RNA MALAT1 participates in the pathological angiogenesis of diabetic retinopathy in an oxygen-induced retinopathy mouse model by sponging miR-203a-3p publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/cjpp-2019-0489 – volume: 37 start-page: 101 year: 2021 ident: ref_48 article-title: LncRNA H19 inhibits high glucose-induced inflammatory responses of human retinal epithelial cells by targeting miR-19b to increase SIRT1 expression publication-title: Kaohsiung J. Med. Sci. doi: 10.1002/kjm2.12302 – volume: 25 start-page: 2845 year: 2019 ident: ref_64 article-title: Long Non-Coding RNA BANCR Is Overexpressed in Patients with Diabetic Retinopathy and Promotes Apoptosis of Retinal Pigment Epithelial Cells publication-title: Med. Sci. Monit. doi: 10.12659/MSM.913359 – volume: 320 start-page: E598 year: 2021 ident: ref_45 article-title: DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00089.2020 – volume: 124 start-page: 977 year: 2017 ident: ref_6 article-title: The Prevalence of Diabetic Retinopathy in Australian Adults with Self-Reported Diabetes: The National Eye Health Survey publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.02.004 – volume: 53 start-page: 44 year: 2011 ident: ref_16 article-title: Serum inflammatory cytokines IL-1beta, IL-6, TNF-alpha and VEGF have influence on the development of diabetic retinopathy publication-title: Folia Med. – volume: 83 start-page: 807 year: 2006 ident: ref_9 article-title: Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: The role of reactive oxygen species in diabetic retinopathy publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2006.03.024 – volume: 20 start-page: 3218 year: 2013 ident: ref_10 article-title: Pericyte loss in diabetic retinopathy: Mechanisms and consequences publication-title: Curr. Med. Chem. doi: 10.2174/09298673113209990022 – volume: 8 start-page: 71 year: 2017 ident: ref_90 article-title: Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy publication-title: Aging Dis. doi: 10.14336/AD.2016.0530 – ident: ref_2 doi: 10.3390/ijms21072351 – volume: 114 start-page: 1395 year: 2016 ident: ref_98 article-title: Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.2016.123 – volume: 67 start-page: 913 year: 2018 ident: ref_33 article-title: Long noncoding RNA MALAT1 acts as a competing endogenous RNA to regulate Amadori-glycated albumin-induced MCP-1 expression in retinal microglia by a microRNA-124-dependent mechanism publication-title: Inflamm. Res. doi: 10.1007/s00011-018-1184-1 – volume: 39 start-page: BSR20181469 year: 2019 ident: ref_35 article-title: LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis publication-title: Biosci. Rep. doi: 10.1042/BSR20181469 – volume: 44 start-page: 1012 year: 2006 ident: ref_101 article-title: Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas publication-title: Hepatology doi: 10.1002/hep.21328 – volume: 52 start-page: 1336 year: 2011 ident: ref_17 article-title: TNFalpha is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.10-5768 – volume: 54 start-page: 8191 year: 2013 ident: ref_23 article-title: Modulation of retinal Müller cells by complement receptor C5aR publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.13-12428 – volume: 117 start-page: 2443 year: 2016 ident: ref_5 article-title: Angiogenesis and Inflammation Crosstalk in Diabetic Retinopathy publication-title: J. Cell Biochem. doi: 10.1002/jcb.25575 – ident: ref_27 doi: 10.3390/jcm8071033 – volume: 11 start-page: 63 year: 2018 ident: ref_105 article-title: MALAT1: A druggable long non-coding RNA for targeted anti-cancer approaches publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-018-0606-4 – volume: 8 start-page: 6526 year: 2018 ident: ref_31 article-title: MALAT1: An Epigenetic Regulator of Inflammation in Diabetic Retinopathy publication-title: Sci. Rep. doi: 10.1038/s41598-018-24907-w – volume: 107 start-page: 102 year: 2018 ident: ref_41 article-title: LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2018.12.003 – volume: 58 start-page: 6500 year: 2017 ident: ref_57 article-title: Identification and Characterization of Circular RNAs as a New Class of Putative Biomarkers in Diabetes Retinopathy publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.17-22698 – ident: ref_14 doi: 10.1371/journal.pone.0228895 – volume: 70 start-page: 227 year: 2021 ident: ref_34 article-title: Long Noncoding RNA MALAT1 and Regulation of the Antioxidant Defense System in Diabetic Retinopathy publication-title: Diabetes doi: 10.2337/db20-0375 – volume: 235 start-page: 9361 year: 2020 ident: ref_70 article-title: Knockdown of NEAT1 exerts suppressive effects on diabetic retinopathy progression via inactivating TGF-β1 and VEGF signaling pathways publication-title: J. Cell Physiol. doi: 10.1002/jcp.29740 – volume: 24 start-page: 10319 year: 2020 ident: ref_22 article-title: The role of inflammation in diabetic retinopathy: A review publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 272 start-page: 119232 year: 2021 ident: ref_75 article-title: MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation in diabetic retinopathy via miR-34a-5p/XBP1 axis publication-title: Life Sci. doi: 10.1016/j.lfs.2021.119232 – volume: 10 start-page: 1703 year: 2020 ident: ref_81 article-title: LncRNA TDRG1-Mediated Overexpression of VEGF Aggravated Retinal Microvascular Endothelial Cell Dysfunction in Diabetic Retinopathy publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.01703 – volume: 354 start-page: 1 year: 2017 ident: ref_89 article-title: Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression publication-title: Neuroscience doi: 10.1016/j.neuroscience.2017.04.017 – volume: 8 start-page: 3211 year: 2017 ident: ref_92 article-title: Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0047-y – volume: 27 start-page: 326 year: 2018 ident: ref_91 article-title: Peripheral blood leukocyte expression of lncRNA MIAT and its diagnostic and prognostic value in ischemic stroke publication-title: J. Stroke Cerebrovasc. Dis. doi: 10.1016/j.jstrokecerebrovasdis.2017.09.009 – volume: 284 start-page: 4760 year: 2009 ident: ref_21 article-title: Glutar- edoxin regulates autocrine and paracrine proinflammatory responses in retinal glial (muller) cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M805464200 – volume: 124 start-page: 109699 year: 2020 ident: ref_83 article-title: Knockdown of MALAT1 attenuates high-glucose-induced angiogenesis and inflammation via endoplasmic reticulum stress in human retinal vascular endothelial cells publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.109699 – volume: 2019 start-page: 4940825 year: 2019 ident: ref_8 article-title: Oxidative Stress and Microvascular Alterations in Diabetic Retinopathy: Future Therapies publication-title: Oxid. Med. Cell Longev. – volume: 7 start-page: 5769 year: 2016 ident: ref_102 article-title: A MALAT1/HIF-2alpha feedback loop contributes to arsenite carcinogenesis publication-title: Oncotarget doi: 10.18632/oncotarget.6806 – volume: 51 start-page: 2241 year: 2002 ident: ref_18 article-title: Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes publication-title: Diabetes doi: 10.2337/diabetes.51.7.2241 – volume: 81 start-page: 1345 year: 2007 ident: ref_20 article-title: Microglia activation in retinal degen-eration publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0207114 – volume: 60 start-page: 1122 year: 2011 ident: ref_15 article-title: Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes publication-title: Diabetes doi: 10.2337/db10-1160 – volume: 62 start-page: 20 year: 2021 ident: ref_61 article-title: The Long Non-Coding RNA HOTAIR Is a Critical Epigenetic Mediator of Angiogenesis in Diabetic Retinopathy publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.62.3.20 – volume: 116 start-page: 7455 year: 2019 ident: ref_84 article-title: Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1814874116 – volume: 12 start-page: 1948 year: 2021 ident: ref_82 article-title: Long non-coding ribonucleic acid urothelial carcinoma-associated 1 promotes high glucose-induced human retinal endothelial cells angiogenesis through regulating micro-ribonucleic acid-624-3p/vascular endothelial growth factor C publication-title: J. Diabetes Investig. doi: 10.1111/jdi.13617 – volume: 40 start-page: BSR20194370 year: 2020 ident: ref_42 article-title: Regulation of the miR-19b-mediated SOCS6-JAK2/STAT3 pathway by lncRNA MEG3 is involved in high glucose-induced apoptosis in hRMECs publication-title: Biosci. Rep. doi: 10.1042/BSR20194370 – volume: 514 start-page: 503 year: 2019 ident: ref_74 article-title: Long noncoding RNA SNHG7 inhibits high glucose-induced human retinal endothelial cells angiogenesis by regulating miR-543/SIRT1 axis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.04.141 – volume: 20 start-page: 246 year: 2020 ident: ref_78 article-title: Long non-coding RNA RPSAP52 upregulates Timp3 by serving as the endogenous sponge of microRNA-365 in diabetic retinopathy publication-title: Exp. Ther. Med. doi: 10.3892/etm.2020.9376 – volume: 174 start-page: 29 year: 2018 ident: ref_1 article-title: Alpha-1-antitrypsin ameliorates inflammation and neurodegeneration in the diabetic mouse retina publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2018.05.013 – ident: ref_85 doi: 10.1186/s12886-022-02317-x – volume: 19 start-page: 1418 year: 2015 ident: ref_32 article-title: Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.12576 – volume: 27 start-page: 3047 year: 2021 ident: ref_66 article-title: Decreased lncRNA SNHG16 Accelerates Oxidative Stress Induced Pathological Angiogenesis in Human Retinal Microvascular Endothelial Cells by Regulating miR-195/mfn2 Axis publication-title: Curr. Pharm. Des. doi: 10.2174/1381612827666210202141541 – volume: 17 start-page: 4132 year: 2019 ident: ref_65 article-title: Downregulation of lncRNA BANCR participates in the development of retinopathy among diabetic patients publication-title: Exp. Ther. Med. – volume: 24 start-page: 531 year: 2015 ident: ref_12 article-title: Caspase-Dependent Apoptosis of Retinal Ganglion Cells During the Development of Diabetic Retinopathy publication-title: Adv. Clin. Exp. Med. doi: 10.17219/acem/31805 – ident: ref_47 doi: 10.3390/ijms20246313 – volume: 235 start-page: 1309 year: 2020 ident: ref_37 article-title: YAP1 is required for the angiogenesis in retinal microvascular endothelial cells via the inhibition of MALAT1-mediated miR-200b-3p in high glucose-induced diabetic retinopathy publication-title: J. Cell Physiol. doi: 10.1002/jcp.29047 – volume: 23 start-page: 9163 year: 2019 ident: ref_40 article-title: Effect of lncRNA MEG3 on retinopathy in diabetic rats through regulating Fox01 expression publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 114 start-page: 105574 year: 2019 ident: ref_52 article-title: C-myc contributes to the release of Müller cells-derived proinflammatory cytokines by regulating lncRNA MIAT/XNIP pathway publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2019.105574 – volume: 6 start-page: 1984 year: 2011 ident: ref_97 article-title: The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth publication-title: J. Thorac. Oncol. doi: 10.1097/JTO.0b013e3182307eac – volume: 471 start-page: 135 year: 2016 ident: ref_44 article-title: Long non-coding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.01.164 – ident: ref_28 doi: 10.3390/genes8080207 – volume: 190 start-page: 1813 year: 2020 ident: ref_43 article-title: Long Noncoding RNA MEG3 Inhibits Apoptosis of Retinal Pigment Epithelium Cells Induced by High Glucose via the miR-93/Nrf2 Axis publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2020.05.008 – volume: 29 start-page: 1810 year: 2012 ident: ref_103 article-title: Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation publication-title: Med. Oncol. doi: 10.1007/s12032-011-0004-z – volume: 37 start-page: BSR20170036 year: 2017 ident: ref_54 article-title: Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis publication-title: Biosci. Rep. doi: 10.1042/BSR20170036 |
SSID | ssj0023259 |
Score | 2.4400663 |
SecondaryResourceType | review_article |
Snippet | Important advances in diabetic retinopathy (DR) research and management have occurred in the last few years. Neurodegenerative changes before the onset of... |
SourceID | pubmedcentral proquest gale crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 13947 |
SubjectTerms | Analysis Angiogenesis Antioxidants Apoptosis Blindness Blood vessels Cell cycle Cytokines Development and progression Diabetes Diabetic retinopathy Edema Enzymes Epigenetic inheritance Genes Genetic transcription Glycoproteins Hyperglycemia Hypoxia Immune response Inflammation Ischemia Kinases Lung cancer Mitochondria Mitogens Neurodegeneration Oxidative stress Permeability Protein kinases Proteins Retina Review RNA Transcription factors Transforming growth factors Vascular endothelial growth factor |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrZC4VDxFoCAjIbhgNYntxD4gtKBWFSqrakWl3iLHdkpQSVp2e-i_ZyaPZVMJzp687MzMN8n4-wDeityoKqSOG8zNXForOMIIwXNZlkJXqjQd2_63RXZ8Jr-eq_MdWIx7YaitcoyJXaD2raNv5AepzjCTxiJPP11dc1KNor-ro4SGHaQV_MeOYuwe7GJIVvEMdj8fLk6XmxJMpJ18WoJZiWfKZD3rpsDC_6D--WuF6UwjJCKtla0sdTdW3-2f3EpIRw9hb0CSbN4v_SPYCc1juN9rS94-gZNlexlYW7GTxvHlYr5idcMQ7bFTxHztBYW4esVs49lW3xDZ9z0ytWNL2g3dkmTx7VM4Ozr8_uWYD9IJ3MksXvMgpU2CsVp7KRw6njPW5KUuHZZnypSpFxm6r02kxwSOmCTxeXCptAJXS_hMPINZ0zbhOTCPPp4mPkWchNaVIc6puFJKC4nnDEkEH8apKtzAK07yFpcF1hc0s8VkZiN4tzG_6gk1_mX4nua9IEfD8zk77BfAuyLKqmKeY1qNBRaoEexPLNFB3HR4XLlicNBV8fd1iuDNZpiOpKazJrQ3ZJMTQMbnjEBPVnxz50TOPR1p6h8dSXdC0S1W-sX_r_4SHpCAfd-1tg-z9e-b8Aphzrp8Pby7fwC4w_n7 priority: 102 providerName: ProQuest |
Title | Role of Lnc-RNAs in the Pathogenesis and Development of Diabetic Retinopathy |
URI | https://www.proquest.com/docview/2869370372 https://www.proquest.com/docview/2870139349 https://pubmed.ncbi.nlm.nih.gov/PMC10531058 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6xTUi8TOOXyDYqT5rgBUMSO7HzgFBB6yY0qqmiUt8ix3EgqCTb2kn0v-cuScsyBi958Tly7nK-7-LLdwDHQiVR4ULLE4zNXBojOMIIwZXMMqGLKEsatv0v4_hsKj_PotkfSqFOgYt7UzvqJzW9nr_9dbX6gA7_njJOTNnflT9-LjAQaQQzUm3BTnNURFV8cnOggLih6ZtGXzw47dAt3ebf03vh6e4mfbdw8lYkGu3Bbgch2bC1-WN44Kon8LBtKrl6CueTeu5YXbDzyvLJeLhgZcUQ5rELBHv1N9rbygUzVc5uFQyRfFscU1o2od-ga-pVvHoG09HJ109nvOuZwK2M_SV3UprAJUbrXAqLHmcTk6hMZxbzsijJwlzE6LcmkDlGbgQjQa6cDaURaCaRx-I5bFd15V4Ay9G5wyAPESChdJEQ2ZRfRJEWEu_pAg_erFWV2o5QnPpazFNMLEizaU-zHrzaiF-2TBr_EnxNek_J5ng_a7ofBXBVxFWVDhXGU19gZurBYU8SPcP2h9eWS9cvVhrqGBGZL1TowdFmmGZStVnl6huSUYSM8Tk90D2Lb1ZOrNz9kar83rBzB7St-ZHe___iDuARda5vy9UOYXt5feNeIr5ZZgPYUjOFVz06HcDOx5PxxWRAEScaNO_0b6aT-jk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE8RKGAkHhesJrbz8KFCC7Ta0u2qWrVSb2niOBBUkkK2Qvvn-G3M5LFsKsGtZ0-cZDyebyYZzwfwSobaz60wXCM2c5UkkmMYIXmo0lRGuZ_qptv-4SyYnKjPp_7pBvzuz8JQWWXvExtHnVWGvpFviyhAJHVlKN5f_ODEGkV_V3sKjaSjVsh2mhZj3cGOA7v8hSlcvbP_Cdf7tRB7u8cfJ7xjGeBGBe6CW6USz-okijIlDdqo0YkO0yg1mMn4OhWZDNDSE09liHUI314WWiNUIvHFZBZInPcGbCr6gDKCzQ-7s6P5KuWToqFr8xAFeeDroO3yKaV2t4tv32uEzwhDMOJ2WUPFq9hwtV5zDQD37sKdLnJl49bU7sGGLe_DzZbLcvkApvPq3LIqZ9PS8PlsXLOiZBhdsiOMMasv5FKLmiVlxtbqlEi-rckpDJvT6euKKJKXD-HkWpT4CEZlVdrHwDL0KcLLBMZlKJ1r6nHl5r4fSYVzWs-Bd72qYtP1MSc6jfMY8xnSbDzQrANvVuIXbQOPfwm-Jb3HtLFxPpN05xPwqahFVjwOEcZdiQmxA1sDSdyQZjjcr1zcOYQ6_mu-DrxcDdOVVORW2uqSZEIKyPE9HYgGK756cmoGPhwpi69NU3CPvKnrR0_-f_cXcGtyfDiNp_uzg6dwW6CJthVzWzBa_Ly0zzDEWqTPOztmcHbdW-cPDLY12Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKxAXxFMEChiJxwVrE9t5-FChhXbV0mW1WlGpt-DYDgSVpJCt0P5FfhUzeSybSnDr2RMnGY_nm0nG8xHyQsQqzB03TAE2M6m1YBBGCBbLLBNJHmaq6bb_cRYdnsgPp-HpFvndn4XBssreJzaO2lYGv5GPeBIBkvoi5qO8K4uY70_env9gyCCFf1p7Og3d0SzYvabdWHfI49itfkE6V-8d7cPav-R8cvDp_SHrGAeYkZG_ZE5KHTilk8RKYcBejdIqzpLMQFYTqoxbEYHV60BawD2A8sDGznCpBbyksJGAea-RnRhQHxLBnXcHs_linf4J3lC3BYCILApV1Hb8FEL5o-Lb9xqgNIFwDHleNhDyMk5crt3cAMPJbXKri2LpuDW7O2TLlXfJ9ZbXcnWPTBfVmaNVTqelYYvZuKZFSSHSpHOIN6sv6F6LmurS0o2aJZRv63MKQxd4ErtCuuTVfXJyJUp8QLbLqnQPCbXgX3hgOcRoIJ0r7Hfl52GYCAlzusAjb3pVpabraY7UGmcp5Dao2XSgWY-8Wouft808_iX4GvWe4iaH-YzuzirAU2G7rHQcA6T7ApJjj-wOJGFzmuFwv3Jp5xzq9K8pe-T5ehivxIK30lUXKBNjcA7v6ZFksOLrJ8fG4MORsvjaNAgP0LP6YfLo_3d_Rm7AFkqnR7Pjx-QmBwtti-d2yfby54V7AtHWMnvamTEln6965_wBuXw6HQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Lnc-RNAs+in+the+Pathogenesis+and+Development+of+Diabetic+Retinopathy&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Perisset%2C+Sofia&rft.au=Potilinski%2C+M.+Constanza&rft.au=Gallo%2C+Juan+E&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=1422-0067&rft.volume=24&rft.issue=18&rft_id=info:doi/10.3390%2Fijms241813947&rft.externalDocID=A771803840 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |