Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma

Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma...

Full description

Saved in:
Bibliographic Details
Published inCancer cell Vol. 41; no. 4; pp. 791 - 806.e4
Main Authors Campbell, Katie M., Amouzgar, Meelad, Pfeiffer, Shannon M., Howes, Timothy R., Medina, Egmidio, Travers, Michael, Steiner, Gabriela, Weber, Jeffrey S., Wolchok, Jedd D., Larkin, James, Hodi, F. Stephen, Boffo, Silvia, Salvador, Lisa, Tenney, Daniel, Tang, Tracy, Thompson, Marshall A., Spencer, Christine N., Wells, Daniel K., Ribas, Antoni
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 10.04.2023
Subjects
Online AccessGet full text
ISSN1535-6108
1878-3686
1878-3686
DOI10.1016/j.ccell.2023.03.010

Cover

Abstract Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response. [Display omitted] •Harmonization of molecular and clinical annotation clarifies anti-PD-1 response patterns•Prior anti-CTLA-4 treatment modifies predictors of anti-PD-1 response in melanoma•Immune cell signature differences are enhanced in tumors with prior anti-CTLA-4 Campbell et al. aggregate genomics and transcriptomics data across melanoma datasets, harmonizing molecular and clinical annotation across samples. Immune cell gene expression patterns and tumor mutational burden, as predictors of anti-PD-1 response, are modified by whether the patient previously received anti-CTLA-4 therapy.
AbstractList Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response. [Display omitted] •Harmonization of molecular and clinical annotation clarifies anti-PD-1 response patterns•Prior anti-CTLA-4 treatment modifies predictors of anti-PD-1 response in melanoma•Immune cell signature differences are enhanced in tumors with prior anti-CTLA-4 Campbell et al. aggregate genomics and transcriptomics data across melanoma datasets, harmonizing molecular and clinical annotation across samples. Immune cell gene expression patterns and tumor mutational burden, as predictors of anti-PD-1 response, are modified by whether the patient previously received anti-CTLA-4 therapy.
Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response.
Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response.Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response.
Immune checkpoint inhibitors (ICIs), including CTLA-4 and PD-1 blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N=514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures and altered cell cycle processes, compared to anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource, and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response. Campbell et al. aggregate genomics and transcriptomics data across melanoma datasets, harmonizing molecular and clinical annotation across samples. Immune cell gene expression patterns and tumor mutational burden, as predictors of anti-PD-1 response, are modified by whether the patient previously received anti-CTLA-4 therapy.
Author Howes, Timothy R.
Pfeiffer, Shannon M.
Salvador, Lisa
Travers, Michael
Medina, Egmidio
Hodi, F. Stephen
Thompson, Marshall A.
Ribas, Antoni
Campbell, Katie M.
Tenney, Daniel
Wolchok, Jedd D.
Spencer, Christine N.
Wells, Daniel K.
Boffo, Silvia
Steiner, Gabriela
Amouzgar, Meelad
Larkin, James
Weber, Jeffrey S.
Tang, Tracy
AuthorAffiliation 1 Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, California, 90095, USA
12 Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, California 90095, USA
3 Parker Institute for Cancer Immunotherapy, San Francisco, California, 94129, USA
2 Department of Pathology, Stanford University, Stanford, California, 94305, USA
15 Senior author
5 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
9 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
13 Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90024, USA
4 Perlmutter Cancer Center, NYU School of Medicine, New York, New York, 10016, USA
6 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
10 Bristol Myers Squibb Corp. Princeton, NJ 08540, USA
11 Depa
AuthorAffiliation_xml – name: 1 Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, California, 90095, USA
– name: 12 Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, California 90095, USA
– name: 6 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
– name: 10 Bristol Myers Squibb Corp. Princeton, NJ 08540, USA
– name: 5 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
– name: 2 Department of Pathology, Stanford University, Stanford, California, 94305, USA
– name: 3 Parker Institute for Cancer Immunotherapy, San Francisco, California, 94129, USA
– name: 7 Weill Cornell Medicine, New York, New York 10065, USA
– name: 13 Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90024, USA
– name: 17 Lead contact
– name: 8 Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
– name: 4 Perlmutter Cancer Center, NYU School of Medicine, New York, New York, 10016, USA
– name: 11 Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90095, USA
– name: 14 These authors contributed equally
– name: 9 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
– name: 15 Senior author
Author_xml – sequence: 1
  givenname: Katie M.
  surname: Campbell
  fullname: Campbell, Katie M.
  email: katiecampbell@mednet.ucla.edu
  organization: Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 2
  givenname: Meelad
  surname: Amouzgar
  fullname: Amouzgar, Meelad
  organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA
– sequence: 3
  givenname: Shannon M.
  surname: Pfeiffer
  fullname: Pfeiffer, Shannon M.
  organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
– sequence: 4
  givenname: Timothy R.
  surname: Howes
  fullname: Howes, Timothy R.
  organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
– sequence: 5
  givenname: Egmidio
  surname: Medina
  fullname: Medina, Egmidio
  organization: Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 6
  givenname: Michael
  surname: Travers
  fullname: Travers, Michael
  organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
– sequence: 7
  givenname: Gabriela
  surname: Steiner
  fullname: Steiner, Gabriela
  organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
– sequence: 8
  givenname: Jeffrey S.
  surname: Weber
  fullname: Weber, Jeffrey S.
  organization: Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
– sequence: 9
  givenname: Jedd D.
  surname: Wolchok
  fullname: Wolchok, Jedd D.
  organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
– sequence: 10
  givenname: James
  surname: Larkin
  fullname: Larkin, James
  organization: Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
– sequence: 11
  givenname: F. Stephen
  surname: Hodi
  fullname: Hodi, F. Stephen
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 12
  givenname: Silvia
  surname: Boffo
  fullname: Boffo, Silvia
  organization: Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
– sequence: 13
  givenname: Lisa
  surname: Salvador
  fullname: Salvador, Lisa
  organization: Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
– sequence: 14
  givenname: Daniel
  surname: Tenney
  fullname: Tenney, Daniel
  organization: Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
– sequence: 15
  givenname: Tracy
  surname: Tang
  fullname: Tang, Tracy
  organization: Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
– sequence: 16
  givenname: Marshall A.
  surname: Thompson
  fullname: Thompson, Marshall A.
  organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
– sequence: 17
  givenname: Christine N.
  surname: Spencer
  fullname: Spencer, Christine N.
  organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
– sequence: 18
  givenname: Daniel K.
  surname: Wells
  fullname: Wells, Daniel K.
  organization: Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
– sequence: 19
  givenname: Antoni
  surname: Ribas
  fullname: Ribas, Antoni
  email: aribas@mednet.ucla.edu
  organization: Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37037616$$D View this record in MEDLINE/PubMed
BookMark eNp9kd2L1DAUxYusuB_6FwiSR1865qNN2weRZfyEAfdhfQ63t3ecDG1Sk8zI_vemzq6oDwsXEpLzOwfOvSzOnHdUFC8FXwku9Jv9CpHGcSW5VCueR_AnxYVom7ZUutVn-V6rutSCt-fFZYx7ninRdM-Kc9Vw1WihL4p4E6wPDFyy5fp2c11WLO0owHzH7DQDpsgmPxIeRggMdxDyEwUbk8XIIEaPFhIN7KdNu5PLzftSsEBx9i4Ss47BcASHWTPRCM5P8Lx4uoUx0ov786r49vHD7fpzufn66cv6elNipXkqEYe6klTDtpJ116gWm7bj1PUcSCqBHXCoBy0QUUveQ6eg1lsxyKbqW-S9uirenXznQz_RgORSgNHMwU4Q7owHa_79cXZnvvujyfW2Da9Fdnh97xD8jwPFZCYbl9LBkT9EI5uua6VWSmbpq7_D_qQ8VJ0F3UmAwccYaGvQJkjWL9l2zKFLrjZ783utZlmr4XkEz6z6j32wf5x6e6Iol3y0FExES8sqbCBMZvD2Uf4XQPS-4g
CitedBy_id crossref_primary_10_1016_j_xcrm_2023_101287
crossref_primary_10_3390_biomedicines13010098
crossref_primary_10_1038_s41588_024_01899_0
crossref_primary_10_3390_ijms251810120
crossref_primary_10_1158_2767_9764_CRC_23_0309
crossref_primary_10_1002_ctm2_70094
crossref_primary_10_1126_sciadv_adp4670
crossref_primary_10_1007_s11864_024_01246_9
crossref_primary_10_1038_s43856_024_00612_w
crossref_primary_10_1146_annurev_immunol_101819_024752
crossref_primary_10_1038_s41571_023_00830_6
crossref_primary_10_1158_2159_8290_CD_24_0190
crossref_primary_10_1016_j_ccell_2024_04_008
crossref_primary_10_3390_cancers16101853
crossref_primary_10_3389_fimmu_2024_1500478
crossref_primary_10_1016_j_ccell_2024_08_007
crossref_primary_10_1038_s41568_024_00699_2
crossref_primary_10_1080_02656736_2024_2430333
crossref_primary_10_1186_s12943_024_02179_5
crossref_primary_10_2147_JIR_S483977
crossref_primary_10_1136_jitc_2024_009805
crossref_primary_10_1080_2162402X_2024_2432723
crossref_primary_10_1158_1078_0432_CCR_24_1109
crossref_primary_10_1136_jitc_2024_010386
crossref_primary_10_1042_EBC20230001
crossref_primary_10_1080_14737140_2024_2336106
crossref_primary_10_1158_2326_6066_CIR_23_0139
crossref_primary_10_1002_adhm_202405124
crossref_primary_10_1186_s12943_025_02294_x
crossref_primary_10_20517_cdr_2023_150
crossref_primary_10_1002_adma_202307263
crossref_primary_10_1016_j_xcrm_2024_101764
crossref_primary_10_3390_vaccines13040337
crossref_primary_10_18632_aging_205894
crossref_primary_10_62347_EYML2689
crossref_primary_10_1136_jitc_2024_010029
Cites_doi 10.1007/s11912-022-01243-x
10.1038/nbt.3122
10.3389/fonc.2019.01161
10.1200/JCO.2021.39.36_suppl.356154
10.1093/bioinformatics/btr260
10.1007/978-1-0716-0327-7_17
10.1126/science.aar3593
10.1093/bioinformatics/btr665
10.1093/bioinformatics/btp616
10.1016/j.patter.2022.100536
10.1016/S1470-2045(16)30126-7
10.1056/NEJMoa1406498
10.1186/s13073-020-00729-2
10.1038/s41591-018-0157-9
10.1038/s41591-018-0136-1
10.1186/s13073-022-01068-0
10.1038/s41436-018-0278-z
10.1158/1078-0432.CCR-21-0327
10.1093/annonc/mdu479
10.1038/nature13954
10.1126/science.aad0501
10.1038/s41588-018-0257-y
10.1038/s41587-019-0201-4
10.1016/j.cell.2017.07.024
10.1016/j.ccell.2019.01.003
10.1002/1878-0261.13015
10.1186/s13045-022-01252-0
10.1136/jitc-2020-002088
10.1016/j.cell.2017.09.028
10.1007/978-1-4939-8876-1_21
10.1111/j.2517-6161.1996.tb02080.x
10.1056/NEJMoa1003466
10.1056/NEJMoa1709684
10.1016/j.cels.2015.12.004
10.1172/JCI91190
10.1186/s40425-019-0556-6
10.1002/0471250953.bi1110s43
10.1038/s41586-019-1922-8
10.1001/jamaoncol.2019.1549
10.1186/s13059-016-0974-4
10.1089/omi.2011.0118
10.1126/science.aad0095
10.1038/s43018-019-0008-8
10.1038/s41591-019-0654-5
10.1056/NEJMoa1910836
10.1186/s12967-019-2100-3
10.1136/jitc-2021-003853
10.1016/j.cell.2016.02.065
10.1158/1078-0432.CCR-18-0762
10.1016/j.ejca.2016.03.081
10.1093/bioinformatics/bts271
10.1136/jitc-2020-001642
10.1016/j.cell.2021.01.002
10.1186/s13073-016-0384-y
10.1016/j.trecan.2020.05.009
10.1093/bioinformatics/btu638
10.1056/NEJMoa1503093
10.1093/nargab/lqaa078
10.7554/eLife.58688
10.1038/s41588-018-0312-8
10.1101/gr.129684.111
10.1158/1078-0432.CCR-11-0407
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.ccell.2023.03.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1878-3686
EndPage 806.e4
ExternalDocumentID PMC10187051
37037616
10_1016_j_ccell_2023_03_010
S1535610823000831
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA227505
– fundername: NCI NIH HHS
  grantid: R01 CA244936
– fundername: NCI NIH HHS
  grantid: R35 CA197633
– fundername: NCI NIH HHS
  grantid: R01 CA231295
– fundername: NCI NIH HHS
  grantid: R01 CA243486
– fundername: NCI NIH HHS
  grantid: P30 CA016042
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: P01 CA244118
GroupedDBID ---
--K
0R~
1~5
29B
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IH2
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UDS
ZA5
2WC
5VS
AAFWJ
AAIKJ
AAMRU
AAQFI
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
UHS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c460t-ccd542e5af4259738c7890e9b0ae231c9a0a5d61ccc620ba93a56f1d274b8c0b3
IEDL.DBID IXB
ISSN 1535-6108
1878-3686
IngestDate Thu Aug 21 18:34:27 EDT 2025
Thu Sep 04 18:36:28 EDT 2025
Thu Apr 03 07:01:48 EDT 2025
Tue Jul 01 01:26:26 EDT 2025
Thu Apr 24 22:57:13 EDT 2025
Fri Feb 23 02:36:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords meta-analysis
melanoma
immunotherapy
immune checkpoint blockade
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-ccd542e5af4259738c7890e9b0ae231c9a0a5d61ccc620ba93a56f1d274b8c0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceptualization, KMC, MA, CNS, DKW, AR; Methodology, KMC, MA, CNS, DKW; Software, KMC, MA, SMP, TRH, EM, MT, GS, DKW; Formal Analysis, KMC, MA, SMP, TRH, MT, GS, DKW; Resources, JSW, JDW, JL, FSH, MAT, CNS, DKW; Data Curation, GS, SB, LS, DT, TT, DKW; Writing - Original Draft, KMC, MA, CNS; Writing - Review & Editing, KMC, MA, SMP, TRH, EM, MT, GS, MAT, CNS, DKW, AR; Visualization, KMC, MA; Supervision, CNS, DKW, AR; Funding Acquisition, SB, LS, DT, TT, CNS, DKW.
Lead contact statement Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Katie Campbell (katiecampbell@mednet.ucla.edu).
Author contributions
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1535610823000831
PMID 37037616
PQID 2799826332
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10187051
proquest_miscellaneous_2799826332
pubmed_primary_37037616
crossref_citationtrail_10_1016_j_ccell_2023_03_010
crossref_primary_10_1016_j_ccell_2023_03_010
elsevier_sciencedirect_doi_10_1016_j_ccell_2023_03_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-10
PublicationDateYYYYMMDD 2023-04-10
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer cell
PublicationTitleAlternate Cancer Cell
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tumeh, Harview, Yearley, Shintaku, Taylor, Robert, Chmielowski, Spasic, Henry, Ciobanu (bib11) 2014; 515
Center for Drug Evaluation, and Research FDA Grants Accelerated Approval to Dostarlimab-Gxly for dMMR Advanced Solid Tumors. U.S. Food and Drug Administration.
Amouzgar, Glass, Baskar, Averbukh, Kimmey, Tsai, Hartmann, Bendall (bib70) 2022; 3
Barnell, Ronning, Campbell, Krysiak, Ainscough, Sheta, Pema, Schmidt, Richters, Cotto (bib63) 2019; 21
Friedman, Hastie, Tibshirani (bib35) 2010; 33
Robert, Schachter, Long, Arance, Grob, Mortier, Daud, Carlino, McNeil, Lotem (bib2) 2015; 372
Koboldt, Zhang, Larson, Shen, McLellan, Lin, Miller, Mardis, Ding, Wilson (bib48) 2012; 22
Tibshirani (bib34) 1996; 58
Van der Auwera, Carneiro, Hartl, Poplin, Del Angel, Levy-Moonshine, Jordan, Shakir, Roazen, Thibault (bib45) 2013; 43
Zandberg, Menk, Velez, Normolle, DePeaux, Liu, Ferris, Delgoffe (bib39) 2021; 9
Marcus, Fashoyin-Aje, Donoghue, Yuan, Rodriguez, Gallagher, Philip, Ghosh, Theoret, Beaver (bib5) 2021; 27
Liberzon, Birger, Thorvaldsdóttir, Ghandi, Mesirov, Tamayo (bib58) 2015; 1
Rose, Armstrong, Hogg, Butler, Saibil, Arteaga, Pimentel Muniz, Kelly, Ghazarian, King (bib18) 2021; 9
Saunders, Wong, Swamy, Becq, Murray, Cheetham (bib49) 2012; 28
Ulintz, Wu, Gates (bib65) 2019; 1881
Jiang, Zhang, Wang, Liu, Luo, Hua (bib40) 2022; 15
Wood, Weeder, David, Nellore, Thompson (bib26) 2020; 12
Snyder, Makarov, Merghoub, Yuan, Zaretsky, Desrichard, Walsh, Postow, Wong, Ho (bib44) 2014; 371
Larkin, Chiarion-Sileni, Gonzalez, Grob, Rutkowski, Lao, Cowey, Schadendorf, Wagstaff, Dummer (bib3) 2019; 381
James, Witten, Hastie, Tibshirani (bib36) 2013
Wei, Levine, Cogdill, Zhao, Anang, Andrews, Sharma, Wang, Wargo, Pe’er (bib28) 2017; 170
Huang, Jalil, Economou, Chmielowski, Koya, Mok, Sazegar, Seja, Villanueva, Gomez-Navarro (bib29) 2011; 17
Racle, Gfeller (bib31) 2020; 2120
Robinson, McCarthy, Smyth (bib57) 2010; 26
Team, R.C., and Others (2013). R: A Language and Environment for Statistical Computing.
Venables, W.N., and Ripley, B.D. Modern Applied Statistics with S (Springer New York)
Lu, Stein, Rimm, Wang, Bell, Johnson, Sosman, Schalper, Anders, Wang (bib16) 2019; 5
Liberzon, Subramanian, Pinchback, Thorvaldsdóttir, Tamayo, Mesirov (bib30) 2011; 27
Dixon-Douglas, Patel, Somasundram, McArthur (bib33) 2022; 24
.
Atkins, Lee, Chmielowski, Ribas, Tarhini, Truong, Davar, O’Rourke, Curti, Brell (bib43) 2021; 39
Samstein, Lee, Shoushtari, Hellmann, Shen, Janjigian, Barron, Zehir, Jordan, Omuro (bib17) 2019; 51
Fang, Knezevic, Burnham, Knight (bib60) 2016; 8
Litchfield, Reading, Puttick, Thakkar, Abbosh, Bentham, Watkins, Rosenthal, Biswas, Rowan (bib7) 2021; 184
Subbiah, Baik, Kirkwood (bib42) 2020; 6
Damotte, Warren, Arrondeau, Boudou-Rouquette, Mansuet-Lupo, Biton, Ouakrim, Alifano, Gervais, Bellesoeur (bib14) 2019; 17
Schou Nørøxe, Flynn, Westmose Yde, Østrup, Cilius Nielsen, Skjøth-Rasmussen, Brennum, Hamerlik, Weischenfeldt, Skovgaard Poulsen (bib27) 2022; 16
Van Allen, Miao, Schilling, Shukla, Blank, Zimmer, Sucker, Hillen, Foppen, Goldinger (bib6) 2015; 350
Yu, Wang, Han, He (bib59) 2012; 16
Liu, Schilling, Liu, Sucker, Livingstone, Jerby-Arnon, Zimmer, Gutzmer, Satzger, Loquai (bib8) 2019; 25
Friedman, Spencer, Cabanski, Panageas, Wells, Ribas, Tawbi, Tsai, Postow, Shoushtari (bib32) 2022; 10
Gide, Quek, Menzies, Tasker, Shang, Holst, Madore, Lim, Velickovic, Wongchenko (bib24) 2019; 35
Ainscough, Barnell, Ronning, Campbell, Wagner, Fehniger, Dunn, Uppaluri, Govindan, Rohan (bib51) 2018; 50
Auslander, Zhang, Lee, Frederick, Miao, Moll, Tian, Wei, Madan, Sullivan (bib13) 2018; 24
Cristescu, Mogg, Ayers, Albright, Murphy, Yearley, Sher, Liu, Lu, Nebozhyn (bib12) 2018; 362
Wu, Xu, Du, Wu, Xia, Lv, Hu (bib25) 2019; 9
Kim, Paggi, Park, Bennett, Salzberg (bib54) 2019; 37
Sharma, Subudhi, Blando, Scutti, Vence, Wargo, Allison, Ribas, Sharma (bib37) 2019; 25
Li (bib46) 2013
Pertea, Pertea, Antonescu, Chang, Mendell, Salzberg (bib56) 2015; 33
Ayers, Lunceford, Nebozhyn, Murphy, Loboda, Kaufman, Albright, Cheng, Kang, Shankaran (bib10) 2017; 127
Haynes, Vallania, Liu, Bongen, Tomczak, Andres-Terrè, Lofgren, Tam, Deisseroth, Li (bib67) 2017; 22
Favero, Joshi, Marquard, Birkbak, Krzystanek, Li, Szallasi, Eklund (bib53) 2015; 26
Zhang, Parmigiani, Johnson (bib61) 2020; 2
Anders, Pyl, Huber (bib55) 2015; 31
Hugo, Zaretsky, Sun, Song, Moreno, Hu-Lieskovan, Berent-Maoz, Pang, Chmielowski, Cherry (bib23) 2016; 165
McLaren, Gil, Hunt, Riat, Ritchie, Thormann, Flicek, Cunningham (bib52) 2016; 17
Wang, Banik, Shain, Yeh, Bastian (bib19) 2022; 14
Schwartz, Litière, de Vries, Ford, Gwyther, Mandrekar, Shankar, Bogaerts, Chen, Dancey (bib62) 2016; 62
Tirosh, Izar, Prakadan, Wadsworth, Treacy, Trombetta, Rotem, Rodman, Lian, Murphy (bib66) 2016; 352
Weber, Gibney, Sullivan, Sosman, Slingluff, Lawrence, Logan, Schuchter, Nair, Fecher (bib20) 2016; 17
Kuczek, Larsen, Thorseth, Carretta, Kalvisa, Siersbæk, Simões, Roslind, Engelholm, Noessner (bib41) 2019; 7
Benjamin, Sato, Cibulskis, Getz, Stewart, Lichtenstein (bib47) 2019
Anagnostou, Niknafs, Marrone, Bruhm, White, Naidoo, Hummelink, Monkhorst, Lalezari, Lanis (bib64) 2020; 1
Riaz, Havel, Makarov, Desrichard, Urba, Sims, Hodi, Martín-Algarra, Mandal, Sharfman (bib22) 2017; 171
Nicolas-Boluda, Vaquero, Vimeux, Guilbert, Barrin, Kantari-Mimoun, Ponzo, Renault, Deptula, Pogoda (bib38) 2021; 10
Hodi, O’Day, McDermott, Weber, Sosman, Haanen, Gonzalez, Robert, Schadendorf, Hassel (bib1) 2010; 363
Jiang, Gu, Pan, Fu, Sahu, Hu, Li, Traugh, Bu, Li (bib15) 2018; 24
Helmink, Reddy, Gao, Zhang, Basar, Thakur, Yizhak, Sade-Feldman, Blando, Han (bib9) 2020; 577
Wolchok, Chiarion-Sileni, Gonzalez, Rutkowski, Grob, Cowey, Lao, Wagstaff, Schadendorf, Ferrucci (bib21) 2017; 377
Larson, Harris, Chen, Koboldt, Abbott, Dooling, Ley, Mardis, Wilson, Ding (bib50) 2012; 28
Huang (10.1016/j.ccell.2023.03.010_bib29) 2011; 17
Tumeh (10.1016/j.ccell.2023.03.010_bib11) 2014; 515
Lu (10.1016/j.ccell.2023.03.010_bib16) 2019; 5
Friedman (10.1016/j.ccell.2023.03.010_bib35) 2010; 33
Schou Nørøxe (10.1016/j.ccell.2023.03.010_bib27) 2022; 16
Saunders (10.1016/j.ccell.2023.03.010_bib49) 2012; 28
McLaren (10.1016/j.ccell.2023.03.010_bib52) 2016; 17
Li (10.1016/j.ccell.2023.03.010_bib46) 2013
Rose (10.1016/j.ccell.2023.03.010_bib18) 2021; 9
Marcus (10.1016/j.ccell.2023.03.010_bib5) 2021; 27
Jiang (10.1016/j.ccell.2023.03.010_bib15) 2018; 24
Koboldt (10.1016/j.ccell.2023.03.010_bib48) 2012; 22
Samstein (10.1016/j.ccell.2023.03.010_bib17) 2019; 51
Robinson (10.1016/j.ccell.2023.03.010_bib57) 2010; 26
Gide (10.1016/j.ccell.2023.03.010_bib24) 2019; 35
Van Allen (10.1016/j.ccell.2023.03.010_bib6) 2015; 350
Amouzgar (10.1016/j.ccell.2023.03.010_bib70) 2022; 3
Kuczek (10.1016/j.ccell.2023.03.010_bib41) 2019; 7
Larkin (10.1016/j.ccell.2023.03.010_bib3) 2019; 381
Riaz (10.1016/j.ccell.2023.03.010_bib22) 2017; 171
Tibshirani (10.1016/j.ccell.2023.03.010_bib34) 1996; 58
Helmink (10.1016/j.ccell.2023.03.010_bib9) 2020; 577
Anders (10.1016/j.ccell.2023.03.010_bib55) 2015; 31
Pertea (10.1016/j.ccell.2023.03.010_bib56) 2015; 33
Atkins (10.1016/j.ccell.2023.03.010_bib43) 2021; 39
Yu (10.1016/j.ccell.2023.03.010_bib59) 2012; 16
James (10.1016/j.ccell.2023.03.010_bib36) 2013
Liberzon (10.1016/j.ccell.2023.03.010_bib30) 2011; 27
Subbiah (10.1016/j.ccell.2023.03.010_bib42) 2020; 6
Damotte (10.1016/j.ccell.2023.03.010_bib14) 2019; 17
Wu (10.1016/j.ccell.2023.03.010_bib25) 2019; 9
Liberzon (10.1016/j.ccell.2023.03.010_bib58) 2015; 1
Ulintz (10.1016/j.ccell.2023.03.010_bib65) 2019; 1881
Liu (10.1016/j.ccell.2023.03.010_bib8) 2019; 25
Cristescu (10.1016/j.ccell.2023.03.010_bib12) 2018; 362
Nicolas-Boluda (10.1016/j.ccell.2023.03.010_bib38) 2021; 10
Jiang (10.1016/j.ccell.2023.03.010_bib40) 2022; 15
Robert (10.1016/j.ccell.2023.03.010_bib2) 2015; 372
Wood (10.1016/j.ccell.2023.03.010_bib26) 2020; 12
Weber (10.1016/j.ccell.2023.03.010_bib20) 2016; 17
Ainscough (10.1016/j.ccell.2023.03.010_bib51) 2018; 50
Auslander (10.1016/j.ccell.2023.03.010_bib13) 2018; 24
Wang (10.1016/j.ccell.2023.03.010_bib19) 2022; 14
Zandberg (10.1016/j.ccell.2023.03.010_bib39) 2021; 9
Larson (10.1016/j.ccell.2023.03.010_bib50) 2012; 28
Schwartz (10.1016/j.ccell.2023.03.010_bib62) 2016; 62
Anagnostou (10.1016/j.ccell.2023.03.010_bib64) 2020; 1
Kim (10.1016/j.ccell.2023.03.010_bib54) 2019; 37
Haynes (10.1016/j.ccell.2023.03.010_bib67) 2017; 22
Wolchok (10.1016/j.ccell.2023.03.010_bib21) 2017; 377
Dixon-Douglas (10.1016/j.ccell.2023.03.010_bib33) 2022; 24
Snyder (10.1016/j.ccell.2023.03.010_bib44) 2014; 371
Tirosh (10.1016/j.ccell.2023.03.010_bib66) 2016; 352
Wei (10.1016/j.ccell.2023.03.010_bib28) 2017; 170
Sharma (10.1016/j.ccell.2023.03.010_bib37) 2019; 25
Litchfield (10.1016/j.ccell.2023.03.010_bib7) 2021; 184
Hodi (10.1016/j.ccell.2023.03.010_bib1) 2010; 363
Fang (10.1016/j.ccell.2023.03.010_bib60) 2016; 8
Favero (10.1016/j.ccell.2023.03.010_bib53) 2015; 26
Van der Auwera (10.1016/j.ccell.2023.03.010_bib45) 2013; 43
Barnell (10.1016/j.ccell.2023.03.010_bib63) 2019; 21
Ayers (10.1016/j.ccell.2023.03.010_bib10) 2017; 127
Racle (10.1016/j.ccell.2023.03.010_bib31) 2020; 2120
10.1016/j.ccell.2023.03.010_bib4
Benjamin (10.1016/j.ccell.2023.03.010_bib47) 2019
Zhang (10.1016/j.ccell.2023.03.010_bib61) 2020; 2
Friedman (10.1016/j.ccell.2023.03.010_bib32) 2022; 10
Hugo (10.1016/j.ccell.2023.03.010_bib23) 2016; 165
10.1016/j.ccell.2023.03.010_bib68
10.1016/j.ccell.2023.03.010_bib69
References_xml – volume: 39
  start-page: 356154
  year: 2021
  ident: bib43
  article-title: DREAMseq (doublet, randomized evaluation in advanced melanoma sequencing): a phase III trial—ECOG-ACRIN EA6134
  publication-title: J. Clin. Orthod.
– volume: 577
  start-page: 549
  year: 2020
  end-page: 555
  ident: bib9
  article-title: B cells and tertiary lymphoid structures promote immunotherapy response
  publication-title: Nature
– volume: 5
  start-page: 1195
  year: 2019
  end-page: 1204
  ident: bib16
  article-title: Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic Review and meta-analysis
  publication-title: JAMA Oncol.
– volume: 27
  start-page: 4685
  year: 2021
  end-page: 4689
  ident: bib5
  article-title: FDA approval summary: pembrolizumab for the treatment of tumor mutational burden-high solid tumors
  publication-title: Clin. Cancer Res.
– volume: 2120
  start-page: 233
  year: 2020
  end-page: 248
  ident: bib31
  article-title: EPIC: A Tool to Estimate the Proportions of Different Cell Types from Bulk Gene Expression Data
  publication-title: Methods Mol Biol.
– volume: 14
  start-page: 65
  year: 2022
  ident: bib19
  article-title: Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes
  publication-title: Genome Med.
– volume: 35
  start-page: 238
  year: 2019
  end-page: 255.e6
  ident: bib24
  article-title: Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy
  publication-title: Cancer Cell
– volume: 15
  start-page: 34
  year: 2022
  ident: bib40
  article-title: Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy
  publication-title: J. Hematol. Oncol.
– volume: 352
  start-page: 189
  year: 2016
  end-page: 196
  ident: bib66
  article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
  publication-title: Science
– volume: 377
  start-page: 1345
  year: 2017
  end-page: 1356
  ident: bib21
  article-title: Overall survival with combined nivolumab and ipilimumab in advanced melanoma
  publication-title: N. Engl. J. Med.
– volume: 22
  start-page: 144
  year: 2017
  end-page: 153
  ident: bib67
  article-title: Empowering multi-cohort gene expression analysis to increase reproducibility
  publication-title: Pac. Symp. Biocomput.
– volume: 350
  start-page: 207
  year: 2015
  end-page: 211
  ident: bib6
  article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma
  publication-title: Science
– volume: 1
  start-page: 417
  year: 2015
  end-page: 425
  ident: bib58
  article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection
  publication-title: Cell Syst.
– volume: 2
  start-page: lqaa078
  year: 2020
  ident: bib61
  article-title: ComBat-seq: batch effect adjustment for RNA-seq count data
  publication-title: NAR Genom. Bioinform.
– volume: 12
  start-page: 33
  year: 2020
  ident: bib26
  article-title: Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival
  publication-title: Genome Med.
– volume: 10
  start-page: e58688
  year: 2021
  ident: bib38
  article-title: Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment
  publication-title: Elife
– volume: 362
  start-page: eaar3593
  year: 2018
  ident: bib12
  article-title: Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy
  publication-title: Science
– volume: 1
  start-page: 99
  year: 2020
  end-page: 111
  ident: bib64
  article-title: Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer
  publication-title: Nat. Cancer
– volume: 127
  start-page: 2930
  year: 2017
  end-page: 2940
  ident: bib10
  article-title: IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade
  publication-title: J. Clin. Invest.
– volume: 1881
  start-page: 277
  year: 2019
  end-page: 318
  ident: bib65
  article-title: Bioinformatics analysis of whole exome sequencing data
  publication-title: Methods Mol. Biol.
– volume: 515
  start-page: 568
  year: 2014
  end-page: 571
  ident: bib11
  article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance
  publication-title: Nature
– volume: 33
  start-page: 290
  year: 2015
  end-page: 295
  ident: bib56
  article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads
  publication-title: Nat. Biotechnol.
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: bib57
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 21
  start-page: 972
  year: 2019
  end-page: 981
  ident: bib63
  article-title: Standard operating procedure for somatic variant refinement of sequencing data with paired tumor and normal samples
  publication-title: Genet. Med.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: bib35
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib34
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Roy. Stat. Soc. B
– volume: 371
  start-page: 2189
  year: 2014
  end-page: 2199
  ident: bib44
  article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma
  publication-title: N. Engl. J. Med.
– volume: 16
  start-page: 284
  year: 2012
  end-page: 287
  ident: bib59
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
– volume: 165
  start-page: 35
  year: 2016
  end-page: 44
  ident: bib23
  article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma
  publication-title: Cell
– volume: 16
  start-page: 206
  year: 2022
  end-page: 218
  ident: bib27
  article-title: Tumor mutational burden and purity adjustment before and after treatment with temozolomide in 27 paired samples of glioblastoma: a prospective study
  publication-title: Mol. Oncol.
– volume: 25
  start-page: 1233
  year: 2019
  end-page: 1238
  ident: bib37
  article-title: Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers
  publication-title: Clin. Cancer Res.
– reference: Venables, W.N., and Ripley, B.D. Modern Applied Statistics with S (Springer New York)
– volume: 170
  start-page: 1120
  year: 2017
  end-page: 1133.e17
  ident: bib28
  article-title: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade
  publication-title: Cell
– volume: 22
  start-page: 568
  year: 2012
  end-page: 576
  ident: bib48
  article-title: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing
  publication-title: Genome Res.
– volume: 171
  start-page: 934
  year: 2017
  end-page: 949.e16
  ident: bib22
  article-title: Tumor and microenvironment evolution during immunotherapy with nivolumab
  publication-title: Cell
– volume: 37
  start-page: 907
  year: 2019
  end-page: 915
  ident: bib54
  article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
  publication-title: Nat. Biotechnol.
– volume: 25
  start-page: 1916
  year: 2019
  end-page: 1927
  ident: bib8
  article-title: Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma
  publication-title: Nat. Med.
– volume: 8
  start-page: 129
  year: 2016
  ident: bib60
  article-title: XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits
  publication-title: Genome Med.
– year: 2013
  ident: bib46
  article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM
  publication-title: arXiv
– volume: 24
  start-page: 1550
  year: 2018
  end-page: 1558
  ident: bib15
  article-title: Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response
  publication-title: Nat. Med.
– year: 2019
  ident: bib47
  article-title: Calling somatic SNVs and indels with Mutect2
  publication-title: bioRxiv
– volume: 27
  start-page: 1739
  year: 2011
  end-page: 1740
  ident: bib30
  article-title: Molecular signatures database (MSigDB) 3.0
  publication-title: Bioinformatics
– volume: 6
  start-page: 797
  year: 2020
  end-page: 810
  ident: bib42
  article-title: Clinical development of BRAF plus MEK inhibitor combinations
  publication-title: Trends Cancer
– volume: 9
  start-page: e001642
  year: 2021
  ident: bib18
  article-title: Biologic subtypes of melanoma predict survival benefit of combination anti-PD1+anti-CTLA4 immune checkpoint inhibitors versus anti-PD1 monotherapy
  publication-title: J. Immunother. Cancer
– volume: 184
  start-page: 596
  year: 2021
  end-page: 614.e14
  ident: bib7
  article-title: Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition
  publication-title: Cell
– volume: 28
  start-page: 311
  year: 2012
  end-page: 317
  ident: bib50
  article-title: SomaticSniper: identification of somatic point mutations in whole genome sequencing data
  publication-title: Bioinformatics
– volume: 43
  start-page: 11.10.1
  year: 2013
  end-page: 11.10.33
  ident: bib45
  article-title: From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline
  publication-title: Curr. Protoc. Bioinformatics
– volume: 372
  start-page: 2521
  year: 2015
  end-page: 2532
  ident: bib2
  article-title: Pembrolizumab versus ipilimumab in advanced melanoma
  publication-title: N. Engl. J. Med.
– volume: 17
  start-page: 357
  year: 2019
  ident: bib14
  article-title: The tumor inflammation signature (TIS) is associated with anti-PD-1 treatment benefit in the CERTIM pan-cancer cohort
  publication-title: J. Transl. Med.
– volume: 10
  start-page: e003853
  year: 2022
  ident: bib32
  article-title: Ipilimumab alone or in combination with nivolumab in patients with advanced melanoma who have progressed or relapsed on PD-1 blockade: clinical outcomes and translational biomarker analyses
  publication-title: J. Immunother. Cancer
– volume: 9
  start-page: e002088
  year: 2021
  ident: bib39
  article-title: Tumor hypoxia is associated with resistance to PD-1 blockade in squamous cell carcinoma of the head and neck
  publication-title: J. Immunother. Cancer
– volume: 28
  start-page: 1811
  year: 2012
  end-page: 1817
  ident: bib49
  article-title: Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs
  publication-title: Bioinformatics
– volume: 51
  start-page: 202
  year: 2019
  end-page: 206
  ident: bib17
  article-title: Tumor mutational load predicts survival after immunotherapy across multiple cancer types
  publication-title: Nat. Genet.
– volume: 17
  start-page: 4101
  year: 2011
  end-page: 4109
  ident: bib29
  article-title: CTLA4 blockade induces frequent tumor infiltration by activated lymphocytes regardless of clinical responses in humans
  publication-title: Clin. Cancer Res.
– volume: 50
  start-page: 1735
  year: 2018
  end-page: 1743
  ident: bib51
  article-title: A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data
  publication-title: Nat. Genet.
– volume: 62
  start-page: 132
  year: 2016
  end-page: 137
  ident: bib62
  article-title: RECIST 1.1-Update and clarification: from the RECIST committee
  publication-title: Eur. J. Cancer
– volume: 26
  start-page: 64
  year: 2015
  end-page: 70
  ident: bib53
  article-title: Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data
  publication-title: Ann. Oncol.
– volume: 24
  start-page: 1071
  year: 2022
  end-page: 1079
  ident: bib33
  article-title: Triplet therapy in melanoma - combined BRAF/MEK inhibitors and anti-PD-(L)1 antibodies
  publication-title: Curr. Oncol. Rep.
– reference: .
– reference: Center for Drug Evaluation, and Research FDA Grants Accelerated Approval to Dostarlimab-Gxly for dMMR Advanced Solid Tumors. U.S. Food and Drug Administration.
– volume: 7
  start-page: 68
  year: 2019
  ident: bib41
  article-title: Collagen density regulates the activity of tumor-infiltrating T cells
  publication-title: J. Immunother. Cancer
– volume: 31
  start-page: 166
  year: 2015
  end-page: 169
  ident: bib55
  article-title: HTSeq--a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
– volume: 363
  start-page: 711
  year: 2010
  end-page: 723
  ident: bib1
  article-title: Improved survival with ipilimumab in patients with metastatic melanoma
  publication-title: N. Engl. J. Med.
– volume: 381
  start-page: 1535
  year: 2019
  end-page: 1546
  ident: bib3
  article-title: Five-year survival with combined nivolumab and ipilimumab in advanced melanoma
  publication-title: N. Engl. J. Med.
– year: 2013
  ident: bib36
  article-title: An Introduction to Statistical Learning: With Applications in R
– volume: 17
  start-page: 122
  year: 2016
  ident: bib52
  article-title: The Ensembl variant effect predictor
  publication-title: Genome Biol.
– volume: 17
  start-page: 943
  year: 2016
  end-page: 955
  ident: bib20
  article-title: Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial
  publication-title: Lancet Oncol.
– volume: 3
  start-page: 100536
  year: 2022
  ident: bib70
  article-title: Supervised dimensionality reduction for exploration of single-cell data by HSS-LDA
  publication-title: Patterns
– volume: 24
  start-page: 1545
  year: 2018
  end-page: 1549
  ident: bib13
  article-title: Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma
  publication-title: Nat. Med.
– volume: 9
  start-page: 1161
  year: 2019
  ident: bib25
  article-title: The predictive value of tumor mutation burden on efficacy of immune checkpoint inhibitors in cancers: a systematic Review and meta-analysis
  publication-title: Front. Oncol.
– reference: Team, R.C., and Others (2013). R: A Language and Environment for Statistical Computing.
– volume: 24
  start-page: 1071
  year: 2022
  ident: 10.1016/j.ccell.2023.03.010_bib33
  article-title: Triplet therapy in melanoma - combined BRAF/MEK inhibitors and anti-PD-(L)1 antibodies
  publication-title: Curr. Oncol. Rep.
  doi: 10.1007/s11912-022-01243-x
– volume: 33
  start-page: 290
  year: 2015
  ident: 10.1016/j.ccell.2023.03.010_bib56
  article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3122
– volume: 9
  start-page: 1161
  year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib25
  article-title: The predictive value of tumor mutation burden on efficacy of immune checkpoint inhibitors in cancers: a systematic Review and meta-analysis
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.01161
– volume: 39
  start-page: 356154
  year: 2021
  ident: 10.1016/j.ccell.2023.03.010_bib43
  article-title: DREAMseq (doublet, randomized evaluation in advanced melanoma sequencing): a phase III trial—ECOG-ACRIN EA6134
  publication-title: J. Clin. Orthod.
  doi: 10.1200/JCO.2021.39.36_suppl.356154
– ident: 10.1016/j.ccell.2023.03.010_bib68
– volume: 27
  start-page: 1739
  year: 2011
  ident: 10.1016/j.ccell.2023.03.010_bib30
  article-title: Molecular signatures database (MSigDB) 3.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– volume: 2120
  start-page: 233
  year: 2020
  ident: 10.1016/j.ccell.2023.03.010_bib31
  article-title: EPIC: A Tool to Estimate the Proportions of Different Cell Types from Bulk Gene Expression Data
  publication-title: Methods Mol Biol.
  doi: 10.1007/978-1-0716-0327-7_17
– volume: 362
  start-page: eaar3593
  year: 2018
  ident: 10.1016/j.ccell.2023.03.010_bib12
  article-title: Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy
  publication-title: Science
  doi: 10.1126/science.aar3593
– volume: 28
  start-page: 311
  year: 2012
  ident: 10.1016/j.ccell.2023.03.010_bib50
  article-title: SomaticSniper: identification of somatic point mutations in whole genome sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr665
– volume: 26
  start-page: 139
  year: 2010
  ident: 10.1016/j.ccell.2023.03.010_bib57
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 3
  start-page: 100536
  year: 2022
  ident: 10.1016/j.ccell.2023.03.010_bib70
  article-title: Supervised dimensionality reduction for exploration of single-cell data by HSS-LDA
  publication-title: Patterns
  doi: 10.1016/j.patter.2022.100536
– volume: 17
  start-page: 943
  year: 2016
  ident: 10.1016/j.ccell.2023.03.010_bib20
  article-title: Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(16)30126-7
– volume: 371
  start-page: 2189
  year: 2014
  ident: 10.1016/j.ccell.2023.03.010_bib44
  article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1406498
– volume: 22
  start-page: 144
  year: 2017
  ident: 10.1016/j.ccell.2023.03.010_bib67
  article-title: Empowering multi-cohort gene expression analysis to increase reproducibility
  publication-title: Pac. Symp. Biocomput.
– volume: 12
  start-page: 33
  year: 2020
  ident: 10.1016/j.ccell.2023.03.010_bib26
  article-title: Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival
  publication-title: Genome Med.
  doi: 10.1186/s13073-020-00729-2
– volume: 24
  start-page: 1545
  year: 2018
  ident: 10.1016/j.ccell.2023.03.010_bib13
  article-title: Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0157-9
– volume: 24
  start-page: 1550
  year: 2018
  ident: 10.1016/j.ccell.2023.03.010_bib15
  article-title: Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0136-1
– volume: 14
  start-page: 65
  year: 2022
  ident: 10.1016/j.ccell.2023.03.010_bib19
  article-title: Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes
  publication-title: Genome Med.
  doi: 10.1186/s13073-022-01068-0
– volume: 21
  start-page: 972
  year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib63
  article-title: Standard operating procedure for somatic variant refinement of sequencing data with paired tumor and normal samples
  publication-title: Genet. Med.
  doi: 10.1038/s41436-018-0278-z
– volume: 27
  start-page: 4685
  year: 2021
  ident: 10.1016/j.ccell.2023.03.010_bib5
  article-title: FDA approval summary: pembrolizumab for the treatment of tumor mutational burden-high solid tumors
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-21-0327
– volume: 26
  start-page: 64
  year: 2015
  ident: 10.1016/j.ccell.2023.03.010_bib53
  article-title: Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdu479
– volume: 515
  start-page: 568
  year: 2014
  ident: 10.1016/j.ccell.2023.03.010_bib11
  article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance
  publication-title: Nature
  doi: 10.1038/nature13954
– volume: 352
  start-page: 189
  year: 2016
  ident: 10.1016/j.ccell.2023.03.010_bib66
  article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aad0501
– volume: 50
  start-page: 1735
  year: 2018
  ident: 10.1016/j.ccell.2023.03.010_bib51
  article-title: A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0257-y
– year: 2013
  ident: 10.1016/j.ccell.2023.03.010_bib36
– volume: 37
  start-page: 907
  year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib54
  article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0201-4
– volume: 170
  start-page: 1120
  year: 2017
  ident: 10.1016/j.ccell.2023.03.010_bib28
  article-title: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.024
– volume: 35
  start-page: 238
  year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib24
  article-title: Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.01.003
– volume: 16
  start-page: 206
  year: 2022
  ident: 10.1016/j.ccell.2023.03.010_bib27
  article-title: Tumor mutational burden and purity adjustment before and after treatment with temozolomide in 27 paired samples of glioblastoma: a prospective study
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.13015
– volume: 15
  start-page: 34
  year: 2022
  ident: 10.1016/j.ccell.2023.03.010_bib40
  article-title: Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-022-01252-0
– volume: 9
  start-page: e002088
  year: 2021
  ident: 10.1016/j.ccell.2023.03.010_bib39
  article-title: Tumor hypoxia is associated with resistance to PD-1 blockade in squamous cell carcinoma of the head and neck
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2020-002088
– volume: 171
  start-page: 934
  year: 2017
  ident: 10.1016/j.ccell.2023.03.010_bib22
  article-title: Tumor and microenvironment evolution during immunotherapy with nivolumab
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.028
– volume: 1881
  start-page: 277
  year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib65
  article-title: Bioinformatics analysis of whole exome sequencing data
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-8876-1_21
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.ccell.2023.03.010_bib34
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Roy. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– year: 2013
  ident: 10.1016/j.ccell.2023.03.010_bib46
  article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM
  publication-title: arXiv
– volume: 363
  start-page: 711
  year: 2010
  ident: 10.1016/j.ccell.2023.03.010_bib1
  article-title: Improved survival with ipilimumab in patients with metastatic melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1003466
– volume: 377
  start-page: 1345
  year: 2017
  ident: 10.1016/j.ccell.2023.03.010_bib21
  article-title: Overall survival with combined nivolumab and ipilimumab in advanced melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1709684
– volume: 1
  start-page: 417
  year: 2015
  ident: 10.1016/j.ccell.2023.03.010_bib58
  article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2015.12.004
– volume: 127
  start-page: 2930
  year: 2017
  ident: 10.1016/j.ccell.2023.03.010_bib10
  article-title: IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI91190
– volume: 7
  start-page: 68
  year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib41
  article-title: Collagen density regulates the activity of tumor-infiltrating T cells
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-019-0556-6
– volume: 43
  start-page: 11.10.1
  year: 2013
  ident: 10.1016/j.ccell.2023.03.010_bib45
  article-title: From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline
  publication-title: Curr. Protoc. Bioinformatics
  doi: 10.1002/0471250953.bi1110s43
– volume: 577
  start-page: 549
  year: 2020
  ident: 10.1016/j.ccell.2023.03.010_bib9
  article-title: B cells and tertiary lymphoid structures promote immunotherapy response
  publication-title: Nature
  doi: 10.1038/s41586-019-1922-8
– volume: 5
  start-page: 1195
  year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib16
  article-title: Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic Review and meta-analysis
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2019.1549
– volume: 17
  start-page: 122
  year: 2016
  ident: 10.1016/j.ccell.2023.03.010_bib52
  article-title: The Ensembl variant effect predictor
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0974-4
– year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib47
  article-title: Calling somatic SNVs and indels with Mutect2
  publication-title: bioRxiv
– volume: 16
  start-page: 284
  year: 2012
  ident: 10.1016/j.ccell.2023.03.010_bib59
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
  doi: 10.1089/omi.2011.0118
– volume: 350
  start-page: 207
  year: 2015
  ident: 10.1016/j.ccell.2023.03.010_bib6
  article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma
  publication-title: Science
  doi: 10.1126/science.aad0095
– volume: 1
  start-page: 99
  year: 2020
  ident: 10.1016/j.ccell.2023.03.010_bib64
  article-title: Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-019-0008-8
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.ccell.2023.03.010_bib35
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– volume: 25
  start-page: 1916
  year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib8
  article-title: Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0654-5
– volume: 381
  start-page: 1535
  year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib3
  article-title: Five-year survival with combined nivolumab and ipilimumab in advanced melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1910836
– volume: 17
  start-page: 357
  year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib14
  article-title: The tumor inflammation signature (TIS) is associated with anti-PD-1 treatment benefit in the CERTIM pan-cancer cohort
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-019-2100-3
– volume: 10
  start-page: e003853
  year: 2022
  ident: 10.1016/j.ccell.2023.03.010_bib32
  article-title: Ipilimumab alone or in combination with nivolumab in patients with advanced melanoma who have progressed or relapsed on PD-1 blockade: clinical outcomes and translational biomarker analyses
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2021-003853
– volume: 165
  start-page: 35
  year: 2016
  ident: 10.1016/j.ccell.2023.03.010_bib23
  article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.065
– volume: 25
  start-page: 1233
  year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib37
  article-title: Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-0762
– volume: 62
  start-page: 132
  year: 2016
  ident: 10.1016/j.ccell.2023.03.010_bib62
  article-title: RECIST 1.1-Update and clarification: from the RECIST committee
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2016.03.081
– volume: 28
  start-page: 1811
  year: 2012
  ident: 10.1016/j.ccell.2023.03.010_bib49
  article-title: Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts271
– ident: 10.1016/j.ccell.2023.03.010_bib69
– volume: 9
  start-page: e001642
  year: 2021
  ident: 10.1016/j.ccell.2023.03.010_bib18
  article-title: Biologic subtypes of melanoma predict survival benefit of combination anti-PD1+anti-CTLA4 immune checkpoint inhibitors versus anti-PD1 monotherapy
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2020-001642
– volume: 184
  start-page: 596
  year: 2021
  ident: 10.1016/j.ccell.2023.03.010_bib7
  article-title: Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.002
– volume: 8
  start-page: 129
  year: 2016
  ident: 10.1016/j.ccell.2023.03.010_bib60
  article-title: XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits
  publication-title: Genome Med.
  doi: 10.1186/s13073-016-0384-y
– volume: 6
  start-page: 797
  year: 2020
  ident: 10.1016/j.ccell.2023.03.010_bib42
  article-title: Clinical development of BRAF plus MEK inhibitor combinations
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2020.05.009
– volume: 31
  start-page: 166
  year: 2015
  ident: 10.1016/j.ccell.2023.03.010_bib55
  article-title: HTSeq--a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 372
  start-page: 2521
  year: 2015
  ident: 10.1016/j.ccell.2023.03.010_bib2
  article-title: Pembrolizumab versus ipilimumab in advanced melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1503093
– ident: 10.1016/j.ccell.2023.03.010_bib4
– volume: 2
  start-page: lqaa078
  year: 2020
  ident: 10.1016/j.ccell.2023.03.010_bib61
  article-title: ComBat-seq: batch effect adjustment for RNA-seq count data
  publication-title: NAR Genom. Bioinform.
  doi: 10.1093/nargab/lqaa078
– volume: 10
  start-page: e58688
  year: 2021
  ident: 10.1016/j.ccell.2023.03.010_bib38
  article-title: Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment
  publication-title: Elife
  doi: 10.7554/eLife.58688
– volume: 51
  start-page: 202
  year: 2019
  ident: 10.1016/j.ccell.2023.03.010_bib17
  article-title: Tumor mutational load predicts survival after immunotherapy across multiple cancer types
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0312-8
– volume: 22
  start-page: 568
  year: 2012
  ident: 10.1016/j.ccell.2023.03.010_bib48
  article-title: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing
  publication-title: Genome Res.
  doi: 10.1101/gr.129684.111
– volume: 17
  start-page: 4101
  year: 2011
  ident: 10.1016/j.ccell.2023.03.010_bib29
  article-title: CTLA4 blockade induces frequent tumor infiltration by activated lymphocytes regardless of clinical responses in humans
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-0407
SSID ssj0016179
Score 2.5908082
Snippet Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not...
Immune checkpoint inhibitors (ICIs), including CTLA-4 and PD-1 blocking antibodies, can have profound effects on tumor immune cell infiltration that have not...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 791
SubjectTerms Biomarkers, Tumor
CTLA-4 Antigen - genetics
Humans
immune checkpoint blockade
Immunotherapy
melanoma
Melanoma - drug therapy
Melanoma - genetics
Melanoma - metabolism
meta-analysis
Skin Neoplasms - drug therapy
Skin Neoplasms - genetics
Tumor Microenvironment
Title Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma
URI https://dx.doi.org/10.1016/j.ccell.2023.03.010
https://www.ncbi.nlm.nih.gov/pubmed/37037616
https://www.proquest.com/docview/2799826332
https://pubmed.ncbi.nlm.nih.gov/PMC10187051
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QSIgL4s14KUgcCesraXscA4R4CfEQu0VJmooi1qFtHPj32E07MUAckHpp41ZpnNhObH8m5EBl3ISxH7A85pZFsOlgSZ4qZozNw9yKXFc429c34vwxuujx3gzpNrkwGFZZy34n0ytpXT9p16PZfiuK9j2sVVT-6Cmq6mWBHMasUkzi6x1PPAmgoVOHmcoZUjfIQ1WMl8HT8SOsIF4hnWIa7e_a6af1-T2I8otWOlsii7U5STuux8tkxpYrZP66dpivktHtsBgMKQxfwboPVx0WUZdx9UFdfuSI9psCudRMgzdTVbPOZhSPa91Xbk-YT4custbSoqRNFAHt21dVDvpqjTyenT50z1ldZ4GZSHhj4EvGo8BylcMCTuMwMZgda1PtKQvmn0mVp3gmfGOMCDyt0lBxkfsZbGh1YjwdrpPZclDaTUKF0UanIBSAJtKRUVaBDRlxlQRxkqVBiwTN-EpTg5BjLYxX2USbvciKKRKZIj24fK9FDicvvTkMjr_JRcM4OTWVJGiJv1_cb9gsYZFhsyrt4H0kgxh2pYEIQ_iBDcf2SU9CkJmx8EWLJFMTYkKAAN7TLWXxXAF5I1paDFJx67893iYLeIfeLd_bIbPj4bvdBSNprPfIXOfy7ulyr1oNn_5OE28
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQEviG8KDIzEI6bOh53kcXSbOminSXRS3yzbcbSgNZ3a7oH_nrs4qVZAe0DKU3yOHJ99d_bd_Q7gkymlS7Io5lUmPU_x0MHzqjDcOV8llVeVbXG2p2dqfJF-m8v5Hoz6XBgKq-xkf5DprbTu3gy72Rxe1_XwB-5VUv7kKWrrZd2D-2gNCFrap_OvW1cCqugigKZKTuQ99FAb5OXoevwLlRBvoU4pj_bf6ulv8_PPKMpbaunkCTzu7El2GIb8FPZ88wweTDuP-XNYn6_q5Yrh_NV8NJsc8pSFlKtfLCRIrtmir5DL3C56MzMd73zJ6L42fOX8iEdsFUJrPasb1ocRsIW_Ms1yYV7AxcnxbDTmXaEF7lIlNsiYUqaxl6bCHVxkSe4oPdYXVhiP9p8rjDCyVJFzTsXCmiIxUlVRiSdamzthk5ew3ywb_xqYctbZAqUC0qQ2dcYbNCJTafI4y8siHkDcz692HQo5FcO40n242U_dMkUTU7TAJxID-LztdB1AOO4mVz3j9M5a0qgm7u74sWezxl1Gzabxy5u1jjM8lsYqSfAHXgW2b0eSoNDMVKQGkO8siC0BIXjvtjT1ZYvkTXBpGYrFN_874g_wcDybTvTk9Oz7W3hELeTqisQ72N-sbvwBWkwb-77dEb8BNEoU7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prior+anti-CTLA-4+therapy+impacts+molecular+characteristics+associated+with+anti-PD-1+response+in+advanced+melanoma&rft.jtitle=Cancer+cell&rft.au=Campbell%2C+Katie+M.&rft.au=Amouzgar%2C+Meelad&rft.au=Pfeiffer%2C+Shannon+M.&rft.au=Howes%2C+Timothy+R.&rft.date=2023-04-10&rft.pub=Elsevier+Inc&rft.issn=1535-6108&rft.eissn=1878-3686&rft.volume=41&rft.issue=4&rft.spage=791&rft.epage=806.e4&rft_id=info:doi/10.1016%2Fj.ccell.2023.03.010&rft.externalDocID=S1535610823000831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-6108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-6108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-6108&client=summon