Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma
Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma...
Saved in:
Published in | Cancer cell Vol. 41; no. 4; pp. 791 - 806.e4 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
10.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1535-6108 1878-3686 1878-3686 |
DOI | 10.1016/j.ccell.2023.03.010 |
Cover
Abstract | Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response.
[Display omitted]
•Harmonization of molecular and clinical annotation clarifies anti-PD-1 response patterns•Prior anti-CTLA-4 treatment modifies predictors of anti-PD-1 response in melanoma•Immune cell signature differences are enhanced in tumors with prior anti-CTLA-4
Campbell et al. aggregate genomics and transcriptomics data across melanoma datasets, harmonizing molecular and clinical annotation across samples. Immune cell gene expression patterns and tumor mutational burden, as predictors of anti-PD-1 response, are modified by whether the patient previously received anti-CTLA-4 therapy. |
---|---|
AbstractList | Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response.
[Display omitted]
•Harmonization of molecular and clinical annotation clarifies anti-PD-1 response patterns•Prior anti-CTLA-4 treatment modifies predictors of anti-PD-1 response in melanoma•Immune cell signature differences are enhanced in tumors with prior anti-CTLA-4
Campbell et al. aggregate genomics and transcriptomics data across melanoma datasets, harmonizing molecular and clinical annotation across samples. Immune cell gene expression patterns and tumor mutational burden, as predictors of anti-PD-1 response, are modified by whether the patient previously received anti-CTLA-4 therapy. Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response. Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response.Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response. Immune checkpoint inhibitors (ICIs), including CTLA-4 and PD-1 blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N=514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures and altered cell cycle processes, compared to anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource, and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response. Campbell et al. aggregate genomics and transcriptomics data across melanoma datasets, harmonizing molecular and clinical annotation across samples. Immune cell gene expression patterns and tumor mutational burden, as predictors of anti-PD-1 response, are modified by whether the patient previously received anti-CTLA-4 therapy. |
Author | Howes, Timothy R. Pfeiffer, Shannon M. Salvador, Lisa Travers, Michael Medina, Egmidio Hodi, F. Stephen Thompson, Marshall A. Ribas, Antoni Campbell, Katie M. Tenney, Daniel Wolchok, Jedd D. Spencer, Christine N. Wells, Daniel K. Boffo, Silvia Steiner, Gabriela Amouzgar, Meelad Larkin, James Weber, Jeffrey S. Tang, Tracy |
AuthorAffiliation | 1 Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, California, 90095, USA 12 Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, California 90095, USA 3 Parker Institute for Cancer Immunotherapy, San Francisco, California, 94129, USA 2 Department of Pathology, Stanford University, Stanford, California, 94305, USA 15 Senior author 5 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA 9 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA 13 Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90024, USA 4 Perlmutter Cancer Center, NYU School of Medicine, New York, New York, 10016, USA 6 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA 10 Bristol Myers Squibb Corp. Princeton, NJ 08540, USA 11 Depa |
AuthorAffiliation_xml | – name: 1 Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, California, 90095, USA – name: 12 Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, California 90095, USA – name: 6 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA – name: 10 Bristol Myers Squibb Corp. Princeton, NJ 08540, USA – name: 5 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA – name: 2 Department of Pathology, Stanford University, Stanford, California, 94305, USA – name: 3 Parker Institute for Cancer Immunotherapy, San Francisco, California, 94129, USA – name: 7 Weill Cornell Medicine, New York, New York 10065, USA – name: 13 Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90024, USA – name: 17 Lead contact – name: 8 Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK – name: 4 Perlmutter Cancer Center, NYU School of Medicine, New York, New York, 10016, USA – name: 11 Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90095, USA – name: 14 These authors contributed equally – name: 9 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA – name: 15 Senior author |
Author_xml | – sequence: 1 givenname: Katie M. surname: Campbell fullname: Campbell, Katie M. email: katiecampbell@mednet.ucla.edu organization: Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 2 givenname: Meelad surname: Amouzgar fullname: Amouzgar, Meelad organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA – sequence: 3 givenname: Shannon M. surname: Pfeiffer fullname: Pfeiffer, Shannon M. organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA – sequence: 4 givenname: Timothy R. surname: Howes fullname: Howes, Timothy R. organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA – sequence: 5 givenname: Egmidio surname: Medina fullname: Medina, Egmidio organization: Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 6 givenname: Michael surname: Travers fullname: Travers, Michael organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA – sequence: 7 givenname: Gabriela surname: Steiner fullname: Steiner, Gabriela organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA – sequence: 8 givenname: Jeffrey S. surname: Weber fullname: Weber, Jeffrey S. organization: Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA – sequence: 9 givenname: Jedd D. surname: Wolchok fullname: Wolchok, Jedd D. organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA – sequence: 10 givenname: James surname: Larkin fullname: Larkin, James organization: Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK – sequence: 11 givenname: F. Stephen surname: Hodi fullname: Hodi, F. Stephen organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 12 givenname: Silvia surname: Boffo fullname: Boffo, Silvia organization: Bristol Myers Squibb Corp., Princeton, NJ 08540, USA – sequence: 13 givenname: Lisa surname: Salvador fullname: Salvador, Lisa organization: Bristol Myers Squibb Corp., Princeton, NJ 08540, USA – sequence: 14 givenname: Daniel surname: Tenney fullname: Tenney, Daniel organization: Bristol Myers Squibb Corp., Princeton, NJ 08540, USA – sequence: 15 givenname: Tracy surname: Tang fullname: Tang, Tracy organization: Bristol Myers Squibb Corp., Princeton, NJ 08540, USA – sequence: 16 givenname: Marshall A. surname: Thompson fullname: Thompson, Marshall A. organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA – sequence: 17 givenname: Christine N. surname: Spencer fullname: Spencer, Christine N. organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA – sequence: 18 givenname: Daniel K. surname: Wells fullname: Wells, Daniel K. organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA – sequence: 19 givenname: Antoni surname: Ribas fullname: Ribas, Antoni email: aribas@mednet.ucla.edu organization: Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37037616$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd2L1DAUxYusuB_6FwiSR1865qNN2weRZfyEAfdhfQ63t3ecDG1Sk8zI_vemzq6oDwsXEpLzOwfOvSzOnHdUFC8FXwku9Jv9CpHGcSW5VCueR_AnxYVom7ZUutVn-V6rutSCt-fFZYx7ninRdM-Kc9Vw1WihL4p4E6wPDFyy5fp2c11WLO0owHzH7DQDpsgmPxIeRggMdxDyEwUbk8XIIEaPFhIN7KdNu5PLzftSsEBx9i4Ss47BcASHWTPRCM5P8Lx4uoUx0ov786r49vHD7fpzufn66cv6elNipXkqEYe6klTDtpJ116gWm7bj1PUcSCqBHXCoBy0QUUveQ6eg1lsxyKbqW-S9uirenXznQz_RgORSgNHMwU4Q7owHa_79cXZnvvujyfW2Da9Fdnh97xD8jwPFZCYbl9LBkT9EI5uua6VWSmbpq7_D_qQ8VJ0F3UmAwccYaGvQJkjWL9l2zKFLrjZ783utZlmr4XkEz6z6j32wf5x6e6Iol3y0FExES8sqbCBMZvD2Uf4XQPS-4g |
CitedBy_id | crossref_primary_10_1016_j_xcrm_2023_101287 crossref_primary_10_3390_biomedicines13010098 crossref_primary_10_1038_s41588_024_01899_0 crossref_primary_10_3390_ijms251810120 crossref_primary_10_1158_2767_9764_CRC_23_0309 crossref_primary_10_1002_ctm2_70094 crossref_primary_10_1126_sciadv_adp4670 crossref_primary_10_1007_s11864_024_01246_9 crossref_primary_10_1038_s43856_024_00612_w crossref_primary_10_1146_annurev_immunol_101819_024752 crossref_primary_10_1038_s41571_023_00830_6 crossref_primary_10_1158_2159_8290_CD_24_0190 crossref_primary_10_1016_j_ccell_2024_04_008 crossref_primary_10_3390_cancers16101853 crossref_primary_10_3389_fimmu_2024_1500478 crossref_primary_10_1016_j_ccell_2024_08_007 crossref_primary_10_1038_s41568_024_00699_2 crossref_primary_10_1080_02656736_2024_2430333 crossref_primary_10_1186_s12943_024_02179_5 crossref_primary_10_2147_JIR_S483977 crossref_primary_10_1136_jitc_2024_009805 crossref_primary_10_1080_2162402X_2024_2432723 crossref_primary_10_1158_1078_0432_CCR_24_1109 crossref_primary_10_1136_jitc_2024_010386 crossref_primary_10_1042_EBC20230001 crossref_primary_10_1080_14737140_2024_2336106 crossref_primary_10_1158_2326_6066_CIR_23_0139 crossref_primary_10_1002_adhm_202405124 crossref_primary_10_1186_s12943_025_02294_x crossref_primary_10_20517_cdr_2023_150 crossref_primary_10_1002_adma_202307263 crossref_primary_10_1016_j_xcrm_2024_101764 crossref_primary_10_3390_vaccines13040337 crossref_primary_10_18632_aging_205894 crossref_primary_10_62347_EYML2689 crossref_primary_10_1136_jitc_2024_010029 |
Cites_doi | 10.1007/s11912-022-01243-x 10.1038/nbt.3122 10.3389/fonc.2019.01161 10.1200/JCO.2021.39.36_suppl.356154 10.1093/bioinformatics/btr260 10.1007/978-1-0716-0327-7_17 10.1126/science.aar3593 10.1093/bioinformatics/btr665 10.1093/bioinformatics/btp616 10.1016/j.patter.2022.100536 10.1016/S1470-2045(16)30126-7 10.1056/NEJMoa1406498 10.1186/s13073-020-00729-2 10.1038/s41591-018-0157-9 10.1038/s41591-018-0136-1 10.1186/s13073-022-01068-0 10.1038/s41436-018-0278-z 10.1158/1078-0432.CCR-21-0327 10.1093/annonc/mdu479 10.1038/nature13954 10.1126/science.aad0501 10.1038/s41588-018-0257-y 10.1038/s41587-019-0201-4 10.1016/j.cell.2017.07.024 10.1016/j.ccell.2019.01.003 10.1002/1878-0261.13015 10.1186/s13045-022-01252-0 10.1136/jitc-2020-002088 10.1016/j.cell.2017.09.028 10.1007/978-1-4939-8876-1_21 10.1111/j.2517-6161.1996.tb02080.x 10.1056/NEJMoa1003466 10.1056/NEJMoa1709684 10.1016/j.cels.2015.12.004 10.1172/JCI91190 10.1186/s40425-019-0556-6 10.1002/0471250953.bi1110s43 10.1038/s41586-019-1922-8 10.1001/jamaoncol.2019.1549 10.1186/s13059-016-0974-4 10.1089/omi.2011.0118 10.1126/science.aad0095 10.1038/s43018-019-0008-8 10.1038/s41591-019-0654-5 10.1056/NEJMoa1910836 10.1186/s12967-019-2100-3 10.1136/jitc-2021-003853 10.1016/j.cell.2016.02.065 10.1158/1078-0432.CCR-18-0762 10.1016/j.ejca.2016.03.081 10.1093/bioinformatics/bts271 10.1136/jitc-2020-001642 10.1016/j.cell.2021.01.002 10.1186/s13073-016-0384-y 10.1016/j.trecan.2020.05.009 10.1093/bioinformatics/btu638 10.1056/NEJMoa1503093 10.1093/nargab/lqaa078 10.7554/eLife.58688 10.1038/s41588-018-0312-8 10.1101/gr.129684.111 10.1158/1078-0432.CCR-11-0407 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.ccell.2023.03.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1878-3686 |
EndPage | 806.e4 |
ExternalDocumentID | PMC10187051 37037616 10_1016_j_ccell_2023_03_010 S1535610823000831 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA227505 – fundername: NCI NIH HHS grantid: R01 CA244936 – fundername: NCI NIH HHS grantid: R35 CA197633 – fundername: NCI NIH HHS grantid: R01 CA231295 – fundername: NCI NIH HHS grantid: R01 CA243486 – fundername: NCI NIH HHS grantid: P30 CA016042 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NCI NIH HHS grantid: P01 CA244118 |
GroupedDBID | --- --K 0R~ 1~5 29B 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IH2 IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UDS ZA5 2WC 5VS AAFWJ AAIKJ AAMRU AAQFI AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AEXQZ AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG UHS CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c460t-ccd542e5af4259738c7890e9b0ae231c9a0a5d61ccc620ba93a56f1d274b8c0b3 |
IEDL.DBID | IXB |
ISSN | 1535-6108 1878-3686 |
IngestDate | Thu Aug 21 18:34:27 EDT 2025 Thu Sep 04 18:36:28 EDT 2025 Thu Apr 03 07:01:48 EDT 2025 Tue Jul 01 01:26:26 EDT 2025 Thu Apr 24 22:57:13 EDT 2025 Fri Feb 23 02:36:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | meta-analysis melanoma immunotherapy immune checkpoint blockade |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-ccd542e5af4259738c7890e9b0ae231c9a0a5d61ccc620ba93a56f1d274b8c0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceptualization, KMC, MA, CNS, DKW, AR; Methodology, KMC, MA, CNS, DKW; Software, KMC, MA, SMP, TRH, EM, MT, GS, DKW; Formal Analysis, KMC, MA, SMP, TRH, MT, GS, DKW; Resources, JSW, JDW, JL, FSH, MAT, CNS, DKW; Data Curation, GS, SB, LS, DT, TT, DKW; Writing - Original Draft, KMC, MA, CNS; Writing - Review & Editing, KMC, MA, SMP, TRH, EM, MT, GS, MAT, CNS, DKW, AR; Visualization, KMC, MA; Supervision, CNS, DKW, AR; Funding Acquisition, SB, LS, DT, TT, CNS, DKW. Lead contact statement Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Katie Campbell (katiecampbell@mednet.ucla.edu). Author contributions |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1535610823000831 |
PMID | 37037616 |
PQID | 2799826332 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10187051 proquest_miscellaneous_2799826332 pubmed_primary_37037616 crossref_citationtrail_10_1016_j_ccell_2023_03_010 crossref_primary_10_1016_j_ccell_2023_03_010 elsevier_sciencedirect_doi_10_1016_j_ccell_2023_03_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-10 |
PublicationDateYYYYMMDD | 2023-04-10 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer cell |
PublicationTitleAlternate | Cancer Cell |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Tumeh, Harview, Yearley, Shintaku, Taylor, Robert, Chmielowski, Spasic, Henry, Ciobanu (bib11) 2014; 515 Center for Drug Evaluation, and Research FDA Grants Accelerated Approval to Dostarlimab-Gxly for dMMR Advanced Solid Tumors. U.S. Food and Drug Administration. Amouzgar, Glass, Baskar, Averbukh, Kimmey, Tsai, Hartmann, Bendall (bib70) 2022; 3 Barnell, Ronning, Campbell, Krysiak, Ainscough, Sheta, Pema, Schmidt, Richters, Cotto (bib63) 2019; 21 Friedman, Hastie, Tibshirani (bib35) 2010; 33 Robert, Schachter, Long, Arance, Grob, Mortier, Daud, Carlino, McNeil, Lotem (bib2) 2015; 372 Koboldt, Zhang, Larson, Shen, McLellan, Lin, Miller, Mardis, Ding, Wilson (bib48) 2012; 22 Tibshirani (bib34) 1996; 58 Van der Auwera, Carneiro, Hartl, Poplin, Del Angel, Levy-Moonshine, Jordan, Shakir, Roazen, Thibault (bib45) 2013; 43 Zandberg, Menk, Velez, Normolle, DePeaux, Liu, Ferris, Delgoffe (bib39) 2021; 9 Marcus, Fashoyin-Aje, Donoghue, Yuan, Rodriguez, Gallagher, Philip, Ghosh, Theoret, Beaver (bib5) 2021; 27 Liberzon, Birger, Thorvaldsdóttir, Ghandi, Mesirov, Tamayo (bib58) 2015; 1 Rose, Armstrong, Hogg, Butler, Saibil, Arteaga, Pimentel Muniz, Kelly, Ghazarian, King (bib18) 2021; 9 Saunders, Wong, Swamy, Becq, Murray, Cheetham (bib49) 2012; 28 Ulintz, Wu, Gates (bib65) 2019; 1881 Jiang, Zhang, Wang, Liu, Luo, Hua (bib40) 2022; 15 Wood, Weeder, David, Nellore, Thompson (bib26) 2020; 12 Snyder, Makarov, Merghoub, Yuan, Zaretsky, Desrichard, Walsh, Postow, Wong, Ho (bib44) 2014; 371 Larkin, Chiarion-Sileni, Gonzalez, Grob, Rutkowski, Lao, Cowey, Schadendorf, Wagstaff, Dummer (bib3) 2019; 381 James, Witten, Hastie, Tibshirani (bib36) 2013 Wei, Levine, Cogdill, Zhao, Anang, Andrews, Sharma, Wang, Wargo, Pe’er (bib28) 2017; 170 Huang, Jalil, Economou, Chmielowski, Koya, Mok, Sazegar, Seja, Villanueva, Gomez-Navarro (bib29) 2011; 17 Racle, Gfeller (bib31) 2020; 2120 Robinson, McCarthy, Smyth (bib57) 2010; 26 Team, R.C., and Others (2013). R: A Language and Environment for Statistical Computing. Venables, W.N., and Ripley, B.D. Modern Applied Statistics with S (Springer New York) Lu, Stein, Rimm, Wang, Bell, Johnson, Sosman, Schalper, Anders, Wang (bib16) 2019; 5 Liberzon, Subramanian, Pinchback, Thorvaldsdóttir, Tamayo, Mesirov (bib30) 2011; 27 Dixon-Douglas, Patel, Somasundram, McArthur (bib33) 2022; 24 . Atkins, Lee, Chmielowski, Ribas, Tarhini, Truong, Davar, O’Rourke, Curti, Brell (bib43) 2021; 39 Samstein, Lee, Shoushtari, Hellmann, Shen, Janjigian, Barron, Zehir, Jordan, Omuro (bib17) 2019; 51 Fang, Knezevic, Burnham, Knight (bib60) 2016; 8 Litchfield, Reading, Puttick, Thakkar, Abbosh, Bentham, Watkins, Rosenthal, Biswas, Rowan (bib7) 2021; 184 Subbiah, Baik, Kirkwood (bib42) 2020; 6 Damotte, Warren, Arrondeau, Boudou-Rouquette, Mansuet-Lupo, Biton, Ouakrim, Alifano, Gervais, Bellesoeur (bib14) 2019; 17 Schou Nørøxe, Flynn, Westmose Yde, Østrup, Cilius Nielsen, Skjøth-Rasmussen, Brennum, Hamerlik, Weischenfeldt, Skovgaard Poulsen (bib27) 2022; 16 Van Allen, Miao, Schilling, Shukla, Blank, Zimmer, Sucker, Hillen, Foppen, Goldinger (bib6) 2015; 350 Yu, Wang, Han, He (bib59) 2012; 16 Liu, Schilling, Liu, Sucker, Livingstone, Jerby-Arnon, Zimmer, Gutzmer, Satzger, Loquai (bib8) 2019; 25 Friedman, Spencer, Cabanski, Panageas, Wells, Ribas, Tawbi, Tsai, Postow, Shoushtari (bib32) 2022; 10 Gide, Quek, Menzies, Tasker, Shang, Holst, Madore, Lim, Velickovic, Wongchenko (bib24) 2019; 35 Ainscough, Barnell, Ronning, Campbell, Wagner, Fehniger, Dunn, Uppaluri, Govindan, Rohan (bib51) 2018; 50 Auslander, Zhang, Lee, Frederick, Miao, Moll, Tian, Wei, Madan, Sullivan (bib13) 2018; 24 Cristescu, Mogg, Ayers, Albright, Murphy, Yearley, Sher, Liu, Lu, Nebozhyn (bib12) 2018; 362 Wu, Xu, Du, Wu, Xia, Lv, Hu (bib25) 2019; 9 Kim, Paggi, Park, Bennett, Salzberg (bib54) 2019; 37 Sharma, Subudhi, Blando, Scutti, Vence, Wargo, Allison, Ribas, Sharma (bib37) 2019; 25 Li (bib46) 2013 Pertea, Pertea, Antonescu, Chang, Mendell, Salzberg (bib56) 2015; 33 Ayers, Lunceford, Nebozhyn, Murphy, Loboda, Kaufman, Albright, Cheng, Kang, Shankaran (bib10) 2017; 127 Haynes, Vallania, Liu, Bongen, Tomczak, Andres-Terrè, Lofgren, Tam, Deisseroth, Li (bib67) 2017; 22 Favero, Joshi, Marquard, Birkbak, Krzystanek, Li, Szallasi, Eklund (bib53) 2015; 26 Zhang, Parmigiani, Johnson (bib61) 2020; 2 Anders, Pyl, Huber (bib55) 2015; 31 Hugo, Zaretsky, Sun, Song, Moreno, Hu-Lieskovan, Berent-Maoz, Pang, Chmielowski, Cherry (bib23) 2016; 165 McLaren, Gil, Hunt, Riat, Ritchie, Thormann, Flicek, Cunningham (bib52) 2016; 17 Wang, Banik, Shain, Yeh, Bastian (bib19) 2022; 14 Schwartz, Litière, de Vries, Ford, Gwyther, Mandrekar, Shankar, Bogaerts, Chen, Dancey (bib62) 2016; 62 Tirosh, Izar, Prakadan, Wadsworth, Treacy, Trombetta, Rotem, Rodman, Lian, Murphy (bib66) 2016; 352 Weber, Gibney, Sullivan, Sosman, Slingluff, Lawrence, Logan, Schuchter, Nair, Fecher (bib20) 2016; 17 Kuczek, Larsen, Thorseth, Carretta, Kalvisa, Siersbæk, Simões, Roslind, Engelholm, Noessner (bib41) 2019; 7 Benjamin, Sato, Cibulskis, Getz, Stewart, Lichtenstein (bib47) 2019 Anagnostou, Niknafs, Marrone, Bruhm, White, Naidoo, Hummelink, Monkhorst, Lalezari, Lanis (bib64) 2020; 1 Riaz, Havel, Makarov, Desrichard, Urba, Sims, Hodi, Martín-Algarra, Mandal, Sharfman (bib22) 2017; 171 Nicolas-Boluda, Vaquero, Vimeux, Guilbert, Barrin, Kantari-Mimoun, Ponzo, Renault, Deptula, Pogoda (bib38) 2021; 10 Hodi, O’Day, McDermott, Weber, Sosman, Haanen, Gonzalez, Robert, Schadendorf, Hassel (bib1) 2010; 363 Jiang, Gu, Pan, Fu, Sahu, Hu, Li, Traugh, Bu, Li (bib15) 2018; 24 Helmink, Reddy, Gao, Zhang, Basar, Thakur, Yizhak, Sade-Feldman, Blando, Han (bib9) 2020; 577 Wolchok, Chiarion-Sileni, Gonzalez, Rutkowski, Grob, Cowey, Lao, Wagstaff, Schadendorf, Ferrucci (bib21) 2017; 377 Larson, Harris, Chen, Koboldt, Abbott, Dooling, Ley, Mardis, Wilson, Ding (bib50) 2012; 28 Huang (10.1016/j.ccell.2023.03.010_bib29) 2011; 17 Tumeh (10.1016/j.ccell.2023.03.010_bib11) 2014; 515 Lu (10.1016/j.ccell.2023.03.010_bib16) 2019; 5 Friedman (10.1016/j.ccell.2023.03.010_bib35) 2010; 33 Schou Nørøxe (10.1016/j.ccell.2023.03.010_bib27) 2022; 16 Saunders (10.1016/j.ccell.2023.03.010_bib49) 2012; 28 McLaren (10.1016/j.ccell.2023.03.010_bib52) 2016; 17 Li (10.1016/j.ccell.2023.03.010_bib46) 2013 Rose (10.1016/j.ccell.2023.03.010_bib18) 2021; 9 Marcus (10.1016/j.ccell.2023.03.010_bib5) 2021; 27 Jiang (10.1016/j.ccell.2023.03.010_bib15) 2018; 24 Koboldt (10.1016/j.ccell.2023.03.010_bib48) 2012; 22 Samstein (10.1016/j.ccell.2023.03.010_bib17) 2019; 51 Robinson (10.1016/j.ccell.2023.03.010_bib57) 2010; 26 Gide (10.1016/j.ccell.2023.03.010_bib24) 2019; 35 Van Allen (10.1016/j.ccell.2023.03.010_bib6) 2015; 350 Amouzgar (10.1016/j.ccell.2023.03.010_bib70) 2022; 3 Kuczek (10.1016/j.ccell.2023.03.010_bib41) 2019; 7 Larkin (10.1016/j.ccell.2023.03.010_bib3) 2019; 381 Riaz (10.1016/j.ccell.2023.03.010_bib22) 2017; 171 Tibshirani (10.1016/j.ccell.2023.03.010_bib34) 1996; 58 Helmink (10.1016/j.ccell.2023.03.010_bib9) 2020; 577 Anders (10.1016/j.ccell.2023.03.010_bib55) 2015; 31 Pertea (10.1016/j.ccell.2023.03.010_bib56) 2015; 33 Atkins (10.1016/j.ccell.2023.03.010_bib43) 2021; 39 Yu (10.1016/j.ccell.2023.03.010_bib59) 2012; 16 James (10.1016/j.ccell.2023.03.010_bib36) 2013 Liberzon (10.1016/j.ccell.2023.03.010_bib30) 2011; 27 Subbiah (10.1016/j.ccell.2023.03.010_bib42) 2020; 6 Damotte (10.1016/j.ccell.2023.03.010_bib14) 2019; 17 Wu (10.1016/j.ccell.2023.03.010_bib25) 2019; 9 Liberzon (10.1016/j.ccell.2023.03.010_bib58) 2015; 1 Ulintz (10.1016/j.ccell.2023.03.010_bib65) 2019; 1881 Liu (10.1016/j.ccell.2023.03.010_bib8) 2019; 25 Cristescu (10.1016/j.ccell.2023.03.010_bib12) 2018; 362 Nicolas-Boluda (10.1016/j.ccell.2023.03.010_bib38) 2021; 10 Jiang (10.1016/j.ccell.2023.03.010_bib40) 2022; 15 Robert (10.1016/j.ccell.2023.03.010_bib2) 2015; 372 Wood (10.1016/j.ccell.2023.03.010_bib26) 2020; 12 Weber (10.1016/j.ccell.2023.03.010_bib20) 2016; 17 Ainscough (10.1016/j.ccell.2023.03.010_bib51) 2018; 50 Auslander (10.1016/j.ccell.2023.03.010_bib13) 2018; 24 Wang (10.1016/j.ccell.2023.03.010_bib19) 2022; 14 Zandberg (10.1016/j.ccell.2023.03.010_bib39) 2021; 9 Larson (10.1016/j.ccell.2023.03.010_bib50) 2012; 28 Schwartz (10.1016/j.ccell.2023.03.010_bib62) 2016; 62 Anagnostou (10.1016/j.ccell.2023.03.010_bib64) 2020; 1 Kim (10.1016/j.ccell.2023.03.010_bib54) 2019; 37 Haynes (10.1016/j.ccell.2023.03.010_bib67) 2017; 22 Wolchok (10.1016/j.ccell.2023.03.010_bib21) 2017; 377 Dixon-Douglas (10.1016/j.ccell.2023.03.010_bib33) 2022; 24 Snyder (10.1016/j.ccell.2023.03.010_bib44) 2014; 371 Tirosh (10.1016/j.ccell.2023.03.010_bib66) 2016; 352 Wei (10.1016/j.ccell.2023.03.010_bib28) 2017; 170 Sharma (10.1016/j.ccell.2023.03.010_bib37) 2019; 25 Litchfield (10.1016/j.ccell.2023.03.010_bib7) 2021; 184 Hodi (10.1016/j.ccell.2023.03.010_bib1) 2010; 363 Fang (10.1016/j.ccell.2023.03.010_bib60) 2016; 8 Favero (10.1016/j.ccell.2023.03.010_bib53) 2015; 26 Van der Auwera (10.1016/j.ccell.2023.03.010_bib45) 2013; 43 Barnell (10.1016/j.ccell.2023.03.010_bib63) 2019; 21 Ayers (10.1016/j.ccell.2023.03.010_bib10) 2017; 127 Racle (10.1016/j.ccell.2023.03.010_bib31) 2020; 2120 10.1016/j.ccell.2023.03.010_bib4 Benjamin (10.1016/j.ccell.2023.03.010_bib47) 2019 Zhang (10.1016/j.ccell.2023.03.010_bib61) 2020; 2 Friedman (10.1016/j.ccell.2023.03.010_bib32) 2022; 10 Hugo (10.1016/j.ccell.2023.03.010_bib23) 2016; 165 10.1016/j.ccell.2023.03.010_bib68 10.1016/j.ccell.2023.03.010_bib69 |
References_xml | – volume: 39 start-page: 356154 year: 2021 ident: bib43 article-title: DREAMseq (doublet, randomized evaluation in advanced melanoma sequencing): a phase III trial—ECOG-ACRIN EA6134 publication-title: J. Clin. Orthod. – volume: 577 start-page: 549 year: 2020 end-page: 555 ident: bib9 article-title: B cells and tertiary lymphoid structures promote immunotherapy response publication-title: Nature – volume: 5 start-page: 1195 year: 2019 end-page: 1204 ident: bib16 article-title: Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic Review and meta-analysis publication-title: JAMA Oncol. – volume: 27 start-page: 4685 year: 2021 end-page: 4689 ident: bib5 article-title: FDA approval summary: pembrolizumab for the treatment of tumor mutational burden-high solid tumors publication-title: Clin. Cancer Res. – volume: 2120 start-page: 233 year: 2020 end-page: 248 ident: bib31 article-title: EPIC: A Tool to Estimate the Proportions of Different Cell Types from Bulk Gene Expression Data publication-title: Methods Mol Biol. – volume: 14 start-page: 65 year: 2022 ident: bib19 article-title: Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes publication-title: Genome Med. – volume: 35 start-page: 238 year: 2019 end-page: 255.e6 ident: bib24 article-title: Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy publication-title: Cancer Cell – volume: 15 start-page: 34 year: 2022 ident: bib40 article-title: Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy publication-title: J. Hematol. Oncol. – volume: 352 start-page: 189 year: 2016 end-page: 196 ident: bib66 article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq publication-title: Science – volume: 377 start-page: 1345 year: 2017 end-page: 1356 ident: bib21 article-title: Overall survival with combined nivolumab and ipilimumab in advanced melanoma publication-title: N. Engl. J. Med. – volume: 22 start-page: 144 year: 2017 end-page: 153 ident: bib67 article-title: Empowering multi-cohort gene expression analysis to increase reproducibility publication-title: Pac. Symp. Biocomput. – volume: 350 start-page: 207 year: 2015 end-page: 211 ident: bib6 article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma publication-title: Science – volume: 1 start-page: 417 year: 2015 end-page: 425 ident: bib58 article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection publication-title: Cell Syst. – volume: 2 start-page: lqaa078 year: 2020 ident: bib61 article-title: ComBat-seq: batch effect adjustment for RNA-seq count data publication-title: NAR Genom. Bioinform. – volume: 12 start-page: 33 year: 2020 ident: bib26 article-title: Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival publication-title: Genome Med. – volume: 10 start-page: e58688 year: 2021 ident: bib38 article-title: Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment publication-title: Elife – volume: 362 start-page: eaar3593 year: 2018 ident: bib12 article-title: Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy publication-title: Science – volume: 1 start-page: 99 year: 2020 end-page: 111 ident: bib64 article-title: Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer publication-title: Nat. Cancer – volume: 127 start-page: 2930 year: 2017 end-page: 2940 ident: bib10 article-title: IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade publication-title: J. Clin. Invest. – volume: 1881 start-page: 277 year: 2019 end-page: 318 ident: bib65 article-title: Bioinformatics analysis of whole exome sequencing data publication-title: Methods Mol. Biol. – volume: 515 start-page: 568 year: 2014 end-page: 571 ident: bib11 article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance publication-title: Nature – volume: 33 start-page: 290 year: 2015 end-page: 295 ident: bib56 article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads publication-title: Nat. Biotechnol. – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: bib57 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 21 start-page: 972 year: 2019 end-page: 981 ident: bib63 article-title: Standard operating procedure for somatic variant refinement of sequencing data with paired tumor and normal samples publication-title: Genet. Med. – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: bib35 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib34 article-title: Regression shrinkage and selection via the lasso publication-title: J. Roy. Stat. Soc. B – volume: 371 start-page: 2189 year: 2014 end-page: 2199 ident: bib44 article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma publication-title: N. Engl. J. Med. – volume: 16 start-page: 284 year: 2012 end-page: 287 ident: bib59 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters publication-title: OMICS – volume: 165 start-page: 35 year: 2016 end-page: 44 ident: bib23 article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma publication-title: Cell – volume: 16 start-page: 206 year: 2022 end-page: 218 ident: bib27 article-title: Tumor mutational burden and purity adjustment before and after treatment with temozolomide in 27 paired samples of glioblastoma: a prospective study publication-title: Mol. Oncol. – volume: 25 start-page: 1233 year: 2019 end-page: 1238 ident: bib37 article-title: Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers publication-title: Clin. Cancer Res. – reference: Venables, W.N., and Ripley, B.D. Modern Applied Statistics with S (Springer New York) – volume: 170 start-page: 1120 year: 2017 end-page: 1133.e17 ident: bib28 article-title: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade publication-title: Cell – volume: 22 start-page: 568 year: 2012 end-page: 576 ident: bib48 article-title: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing publication-title: Genome Res. – volume: 171 start-page: 934 year: 2017 end-page: 949.e16 ident: bib22 article-title: Tumor and microenvironment evolution during immunotherapy with nivolumab publication-title: Cell – volume: 37 start-page: 907 year: 2019 end-page: 915 ident: bib54 article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype publication-title: Nat. Biotechnol. – volume: 25 start-page: 1916 year: 2019 end-page: 1927 ident: bib8 article-title: Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma publication-title: Nat. Med. – volume: 8 start-page: 129 year: 2016 ident: bib60 article-title: XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits publication-title: Genome Med. – year: 2013 ident: bib46 article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM publication-title: arXiv – volume: 24 start-page: 1550 year: 2018 end-page: 1558 ident: bib15 article-title: Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response publication-title: Nat. Med. – year: 2019 ident: bib47 article-title: Calling somatic SNVs and indels with Mutect2 publication-title: bioRxiv – volume: 27 start-page: 1739 year: 2011 end-page: 1740 ident: bib30 article-title: Molecular signatures database (MSigDB) 3.0 publication-title: Bioinformatics – volume: 6 start-page: 797 year: 2020 end-page: 810 ident: bib42 article-title: Clinical development of BRAF plus MEK inhibitor combinations publication-title: Trends Cancer – volume: 9 start-page: e001642 year: 2021 ident: bib18 article-title: Biologic subtypes of melanoma predict survival benefit of combination anti-PD1+anti-CTLA4 immune checkpoint inhibitors versus anti-PD1 monotherapy publication-title: J. Immunother. Cancer – volume: 184 start-page: 596 year: 2021 end-page: 614.e14 ident: bib7 article-title: Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition publication-title: Cell – volume: 28 start-page: 311 year: 2012 end-page: 317 ident: bib50 article-title: SomaticSniper: identification of somatic point mutations in whole genome sequencing data publication-title: Bioinformatics – volume: 43 start-page: 11.10.1 year: 2013 end-page: 11.10.33 ident: bib45 article-title: From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline publication-title: Curr. Protoc. Bioinformatics – volume: 372 start-page: 2521 year: 2015 end-page: 2532 ident: bib2 article-title: Pembrolizumab versus ipilimumab in advanced melanoma publication-title: N. Engl. J. Med. – volume: 17 start-page: 357 year: 2019 ident: bib14 article-title: The tumor inflammation signature (TIS) is associated with anti-PD-1 treatment benefit in the CERTIM pan-cancer cohort publication-title: J. Transl. Med. – volume: 10 start-page: e003853 year: 2022 ident: bib32 article-title: Ipilimumab alone or in combination with nivolumab in patients with advanced melanoma who have progressed or relapsed on PD-1 blockade: clinical outcomes and translational biomarker analyses publication-title: J. Immunother. Cancer – volume: 9 start-page: e002088 year: 2021 ident: bib39 article-title: Tumor hypoxia is associated with resistance to PD-1 blockade in squamous cell carcinoma of the head and neck publication-title: J. Immunother. Cancer – volume: 28 start-page: 1811 year: 2012 end-page: 1817 ident: bib49 article-title: Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs publication-title: Bioinformatics – volume: 51 start-page: 202 year: 2019 end-page: 206 ident: bib17 article-title: Tumor mutational load predicts survival after immunotherapy across multiple cancer types publication-title: Nat. Genet. – volume: 17 start-page: 4101 year: 2011 end-page: 4109 ident: bib29 article-title: CTLA4 blockade induces frequent tumor infiltration by activated lymphocytes regardless of clinical responses in humans publication-title: Clin. Cancer Res. – volume: 50 start-page: 1735 year: 2018 end-page: 1743 ident: bib51 article-title: A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data publication-title: Nat. Genet. – volume: 62 start-page: 132 year: 2016 end-page: 137 ident: bib62 article-title: RECIST 1.1-Update and clarification: from the RECIST committee publication-title: Eur. J. Cancer – volume: 26 start-page: 64 year: 2015 end-page: 70 ident: bib53 article-title: Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data publication-title: Ann. Oncol. – volume: 24 start-page: 1071 year: 2022 end-page: 1079 ident: bib33 article-title: Triplet therapy in melanoma - combined BRAF/MEK inhibitors and anti-PD-(L)1 antibodies publication-title: Curr. Oncol. Rep. – reference: . – reference: Center for Drug Evaluation, and Research FDA Grants Accelerated Approval to Dostarlimab-Gxly for dMMR Advanced Solid Tumors. U.S. Food and Drug Administration. – volume: 7 start-page: 68 year: 2019 ident: bib41 article-title: Collagen density regulates the activity of tumor-infiltrating T cells publication-title: J. Immunother. Cancer – volume: 31 start-page: 166 year: 2015 end-page: 169 ident: bib55 article-title: HTSeq--a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics – volume: 363 start-page: 711 year: 2010 end-page: 723 ident: bib1 article-title: Improved survival with ipilimumab in patients with metastatic melanoma publication-title: N. Engl. J. Med. – volume: 381 start-page: 1535 year: 2019 end-page: 1546 ident: bib3 article-title: Five-year survival with combined nivolumab and ipilimumab in advanced melanoma publication-title: N. Engl. J. Med. – year: 2013 ident: bib36 article-title: An Introduction to Statistical Learning: With Applications in R – volume: 17 start-page: 122 year: 2016 ident: bib52 article-title: The Ensembl variant effect predictor publication-title: Genome Biol. – volume: 17 start-page: 943 year: 2016 end-page: 955 ident: bib20 article-title: Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial publication-title: Lancet Oncol. – volume: 3 start-page: 100536 year: 2022 ident: bib70 article-title: Supervised dimensionality reduction for exploration of single-cell data by HSS-LDA publication-title: Patterns – volume: 24 start-page: 1545 year: 2018 end-page: 1549 ident: bib13 article-title: Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma publication-title: Nat. Med. – volume: 9 start-page: 1161 year: 2019 ident: bib25 article-title: The predictive value of tumor mutation burden on efficacy of immune checkpoint inhibitors in cancers: a systematic Review and meta-analysis publication-title: Front. Oncol. – reference: Team, R.C., and Others (2013). R: A Language and Environment for Statistical Computing. – volume: 24 start-page: 1071 year: 2022 ident: 10.1016/j.ccell.2023.03.010_bib33 article-title: Triplet therapy in melanoma - combined BRAF/MEK inhibitors and anti-PD-(L)1 antibodies publication-title: Curr. Oncol. Rep. doi: 10.1007/s11912-022-01243-x – volume: 33 start-page: 290 year: 2015 ident: 10.1016/j.ccell.2023.03.010_bib56 article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3122 – volume: 9 start-page: 1161 year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib25 article-title: The predictive value of tumor mutation burden on efficacy of immune checkpoint inhibitors in cancers: a systematic Review and meta-analysis publication-title: Front. Oncol. doi: 10.3389/fonc.2019.01161 – volume: 39 start-page: 356154 year: 2021 ident: 10.1016/j.ccell.2023.03.010_bib43 article-title: DREAMseq (doublet, randomized evaluation in advanced melanoma sequencing): a phase III trial—ECOG-ACRIN EA6134 publication-title: J. Clin. Orthod. doi: 10.1200/JCO.2021.39.36_suppl.356154 – ident: 10.1016/j.ccell.2023.03.010_bib68 – volume: 27 start-page: 1739 year: 2011 ident: 10.1016/j.ccell.2023.03.010_bib30 article-title: Molecular signatures database (MSigDB) 3.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – volume: 2120 start-page: 233 year: 2020 ident: 10.1016/j.ccell.2023.03.010_bib31 article-title: EPIC: A Tool to Estimate the Proportions of Different Cell Types from Bulk Gene Expression Data publication-title: Methods Mol Biol. doi: 10.1007/978-1-0716-0327-7_17 – volume: 362 start-page: eaar3593 year: 2018 ident: 10.1016/j.ccell.2023.03.010_bib12 article-title: Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy publication-title: Science doi: 10.1126/science.aar3593 – volume: 28 start-page: 311 year: 2012 ident: 10.1016/j.ccell.2023.03.010_bib50 article-title: SomaticSniper: identification of somatic point mutations in whole genome sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr665 – volume: 26 start-page: 139 year: 2010 ident: 10.1016/j.ccell.2023.03.010_bib57 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 3 start-page: 100536 year: 2022 ident: 10.1016/j.ccell.2023.03.010_bib70 article-title: Supervised dimensionality reduction for exploration of single-cell data by HSS-LDA publication-title: Patterns doi: 10.1016/j.patter.2022.100536 – volume: 17 start-page: 943 year: 2016 ident: 10.1016/j.ccell.2023.03.010_bib20 article-title: Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)30126-7 – volume: 371 start-page: 2189 year: 2014 ident: 10.1016/j.ccell.2023.03.010_bib44 article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1406498 – volume: 22 start-page: 144 year: 2017 ident: 10.1016/j.ccell.2023.03.010_bib67 article-title: Empowering multi-cohort gene expression analysis to increase reproducibility publication-title: Pac. Symp. Biocomput. – volume: 12 start-page: 33 year: 2020 ident: 10.1016/j.ccell.2023.03.010_bib26 article-title: Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival publication-title: Genome Med. doi: 10.1186/s13073-020-00729-2 – volume: 24 start-page: 1545 year: 2018 ident: 10.1016/j.ccell.2023.03.010_bib13 article-title: Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma publication-title: Nat. Med. doi: 10.1038/s41591-018-0157-9 – volume: 24 start-page: 1550 year: 2018 ident: 10.1016/j.ccell.2023.03.010_bib15 article-title: Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response publication-title: Nat. Med. doi: 10.1038/s41591-018-0136-1 – volume: 14 start-page: 65 year: 2022 ident: 10.1016/j.ccell.2023.03.010_bib19 article-title: Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes publication-title: Genome Med. doi: 10.1186/s13073-022-01068-0 – volume: 21 start-page: 972 year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib63 article-title: Standard operating procedure for somatic variant refinement of sequencing data with paired tumor and normal samples publication-title: Genet. Med. doi: 10.1038/s41436-018-0278-z – volume: 27 start-page: 4685 year: 2021 ident: 10.1016/j.ccell.2023.03.010_bib5 article-title: FDA approval summary: pembrolizumab for the treatment of tumor mutational burden-high solid tumors publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-21-0327 – volume: 26 start-page: 64 year: 2015 ident: 10.1016/j.ccell.2023.03.010_bib53 article-title: Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data publication-title: Ann. Oncol. doi: 10.1093/annonc/mdu479 – volume: 515 start-page: 568 year: 2014 ident: 10.1016/j.ccell.2023.03.010_bib11 article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance publication-title: Nature doi: 10.1038/nature13954 – volume: 352 start-page: 189 year: 2016 ident: 10.1016/j.ccell.2023.03.010_bib66 article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq publication-title: Science doi: 10.1126/science.aad0501 – volume: 50 start-page: 1735 year: 2018 ident: 10.1016/j.ccell.2023.03.010_bib51 article-title: A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data publication-title: Nat. Genet. doi: 10.1038/s41588-018-0257-y – year: 2013 ident: 10.1016/j.ccell.2023.03.010_bib36 – volume: 37 start-page: 907 year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib54 article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0201-4 – volume: 170 start-page: 1120 year: 2017 ident: 10.1016/j.ccell.2023.03.010_bib28 article-title: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade publication-title: Cell doi: 10.1016/j.cell.2017.07.024 – volume: 35 start-page: 238 year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib24 article-title: Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.01.003 – volume: 16 start-page: 206 year: 2022 ident: 10.1016/j.ccell.2023.03.010_bib27 article-title: Tumor mutational burden and purity adjustment before and after treatment with temozolomide in 27 paired samples of glioblastoma: a prospective study publication-title: Mol. Oncol. doi: 10.1002/1878-0261.13015 – volume: 15 start-page: 34 year: 2022 ident: 10.1016/j.ccell.2023.03.010_bib40 article-title: Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-022-01252-0 – volume: 9 start-page: e002088 year: 2021 ident: 10.1016/j.ccell.2023.03.010_bib39 article-title: Tumor hypoxia is associated with resistance to PD-1 blockade in squamous cell carcinoma of the head and neck publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2020-002088 – volume: 171 start-page: 934 year: 2017 ident: 10.1016/j.ccell.2023.03.010_bib22 article-title: Tumor and microenvironment evolution during immunotherapy with nivolumab publication-title: Cell doi: 10.1016/j.cell.2017.09.028 – volume: 1881 start-page: 277 year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib65 article-title: Bioinformatics analysis of whole exome sequencing data publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-8876-1_21 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.ccell.2023.03.010_bib34 article-title: Regression shrinkage and selection via the lasso publication-title: J. Roy. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – year: 2013 ident: 10.1016/j.ccell.2023.03.010_bib46 article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM publication-title: arXiv – volume: 363 start-page: 711 year: 2010 ident: 10.1016/j.ccell.2023.03.010_bib1 article-title: Improved survival with ipilimumab in patients with metastatic melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1003466 – volume: 377 start-page: 1345 year: 2017 ident: 10.1016/j.ccell.2023.03.010_bib21 article-title: Overall survival with combined nivolumab and ipilimumab in advanced melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1709684 – volume: 1 start-page: 417 year: 2015 ident: 10.1016/j.ccell.2023.03.010_bib58 article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection publication-title: Cell Syst. doi: 10.1016/j.cels.2015.12.004 – volume: 127 start-page: 2930 year: 2017 ident: 10.1016/j.ccell.2023.03.010_bib10 article-title: IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade publication-title: J. Clin. Invest. doi: 10.1172/JCI91190 – volume: 7 start-page: 68 year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib41 article-title: Collagen density regulates the activity of tumor-infiltrating T cells publication-title: J. Immunother. Cancer doi: 10.1186/s40425-019-0556-6 – volume: 43 start-page: 11.10.1 year: 2013 ident: 10.1016/j.ccell.2023.03.010_bib45 article-title: From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline publication-title: Curr. Protoc. Bioinformatics doi: 10.1002/0471250953.bi1110s43 – volume: 577 start-page: 549 year: 2020 ident: 10.1016/j.ccell.2023.03.010_bib9 article-title: B cells and tertiary lymphoid structures promote immunotherapy response publication-title: Nature doi: 10.1038/s41586-019-1922-8 – volume: 5 start-page: 1195 year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib16 article-title: Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic Review and meta-analysis publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2019.1549 – volume: 17 start-page: 122 year: 2016 ident: 10.1016/j.ccell.2023.03.010_bib52 article-title: The Ensembl variant effect predictor publication-title: Genome Biol. doi: 10.1186/s13059-016-0974-4 – year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib47 article-title: Calling somatic SNVs and indels with Mutect2 publication-title: bioRxiv – volume: 16 start-page: 284 year: 2012 ident: 10.1016/j.ccell.2023.03.010_bib59 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters publication-title: OMICS doi: 10.1089/omi.2011.0118 – volume: 350 start-page: 207 year: 2015 ident: 10.1016/j.ccell.2023.03.010_bib6 article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma publication-title: Science doi: 10.1126/science.aad0095 – volume: 1 start-page: 99 year: 2020 ident: 10.1016/j.ccell.2023.03.010_bib64 article-title: Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer publication-title: Nat. Cancer doi: 10.1038/s43018-019-0008-8 – volume: 33 start-page: 1 year: 2010 ident: 10.1016/j.ccell.2023.03.010_bib35 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. – volume: 25 start-page: 1916 year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib8 article-title: Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma publication-title: Nat. Med. doi: 10.1038/s41591-019-0654-5 – volume: 381 start-page: 1535 year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib3 article-title: Five-year survival with combined nivolumab and ipilimumab in advanced melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1910836 – volume: 17 start-page: 357 year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib14 article-title: The tumor inflammation signature (TIS) is associated with anti-PD-1 treatment benefit in the CERTIM pan-cancer cohort publication-title: J. Transl. Med. doi: 10.1186/s12967-019-2100-3 – volume: 10 start-page: e003853 year: 2022 ident: 10.1016/j.ccell.2023.03.010_bib32 article-title: Ipilimumab alone or in combination with nivolumab in patients with advanced melanoma who have progressed or relapsed on PD-1 blockade: clinical outcomes and translational biomarker analyses publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2021-003853 – volume: 165 start-page: 35 year: 2016 ident: 10.1016/j.ccell.2023.03.010_bib23 article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma publication-title: Cell doi: 10.1016/j.cell.2016.02.065 – volume: 25 start-page: 1233 year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib37 article-title: Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-0762 – volume: 62 start-page: 132 year: 2016 ident: 10.1016/j.ccell.2023.03.010_bib62 article-title: RECIST 1.1-Update and clarification: from the RECIST committee publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2016.03.081 – volume: 28 start-page: 1811 year: 2012 ident: 10.1016/j.ccell.2023.03.010_bib49 article-title: Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts271 – ident: 10.1016/j.ccell.2023.03.010_bib69 – volume: 9 start-page: e001642 year: 2021 ident: 10.1016/j.ccell.2023.03.010_bib18 article-title: Biologic subtypes of melanoma predict survival benefit of combination anti-PD1+anti-CTLA4 immune checkpoint inhibitors versus anti-PD1 monotherapy publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2020-001642 – volume: 184 start-page: 596 year: 2021 ident: 10.1016/j.ccell.2023.03.010_bib7 article-title: Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition publication-title: Cell doi: 10.1016/j.cell.2021.01.002 – volume: 8 start-page: 129 year: 2016 ident: 10.1016/j.ccell.2023.03.010_bib60 article-title: XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits publication-title: Genome Med. doi: 10.1186/s13073-016-0384-y – volume: 6 start-page: 797 year: 2020 ident: 10.1016/j.ccell.2023.03.010_bib42 article-title: Clinical development of BRAF plus MEK inhibitor combinations publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.05.009 – volume: 31 start-page: 166 year: 2015 ident: 10.1016/j.ccell.2023.03.010_bib55 article-title: HTSeq--a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 372 start-page: 2521 year: 2015 ident: 10.1016/j.ccell.2023.03.010_bib2 article-title: Pembrolizumab versus ipilimumab in advanced melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1503093 – ident: 10.1016/j.ccell.2023.03.010_bib4 – volume: 2 start-page: lqaa078 year: 2020 ident: 10.1016/j.ccell.2023.03.010_bib61 article-title: ComBat-seq: batch effect adjustment for RNA-seq count data publication-title: NAR Genom. Bioinform. doi: 10.1093/nargab/lqaa078 – volume: 10 start-page: e58688 year: 2021 ident: 10.1016/j.ccell.2023.03.010_bib38 article-title: Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment publication-title: Elife doi: 10.7554/eLife.58688 – volume: 51 start-page: 202 year: 2019 ident: 10.1016/j.ccell.2023.03.010_bib17 article-title: Tumor mutational load predicts survival after immunotherapy across multiple cancer types publication-title: Nat. Genet. doi: 10.1038/s41588-018-0312-8 – volume: 22 start-page: 568 year: 2012 ident: 10.1016/j.ccell.2023.03.010_bib48 article-title: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing publication-title: Genome Res. doi: 10.1101/gr.129684.111 – volume: 17 start-page: 4101 year: 2011 ident: 10.1016/j.ccell.2023.03.010_bib29 article-title: CTLA4 blockade induces frequent tumor infiltration by activated lymphocytes regardless of clinical responses in humans publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-0407 |
SSID | ssj0016179 |
Score | 2.5908082 |
Snippet | Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not... Immune checkpoint inhibitors (ICIs), including CTLA-4 and PD-1 blocking antibodies, can have profound effects on tumor immune cell infiltration that have not... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 791 |
SubjectTerms | Biomarkers, Tumor CTLA-4 Antigen - genetics Humans immune checkpoint blockade Immunotherapy melanoma Melanoma - drug therapy Melanoma - genetics Melanoma - metabolism meta-analysis Skin Neoplasms - drug therapy Skin Neoplasms - genetics Tumor Microenvironment |
Title | Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma |
URI | https://dx.doi.org/10.1016/j.ccell.2023.03.010 https://www.ncbi.nlm.nih.gov/pubmed/37037616 https://www.proquest.com/docview/2799826332 https://pubmed.ncbi.nlm.nih.gov/PMC10187051 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QSIgL4s14KUgcCesraXscA4R4CfEQu0VJmooi1qFtHPj32E07MUAckHpp41ZpnNhObH8m5EBl3ISxH7A85pZFsOlgSZ4qZozNw9yKXFc429c34vwxuujx3gzpNrkwGFZZy34n0ytpXT9p16PZfiuK9j2sVVT-6Cmq6mWBHMasUkzi6x1PPAmgoVOHmcoZUjfIQ1WMl8HT8SOsIF4hnWIa7e_a6af1-T2I8otWOlsii7U5STuux8tkxpYrZP66dpivktHtsBgMKQxfwboPVx0WUZdx9UFdfuSI9psCudRMgzdTVbPOZhSPa91Xbk-YT4custbSoqRNFAHt21dVDvpqjTyenT50z1ldZ4GZSHhj4EvGo8BylcMCTuMwMZgda1PtKQvmn0mVp3gmfGOMCDyt0lBxkfsZbGh1YjwdrpPZclDaTUKF0UanIBSAJtKRUVaBDRlxlQRxkqVBiwTN-EpTg5BjLYxX2USbvciKKRKZIj24fK9FDicvvTkMjr_JRcM4OTWVJGiJv1_cb9gsYZFhsyrt4H0kgxh2pYEIQ_iBDcf2SU9CkJmx8EWLJFMTYkKAAN7TLWXxXAF5I1paDFJx67893iYLeIfeLd_bIbPj4bvdBSNprPfIXOfy7ulyr1oNn_5OE28 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQEviG8KDIzEI6bOh53kcXSbOminSXRS3yzbcbSgNZ3a7oH_nrs4qVZAe0DKU3yOHJ99d_bd_Q7gkymlS7Io5lUmPU_x0MHzqjDcOV8llVeVbXG2p2dqfJF-m8v5Hoz6XBgKq-xkf5DprbTu3gy72Rxe1_XwB-5VUv7kKWrrZd2D-2gNCFrap_OvW1cCqugigKZKTuQ99FAb5OXoevwLlRBvoU4pj_bf6ulv8_PPKMpbaunkCTzu7El2GIb8FPZ88wweTDuP-XNYn6_q5Yrh_NV8NJsc8pSFlKtfLCRIrtmir5DL3C56MzMd73zJ6L42fOX8iEdsFUJrPasb1ocRsIW_Ms1yYV7AxcnxbDTmXaEF7lIlNsiYUqaxl6bCHVxkSe4oPdYXVhiP9p8rjDCyVJFzTsXCmiIxUlVRiSdamzthk5ew3ywb_xqYctbZAqUC0qQ2dcYbNCJTafI4y8siHkDcz692HQo5FcO40n242U_dMkUTU7TAJxID-LztdB1AOO4mVz3j9M5a0qgm7u74sWezxl1Gzabxy5u1jjM8lsYqSfAHXgW2b0eSoNDMVKQGkO8siC0BIXjvtjT1ZYvkTXBpGYrFN_874g_wcDybTvTk9Oz7W3hELeTqisQ72N-sbvwBWkwb-77dEb8BNEoU7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prior+anti-CTLA-4+therapy+impacts+molecular+characteristics+associated+with+anti-PD-1+response+in+advanced+melanoma&rft.jtitle=Cancer+cell&rft.au=Campbell%2C+Katie+M.&rft.au=Amouzgar%2C+Meelad&rft.au=Pfeiffer%2C+Shannon+M.&rft.au=Howes%2C+Timothy+R.&rft.date=2023-04-10&rft.pub=Elsevier+Inc&rft.issn=1535-6108&rft.eissn=1878-3686&rft.volume=41&rft.issue=4&rft.spage=791&rft.epage=806.e4&rft_id=info:doi/10.1016%2Fj.ccell.2023.03.010&rft.externalDocID=S1535610823000831 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-6108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-6108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-6108&client=summon |