Modulation of the gut microbiota engages antigen cross-presentation to enhance antitumor effects of CAR T cell immunotherapy
Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple...
Saved in:
Published in | Molecular therapy Vol. 31; no. 3; pp. 686 - 700 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2023
American Society of Gene & Cell Therapy |
Subjects | |
Online Access | Get full text |
ISSN | 1525-0016 1525-0024 1525-0024 |
DOI | 10.1016/j.ymthe.2023.01.012 |
Cover
Abstract | Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types.
[Display omitted]
CAR T cell immunotherapy has transformed the treatment of B cell malignancies. However, a significant subset of patients fail to respond. The gut microbiome influences the response to cancer immunotherapies. We extend our mechanistic understanding, demonstrating that gut microbiome modulation enhances CAR T therapy by promoting CAR T and endogenous T cell responses. |
---|---|
AbstractList | Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types.Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types. Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types. [Display omitted] CAR T cell immunotherapy has transformed the treatment of B cell malignancies. However, a significant subset of patients fail to respond. The gut microbiome influences the response to cancer immunotherapies. We extend our mechanistic understanding, demonstrating that gut microbiome modulation enhances CAR T therapy by promoting CAR T and endogenous T cell responses. Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19 -A20 lymphoma and CD19 -B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types. Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19 + -A20 lymphoma and CD19 + -B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types. CAR T cell immunotherapy has transformed the treatment of B cell malignancies. However, a significant subset of patients fail to respond. The gut microbiome influences the response to cancer immunotherapies. We extend our mechanistic understanding, demonstrating that gut microbiome modulation enhances CAR T therapy by promoting CAR T and endogenous T cell responses. |
Author | Pierini, Stefano Frey, Noelle Wu, Gary Costabile, Francesca June, Carl H. Beghi, Silvia Pajarillo, Raymone McGettigan-Croce, Bevin Bhoj, Vijay Chong, Elise Scholler, John Salaris, Silvano Markmann, Caroline Agarwal, Divyansh Porter, David L. Amelsberg, Kimberly V. Ruella, Marco George, Subin S. Kostopoulos, Nektarios Gabunia, Khatuna Uribe-Herranz, Mireia Lee, Yong Gu Schuster, Stephen J. Facciabene, Andrea Ghilardi, Guido Lacey, Simon F. Parvathaneni, Kalpana Krimitza, Elisavet |
Author_xml | – sequence: 1 givenname: Mireia orcidid: 0000-0002-2618-1116 surname: Uribe-Herranz fullname: Uribe-Herranz, Mireia organization: Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 2 givenname: Silvia surname: Beghi fullname: Beghi, Silvia organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 3 givenname: Marco surname: Ruella fullname: Ruella, Marco organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 4 givenname: Kalpana surname: Parvathaneni fullname: Parvathaneni, Kalpana organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 5 givenname: Silvano surname: Salaris fullname: Salaris, Silvano organization: Unit of Biostatistics, Epidemiology and Public Health, University of Padova, Padova, Italy – sequence: 6 givenname: Nektarios surname: Kostopoulos fullname: Kostopoulos, Nektarios organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 7 givenname: Subin S. surname: George fullname: George, Subin S. organization: Bioinformatics Core, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 8 givenname: Stefano surname: Pierini fullname: Pierini, Stefano organization: Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 9 givenname: Elisavet surname: Krimitza fullname: Krimitza, Elisavet organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 10 givenname: Francesca surname: Costabile fullname: Costabile, Francesca organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 11 givenname: Guido surname: Ghilardi fullname: Ghilardi, Guido organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 12 givenname: Kimberly V. surname: Amelsberg fullname: Amelsberg, Kimberly V. organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 13 givenname: Yong Gu surname: Lee fullname: Lee, Yong Gu organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 14 givenname: Raymone surname: Pajarillo fullname: Pajarillo, Raymone organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 15 givenname: Caroline surname: Markmann fullname: Markmann, Caroline organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 16 givenname: Bevin surname: McGettigan-Croce fullname: McGettigan-Croce, Bevin organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 17 givenname: Divyansh surname: Agarwal fullname: Agarwal, Divyansh organization: Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 18 givenname: Noelle surname: Frey fullname: Frey, Noelle organization: Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 19 givenname: Simon F. surname: Lacey fullname: Lacey, Simon F. organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 20 givenname: John surname: Scholler fullname: Scholler, John organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 21 givenname: Khatuna surname: Gabunia fullname: Gabunia, Khatuna organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 22 givenname: Gary surname: Wu fullname: Wu, Gary organization: Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 23 givenname: Elise surname: Chong fullname: Chong, Elise organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 24 givenname: David L. surname: Porter fullname: Porter, David L. organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 25 givenname: Carl H. surname: June fullname: June, Carl H. organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 26 givenname: Stephen J. surname: Schuster fullname: Schuster, Stephen J. organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 27 givenname: Vijay surname: Bhoj fullname: Bhoj, Vijay organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA – sequence: 28 givenname: Andrea orcidid: 0000-0002-9563-297X surname: Facciabene fullname: Facciabene, Andrea email: andrea.facciabene@pennmedicine.upenn.edu organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36641624$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ud2K1DAYDbLi7o4-gSC59KZjkybp9EJkGfyDFUHW65CmXzoZ2mRM0oW58F18Fp_MdLq7qBcLHyTwnZ_knEt05rwDhF6Sck1KIt7s18cx7WBNS1qtS5KHPkEXhFNelCVlZw93Is7RZYz7fCO8Ec_QeSUEI4KyC_Tzi--mQSXrHfYGZz3cTwmPVgffWp8UBterHiJWLtkeHM6LGItDgAguLcTkM2qnnIYTKk2jDxiMAZ3irLq9-oZvfv_SMAzYjuPkfPYJ6nB8jp4aNUR4cXeu0PcP72-2n4rrrx8_b6-uC81EmYq240roVmxqUVecl1zXpOOa10oYBpSA6dqaCypYVUFHN0wLbki3qZghTWNItULvFt3D1I7Q6fzyoAZ5CHZU4Si9svLfjbM72ftbSXJmrGJNVnh9pxD8jwlikqON84eUAz9FSWvB63ozo1fo1d9mDy73oWdAswBOUQYwUtslyexth2wq54LlXp4KlnPBsiR5aOZW_3Hv5R9nvV1YkEO-tRBk1BZyX50NuSTZefso_w-UL8Q5 |
CitedBy_id | crossref_primary_10_1182_blood_2024024219 crossref_primary_10_3390_ijms26020856 crossref_primary_10_1016_j_intimp_2024_111553 crossref_primary_10_1182_blood_2023021174 crossref_primary_10_1016_j_autrev_2025_103807 crossref_primary_10_1186_s12967_024_05762_y crossref_primary_10_1038_s41417_024_00752_0 crossref_primary_10_3389_fimmu_2024_1471273 crossref_primary_10_1007_s12032_024_02416_3 crossref_primary_10_1182_bloodadvances_2024012599 crossref_primary_10_1126_sciimmunol_adn6509 crossref_primary_10_1080_19490976_2023_2229567 crossref_primary_10_1073_pnas_2403002121 crossref_primary_10_1080_14712598_2024_2371543 crossref_primary_10_1146_annurev_cancerbio_062722_035210 crossref_primary_10_1038_s41571_023_00832_4 crossref_primary_10_1016_j_jtct_2023_04_007 crossref_primary_10_1097_HS9_0000000000000950 crossref_primary_10_3389_fcimb_2024_1412035 crossref_primary_10_3390_cancers15184426 crossref_primary_10_1016_j_lfs_2024_123281 crossref_primary_10_1053_j_seminhematol_2024_10_006 crossref_primary_10_3390_cancers15082352 |
Cites_doi | 10.1038/s41423-020-00625-0 10.1056/NEJMoa1914347 10.1146/annurev-immunol-032713-120204 10.1182/blood-2013-12-545772 10.1038/s41467-021-24331-1 10.1038/nri2575 10.1186/s13287-020-02128-1 10.3109/00365548.2010.544671 10.3389/fimmu.2018.01643 10.1126/science.abf3363 10.1056/NEJMoa1804980 10.1200/JCO.19.01892 10.1172/JCI124332 10.1038/s41591-021-01406-6 10.1038/s41467-020-19833-3 10.3389/fimmu.2013.00371 10.1158/1078-0432.CCR-15-0685 10.1126/science.abb5920 10.1016/S0140-6736(20)31366-0 10.1084/jem.20201915 10.1038/s41577-019-0268-7 10.1056/NEJMoa1707447 10.1038/ni.3197 10.1016/j.canlet.2019.01.015 10.1056/NEJMc2030164 10.1172/jci.insight.92522 10.1128/AAC.14.4.634 10.1186/s13014-020-01735-9 10.1128/JCM.43.8.4041-4045.2005 10.1111/j.2517-6161.1995.tb02031.x 10.1038/s41467-020-18871-1 10.1038/s41598-017-15099-w 10.3390/cancers11040521 10.1016/S0140-6736(78)91741-5 10.3389/fpubh.2014.00217 10.1126/scitranslmed.3002842 10.1126/science.aan4236 10.1126/science.aan3706 10.1038/s41467-020-19940-1 10.3389/fgene.2019.00858 10.1038/s41577-020-0306-5 10.1038/s41408-021-00459-7 10.1136/jitc-2020-001636 10.3389/fimmu.2019.02965 10.1186/s12964-020-00599-6 10.3390/cells10123587 10.4049/jimmunol.169.7.3908 10.1038/s41467-019-08711-2 10.1016/j.cellimm.2004.04.006 10.1093/jac/23.1.167 10.1182/blood-2018-99-117133 10.1172/jci.insight.94952 10.1056/NEJMoa1709866 10.1016/j.celrep.2017.09.002 10.1038/nri.2017.7 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Published by Elsevier Inc. 2023. 2023 |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Inc. – notice: 2023. 2023 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.ymthe.2023.01.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1525-0024 |
EndPage | 700 |
ExternalDocumentID | PMC10014349 36641624 10_1016_j_ymthe_2023_01_012 S1525001623000126 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA206012 – fundername: NCI NIH HHS grantid: R01 CA219871 |
GroupedDBID | --- 0R~ 123 29M 2WC 36B 39C 4.4 53G 6I. 7X7 8FE 8FH AACTN AAEDW AAFTH AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ABUDA ACGFO ACGFS ACPRK ADBBV ADFRT ADVLN AENEX AFTJW AGAYW AHMBA AITUG AKAPO AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS ASPBG AVWKF AZFZN BAWUL BENPR BPHCQ BVXVI CS3 DIK DU5 E3Z EBS F5P FDB FEDTE FRP FYUFA GX1 HVGLF HYE HZ~ JIG KQ8 LG5 LK8 M41 M7P O9- OK1 P2P PROAC RNTTT RPM SSZ TR2 W2D --K 1B1 88E 8FI 8FJ AAYWO AAYXX ABAWZ ABDGV ABUWG ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFKRA AFPUW AGCQF AIGII AKBMS AKYEP APXCP BBNVY BHPHI CAG CCPQU CITATION COF EJD EMB EMOBN HCIFZ HMCUK IHE JSO M1P NQ- PHGZM PHGZT PQQKQ PSQYO RIG RNS ROL RPZ SEW SV3 UHS UKHRP XPP ZMT CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c460t-bd5a6cb6876735505c71d5c57a6f4e21efdb75626433ed284c65f1d834f199f13 |
ISSN | 1525-0016 1525-0024 |
IngestDate | Thu Aug 21 18:35:06 EDT 2025 Fri Sep 05 11:40:07 EDT 2025 Mon Jul 21 05:40:39 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 Tue Jul 01 03:53:45 EDT 2025 Sun Apr 06 06:54:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | vancomycin gut microbiota antigen cross-presentation CAR T cell immunotherapy |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023. Published by Elsevier Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c460t-bd5a6cb6876735505c71d5c57a6f4e21efdb75626433ed284c65f1d834f199f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally |
ORCID | 0000-0002-9563-297X 0000-0002-2618-1116 |
OpenAccessLink | https://dx.doi.org/10.1016/j.ymthe.2023.01.012 |
PMID | 36641624 |
PQID | 2765778014 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10014349 proquest_miscellaneous_2765778014 pubmed_primary_36641624 crossref_citationtrail_10_1016_j_ymthe_2023_01_012 crossref_primary_10_1016_j_ymthe_2023_01_012 elsevier_sciencedirect_doi_10_1016_j_ymthe_2023_01_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular therapy |
PublicationTitleAlternate | Mol Ther |
PublicationYear | 2023 |
Publisher | Elsevier Inc American Society of Gene & Cell Therapy |
Publisher_xml | – name: Elsevier Inc – name: American Society of Gene & Cell Therapy |
References | Kalos, Levine, Porter, Katz, Grupp, Bagg, June (bib58) 2011; 3 Wylie, Macri, Mintern, Waithman (bib51) 2019; 11 Kuhn, Lopez, Li, Cai, Daniyan, Brentjens (bib52) 2020; 11 Benjamini, Hochberg (bib56) 1995; 57 Murphy, Grajales-Reyes, Wu, Tussiwand, Briseño, Iwata, Kretzer, Durai, Murphy (bib53) 2016; 34 Frey, Shaw, Hexner, Pequignot, Gill, Luger, Mangan, Loren, Perl, Maude (bib41) 2020; 38 Rice, Buchan, Stevenson (bib36) 2002; 169 Sterner, Sterner (bib42) 2021; 11 Routy, Le Chatelier, Derosa, Duong, Alou, Daillère, Fluckiger, Messaoudene, Rauber, Roberti (bib16) 2018; 359 Davar, Dzutsev, McCulloch, Rodrigues, Chauvin, Morrison, Deblasio, Menna, Ding, Pagliano (bib38) 2021; 371 Martínez-Lostao, Anel, Pardo (bib26) 2015; 21 Grajales-Reyes, Iwata, Albring, Wu, Tussiwand, Kc, Kretzer, Briseño, Durai, Bagadia (bib34) 2015; 16 Rao, Kupfer, Pagala, Chapnick, Tessler (bib22) 2011; 43 Agrawal, Reemtsma, Bagiella, Oluwole, Braunstein (bib30) 2004; 228 Dobosz, Dzieciątkowski (bib1) 2019; 10 Yang, Hou, Zhang, Liang, Sharma, Zheng, Wang, Torres, Tatebe, Chmura (bib49) 2021; 218 Jain, Chavez, Shah, Khimani, Lazaryan, Davila, Liu, Falchook, Robinson, Kim, Locke (bib44) 2018; 132 Shah, Fry (bib9) 2019; 16 Hansen, Bouvier (bib31) 2009; 9 Abramson, Palomba, Gordon, Lunning, Wang, Arnason, Mehta, Purev, Maloney, Andreadis (bib8) 2020; 396 Liu, Liu, Yue (bib13) 2021; 16 Andrews, Duong, Gopalakrishnan, Iebba, Chen, Derosa, Khan, Cogdill, White, Wong (bib43) 2021; 27 Maude, Laetsch, Buechner, Rives, Boyer, Bittencourt, Bader, Verneris, Stefanski, Myers (bib3) 2018; 378 Neelapu, Locke, Bartlett, Lekakis, Miklos, Jacobson, Braunschweig, Oluwole, Siddiqi, Lin (bib4) 2017; 377 Warren, Citron, Merriam, Goldstein (bib39) 2005; 43 Wang, Munoz, Goy, Locke, Jacobson, Hill, Timmerman, Holmes, Jaglowski, Flinn (bib6) 2020; 382 Smith (bib20) 2021 Schuster, Bishop, Tam, Waller, Borchmann, McGuirk, Jäger, Jaglowski, Andreadis, Westin (bib5) 2019; 380 Chong, Ruella, Schuster (bib7) 2021; 384 Baird (bib25) 1989; 23 Waldman, Fritz, Lenardo (bib2) 2020; 20 Li, Deng, Chu, Zhang (bib15) 2019; 447 Pradhan, Leleux, Liu, Roy (bib33) 2017; 2 Hu, Ren, Luo, Keith, Young, Scholler, Zhao, June (bib28) 2017; 20 Marofi, Motavalli, Safonov, Thangavelu, Yumashev, Alexander, Shomali, Chartrand, Pathak, Jarahian (bib27) 2021; 12 Levy, Kolodziejczyk, Thaiss, Elinav (bib10) 2017; 17 Nastasi, Fredholm, Willerslev-Olsen, Hansen, Bonefeld, Geisler, Andersen, Ødum, Woetmann (bib48) 2017; 7 Gopalakrishnan, Spencer, Nezi, Reuben, Andrews, Karpinets, Prieto, Vicente, Hoffman, Wei (bib17) 2018; 359 Tripathi, Vedpathak, Ostrin (bib29) 2021; 10 Luu, Pautz, Kohl, Singh, Romero, Lucas, Hofmann, Raifer, Vachharajani, Carrascosa (bib46) 2019; 10 Pierini, Mishra, Perales-Linares, Uribe-Herranz, Beghi, Giglio, Pustylnikov, Costabile, Rafail, Amici (bib57) 2021; 9 Blighe (bib55) 2021 Bryan, White (bib23) 1978; 14 Uribe-Herranz, Bittinger, Rafail, Guedan, Pierini, Tanes, Ganetsky, Morgan, Gill, Tanyi (bib19) 2018; 3 Dai, Zhang, Wu, Fang, Shi, Li, Lin, Tang, Wang (bib14) 2020; 18 Uribe-Herranz, Rafail, Beghi, Gil-de-Gómez, Verginadis, Bittinger, Pustylnikov, Pierini, Perales-Linares, Blair (bib18) 2020; 130 Rubinstein, Keynan (bib21) 2014; 2 Tedesco, Markham, Gurwith, Christie, Bartlett (bib24) 1978; 2 Mayer, Ghorbani, Nandan, Dudek, Arnold-Schrauf, Hesse, Berod, Stüve, Puttur, Merad, Sparwasser (bib35) 2014; 124 Luu, Riester, Baldrich, Reichardt, Yuille, Busetti, Klein, Wempe, Leister, Raifer (bib45) 2021; 12 Embgenbroich, Burgdorf (bib50) 2018; 9 Caruso, Lo, Núñez (bib12) 2020; 20 Baruch, Youngster, Ben-Betzalel, Ortenberg, Lahat, Katz, Adler, Dick-Necula, Raskin, Bloch (bib37) 2021; 371 Manor, Dai, Kornilov, Smith, Price, Lovejoy, Gibbons, Magis (bib11) 2020; 11 Ulgen, Ozisik, Sezerman (bib54) 2019; 10 Chmielewski, Hombach, Abken (bib32) 2013; 4 Kim (bib40) 2021; 18 Tian, Wang, Wu, Fan, Friedman, Dahlin, Waldor, Weinstock, Weiss, Liu (bib47) 2020; 11 Warren (10.1016/j.ymthe.2023.01.012_bib39) 2005; 43 Wang (10.1016/j.ymthe.2023.01.012_bib6) 2020; 382 Uribe-Herranz (10.1016/j.ymthe.2023.01.012_bib19) 2018; 3 Kalos (10.1016/j.ymthe.2023.01.012_bib58) 2011; 3 Jain (10.1016/j.ymthe.2023.01.012_bib44) 2018; 132 Luu (10.1016/j.ymthe.2023.01.012_bib45) 2021; 12 Marofi (10.1016/j.ymthe.2023.01.012_bib27) 2021; 12 Waldman (10.1016/j.ymthe.2023.01.012_bib2) 2020; 20 Luu (10.1016/j.ymthe.2023.01.012_bib46) 2019; 10 Rao (10.1016/j.ymthe.2023.01.012_bib22) 2011; 43 Benjamini (10.1016/j.ymthe.2023.01.012_bib56) 1995; 57 Dobosz (10.1016/j.ymthe.2023.01.012_bib1) 2019; 10 Caruso (10.1016/j.ymthe.2023.01.012_bib12) 2020; 20 Agrawal (10.1016/j.ymthe.2023.01.012_bib30) 2004; 228 Sterner (10.1016/j.ymthe.2023.01.012_bib42) 2021; 11 Andrews (10.1016/j.ymthe.2023.01.012_bib43) 2021; 27 Liu (10.1016/j.ymthe.2023.01.012_bib13) 2021; 16 Shah (10.1016/j.ymthe.2023.01.012_bib9) 2019; 16 Rice (10.1016/j.ymthe.2023.01.012_bib36) 2002; 169 Ulgen (10.1016/j.ymthe.2023.01.012_bib54) 2019; 10 Kuhn (10.1016/j.ymthe.2023.01.012_bib52) 2020; 11 Rubinstein (10.1016/j.ymthe.2023.01.012_bib21) 2014; 2 Davar (10.1016/j.ymthe.2023.01.012_bib38) 2021; 371 Pierini (10.1016/j.ymthe.2023.01.012_bib57) 2021; 9 Routy (10.1016/j.ymthe.2023.01.012_bib16) 2018; 359 Neelapu (10.1016/j.ymthe.2023.01.012_bib4) 2017; 377 Hu (10.1016/j.ymthe.2023.01.012_bib28) 2017; 20 Tian (10.1016/j.ymthe.2023.01.012_bib47) 2020; 11 Tedesco (10.1016/j.ymthe.2023.01.012_bib24) 1978; 2 Martínez-Lostao (10.1016/j.ymthe.2023.01.012_bib26) 2015; 21 Smith (10.1016/j.ymthe.2023.01.012_bib20) 2021 Dai (10.1016/j.ymthe.2023.01.012_bib14) 2020; 18 Kim (10.1016/j.ymthe.2023.01.012_bib40) 2021; 18 Nastasi (10.1016/j.ymthe.2023.01.012_bib48) 2017; 7 Abramson (10.1016/j.ymthe.2023.01.012_bib8) 2020; 396 Maude (10.1016/j.ymthe.2023.01.012_bib3) 2018; 378 Li (10.1016/j.ymthe.2023.01.012_bib15) 2019; 447 Yang (10.1016/j.ymthe.2023.01.012_bib49) 2021; 218 Mayer (10.1016/j.ymthe.2023.01.012_bib35) 2014; 124 Pradhan (10.1016/j.ymthe.2023.01.012_bib33) 2017; 2 Gopalakrishnan (10.1016/j.ymthe.2023.01.012_bib17) 2018; 359 Chong (10.1016/j.ymthe.2023.01.012_bib7) 2021; 384 Bryan (10.1016/j.ymthe.2023.01.012_bib23) 1978; 14 Tripathi (10.1016/j.ymthe.2023.01.012_bib29) 2021; 10 Baruch (10.1016/j.ymthe.2023.01.012_bib37) 2021; 371 Murphy (10.1016/j.ymthe.2023.01.012_bib53) 2016; 34 Uribe-Herranz (10.1016/j.ymthe.2023.01.012_bib18) 2020; 130 Blighe (10.1016/j.ymthe.2023.01.012_bib55) 2021 Embgenbroich (10.1016/j.ymthe.2023.01.012_bib50) 2018; 9 Chmielewski (10.1016/j.ymthe.2023.01.012_bib32) 2013; 4 Wylie (10.1016/j.ymthe.2023.01.012_bib51) 2019; 11 Baird (10.1016/j.ymthe.2023.01.012_bib25) 1989; 23 Hansen (10.1016/j.ymthe.2023.01.012_bib31) 2009; 9 Frey (10.1016/j.ymthe.2023.01.012_bib41) 2020; 38 Schuster (10.1016/j.ymthe.2023.01.012_bib5) 2019; 380 Levy (10.1016/j.ymthe.2023.01.012_bib10) 2017; 17 Grajales-Reyes (10.1016/j.ymthe.2023.01.012_bib34) 2015; 16 Manor (10.1016/j.ymthe.2023.01.012_bib11) 2020; 11 |
References_xml | – volume: 20 start-page: 651 year: 2020 end-page: 668 ident: bib2 article-title: A guide to cancer immunotherapy: from T cell basic science to clinical practice publication-title: Nat. Rev. Immunol. – volume: 2 start-page: 217 year: 2014 ident: bib21 article-title: Vancomycin revisited – 60 Years later publication-title: Front. Public Health – volume: 16 start-page: 372 year: 2019 end-page: 385 ident: bib9 article-title: Mechanisms of resistance to CAR T cell therapy publication-title: Nat. Rev. Clin. Oncol. – volume: 380 start-page: 45 year: 2019 end-page: 56 ident: bib5 article-title: Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma publication-title: N. Engl. J. Med. – volume: 132 start-page: 4220 year: 2018 ident: bib44 article-title: Radiation therapy as a bridging strategy for refractory diffuse large B cell lymphoma patients awaiting CAR T manufacturing of axicabtagene ciloleucel publication-title: Blood – volume: 14 start-page: 634 year: 1978 end-page: 635 ident: bib23 article-title: Safety of oral vancomycin in functionally anephric patients publication-title: Antimicrob. Agents Chemother. – volume: 11 start-page: 521 year: 2019 ident: bib51 article-title: Dendritic cells and cancer: from biology to therapeutic intervention publication-title: Cancers (Basel) – volume: 382 start-page: 1331 year: 2020 end-page: 1342 ident: bib6 article-title: KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma publication-title: N. Engl. J. Med. – volume: 10 start-page: 760 year: 2019 ident: bib46 article-title: The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes publication-title: Nat. Commun. – volume: 10 start-page: 3587 year: 2021 ident: bib29 article-title: The functional and mechanistic roles of immunoproteasome subunits in cancer publication-title: Cells – volume: 43 start-page: 4041 year: 2005 end-page: 4045 ident: bib39 article-title: Biochemical differentiation and comparison of Desulfovibrio species and other phenotypically similar genera publication-title: J. Clin. Microbiol. – volume: 11 start-page: 1 year: 2021 end-page: 11 ident: bib42 article-title: CAR-T cell therapy: current limitations and potential strategies publication-title: Blood Cancer J. – volume: 10 start-page: 2965 year: 2019 ident: bib1 article-title: The intriguing history of cancer immunotherapy publication-title: Front. Immunol. – volume: 11 start-page: 6217 year: 2020 ident: bib47 article-title: Deciphering functional redundancy in the human microbiome publication-title: Nat. Commun. – volume: 7 start-page: 14516 year: 2017 ident: bib48 article-title: Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells publication-title: Sci. Rep. – volume: 4 start-page: 371 year: 2013 ident: bib32 article-title: Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells publication-title: Front. Immunol. – volume: 18 start-page: 90 year: 2020 ident: bib14 article-title: Intestinal microbiota: a new force in cancer immunotherapy publication-title: Cell Commun. Signal. – volume: 3 start-page: 95ra73 year: 2011 ident: bib58 article-title: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia publication-title: Sci. Transl. Med. – volume: 21 start-page: 5047 year: 2015 end-page: 5056 ident: bib26 article-title: How do cytotoxic lymphocytes kill cancer cells? publication-title: Clin. Cancer Res. – volume: 124 start-page: 3081 year: 2014 end-page: 3091 ident: bib35 article-title: Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow publication-title: Blood – volume: 18 start-page: 1161 year: 2021 end-page: 1171 ident: bib40 article-title: Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids publication-title: Cell. Mol. Immunol. – volume: 38 start-page: 415 year: 2020 end-page: 422 ident: bib41 article-title: Optimizing chimeric antigen receptor T-cell therapy for adults with acute lymphoblastic leukemia publication-title: J. Clin. Oncol. – volume: 9 start-page: 503 year: 2009 end-page: 513 ident: bib31 article-title: MHC class I antigen presentation: learning from viral evasion strategies publication-title: Nat. Rev. Immunol. – volume: 43 start-page: 386 year: 2011 end-page: 388 ident: bib22 article-title: Systemic absorption of oral vancomycin in patients with Clostridium difficile infection publication-title: Scand. J. Infect. Dis. – year: 2021 ident: bib55 article-title: EnhancedVolcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling – volume: 16 start-page: 708 year: 2015 end-page: 717 ident: bib34 article-title: Batf3 maintains autoactivation of Irf8 for commitment of a CD8α+ conventional DC clonogenic progenitor publication-title: Nat. Immunol. – volume: 11 start-page: 5206 year: 2020 ident: bib11 article-title: Health and disease markers correlate with gut microbiome composition across thousands of people publication-title: Nat. Commun. – volume: 11 start-page: 6171 year: 2020 ident: bib52 article-title: CD103+ cDC1 and endogenous CD8+ T cells are necessary for improved CD40L-overexpressing CAR T cell antitumor function publication-title: Nat. Commun. – volume: 371 start-page: 602 year: 2021 end-page: 609 ident: bib37 article-title: Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients publication-title: Science – volume: 12 start-page: 81 year: 2021 ident: bib27 article-title: CAR T cells in solid tumors: challenges and opportunities publication-title: Stem Cell Res. Ther. – volume: 17 start-page: 219 year: 2017 end-page: 232 ident: bib10 article-title: Dysbiosis and the immune system publication-title: Nat. Rev. Immunol. – volume: 20 start-page: 411 year: 2020 end-page: 426 ident: bib12 article-title: Host–microbiota interactions in inflammatory bowel disease publication-title: Nat. Rev. Immunol. – volume: 10 start-page: 858 year: 2019 ident: bib54 article-title: pathfindR: an R package for comprehensive identification of enriched pathways in omics data through active subnetworks publication-title: Front. Genet. – volume: 377 start-page: 2531 year: 2017 end-page: 2544 ident: bib4 article-title: Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma publication-title: N. Engl. J. Med. – volume: 2 start-page: e92522 year: 2017 ident: bib33 article-title: A simple, clinically relevant therapeutic vaccine shows long-term protection in an aggressive, delayed-treatment B lymphoma model publication-title: JCI Insight – volume: 130 start-page: 466 year: 2020 end-page: 479 ident: bib18 article-title: Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response publication-title: J. Clin. Invest. – volume: 16 start-page: 9 year: 2021 ident: bib13 article-title: Radiotherapy and the gut microbiome: facts and fiction publication-title: Radiat. Oncol. – volume: 34 start-page: 93 year: 2016 end-page: 119 ident: bib53 article-title: Transcriptional control of dendritic cell development publication-title: Annu. Rev. Immunol. – volume: 20 start-page: 3025 year: 2017 end-page: 3033 ident: bib28 article-title: Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18 publication-title: Cell Rep. – year: 2021 ident: bib20 article-title: The intestinal microbiota correlates with response and toxicity after CAR T cell therapy in patients with B-cell malignancies publication-title: In (ASH) – volume: 12 start-page: 4077 year: 2021 ident: bib45 article-title: Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer publication-title: Nat. Commun. – volume: 2 start-page: 226 year: 1978 end-page: 228 ident: bib24 article-title: ORAL vancomycin for antibiotic-associated pseudomembranous colitis publication-title: Lancet – volume: 378 start-page: 439 year: 2018 end-page: 448 ident: bib3 article-title: Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia publication-title: N. Engl. J. Med. – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: bib56 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B – volume: 371 start-page: 595 year: 2021 end-page: 602 ident: bib38 article-title: Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients publication-title: Science – volume: 9 start-page: e001636 year: 2021 ident: bib57 article-title: Combination of vasculature targeting, hypofractionated radiotherapy, and immune checkpoint inhibitor elicits potent antitumor immune response and blocks tumor progression publication-title: J. Immunother. Cancer – volume: 169 start-page: 3908 year: 2002 end-page: 3913 ident: bib36 article-title: Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen publication-title: J. Immunol. – volume: 359 start-page: 91 year: 2018 end-page: 97 ident: bib16 article-title: Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors publication-title: Science – volume: 9 start-page: 1643 year: 2018 ident: bib50 article-title: Current concepts of antigen cross-presentation publication-title: Front. Immunol. – volume: 384 start-page: 673 year: 2021 end-page: 674 ident: bib7 article-title: Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy publication-title: N. Engl. J. Med. – volume: 3 start-page: e94952 year: 2018 ident: bib19 article-title: Gut microbiota modulates adoptive cell therapy via CD8 publication-title: JCI Insight – volume: 27 start-page: 1432 year: 2021 end-page: 1441 ident: bib43 article-title: Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade publication-title: Nat. Med. – volume: 23 start-page: 167 year: 1989 end-page: 169 ident: bib25 article-title: Comparison of two oral formulations of vancomycin for treatment of diarrhoea associated with Clostridium difficile publication-title: J. Antimicrob. Chemother. – volume: 359 start-page: 97 year: 2018 end-page: 103 ident: bib17 article-title: Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients publication-title: Science – volume: 447 start-page: 41 year: 2019 end-page: 47 ident: bib15 article-title: Gut microbiome and cancer immunotherapy publication-title: Cancer Lett. – volume: 228 start-page: 130 year: 2004 end-page: 137 ident: bib30 article-title: Role of TAP-1 and/or TAP-2 antigen presentation defects in tumorigenicity of mouse melanoma publication-title: Cell. Immunol. – volume: 396 start-page: 839 year: 2020 end-page: 852 ident: bib8 article-title: Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study publication-title: Lancet – volume: 218 start-page: e20201915 year: 2021 ident: bib49 article-title: Suppression of local type I interferon by gut microbiota–derived butyrate impairs antitumor effects of ionizing radiation publication-title: J. Exp. Med. – volume: 18 start-page: 1161 year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib40 article-title: Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-020-00625-0 – volume: 382 start-page: 1331 year: 2020 ident: 10.1016/j.ymthe.2023.01.012_bib6 article-title: KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1914347 – volume: 34 start-page: 93 year: 2016 ident: 10.1016/j.ymthe.2023.01.012_bib53 article-title: Transcriptional control of dendritic cell development publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120204 – volume: 124 start-page: 3081 year: 2014 ident: 10.1016/j.ymthe.2023.01.012_bib35 article-title: Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow publication-title: Blood doi: 10.1182/blood-2013-12-545772 – volume: 12 start-page: 4077 year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib45 article-title: Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer publication-title: Nat. Commun. doi: 10.1038/s41467-021-24331-1 – volume: 9 start-page: 503 year: 2009 ident: 10.1016/j.ymthe.2023.01.012_bib31 article-title: MHC class I antigen presentation: learning from viral evasion strategies publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2575 – volume: 12 start-page: 81 year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib27 article-title: CAR T cells in solid tumors: challenges and opportunities publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-020-02128-1 – volume: 43 start-page: 386 year: 2011 ident: 10.1016/j.ymthe.2023.01.012_bib22 article-title: Systemic absorption of oral vancomycin in patients with Clostridium difficile infection publication-title: Scand. J. Infect. Dis. doi: 10.3109/00365548.2010.544671 – volume: 9 start-page: 1643 year: 2018 ident: 10.1016/j.ymthe.2023.01.012_bib50 article-title: Current concepts of antigen cross-presentation publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01643 – volume: 371 start-page: 595 year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib38 article-title: Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients publication-title: Science doi: 10.1126/science.abf3363 – volume: 380 start-page: 45 year: 2019 ident: 10.1016/j.ymthe.2023.01.012_bib5 article-title: Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1804980 – volume: 38 start-page: 415 year: 2020 ident: 10.1016/j.ymthe.2023.01.012_bib41 article-title: Optimizing chimeric antigen receptor T-cell therapy for adults with acute lymphoblastic leukemia publication-title: J. Clin. Oncol. doi: 10.1200/JCO.19.01892 – volume: 130 start-page: 466 year: 2020 ident: 10.1016/j.ymthe.2023.01.012_bib18 article-title: Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response publication-title: J. Clin. Invest. doi: 10.1172/JCI124332 – volume: 27 start-page: 1432 year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib43 article-title: Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade publication-title: Nat. Med. doi: 10.1038/s41591-021-01406-6 – volume: 11 start-page: 6171 year: 2020 ident: 10.1016/j.ymthe.2023.01.012_bib52 article-title: CD103+ cDC1 and endogenous CD8+ T cells are necessary for improved CD40L-overexpressing CAR T cell antitumor function publication-title: Nat. Commun. doi: 10.1038/s41467-020-19833-3 – volume: 4 start-page: 371 year: 2013 ident: 10.1016/j.ymthe.2023.01.012_bib32 article-title: Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2013.00371 – volume: 21 start-page: 5047 year: 2015 ident: 10.1016/j.ymthe.2023.01.012_bib26 article-title: How do cytotoxic lymphocytes kill cancer cells? publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-0685 – volume: 371 start-page: 602 year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib37 article-title: Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients publication-title: Science doi: 10.1126/science.abb5920 – volume: 396 start-page: 839 year: 2020 ident: 10.1016/j.ymthe.2023.01.012_bib8 article-title: Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study publication-title: Lancet doi: 10.1016/S0140-6736(20)31366-0 – volume: 218 start-page: e20201915 year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib49 article-title: Suppression of local type I interferon by gut microbiota–derived butyrate impairs antitumor effects of ionizing radiation publication-title: J. Exp. Med. doi: 10.1084/jem.20201915 – volume: 16 start-page: 372 year: 2019 ident: 10.1016/j.ymthe.2023.01.012_bib9 article-title: Mechanisms of resistance to CAR T cell therapy publication-title: Nat. Rev. Clin. Oncol. – volume: 20 start-page: 411 year: 2020 ident: 10.1016/j.ymthe.2023.01.012_bib12 article-title: Host–microbiota interactions in inflammatory bowel disease publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0268-7 – volume: 377 start-page: 2531 year: 2017 ident: 10.1016/j.ymthe.2023.01.012_bib4 article-title: Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1707447 – volume: 16 start-page: 708 year: 2015 ident: 10.1016/j.ymthe.2023.01.012_bib34 article-title: Batf3 maintains autoactivation of Irf8 for commitment of a CD8α+ conventional DC clonogenic progenitor publication-title: Nat. Immunol. doi: 10.1038/ni.3197 – volume: 447 start-page: 41 year: 2019 ident: 10.1016/j.ymthe.2023.01.012_bib15 article-title: Gut microbiome and cancer immunotherapy publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.01.015 – volume: 384 start-page: 673 year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib7 article-title: Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2030164 – volume: 2 start-page: e92522 year: 2017 ident: 10.1016/j.ymthe.2023.01.012_bib33 article-title: A simple, clinically relevant therapeutic vaccine shows long-term protection in an aggressive, delayed-treatment B lymphoma model publication-title: JCI Insight doi: 10.1172/jci.insight.92522 – year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib55 – volume: 14 start-page: 634 year: 1978 ident: 10.1016/j.ymthe.2023.01.012_bib23 article-title: Safety of oral vancomycin in functionally anephric patients publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.14.4.634 – volume: 16 start-page: 9 year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib13 article-title: Radiotherapy and the gut microbiome: facts and fiction publication-title: Radiat. Oncol. doi: 10.1186/s13014-020-01735-9 – volume: 43 start-page: 4041 year: 2005 ident: 10.1016/j.ymthe.2023.01.012_bib39 article-title: Biochemical differentiation and comparison of Desulfovibrio species and other phenotypically similar genera publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.43.8.4041-4045.2005 – volume: 57 start-page: 289 year: 1995 ident: 10.1016/j.ymthe.2023.01.012_bib56 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 11 start-page: 5206 year: 2020 ident: 10.1016/j.ymthe.2023.01.012_bib11 article-title: Health and disease markers correlate with gut microbiome composition across thousands of people publication-title: Nat. Commun. doi: 10.1038/s41467-020-18871-1 – volume: 7 start-page: 14516 year: 2017 ident: 10.1016/j.ymthe.2023.01.012_bib48 article-title: Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells publication-title: Sci. Rep. doi: 10.1038/s41598-017-15099-w – volume: 11 start-page: 521 year: 2019 ident: 10.1016/j.ymthe.2023.01.012_bib51 article-title: Dendritic cells and cancer: from biology to therapeutic intervention publication-title: Cancers (Basel) doi: 10.3390/cancers11040521 – volume: 2 start-page: 226 year: 1978 ident: 10.1016/j.ymthe.2023.01.012_bib24 article-title: ORAL vancomycin for antibiotic-associated pseudomembranous colitis publication-title: Lancet doi: 10.1016/S0140-6736(78)91741-5 – volume: 2 start-page: 217 year: 2014 ident: 10.1016/j.ymthe.2023.01.012_bib21 article-title: Vancomycin revisited – 60 Years later publication-title: Front. Public Health doi: 10.3389/fpubh.2014.00217 – volume: 3 start-page: 95ra73 year: 2011 ident: 10.1016/j.ymthe.2023.01.012_bib58 article-title: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3002842 – volume: 359 start-page: 97 year: 2018 ident: 10.1016/j.ymthe.2023.01.012_bib17 article-title: Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients publication-title: Science doi: 10.1126/science.aan4236 – volume: 359 start-page: 91 year: 2018 ident: 10.1016/j.ymthe.2023.01.012_bib16 article-title: Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors publication-title: Science doi: 10.1126/science.aan3706 – volume: 11 start-page: 6217 year: 2020 ident: 10.1016/j.ymthe.2023.01.012_bib47 article-title: Deciphering functional redundancy in the human microbiome publication-title: Nat. Commun. doi: 10.1038/s41467-020-19940-1 – volume: 10 start-page: 858 year: 2019 ident: 10.1016/j.ymthe.2023.01.012_bib54 article-title: pathfindR: an R package for comprehensive identification of enriched pathways in omics data through active subnetworks publication-title: Front. Genet. doi: 10.3389/fgene.2019.00858 – year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib20 article-title: The intestinal microbiota correlates with response and toxicity after CAR T cell therapy in patients with B-cell malignancies – volume: 20 start-page: 651 year: 2020 ident: 10.1016/j.ymthe.2023.01.012_bib2 article-title: A guide to cancer immunotherapy: from T cell basic science to clinical practice publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0306-5 – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib42 article-title: CAR-T cell therapy: current limitations and potential strategies publication-title: Blood Cancer J. doi: 10.1038/s41408-021-00459-7 – volume: 9 start-page: e001636 year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib57 article-title: Combination of vasculature targeting, hypofractionated radiotherapy, and immune checkpoint inhibitor elicits potent antitumor immune response and blocks tumor progression publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2020-001636 – volume: 10 start-page: 2965 year: 2019 ident: 10.1016/j.ymthe.2023.01.012_bib1 article-title: The intriguing history of cancer immunotherapy publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02965 – volume: 18 start-page: 90 year: 2020 ident: 10.1016/j.ymthe.2023.01.012_bib14 article-title: Intestinal microbiota: a new force in cancer immunotherapy publication-title: Cell Commun. Signal. doi: 10.1186/s12964-020-00599-6 – volume: 10 start-page: 3587 year: 2021 ident: 10.1016/j.ymthe.2023.01.012_bib29 article-title: The functional and mechanistic roles of immunoproteasome subunits in cancer publication-title: Cells doi: 10.3390/cells10123587 – volume: 169 start-page: 3908 year: 2002 ident: 10.1016/j.ymthe.2023.01.012_bib36 article-title: Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen publication-title: J. Immunol. doi: 10.4049/jimmunol.169.7.3908 – volume: 10 start-page: 760 year: 2019 ident: 10.1016/j.ymthe.2023.01.012_bib46 article-title: The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes publication-title: Nat. Commun. doi: 10.1038/s41467-019-08711-2 – volume: 228 start-page: 130 year: 2004 ident: 10.1016/j.ymthe.2023.01.012_bib30 article-title: Role of TAP-1 and/or TAP-2 antigen presentation defects in tumorigenicity of mouse melanoma publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2004.04.006 – volume: 23 start-page: 167 year: 1989 ident: 10.1016/j.ymthe.2023.01.012_bib25 article-title: Comparison of two oral formulations of vancomycin for treatment of diarrhoea associated with Clostridium difficile publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/23.1.167 – volume: 132 start-page: 4220 year: 2018 ident: 10.1016/j.ymthe.2023.01.012_bib44 article-title: Radiation therapy as a bridging strategy for refractory diffuse large B cell lymphoma patients awaiting CAR T manufacturing of axicabtagene ciloleucel publication-title: Blood doi: 10.1182/blood-2018-99-117133 – volume: 3 start-page: e94952 year: 2018 ident: 10.1016/j.ymthe.2023.01.012_bib19 article-title: Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12 publication-title: JCI Insight doi: 10.1172/jci.insight.94952 – volume: 378 start-page: 439 year: 2018 ident: 10.1016/j.ymthe.2023.01.012_bib3 article-title: Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1709866 – volume: 20 start-page: 3025 year: 2017 ident: 10.1016/j.ymthe.2023.01.012_bib28 article-title: Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.002 – volume: 17 start-page: 219 year: 2017 ident: 10.1016/j.ymthe.2023.01.012_bib10 article-title: Dysbiosis and the immune system publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.7 |
SSID | ssj0011596 |
Score | 2.549518 |
Snippet | Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this... Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 686 |
SubjectTerms | Animals antigen cross-presentation Antigens, CD19 CAR T cell Cross-Priming Gastrointestinal Microbiome gut microbiota Humans Immunotherapy Immunotherapy, Adoptive - methods Mice Original Receptors, Antigen, T-Cell - genetics Receptors, Chimeric Antigen - genetics T-Lymphocytes vancomycin Vancomycin - pharmacology |
Title | Modulation of the gut microbiota engages antigen cross-presentation to enhance antitumor effects of CAR T cell immunotherapy |
URI | https://dx.doi.org/10.1016/j.ymthe.2023.01.012 https://www.ncbi.nlm.nih.gov/pubmed/36641624 https://www.proquest.com/docview/2765778014 https://pubmed.ncbi.nlm.nih.gov/PMC10014349 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGENNuEIy_8icjsauQqokTp72sKlABlYvRSruLEsfeMrVJVVKkTeIdeASehSfjnNj5o2wCpCqqnMR2cr7Yn-1zPhPyeqRUMlLCsWNfSBsY8cAeSse1uWJMMV8kgzJ8bPaJTxfeh1P_dG_ve8traVvEfXH1x7iS_7EqpIFdMUr2HyxbZwoJ8B_sC0ewMBz_ysazPDG7b1VL_WfbwlqlWlypiCyZnUUo4gCvD1U3rbJPtNdNyFGG3FNm5yZwAP0GVqgB3nh5TMYn1vx44h6PBzjJb6UYUGLCtjpLwrNqo12r6CoVLDZpLO2p3EC3eKVd9TcybSYCpN5Y2PqcLr82ySdb9Msy4UQib5a6cBIZ6isz7YcQLaE9i9qTFy5rvLf60jS4rm8jUWi3yKZfSNsD9rJ55Vo2e6fZ1zMQF_3LFTxhHwsqtVi1g3YLCOtViQTGOfBQU2ZXbbs6dYvcdgNgY0iz33-s16WA_PFKu6r0Etwp8ZAcVHlcR3V2hzK_e-S2KM78HrlrxiZ0rIF2n-zJ7Ijc0buVXh6Rg5nxw3hAvjXIo7miUDkKyKMN8qhBHjXIo7vIo0VODfJojTxqkIe5AvLo_OcPRB3toO4hWbx7O59MbbORhy08PijsOPEjLmIOPW_AcEgsAifxhR9EXHnSdaRK4gCIOLBjJhMgTIL7ykmGzFPOaKQc9ojsZ3kmnxCaREEcAy-VPIKBsBrGahQJNpQchv0yYE6PuNU7D4VRucfNVpZh5c54EZY2C9Fm4cCBn9sjb-qb1lrk5ebLeWXM0PBUzT9DwOPNN76qTB9CK47vDz6XfPslBKz5QYBKTj3yWEOhrkkFpx4ZdkBSX4AK8d0zWXpeKsWjwJrHvNHTazN9Rg6b7_I52S82W_kCaHYRvyyR_wua0dn1 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+the+gut+microbiota+engages+antigen+cross-presentation+to+enhance+antitumor+effects+of+CAR+T%C2%A0cell+immunotherapy&rft.jtitle=Molecular+therapy&rft.au=Uribe-Herranz%2C+Mireia&rft.au=Beghi%2C+Silvia&rft.au=Ruella%2C+Marco&rft.au=Parvathaneni%2C+Kalpana&rft.date=2023-03-01&rft.eissn=1525-0024&rft.volume=31&rft.issue=3&rft.spage=686&rft_id=info:doi/10.1016%2Fj.ymthe.2023.01.012&rft_id=info%3Apmid%2F36641624&rft.externalDocID=36641624 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-0016&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-0016&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-0016&client=summon |