Modulation of the gut microbiota engages antigen cross-presentation to enhance antitumor effects of CAR T cell immunotherapy

Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy Vol. 31; no. 3; pp. 686 - 700
Main Authors Uribe-Herranz, Mireia, Beghi, Silvia, Ruella, Marco, Parvathaneni, Kalpana, Salaris, Silvano, Kostopoulos, Nektarios, George, Subin S., Pierini, Stefano, Krimitza, Elisavet, Costabile, Francesca, Ghilardi, Guido, Amelsberg, Kimberly V., Lee, Yong Gu, Pajarillo, Raymone, Markmann, Caroline, McGettigan-Croce, Bevin, Agarwal, Divyansh, Frey, Noelle, Lacey, Simon F., Scholler, John, Gabunia, Khatuna, Wu, Gary, Chong, Elise, Porter, David L., June, Carl H., Schuster, Stephen J., Bhoj, Vijay, Facciabene, Andrea
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2023
American Society of Gene & Cell Therapy
Subjects
Online AccessGet full text
ISSN1525-0016
1525-0024
1525-0024
DOI10.1016/j.ymthe.2023.01.012

Cover

Abstract Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types. [Display omitted] CAR T cell immunotherapy has transformed the treatment of B cell malignancies. However, a significant subset of patients fail to respond. The gut microbiome influences the response to cancer immunotherapies. We extend our mechanistic understanding, demonstrating that gut microbiome modulation enhances CAR T therapy by promoting CAR T and endogenous T cell responses.
AbstractList Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types.Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types.
Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types. [Display omitted] CAR T cell immunotherapy has transformed the treatment of B cell malignancies. However, a significant subset of patients fail to respond. The gut microbiome influences the response to cancer immunotherapies. We extend our mechanistic understanding, demonstrating that gut microbiome modulation enhances CAR T therapy by promoting CAR T and endogenous T cell responses.
Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19 -A20 lymphoma and CD19 -B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types.
Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19 + -A20 lymphoma and CD19 + -B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types. CAR T cell immunotherapy has transformed the treatment of B cell malignancies. However, a significant subset of patients fail to respond. The gut microbiome influences the response to cancer immunotherapies. We extend our mechanistic understanding, demonstrating that gut microbiome modulation enhances CAR T therapy by promoting CAR T and endogenous T cell responses.
Author Pierini, Stefano
Frey, Noelle
Wu, Gary
Costabile, Francesca
June, Carl H.
Beghi, Silvia
Pajarillo, Raymone
McGettigan-Croce, Bevin
Bhoj, Vijay
Chong, Elise
Scholler, John
Salaris, Silvano
Markmann, Caroline
Agarwal, Divyansh
Porter, David L.
Amelsberg, Kimberly V.
Ruella, Marco
George, Subin S.
Kostopoulos, Nektarios
Gabunia, Khatuna
Uribe-Herranz, Mireia
Lee, Yong Gu
Schuster, Stephen J.
Facciabene, Andrea
Ghilardi, Guido
Lacey, Simon F.
Parvathaneni, Kalpana
Krimitza, Elisavet
Author_xml – sequence: 1
  givenname: Mireia
  orcidid: 0000-0002-2618-1116
  surname: Uribe-Herranz
  fullname: Uribe-Herranz, Mireia
  organization: Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 2
  givenname: Silvia
  surname: Beghi
  fullname: Beghi, Silvia
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 3
  givenname: Marco
  surname: Ruella
  fullname: Ruella, Marco
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 4
  givenname: Kalpana
  surname: Parvathaneni
  fullname: Parvathaneni, Kalpana
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 5
  givenname: Silvano
  surname: Salaris
  fullname: Salaris, Silvano
  organization: Unit of Biostatistics, Epidemiology and Public Health, University of Padova, Padova, Italy
– sequence: 6
  givenname: Nektarios
  surname: Kostopoulos
  fullname: Kostopoulos, Nektarios
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 7
  givenname: Subin S.
  surname: George
  fullname: George, Subin S.
  organization: Bioinformatics Core, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 8
  givenname: Stefano
  surname: Pierini
  fullname: Pierini, Stefano
  organization: Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 9
  givenname: Elisavet
  surname: Krimitza
  fullname: Krimitza, Elisavet
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 10
  givenname: Francesca
  surname: Costabile
  fullname: Costabile, Francesca
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 11
  givenname: Guido
  surname: Ghilardi
  fullname: Ghilardi, Guido
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 12
  givenname: Kimberly V.
  surname: Amelsberg
  fullname: Amelsberg, Kimberly V.
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 13
  givenname: Yong Gu
  surname: Lee
  fullname: Lee, Yong Gu
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 14
  givenname: Raymone
  surname: Pajarillo
  fullname: Pajarillo, Raymone
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 15
  givenname: Caroline
  surname: Markmann
  fullname: Markmann, Caroline
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 16
  givenname: Bevin
  surname: McGettigan-Croce
  fullname: McGettigan-Croce, Bevin
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 17
  givenname: Divyansh
  surname: Agarwal
  fullname: Agarwal, Divyansh
  organization: Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 18
  givenname: Noelle
  surname: Frey
  fullname: Frey, Noelle
  organization: Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 19
  givenname: Simon F.
  surname: Lacey
  fullname: Lacey, Simon F.
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 20
  givenname: John
  surname: Scholler
  fullname: Scholler, John
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 21
  givenname: Khatuna
  surname: Gabunia
  fullname: Gabunia, Khatuna
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 22
  givenname: Gary
  surname: Wu
  fullname: Wu, Gary
  organization: Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 23
  givenname: Elise
  surname: Chong
  fullname: Chong, Elise
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 24
  givenname: David L.
  surname: Porter
  fullname: Porter, David L.
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 25
  givenname: Carl H.
  surname: June
  fullname: June, Carl H.
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 26
  givenname: Stephen J.
  surname: Schuster
  fullname: Schuster, Stephen J.
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 27
  givenname: Vijay
  surname: Bhoj
  fullname: Bhoj, Vijay
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
– sequence: 28
  givenname: Andrea
  orcidid: 0000-0002-9563-297X
  surname: Facciabene
  fullname: Facciabene, Andrea
  email: andrea.facciabene@pennmedicine.upenn.edu
  organization: Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36641624$$D View this record in MEDLINE/PubMed
BookMark eNp9Ud2K1DAYDbLi7o4-gSC59KZjkybp9EJkGfyDFUHW65CmXzoZ2mRM0oW58F18Fp_MdLq7qBcLHyTwnZ_knEt05rwDhF6Sck1KIt7s18cx7WBNS1qtS5KHPkEXhFNelCVlZw93Is7RZYz7fCO8Ec_QeSUEI4KyC_Tzi--mQSXrHfYGZz3cTwmPVgffWp8UBterHiJWLtkeHM6LGItDgAguLcTkM2qnnIYTKk2jDxiMAZ3irLq9-oZvfv_SMAzYjuPkfPYJ6nB8jp4aNUR4cXeu0PcP72-2n4rrrx8_b6-uC81EmYq240roVmxqUVecl1zXpOOa10oYBpSA6dqaCypYVUFHN0wLbki3qZghTWNItULvFt3D1I7Q6fzyoAZ5CHZU4Si9svLfjbM72ftbSXJmrGJNVnh9pxD8jwlikqON84eUAz9FSWvB63ozo1fo1d9mDy73oWdAswBOUQYwUtslyexth2wq54LlXp4KlnPBsiR5aOZW_3Hv5R9nvV1YkEO-tRBk1BZyX50NuSTZefso_w-UL8Q5
CitedBy_id crossref_primary_10_1182_blood_2024024219
crossref_primary_10_3390_ijms26020856
crossref_primary_10_1016_j_intimp_2024_111553
crossref_primary_10_1182_blood_2023021174
crossref_primary_10_1016_j_autrev_2025_103807
crossref_primary_10_1186_s12967_024_05762_y
crossref_primary_10_1038_s41417_024_00752_0
crossref_primary_10_3389_fimmu_2024_1471273
crossref_primary_10_1007_s12032_024_02416_3
crossref_primary_10_1182_bloodadvances_2024012599
crossref_primary_10_1126_sciimmunol_adn6509
crossref_primary_10_1080_19490976_2023_2229567
crossref_primary_10_1073_pnas_2403002121
crossref_primary_10_1080_14712598_2024_2371543
crossref_primary_10_1146_annurev_cancerbio_062722_035210
crossref_primary_10_1038_s41571_023_00832_4
crossref_primary_10_1016_j_jtct_2023_04_007
crossref_primary_10_1097_HS9_0000000000000950
crossref_primary_10_3389_fcimb_2024_1412035
crossref_primary_10_3390_cancers15184426
crossref_primary_10_1016_j_lfs_2024_123281
crossref_primary_10_1053_j_seminhematol_2024_10_006
crossref_primary_10_3390_cancers15082352
Cites_doi 10.1038/s41423-020-00625-0
10.1056/NEJMoa1914347
10.1146/annurev-immunol-032713-120204
10.1182/blood-2013-12-545772
10.1038/s41467-021-24331-1
10.1038/nri2575
10.1186/s13287-020-02128-1
10.3109/00365548.2010.544671
10.3389/fimmu.2018.01643
10.1126/science.abf3363
10.1056/NEJMoa1804980
10.1200/JCO.19.01892
10.1172/JCI124332
10.1038/s41591-021-01406-6
10.1038/s41467-020-19833-3
10.3389/fimmu.2013.00371
10.1158/1078-0432.CCR-15-0685
10.1126/science.abb5920
10.1016/S0140-6736(20)31366-0
10.1084/jem.20201915
10.1038/s41577-019-0268-7
10.1056/NEJMoa1707447
10.1038/ni.3197
10.1016/j.canlet.2019.01.015
10.1056/NEJMc2030164
10.1172/jci.insight.92522
10.1128/AAC.14.4.634
10.1186/s13014-020-01735-9
10.1128/JCM.43.8.4041-4045.2005
10.1111/j.2517-6161.1995.tb02031.x
10.1038/s41467-020-18871-1
10.1038/s41598-017-15099-w
10.3390/cancers11040521
10.1016/S0140-6736(78)91741-5
10.3389/fpubh.2014.00217
10.1126/scitranslmed.3002842
10.1126/science.aan4236
10.1126/science.aan3706
10.1038/s41467-020-19940-1
10.3389/fgene.2019.00858
10.1038/s41577-020-0306-5
10.1038/s41408-021-00459-7
10.1136/jitc-2020-001636
10.3389/fimmu.2019.02965
10.1186/s12964-020-00599-6
10.3390/cells10123587
10.4049/jimmunol.169.7.3908
10.1038/s41467-019-08711-2
10.1016/j.cellimm.2004.04.006
10.1093/jac/23.1.167
10.1182/blood-2018-99-117133
10.1172/jci.insight.94952
10.1056/NEJMoa1709866
10.1016/j.celrep.2017.09.002
10.1038/nri.2017.7
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Inc.
2023. 2023
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Inc.
– notice: 2023. 2023
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.ymthe.2023.01.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1525-0024
EndPage 700
ExternalDocumentID PMC10014349
36641624
10_1016_j_ymthe_2023_01_012
S1525001623000126
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA206012
– fundername: NCI NIH HHS
  grantid: R01 CA219871
GroupedDBID ---
0R~
123
29M
2WC
36B
39C
4.4
53G
6I.
7X7
8FE
8FH
AACTN
AAEDW
AAFTH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ABUDA
ACGFO
ACGFS
ACPRK
ADBBV
ADFRT
ADVLN
AENEX
AFTJW
AGAYW
AHMBA
AITUG
AKAPO
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
BENPR
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
F5P
FDB
FEDTE
FRP
FYUFA
GX1
HVGLF
HYE
HZ~
JIG
KQ8
LG5
LK8
M41
M7P
O9-
OK1
P2P
PROAC
RNTTT
RPM
SSZ
TR2
W2D
--K
1B1
88E
8FI
8FJ
AAYWO
AAYXX
ABAWZ
ABDGV
ABUWG
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFKRA
AFPUW
AGCQF
AIGII
AKBMS
AKYEP
APXCP
BBNVY
BHPHI
CAG
CCPQU
CITATION
COF
EJD
EMB
EMOBN
HCIFZ
HMCUK
IHE
JSO
M1P
NQ-
PHGZM
PHGZT
PQQKQ
PSQYO
RIG
RNS
ROL
RPZ
SEW
SV3
UHS
UKHRP
XPP
ZMT
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c460t-bd5a6cb6876735505c71d5c57a6f4e21efdb75626433ed284c65f1d834f199f13
ISSN 1525-0016
1525-0024
IngestDate Thu Aug 21 18:35:06 EDT 2025
Fri Sep 05 11:40:07 EDT 2025
Mon Jul 21 05:40:39 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Tue Jul 01 03:53:45 EDT 2025
Sun Apr 06 06:54:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords vancomycin
gut microbiota
antigen cross-presentation
CAR T cell
immunotherapy
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023. Published by Elsevier Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c460t-bd5a6cb6876735505c71d5c57a6f4e21efdb75626433ed284c65f1d834f199f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
ORCID 0000-0002-9563-297X
0000-0002-2618-1116
OpenAccessLink https://dx.doi.org/10.1016/j.ymthe.2023.01.012
PMID 36641624
PQID 2765778014
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10014349
proquest_miscellaneous_2765778014
pubmed_primary_36641624
crossref_citationtrail_10_1016_j_ymthe_2023_01_012
crossref_primary_10_1016_j_ymthe_2023_01_012
elsevier_sciencedirect_doi_10_1016_j_ymthe_2023_01_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular therapy
PublicationTitleAlternate Mol Ther
PublicationYear 2023
Publisher Elsevier Inc
American Society of Gene & Cell Therapy
Publisher_xml – name: Elsevier Inc
– name: American Society of Gene & Cell Therapy
References Kalos, Levine, Porter, Katz, Grupp, Bagg, June (bib58) 2011; 3
Wylie, Macri, Mintern, Waithman (bib51) 2019; 11
Kuhn, Lopez, Li, Cai, Daniyan, Brentjens (bib52) 2020; 11
Benjamini, Hochberg (bib56) 1995; 57
Murphy, Grajales-Reyes, Wu, Tussiwand, Briseño, Iwata, Kretzer, Durai, Murphy (bib53) 2016; 34
Frey, Shaw, Hexner, Pequignot, Gill, Luger, Mangan, Loren, Perl, Maude (bib41) 2020; 38
Rice, Buchan, Stevenson (bib36) 2002; 169
Sterner, Sterner (bib42) 2021; 11
Routy, Le Chatelier, Derosa, Duong, Alou, Daillère, Fluckiger, Messaoudene, Rauber, Roberti (bib16) 2018; 359
Davar, Dzutsev, McCulloch, Rodrigues, Chauvin, Morrison, Deblasio, Menna, Ding, Pagliano (bib38) 2021; 371
Martínez-Lostao, Anel, Pardo (bib26) 2015; 21
Grajales-Reyes, Iwata, Albring, Wu, Tussiwand, Kc, Kretzer, Briseño, Durai, Bagadia (bib34) 2015; 16
Rao, Kupfer, Pagala, Chapnick, Tessler (bib22) 2011; 43
Agrawal, Reemtsma, Bagiella, Oluwole, Braunstein (bib30) 2004; 228
Dobosz, Dzieciątkowski (bib1) 2019; 10
Yang, Hou, Zhang, Liang, Sharma, Zheng, Wang, Torres, Tatebe, Chmura (bib49) 2021; 218
Jain, Chavez, Shah, Khimani, Lazaryan, Davila, Liu, Falchook, Robinson, Kim, Locke (bib44) 2018; 132
Shah, Fry (bib9) 2019; 16
Hansen, Bouvier (bib31) 2009; 9
Abramson, Palomba, Gordon, Lunning, Wang, Arnason, Mehta, Purev, Maloney, Andreadis (bib8) 2020; 396
Liu, Liu, Yue (bib13) 2021; 16
Andrews, Duong, Gopalakrishnan, Iebba, Chen, Derosa, Khan, Cogdill, White, Wong (bib43) 2021; 27
Maude, Laetsch, Buechner, Rives, Boyer, Bittencourt, Bader, Verneris, Stefanski, Myers (bib3) 2018; 378
Neelapu, Locke, Bartlett, Lekakis, Miklos, Jacobson, Braunschweig, Oluwole, Siddiqi, Lin (bib4) 2017; 377
Warren, Citron, Merriam, Goldstein (bib39) 2005; 43
Wang, Munoz, Goy, Locke, Jacobson, Hill, Timmerman, Holmes, Jaglowski, Flinn (bib6) 2020; 382
Smith (bib20) 2021
Schuster, Bishop, Tam, Waller, Borchmann, McGuirk, Jäger, Jaglowski, Andreadis, Westin (bib5) 2019; 380
Chong, Ruella, Schuster (bib7) 2021; 384
Baird (bib25) 1989; 23
Waldman, Fritz, Lenardo (bib2) 2020; 20
Li, Deng, Chu, Zhang (bib15) 2019; 447
Pradhan, Leleux, Liu, Roy (bib33) 2017; 2
Hu, Ren, Luo, Keith, Young, Scholler, Zhao, June (bib28) 2017; 20
Marofi, Motavalli, Safonov, Thangavelu, Yumashev, Alexander, Shomali, Chartrand, Pathak, Jarahian (bib27) 2021; 12
Levy, Kolodziejczyk, Thaiss, Elinav (bib10) 2017; 17
Nastasi, Fredholm, Willerslev-Olsen, Hansen, Bonefeld, Geisler, Andersen, Ødum, Woetmann (bib48) 2017; 7
Gopalakrishnan, Spencer, Nezi, Reuben, Andrews, Karpinets, Prieto, Vicente, Hoffman, Wei (bib17) 2018; 359
Tripathi, Vedpathak, Ostrin (bib29) 2021; 10
Luu, Pautz, Kohl, Singh, Romero, Lucas, Hofmann, Raifer, Vachharajani, Carrascosa (bib46) 2019; 10
Pierini, Mishra, Perales-Linares, Uribe-Herranz, Beghi, Giglio, Pustylnikov, Costabile, Rafail, Amici (bib57) 2021; 9
Blighe (bib55) 2021
Bryan, White (bib23) 1978; 14
Uribe-Herranz, Bittinger, Rafail, Guedan, Pierini, Tanes, Ganetsky, Morgan, Gill, Tanyi (bib19) 2018; 3
Dai, Zhang, Wu, Fang, Shi, Li, Lin, Tang, Wang (bib14) 2020; 18
Uribe-Herranz, Rafail, Beghi, Gil-de-Gómez, Verginadis, Bittinger, Pustylnikov, Pierini, Perales-Linares, Blair (bib18) 2020; 130
Rubinstein, Keynan (bib21) 2014; 2
Tedesco, Markham, Gurwith, Christie, Bartlett (bib24) 1978; 2
Mayer, Ghorbani, Nandan, Dudek, Arnold-Schrauf, Hesse, Berod, Stüve, Puttur, Merad, Sparwasser (bib35) 2014; 124
Luu, Riester, Baldrich, Reichardt, Yuille, Busetti, Klein, Wempe, Leister, Raifer (bib45) 2021; 12
Embgenbroich, Burgdorf (bib50) 2018; 9
Caruso, Lo, Núñez (bib12) 2020; 20
Baruch, Youngster, Ben-Betzalel, Ortenberg, Lahat, Katz, Adler, Dick-Necula, Raskin, Bloch (bib37) 2021; 371
Manor, Dai, Kornilov, Smith, Price, Lovejoy, Gibbons, Magis (bib11) 2020; 11
Ulgen, Ozisik, Sezerman (bib54) 2019; 10
Chmielewski, Hombach, Abken (bib32) 2013; 4
Kim (bib40) 2021; 18
Tian, Wang, Wu, Fan, Friedman, Dahlin, Waldor, Weinstock, Weiss, Liu (bib47) 2020; 11
Warren (10.1016/j.ymthe.2023.01.012_bib39) 2005; 43
Wang (10.1016/j.ymthe.2023.01.012_bib6) 2020; 382
Uribe-Herranz (10.1016/j.ymthe.2023.01.012_bib19) 2018; 3
Kalos (10.1016/j.ymthe.2023.01.012_bib58) 2011; 3
Jain (10.1016/j.ymthe.2023.01.012_bib44) 2018; 132
Luu (10.1016/j.ymthe.2023.01.012_bib45) 2021; 12
Marofi (10.1016/j.ymthe.2023.01.012_bib27) 2021; 12
Waldman (10.1016/j.ymthe.2023.01.012_bib2) 2020; 20
Luu (10.1016/j.ymthe.2023.01.012_bib46) 2019; 10
Rao (10.1016/j.ymthe.2023.01.012_bib22) 2011; 43
Benjamini (10.1016/j.ymthe.2023.01.012_bib56) 1995; 57
Dobosz (10.1016/j.ymthe.2023.01.012_bib1) 2019; 10
Caruso (10.1016/j.ymthe.2023.01.012_bib12) 2020; 20
Agrawal (10.1016/j.ymthe.2023.01.012_bib30) 2004; 228
Sterner (10.1016/j.ymthe.2023.01.012_bib42) 2021; 11
Andrews (10.1016/j.ymthe.2023.01.012_bib43) 2021; 27
Liu (10.1016/j.ymthe.2023.01.012_bib13) 2021; 16
Shah (10.1016/j.ymthe.2023.01.012_bib9) 2019; 16
Rice (10.1016/j.ymthe.2023.01.012_bib36) 2002; 169
Ulgen (10.1016/j.ymthe.2023.01.012_bib54) 2019; 10
Kuhn (10.1016/j.ymthe.2023.01.012_bib52) 2020; 11
Rubinstein (10.1016/j.ymthe.2023.01.012_bib21) 2014; 2
Davar (10.1016/j.ymthe.2023.01.012_bib38) 2021; 371
Pierini (10.1016/j.ymthe.2023.01.012_bib57) 2021; 9
Routy (10.1016/j.ymthe.2023.01.012_bib16) 2018; 359
Neelapu (10.1016/j.ymthe.2023.01.012_bib4) 2017; 377
Hu (10.1016/j.ymthe.2023.01.012_bib28) 2017; 20
Tian (10.1016/j.ymthe.2023.01.012_bib47) 2020; 11
Tedesco (10.1016/j.ymthe.2023.01.012_bib24) 1978; 2
Martínez-Lostao (10.1016/j.ymthe.2023.01.012_bib26) 2015; 21
Smith (10.1016/j.ymthe.2023.01.012_bib20) 2021
Dai (10.1016/j.ymthe.2023.01.012_bib14) 2020; 18
Kim (10.1016/j.ymthe.2023.01.012_bib40) 2021; 18
Nastasi (10.1016/j.ymthe.2023.01.012_bib48) 2017; 7
Abramson (10.1016/j.ymthe.2023.01.012_bib8) 2020; 396
Maude (10.1016/j.ymthe.2023.01.012_bib3) 2018; 378
Li (10.1016/j.ymthe.2023.01.012_bib15) 2019; 447
Yang (10.1016/j.ymthe.2023.01.012_bib49) 2021; 218
Mayer (10.1016/j.ymthe.2023.01.012_bib35) 2014; 124
Pradhan (10.1016/j.ymthe.2023.01.012_bib33) 2017; 2
Gopalakrishnan (10.1016/j.ymthe.2023.01.012_bib17) 2018; 359
Chong (10.1016/j.ymthe.2023.01.012_bib7) 2021; 384
Bryan (10.1016/j.ymthe.2023.01.012_bib23) 1978; 14
Tripathi (10.1016/j.ymthe.2023.01.012_bib29) 2021; 10
Baruch (10.1016/j.ymthe.2023.01.012_bib37) 2021; 371
Murphy (10.1016/j.ymthe.2023.01.012_bib53) 2016; 34
Uribe-Herranz (10.1016/j.ymthe.2023.01.012_bib18) 2020; 130
Blighe (10.1016/j.ymthe.2023.01.012_bib55) 2021
Embgenbroich (10.1016/j.ymthe.2023.01.012_bib50) 2018; 9
Chmielewski (10.1016/j.ymthe.2023.01.012_bib32) 2013; 4
Wylie (10.1016/j.ymthe.2023.01.012_bib51) 2019; 11
Baird (10.1016/j.ymthe.2023.01.012_bib25) 1989; 23
Hansen (10.1016/j.ymthe.2023.01.012_bib31) 2009; 9
Frey (10.1016/j.ymthe.2023.01.012_bib41) 2020; 38
Schuster (10.1016/j.ymthe.2023.01.012_bib5) 2019; 380
Levy (10.1016/j.ymthe.2023.01.012_bib10) 2017; 17
Grajales-Reyes (10.1016/j.ymthe.2023.01.012_bib34) 2015; 16
Manor (10.1016/j.ymthe.2023.01.012_bib11) 2020; 11
References_xml – volume: 20
  start-page: 651
  year: 2020
  end-page: 668
  ident: bib2
  article-title: A guide to cancer immunotherapy: from T cell basic science to clinical practice
  publication-title: Nat. Rev. Immunol.
– volume: 2
  start-page: 217
  year: 2014
  ident: bib21
  article-title: Vancomycin revisited – 60 Years later
  publication-title: Front. Public Health
– volume: 16
  start-page: 372
  year: 2019
  end-page: 385
  ident: bib9
  article-title: Mechanisms of resistance to CAR T cell therapy
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 380
  start-page: 45
  year: 2019
  end-page: 56
  ident: bib5
  article-title: Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma
  publication-title: N. Engl. J. Med.
– volume: 132
  start-page: 4220
  year: 2018
  ident: bib44
  article-title: Radiation therapy as a bridging strategy for refractory diffuse large B cell lymphoma patients awaiting CAR T manufacturing of axicabtagene ciloleucel
  publication-title: Blood
– volume: 14
  start-page: 634
  year: 1978
  end-page: 635
  ident: bib23
  article-title: Safety of oral vancomycin in functionally anephric patients
  publication-title: Antimicrob. Agents Chemother.
– volume: 11
  start-page: 521
  year: 2019
  ident: bib51
  article-title: Dendritic cells and cancer: from biology to therapeutic intervention
  publication-title: Cancers (Basel)
– volume: 382
  start-page: 1331
  year: 2020
  end-page: 1342
  ident: bib6
  article-title: KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma
  publication-title: N. Engl. J. Med.
– volume: 10
  start-page: 760
  year: 2019
  ident: bib46
  article-title: The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes
  publication-title: Nat. Commun.
– volume: 10
  start-page: 3587
  year: 2021
  ident: bib29
  article-title: The functional and mechanistic roles of immunoproteasome subunits in cancer
  publication-title: Cells
– volume: 43
  start-page: 4041
  year: 2005
  end-page: 4045
  ident: bib39
  article-title: Biochemical differentiation and comparison of Desulfovibrio species and other phenotypically similar genera
  publication-title: J. Clin. Microbiol.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib42
  article-title: CAR-T cell therapy: current limitations and potential strategies
  publication-title: Blood Cancer J.
– volume: 10
  start-page: 2965
  year: 2019
  ident: bib1
  article-title: The intriguing history of cancer immunotherapy
  publication-title: Front. Immunol.
– volume: 11
  start-page: 6217
  year: 2020
  ident: bib47
  article-title: Deciphering functional redundancy in the human microbiome
  publication-title: Nat. Commun.
– volume: 7
  start-page: 14516
  year: 2017
  ident: bib48
  article-title: Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells
  publication-title: Sci. Rep.
– volume: 4
  start-page: 371
  year: 2013
  ident: bib32
  article-title: Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells
  publication-title: Front. Immunol.
– volume: 18
  start-page: 90
  year: 2020
  ident: bib14
  article-title: Intestinal microbiota: a new force in cancer immunotherapy
  publication-title: Cell Commun. Signal.
– volume: 3
  start-page: 95ra73
  year: 2011
  ident: bib58
  article-title: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia
  publication-title: Sci. Transl. Med.
– volume: 21
  start-page: 5047
  year: 2015
  end-page: 5056
  ident: bib26
  article-title: How do cytotoxic lymphocytes kill cancer cells?
  publication-title: Clin. Cancer Res.
– volume: 124
  start-page: 3081
  year: 2014
  end-page: 3091
  ident: bib35
  article-title: Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow
  publication-title: Blood
– volume: 18
  start-page: 1161
  year: 2021
  end-page: 1171
  ident: bib40
  article-title: Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids
  publication-title: Cell. Mol. Immunol.
– volume: 38
  start-page: 415
  year: 2020
  end-page: 422
  ident: bib41
  article-title: Optimizing chimeric antigen receptor T-cell therapy for adults with acute lymphoblastic leukemia
  publication-title: J. Clin. Oncol.
– volume: 9
  start-page: 503
  year: 2009
  end-page: 513
  ident: bib31
  article-title: MHC class I antigen presentation: learning from viral evasion strategies
  publication-title: Nat. Rev. Immunol.
– volume: 43
  start-page: 386
  year: 2011
  end-page: 388
  ident: bib22
  article-title: Systemic absorption of oral vancomycin in patients with Clostridium difficile infection
  publication-title: Scand. J. Infect. Dis.
– year: 2021
  ident: bib55
  article-title: EnhancedVolcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling
– volume: 16
  start-page: 708
  year: 2015
  end-page: 717
  ident: bib34
  article-title: Batf3 maintains autoactivation of Irf8 for commitment of a CD8α+ conventional DC clonogenic progenitor
  publication-title: Nat. Immunol.
– volume: 11
  start-page: 5206
  year: 2020
  ident: bib11
  article-title: Health and disease markers correlate with gut microbiome composition across thousands of people
  publication-title: Nat. Commun.
– volume: 11
  start-page: 6171
  year: 2020
  ident: bib52
  article-title: CD103+ cDC1 and endogenous CD8+ T cells are necessary for improved CD40L-overexpressing CAR T cell antitumor function
  publication-title: Nat. Commun.
– volume: 371
  start-page: 602
  year: 2021
  end-page: 609
  ident: bib37
  article-title: Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients
  publication-title: Science
– volume: 12
  start-page: 81
  year: 2021
  ident: bib27
  article-title: CAR T cells in solid tumors: challenges and opportunities
  publication-title: Stem Cell Res. Ther.
– volume: 17
  start-page: 219
  year: 2017
  end-page: 232
  ident: bib10
  article-title: Dysbiosis and the immune system
  publication-title: Nat. Rev. Immunol.
– volume: 20
  start-page: 411
  year: 2020
  end-page: 426
  ident: bib12
  article-title: Host–microbiota interactions in inflammatory bowel disease
  publication-title: Nat. Rev. Immunol.
– volume: 10
  start-page: 858
  year: 2019
  ident: bib54
  article-title: pathfindR: an R package for comprehensive identification of enriched pathways in omics data through active subnetworks
  publication-title: Front. Genet.
– volume: 377
  start-page: 2531
  year: 2017
  end-page: 2544
  ident: bib4
  article-title: Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
  publication-title: N. Engl. J. Med.
– volume: 2
  start-page: e92522
  year: 2017
  ident: bib33
  article-title: A simple, clinically relevant therapeutic vaccine shows long-term protection in an aggressive, delayed-treatment B lymphoma model
  publication-title: JCI Insight
– volume: 130
  start-page: 466
  year: 2020
  end-page: 479
  ident: bib18
  article-title: Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response
  publication-title: J. Clin. Invest.
– volume: 16
  start-page: 9
  year: 2021
  ident: bib13
  article-title: Radiotherapy and the gut microbiome: facts and fiction
  publication-title: Radiat. Oncol.
– volume: 34
  start-page: 93
  year: 2016
  end-page: 119
  ident: bib53
  article-title: Transcriptional control of dendritic cell development
  publication-title: Annu. Rev. Immunol.
– volume: 20
  start-page: 3025
  year: 2017
  end-page: 3033
  ident: bib28
  article-title: Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18
  publication-title: Cell Rep.
– year: 2021
  ident: bib20
  article-title: The intestinal microbiota correlates with response and toxicity after CAR T cell therapy in patients with B-cell malignancies
  publication-title: In (ASH)
– volume: 12
  start-page: 4077
  year: 2021
  ident: bib45
  article-title: Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer
  publication-title: Nat. Commun.
– volume: 2
  start-page: 226
  year: 1978
  end-page: 228
  ident: bib24
  article-title: ORAL vancomycin for antibiotic-associated pseudomembranous colitis
  publication-title: Lancet
– volume: 378
  start-page: 439
  year: 2018
  end-page: 448
  ident: bib3
  article-title: Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
  publication-title: N. Engl. J. Med.
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib56
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 371
  start-page: 595
  year: 2021
  end-page: 602
  ident: bib38
  article-title: Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients
  publication-title: Science
– volume: 9
  start-page: e001636
  year: 2021
  ident: bib57
  article-title: Combination of vasculature targeting, hypofractionated radiotherapy, and immune checkpoint inhibitor elicits potent antitumor immune response and blocks tumor progression
  publication-title: J. Immunother. Cancer
– volume: 169
  start-page: 3908
  year: 2002
  end-page: 3913
  ident: bib36
  article-title: Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen
  publication-title: J. Immunol.
– volume: 359
  start-page: 91
  year: 2018
  end-page: 97
  ident: bib16
  article-title: Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors
  publication-title: Science
– volume: 9
  start-page: 1643
  year: 2018
  ident: bib50
  article-title: Current concepts of antigen cross-presentation
  publication-title: Front. Immunol.
– volume: 384
  start-page: 673
  year: 2021
  end-page: 674
  ident: bib7
  article-title: Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy
  publication-title: N. Engl. J. Med.
– volume: 3
  start-page: e94952
  year: 2018
  ident: bib19
  article-title: Gut microbiota modulates adoptive cell therapy via CD8
  publication-title: JCI Insight
– volume: 27
  start-page: 1432
  year: 2021
  end-page: 1441
  ident: bib43
  article-title: Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade
  publication-title: Nat. Med.
– volume: 23
  start-page: 167
  year: 1989
  end-page: 169
  ident: bib25
  article-title: Comparison of two oral formulations of vancomycin for treatment of diarrhoea associated with Clostridium difficile
  publication-title: J. Antimicrob. Chemother.
– volume: 359
  start-page: 97
  year: 2018
  end-page: 103
  ident: bib17
  article-title: Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients
  publication-title: Science
– volume: 447
  start-page: 41
  year: 2019
  end-page: 47
  ident: bib15
  article-title: Gut microbiome and cancer immunotherapy
  publication-title: Cancer Lett.
– volume: 228
  start-page: 130
  year: 2004
  end-page: 137
  ident: bib30
  article-title: Role of TAP-1 and/or TAP-2 antigen presentation defects in tumorigenicity of mouse melanoma
  publication-title: Cell. Immunol.
– volume: 396
  start-page: 839
  year: 2020
  end-page: 852
  ident: bib8
  article-title: Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study
  publication-title: Lancet
– volume: 218
  start-page: e20201915
  year: 2021
  ident: bib49
  article-title: Suppression of local type I interferon by gut microbiota–derived butyrate impairs antitumor effects of ionizing radiation
  publication-title: J. Exp. Med.
– volume: 18
  start-page: 1161
  year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib40
  article-title: Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/s41423-020-00625-0
– volume: 382
  start-page: 1331
  year: 2020
  ident: 10.1016/j.ymthe.2023.01.012_bib6
  article-title: KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1914347
– volume: 34
  start-page: 93
  year: 2016
  ident: 10.1016/j.ymthe.2023.01.012_bib53
  article-title: Transcriptional control of dendritic cell development
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032713-120204
– volume: 124
  start-page: 3081
  year: 2014
  ident: 10.1016/j.ymthe.2023.01.012_bib35
  article-title: Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow
  publication-title: Blood
  doi: 10.1182/blood-2013-12-545772
– volume: 12
  start-page: 4077
  year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib45
  article-title: Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24331-1
– volume: 9
  start-page: 503
  year: 2009
  ident: 10.1016/j.ymthe.2023.01.012_bib31
  article-title: MHC class I antigen presentation: learning from viral evasion strategies
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2575
– volume: 12
  start-page: 81
  year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib27
  article-title: CAR T cells in solid tumors: challenges and opportunities
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-020-02128-1
– volume: 43
  start-page: 386
  year: 2011
  ident: 10.1016/j.ymthe.2023.01.012_bib22
  article-title: Systemic absorption of oral vancomycin in patients with Clostridium difficile infection
  publication-title: Scand. J. Infect. Dis.
  doi: 10.3109/00365548.2010.544671
– volume: 9
  start-page: 1643
  year: 2018
  ident: 10.1016/j.ymthe.2023.01.012_bib50
  article-title: Current concepts of antigen cross-presentation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01643
– volume: 371
  start-page: 595
  year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib38
  article-title: Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients
  publication-title: Science
  doi: 10.1126/science.abf3363
– volume: 380
  start-page: 45
  year: 2019
  ident: 10.1016/j.ymthe.2023.01.012_bib5
  article-title: Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1804980
– volume: 38
  start-page: 415
  year: 2020
  ident: 10.1016/j.ymthe.2023.01.012_bib41
  article-title: Optimizing chimeric antigen receptor T-cell therapy for adults with acute lymphoblastic leukemia
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.19.01892
– volume: 130
  start-page: 466
  year: 2020
  ident: 10.1016/j.ymthe.2023.01.012_bib18
  article-title: Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI124332
– volume: 27
  start-page: 1432
  year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib43
  article-title: Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01406-6
– volume: 11
  start-page: 6171
  year: 2020
  ident: 10.1016/j.ymthe.2023.01.012_bib52
  article-title: CD103+ cDC1 and endogenous CD8+ T cells are necessary for improved CD40L-overexpressing CAR T cell antitumor function
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19833-3
– volume: 4
  start-page: 371
  year: 2013
  ident: 10.1016/j.ymthe.2023.01.012_bib32
  article-title: Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2013.00371
– volume: 21
  start-page: 5047
  year: 2015
  ident: 10.1016/j.ymthe.2023.01.012_bib26
  article-title: How do cytotoxic lymphocytes kill cancer cells?
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-0685
– volume: 371
  start-page: 602
  year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib37
  article-title: Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients
  publication-title: Science
  doi: 10.1126/science.abb5920
– volume: 396
  start-page: 839
  year: 2020
  ident: 10.1016/j.ymthe.2023.01.012_bib8
  article-title: Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)31366-0
– volume: 218
  start-page: e20201915
  year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib49
  article-title: Suppression of local type I interferon by gut microbiota–derived butyrate impairs antitumor effects of ionizing radiation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20201915
– volume: 16
  start-page: 372
  year: 2019
  ident: 10.1016/j.ymthe.2023.01.012_bib9
  article-title: Mechanisms of resistance to CAR T cell therapy
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 20
  start-page: 411
  year: 2020
  ident: 10.1016/j.ymthe.2023.01.012_bib12
  article-title: Host–microbiota interactions in inflammatory bowel disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0268-7
– volume: 377
  start-page: 2531
  year: 2017
  ident: 10.1016/j.ymthe.2023.01.012_bib4
  article-title: Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1707447
– volume: 16
  start-page: 708
  year: 2015
  ident: 10.1016/j.ymthe.2023.01.012_bib34
  article-title: Batf3 maintains autoactivation of Irf8 for commitment of a CD8α+ conventional DC clonogenic progenitor
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3197
– volume: 447
  start-page: 41
  year: 2019
  ident: 10.1016/j.ymthe.2023.01.012_bib15
  article-title: Gut microbiome and cancer immunotherapy
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.01.015
– volume: 384
  start-page: 673
  year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib7
  article-title: Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2030164
– volume: 2
  start-page: e92522
  year: 2017
  ident: 10.1016/j.ymthe.2023.01.012_bib33
  article-title: A simple, clinically relevant therapeutic vaccine shows long-term protection in an aggressive, delayed-treatment B lymphoma model
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.92522
– year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib55
– volume: 14
  start-page: 634
  year: 1978
  ident: 10.1016/j.ymthe.2023.01.012_bib23
  article-title: Safety of oral vancomycin in functionally anephric patients
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.14.4.634
– volume: 16
  start-page: 9
  year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib13
  article-title: Radiotherapy and the gut microbiome: facts and fiction
  publication-title: Radiat. Oncol.
  doi: 10.1186/s13014-020-01735-9
– volume: 43
  start-page: 4041
  year: 2005
  ident: 10.1016/j.ymthe.2023.01.012_bib39
  article-title: Biochemical differentiation and comparison of Desulfovibrio species and other phenotypically similar genera
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.43.8.4041-4045.2005
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.ymthe.2023.01.012_bib56
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 11
  start-page: 5206
  year: 2020
  ident: 10.1016/j.ymthe.2023.01.012_bib11
  article-title: Health and disease markers correlate with gut microbiome composition across thousands of people
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18871-1
– volume: 7
  start-page: 14516
  year: 2017
  ident: 10.1016/j.ymthe.2023.01.012_bib48
  article-title: Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15099-w
– volume: 11
  start-page: 521
  year: 2019
  ident: 10.1016/j.ymthe.2023.01.012_bib51
  article-title: Dendritic cells and cancer: from biology to therapeutic intervention
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers11040521
– volume: 2
  start-page: 226
  year: 1978
  ident: 10.1016/j.ymthe.2023.01.012_bib24
  article-title: ORAL vancomycin for antibiotic-associated pseudomembranous colitis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(78)91741-5
– volume: 2
  start-page: 217
  year: 2014
  ident: 10.1016/j.ymthe.2023.01.012_bib21
  article-title: Vancomycin revisited – 60 Years later
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2014.00217
– volume: 3
  start-page: 95ra73
  year: 2011
  ident: 10.1016/j.ymthe.2023.01.012_bib58
  article-title: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3002842
– volume: 359
  start-page: 97
  year: 2018
  ident: 10.1016/j.ymthe.2023.01.012_bib17
  article-title: Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients
  publication-title: Science
  doi: 10.1126/science.aan4236
– volume: 359
  start-page: 91
  year: 2018
  ident: 10.1016/j.ymthe.2023.01.012_bib16
  article-title: Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors
  publication-title: Science
  doi: 10.1126/science.aan3706
– volume: 11
  start-page: 6217
  year: 2020
  ident: 10.1016/j.ymthe.2023.01.012_bib47
  article-title: Deciphering functional redundancy in the human microbiome
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19940-1
– volume: 10
  start-page: 858
  year: 2019
  ident: 10.1016/j.ymthe.2023.01.012_bib54
  article-title: pathfindR: an R package for comprehensive identification of enriched pathways in omics data through active subnetworks
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00858
– year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib20
  article-title: The intestinal microbiota correlates with response and toxicity after CAR T cell therapy in patients with B-cell malignancies
– volume: 20
  start-page: 651
  year: 2020
  ident: 10.1016/j.ymthe.2023.01.012_bib2
  article-title: A guide to cancer immunotherapy: from T cell basic science to clinical practice
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0306-5
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib42
  article-title: CAR-T cell therapy: current limitations and potential strategies
  publication-title: Blood Cancer J.
  doi: 10.1038/s41408-021-00459-7
– volume: 9
  start-page: e001636
  year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib57
  article-title: Combination of vasculature targeting, hypofractionated radiotherapy, and immune checkpoint inhibitor elicits potent antitumor immune response and blocks tumor progression
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2020-001636
– volume: 10
  start-page: 2965
  year: 2019
  ident: 10.1016/j.ymthe.2023.01.012_bib1
  article-title: The intriguing history of cancer immunotherapy
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02965
– volume: 18
  start-page: 90
  year: 2020
  ident: 10.1016/j.ymthe.2023.01.012_bib14
  article-title: Intestinal microbiota: a new force in cancer immunotherapy
  publication-title: Cell Commun. Signal.
  doi: 10.1186/s12964-020-00599-6
– volume: 10
  start-page: 3587
  year: 2021
  ident: 10.1016/j.ymthe.2023.01.012_bib29
  article-title: The functional and mechanistic roles of immunoproteasome subunits in cancer
  publication-title: Cells
  doi: 10.3390/cells10123587
– volume: 169
  start-page: 3908
  year: 2002
  ident: 10.1016/j.ymthe.2023.01.012_bib36
  article-title: Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.169.7.3908
– volume: 10
  start-page: 760
  year: 2019
  ident: 10.1016/j.ymthe.2023.01.012_bib46
  article-title: The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08711-2
– volume: 228
  start-page: 130
  year: 2004
  ident: 10.1016/j.ymthe.2023.01.012_bib30
  article-title: Role of TAP-1 and/or TAP-2 antigen presentation defects in tumorigenicity of mouse melanoma
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2004.04.006
– volume: 23
  start-page: 167
  year: 1989
  ident: 10.1016/j.ymthe.2023.01.012_bib25
  article-title: Comparison of two oral formulations of vancomycin for treatment of diarrhoea associated with Clostridium difficile
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/23.1.167
– volume: 132
  start-page: 4220
  year: 2018
  ident: 10.1016/j.ymthe.2023.01.012_bib44
  article-title: Radiation therapy as a bridging strategy for refractory diffuse large B cell lymphoma patients awaiting CAR T manufacturing of axicabtagene ciloleucel
  publication-title: Blood
  doi: 10.1182/blood-2018-99-117133
– volume: 3
  start-page: e94952
  year: 2018
  ident: 10.1016/j.ymthe.2023.01.012_bib19
  article-title: Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.94952
– volume: 378
  start-page: 439
  year: 2018
  ident: 10.1016/j.ymthe.2023.01.012_bib3
  article-title: Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1709866
– volume: 20
  start-page: 3025
  year: 2017
  ident: 10.1016/j.ymthe.2023.01.012_bib28
  article-title: Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.002
– volume: 17
  start-page: 219
  year: 2017
  ident: 10.1016/j.ymthe.2023.01.012_bib10
  article-title: Dysbiosis and the immune system
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.7
SSID ssj0011596
Score 2.549518
Snippet Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this...
Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 686
SubjectTerms Animals
antigen cross-presentation
Antigens, CD19
CAR T cell
Cross-Priming
Gastrointestinal Microbiome
gut microbiota
Humans
Immunotherapy
Immunotherapy, Adoptive - methods
Mice
Original
Receptors, Antigen, T-Cell - genetics
Receptors, Chimeric Antigen - genetics
T-Lymphocytes
vancomycin
Vancomycin - pharmacology
Title Modulation of the gut microbiota engages antigen cross-presentation to enhance antitumor effects of CAR T cell immunotherapy
URI https://dx.doi.org/10.1016/j.ymthe.2023.01.012
https://www.ncbi.nlm.nih.gov/pubmed/36641624
https://www.proquest.com/docview/2765778014
https://pubmed.ncbi.nlm.nih.gov/PMC10014349
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGENNuEIy_8icjsauQqokTp72sKlABlYvRSruLEsfeMrVJVVKkTeIdeASehSfjnNj5o2wCpCqqnMR2cr7Yn-1zPhPyeqRUMlLCsWNfSBsY8cAeSse1uWJMMV8kgzJ8bPaJTxfeh1P_dG_ve8traVvEfXH1x7iS_7EqpIFdMUr2HyxbZwoJ8B_sC0ewMBz_ysazPDG7b1VL_WfbwlqlWlypiCyZnUUo4gCvD1U3rbJPtNdNyFGG3FNm5yZwAP0GVqgB3nh5TMYn1vx44h6PBzjJb6UYUGLCtjpLwrNqo12r6CoVLDZpLO2p3EC3eKVd9TcybSYCpN5Y2PqcLr82ySdb9Msy4UQib5a6cBIZ6isz7YcQLaE9i9qTFy5rvLf60jS4rm8jUWi3yKZfSNsD9rJ55Vo2e6fZ1zMQF_3LFTxhHwsqtVi1g3YLCOtViQTGOfBQU2ZXbbs6dYvcdgNgY0iz33-s16WA_PFKu6r0Etwp8ZAcVHlcR3V2hzK_e-S2KM78HrlrxiZ0rIF2n-zJ7Ijc0buVXh6Rg5nxw3hAvjXIo7miUDkKyKMN8qhBHjXIo7vIo0VODfJojTxqkIe5AvLo_OcPRB3toO4hWbx7O59MbbORhy08PijsOPEjLmIOPW_AcEgsAifxhR9EXHnSdaRK4gCIOLBjJhMgTIL7ykmGzFPOaKQc9ojsZ3kmnxCaREEcAy-VPIKBsBrGahQJNpQchv0yYE6PuNU7D4VRucfNVpZh5c54EZY2C9Fm4cCBn9sjb-qb1lrk5ebLeWXM0PBUzT9DwOPNN76qTB9CK47vDz6XfPslBKz5QYBKTj3yWEOhrkkFpx4ZdkBSX4AK8d0zWXpeKsWjwJrHvNHTazN9Rg6b7_I52S82W_kCaHYRvyyR_wua0dn1
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+the+gut+microbiota+engages+antigen+cross-presentation+to+enhance+antitumor+effects+of+CAR+T%C2%A0cell+immunotherapy&rft.jtitle=Molecular+therapy&rft.au=Uribe-Herranz%2C+Mireia&rft.au=Beghi%2C+Silvia&rft.au=Ruella%2C+Marco&rft.au=Parvathaneni%2C+Kalpana&rft.date=2023-03-01&rft.eissn=1525-0024&rft.volume=31&rft.issue=3&rft.spage=686&rft_id=info:doi/10.1016%2Fj.ymthe.2023.01.012&rft_id=info%3Apmid%2F36641624&rft.externalDocID=36641624
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-0016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-0016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-0016&client=summon