Multi-Node Path Planning of Electric Tractor Based on Improved Whale Optimization Algorithm and Ant Colony Algorithm
Under the “Double Carbon” background, the development of green agricultural machinery is very fast. An important factor that determines the performance of electric farm machinery is the endurance capacity, which is directly related to the running path of farm machinery. The optimized driving path ca...
Saved in:
| Published in | Agriculture (Basel) Vol. 13; no. 3; p. 586 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.03.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2077-0472 2077-0472 |
| DOI | 10.3390/agriculture13030586 |
Cover
| Abstract | Under the “Double Carbon” background, the development of green agricultural machinery is very fast. An important factor that determines the performance of electric farm machinery is the endurance capacity, which is directly related to the running path of farm machinery. The optimized driving path can reduce the operating loss and extend the mileage of agricultural machinery, then multi-node path planning helps to improve the working efficiency of electric tractors. Ant Colony Optimization (ACO) is often used to solve multi-node path planning problems. However, ACO has some problems, such as poor global search ability, few initial pheromones, poor convergence, and weak optimization ability, which is not conducive to obtaining the optimal path. This paper proposes a multi-node path planning algorithm based on Improved Whale Optimized ACO, named IWOA-ACO. The algorithm first introduces reverse learning strategy, nonlinear convergence factor, and adaptive inertia weight factor to improve the global and local convergence ability. Then, an appropriate evaluation function is designed to evaluate the solving process and obtain the best fitting parameters of ACO. Finally, the optimal objective function, fast convergence, and stable operation requirements are achieved through the best fitting parameters to obtain the global path optimization. The simulation results show that in flat environment, the length and energy consumption of IWOA-ACO planned path are the same as those of PSO-ACO, and are 0.61% less than those of WOA-ACO. In addition, in bump environment, the length and energy consumption of IWOA-ACO planned path are 1.91% and 4.32% less than those of PSO-ACO, and are 1.95% and 1.25% less than those of WOA-ACO. Therefore, it is helpful to improve the operating efficiency along with the endurance of electric tractors, which has practical application value. |
|---|---|
| AbstractList | Under the “Double Carbon” background, the development of green agricultural machinery is very fast. An important factor that determines the performance of electric farm machinery is the endurance capacity, which is directly related to the running path of farm machinery. The optimized driving path can reduce the operating loss and extend the mileage of agricultural machinery, then multi-node path planning helps to improve the working efficiency of electric tractors. Ant Colony Optimization (ACO) is often used to solve multi-node path planning problems. However, ACO has some problems, such as poor global search ability, few initial pheromones, poor convergence, and weak optimization ability, which is not conducive to obtaining the optimal path. This paper proposes a multi-node path planning algorithm based on Improved Whale Optimized ACO, named IWOA-ACO. The algorithm first introduces reverse learning strategy, nonlinear convergence factor, and adaptive inertia weight factor to improve the global and local convergence ability. Then, an appropriate evaluation function is designed to evaluate the solving process and obtain the best fitting parameters of ACO. Finally, the optimal objective function, fast convergence, and stable operation requirements are achieved through the best fitting parameters to obtain the global path optimization. The simulation results show that in flat environment, the length and energy consumption of IWOA-ACO planned path are the same as those of PSO-ACO, and are 0.61% less than those of WOA-ACO. In addition, in bump environment, the length and energy consumption of IWOA-ACO planned path are 1.91% and 4.32% less than those of PSO-ACO, and are 1.95% and 1.25% less than those of WOA-ACO. Therefore, it is helpful to improve the operating efficiency along with the endurance of electric tractors, which has practical application value. |
| Audience | Academic |
| Author | Liang, Chuandong Lu, Min Zhao, Mi Pan, Kui |
| Author_xml | – sequence: 1 givenname: Chuandong surname: Liang fullname: Liang, Chuandong – sequence: 2 givenname: Kui surname: Pan fullname: Pan, Kui – sequence: 3 givenname: Mi orcidid: 0000-0002-3046-1612 surname: Zhao fullname: Zhao, Mi – sequence: 4 givenname: Min surname: Lu fullname: Lu, Min |
| BookMark | eNqNUsFu1DAQjVCRKKVfwMUSFy4pdhw7znFZFbpSoT0UcbQc28l65diL4xQtX9_pBgGqkMA-eDQz783MG78sTkIMtiheE3xBaYvfqSE5Pfs8J0soppgJ_qw4rXDTlLhuqpM_7BfF-TTtMJyWUIH5aZE_AdKVn6Ox6FblLbr1KgQXBhR7dOmtzkCO7pLSOSb0Xk3WoBjQZtyneA_2163yFt3ssxvdD5UdxFZ-iMnl7YhUMGgVMlpHH8Phd-BV8bxXfrLnP9-z4suHy7v1VXl983GzXl2XuuY4l4qJxtjeMM64aKm1zGLR0VqQhnLNK90rLozhpDIcC2K7ru4NpTXVxmpREXpWbBZeE9VO7pMbVTrIqJw8OmIapErZaW8l6YnWmFHTMShgWtFwBmSs7WqNq8oAV71wzWGvDt-V978ICZaPi5B_WQTA3i4w0OvbbKcsRzdp60FlG-dJVgIqUcoFg9Q3T1J3cU4BBJJV0xLGcMsfZ7pYsgYQXrrQxwzLgWvs6DT8jN6Bf9XUtOakPnbQLgCd4jQl20vt8nFTAHT-H93TJ9j_mfkBGtrQZQ |
| CitedBy_id | crossref_primary_10_3390_agriculture13040871 crossref_primary_10_3390_agriculture13091686 crossref_primary_10_1016_j_compag_2024_109628 crossref_primary_10_1016_j_iot_2024_101173 crossref_primary_10_59717_j_xinn_energy_2024_100064 crossref_primary_10_1007_s11370_024_00525_6 crossref_primary_10_3390_su16146199 crossref_primary_10_3390_agriculture14091473 crossref_primary_10_3390_electronics13173443 |
| Cites_doi | 10.1016/j.ejor.2022.06.019 10.1002/rob.21908 10.1016/j.swevo.2022.101056 10.1016/j.asoc.2017.07.051 10.3390/agriculture13010056 10.1016/j.asoc.2015.01.067 10.1016/S1881-8366(13)80003-1 10.1016/j.advengsoft.2016.01.008 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI SOI 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/agriculture13030586 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Agricultural Science Database CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 2077-0472 |
| ExternalDocumentID | oai_doaj_org_article_1f1cc053db5348d98765fd359b4c022d 10.3390/agriculture13030586 A743461486 10_3390_agriculture13030586 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI SOI 7S9 L.6 PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c460t-a587defd5656893ee5e08b3481736c62cfa68dd612d6081ebb4fd3343cdec8213 |
| IEDL.DBID | DOA |
| ISSN | 2077-0472 |
| IngestDate | Fri Oct 03 12:52:16 EDT 2025 Sun Oct 26 04:12:09 EDT 2025 Thu Sep 04 19:14:39 EDT 2025 Mon Jun 30 15:12:53 EDT 2025 Mon Oct 20 16:08:30 EDT 2025 Thu Oct 16 04:41:37 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-a587defd5656893ee5e08b3481736c62cfa68dd612d6081ebb4fd3343cdec8213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3046-1612 |
| OpenAccessLink | https://doaj.org/article/1f1cc053db5348d98765fd359b4c022d |
| PQID | 2791550961 |
| PQPubID | 2032441 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1f1cc053db5348d98765fd359b4c022d unpaywall_primary_10_3390_agriculture13030586 proquest_miscellaneous_2887633685 proquest_journals_2791550961 gale_infotracacademiconefile_A743461486 crossref_citationtrail_10_3390_agriculture13030586 crossref_primary_10_3390_agriculture13030586 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Agriculture (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Lei (ref_24) 2020; 34 Lv (ref_25) 2021; 28 Li (ref_21) 2022; 39 Shang (ref_6) 2020; 34 Meng (ref_19) 2021; 44 Wang (ref_13) 2019; 47 Stodola (ref_15) 2022; 70 ref_17 Ellefsen (ref_10) 2017; 61 Yang (ref_23) 2021; 29 Jiang (ref_12) 2015; 35 He (ref_26) 2021; 38 Mirjalili (ref_18) 2016; 95 (ref_11) 2015; 30 Wang (ref_4) 2020; 51 Yuan (ref_16) 2022; 34 Jing (ref_5) 2020; 51 Li (ref_20) 2021; 32 Bing (ref_2) 2021; 07 Ueka (ref_3) 2013; 6 Ljungqvist (ref_7) 2019; 36 ref_29 ref_28 ref_27 Zhang (ref_1) 2012; 34 ref_9 ref_8 Huang (ref_22) 2019; 55 Morin (ref_14) 2023; 305 |
| References_xml | – ident: ref_28 – volume: 29 start-page: 187 year: 2021 ident: ref_23 article-title: Improved whale optimization algorithm and application in path planning publication-title: Comput. Meas. Control – ident: ref_9 – volume: 35 start-page: 114 year: 2015 ident: ref_12 article-title: Improved ant colony algorithm for travelling salesman problem publication-title: J. Comput. Appl. – volume: 305 start-page: 53 year: 2023 ident: ref_14 article-title: Ant colony optimization for path planning in search and rescue operations publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2022.06.019 – volume: 51 start-page: 92 year: 2020 ident: ref_4 article-title: Path planning approach based on improved ant colony optimization for sprayer UAV publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 51 start-page: 333 year: 2020 ident: ref_5 article-title: Three dimensional path planning method for navigation of farmland leveling based on improved ant colony algorithm publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 36 start-page: 1345 year: 2019 ident: ref_7 article-title: A path planning and path-following control framework for a general 2-trailer with a car-like tractor publication-title: J. Field Robot. doi: 10.1002/rob.21908 – volume: 70 start-page: 101056 year: 2022 ident: ref_15 article-title: Adaptive ant Colony optimization with node clustering applied to the travelling salesman problem publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2022.101056 – volume: 61 start-page: 264 year: 2017 ident: ref_10 article-title: Multi objective coverage path planning: Enabling automated inspection of complex, real-world structures publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.07.051 – volume: 07 start-page: 22 year: 2021 ident: ref_2 article-title: Current status of electric tractor research in China publication-title: Agric. Dev. Equip. – volume: 44 start-page: 82 year: 2021 ident: ref_19 article-title: Whale optimization algorithm based on elite reverse learning and Lévy flight publication-title: Electron. Meas. Technol. – volume: 34 start-page: 50 year: 2020 ident: ref_6 article-title: Research on path planning algorithms for multi-operating points of electric tractors based on optimal energy consumption publication-title: J. Chongqing Univ. Technol. Nat. Sci. – volume: 28 start-page: 33 year: 2021 ident: ref_25 article-title: A review on optimization methods of standard particle swarm optimization publication-title: Sci. Technol. Innov. – ident: ref_29 – ident: ref_27 – ident: ref_8 doi: 10.3390/agriculture13010056 – volume: 55 start-page: 220 year: 2019 ident: ref_22 article-title: Improved whale optimization algorithm and its application publication-title: Comput. Eng. Appl. – volume: 38 start-page: 3640 year: 2021 ident: ref_26 article-title: Multi-class algorithm of WOA-SVM using Lévy flight and elite opposition-based learning publication-title: Appl. Res. Comput. – volume: 34 start-page: 225 year: 2022 ident: ref_16 article-title: Multi-objective point path planning based on improved PSO algorithm publication-title: J. Zhejiang Univ. Sci. Technol. – volume: 34 start-page: 235 year: 2020 ident: ref_24 article-title: Robot path planning based on particle swarm optimization and ant colony fusion algorithm publication-title: J. Chongqing Univ. Technol. Nat. Sci. – volume: 34 start-page: 236 year: 2012 ident: ref_1 article-title: Current situation and development of electric agricultural machinery in China publication-title: J. Agric. Mech. Res. – ident: ref_17 – volume: 39 start-page: 1415 year: 2022 ident: ref_21 article-title: Multi-strategy improved whale optimization algorithm publication-title: Appl. Res. Comput. – volume: 30 start-page: 319 year: 2015 ident: ref_11 article-title: Mobile robot path planning using artificial bee colony and evolutionary programming publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.01.067 – volume: 47 start-page: 237 year: 2019 ident: ref_13 article-title: Research on multi-point path planning of greenhouse robot based on parallel ant colony algorithm publication-title: Jiangsu Agric. Sci. – volume: 32 start-page: 938 year: 2021 ident: ref_20 article-title: Flexible job shop AGV fusion scheduling method based on HGWOA publication-title: China Mech. Eng. – volume: 6 start-page: 160 year: 2013 ident: ref_3 article-title: Study on the development of the electric tractor: Specifications and traveling and tilling performance of a prototype tractor publication-title: Eng. Agric. Environ. Food doi: 10.1016/S1881-8366(13)80003-1 – volume: 95 start-page: 51 year: 2016 ident: ref_18 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 |
| SSID | ssj0000913806 |
| Score | 2.3081865 |
| Snippet | Under the “Double Carbon” background, the development of green agricultural machinery is very fast. An important factor that determines the performance of... Under the "Double Carbon" background, the development of green agricultural machinery is very fast. An important factor that determines the performance of... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 586 |
| SubjectTerms | ACO Agricultural equipment Agricultural machinery agricultural machinery and equipment Agricultural production Agricultural technology agriculture Algorithms Ant colony optimization Cetacea Convergence Efficiency electric tractor Electric vehicles Endurance capacity energy Energy consumption Farm equipment Farm machinery Farm tractors Feedback Foraging behavior IWOA Machine learning Mathematical optimization Nodes Objective function Optimization algorithms Parameters Path planning Pheromones Planning Sustainable agriculture system optimization Tractors Traveling salesman problem whales Whales & whaling |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB7q9UH7IP7EaJUVBF8MvSS7e7kHkVy5UgTPIi32bdlfuQrX5DxzSP97Z5JNrqAU30KyYbOZnZlvN5nvA3gnTYpJ1fM49aWI-UQI9DlXxjb1IitNnlhOhcJfFvL0gn--FJd7sOhrYei3yj4mtoHa1Zb2yI_SCTGZk0DJp_XPmFSj6OtqL6Ghg7SC-9hSjN2D_ZSYsUawP5svzr4Nuy7EgpmPZUc_lOF6_0gvN4HkwlM4Hwuqqr6Volom_7_j9QHc31ZrffNbr1a3EtLJI3gYkCQrOtM_hj1fPYGDYtfRU-jKa-NF7Tw7Q6jHeokiVpds3grg_LDsfNNq7rAZJjTH6op1Gw14_P0KH4d9xahyHco1WbFa4ltprq6ZrhwrqoYdY_isbnYXnsHFyfz8-DQOMgux5XLcxFqgdXzpCNohevFe-HFuqEB3kkkrU1tqmTuHUMhJBBDeGF66LOOZdd7maZI9h1FVV_4FsFJ4N_GJxkUcLaUQfeZTkyV2qn2SS60jSPs3q2zgICcpjJXCtQiZQ_3DHBF8GG5adxQcdzefkcmGpsSf3Z6oN0sV3FElZWItxh9nBA7UTTEnCByUmBpuEdW4CN6TwRV5OT6g1aFYAYdJfFmqQODFiUMVuzvs54QK7v9L7SZrBG-Hy-i49DVGV77eYpucyACJ_z-CeJhL_zPCl3d3-QoepIjEuh_lDmHUbLb-NSKnxrwJ7vAHJDUbZA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoAeeFcYClokJC64jr0POyfkVq0qJEIPjSgna19OI1I7ch1Q-fXM2Ou0AoSAmxWvZY929ptvNjvfEPJa6gSCquNh4koR8lQIWHO2DE3iBCt1FhuOhcIfpvJ4xt-fiTO_4Xbpj1VCKr7oQDoZp2mIcoZRzCIWiUxGK1u---p3kmKZpgI8lGe3yZYUwMVHZGs2Pck_Y0e54dleaohBbh-peeMFLRxC91hgBfWNcNSp9v-Kzdvkzrpaqatvarm8EXyO7pNi-Oz-zMmXvXWr98z3nxQd_9-uB-Se56U07x3pIbnlqkdkO7825THpi3XDaW0dPQHiSIeGR7Qu6WHXTmdh6GnTdfCh-xAeLa0r2m9bwPWnczCYfgSMuvDFnzRfzutm0Z5fUFVZmlctPQAwrq6ubzwhs6PD04Pj0DdtCA2X4zZUAubalRaJInAh54QbZxrLfVMmjUxMqWRmLRArK4GOOK15aRnjzFhnsiRmO2RU1ZV7SmgpnE1drCAlxMQMuGw20Sw2E-XiTCoVkGSYu8J4RXNsrLEsILPBCS9-M-EBebt5aNULevx5-D46xWYoqnF3P9TNvPCLu4jL2BhAM6sFGGonEGEEGCUmmhvgSDYgb9ClCsQM-ECjfOkDmInqW0UONI6jIiu8bnfwusKDyWWRpCjij715AvJqcxtgAP_bUZWr1zAmQ2lB7CYQkHDjrX9j4bN_HP-c3E2A6PXn8HbJqG3W7gUQs1a_9KvvBynuNek priority: 102 providerName: Unpaywall |
| Title | Multi-Node Path Planning of Electric Tractor Based on Improved Whale Optimization Algorithm and Ant Colony Algorithm |
| URI | https://www.proquest.com/docview/2791550961 https://www.proquest.com/docview/2887633685 https://www.mdpi.com/2077-0472/13/3/586/pdf?version=1677573048 https://doaj.org/article/1f1cc053db5348d98765fd359b4c022d |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5KemhzKE0fVG0atlDopSKS9uHVUQ4OIVDXlJimp2VfSgLOKrgyJf--M5LsGFrSHHrTY4V2d17f2JpvCPkobQFBNfC0CLVI-UgIsDlfp64IgtVW5Y5jofCXqTyZ89Nzcb7V6gu_CevpgfuNO8zr3DnQFG8F48pDiixF7ZkoLXcQfzx630yVW8lU54PLnKlM9jRDDPL6Q3OxHMgsArrtTGD19FYo6hj7__TLu-TJKt6Y219msdgKPMfPybMBMdKqn-keeRTiC7Jb3b3oJenLaNNp4wOdAaSj61ZEtKnppGt0c-Xo2bLrrUPHELg8bSLtf1CA4--XMB36FbzH9VCWSavFRbO8ai-vqYmeVrGlR-Am4-3djVdkfjw5OzpJh3YKqeMya1MjQAqh9gjhAKWEIEKmLBbijph0snC1kcp7gDxeAlAI1nLYaMaZ88GpImevyU5sYnhDaC2CH4XcQLKGKROgTFValrvShFxJYxJSrHdWu4FrHFteLDTkHCgO_RdxJOTz5qGbnmrj_uFjFNlmKPJkdxdAe_SgPfpf2pOQTyhwjdYME3RmKEqAZSIvlq4AYHHkSoXX7a91Qg9m_lMXI6TXx645CfmwuQ0Giv-6mBiaFYxRSPqHPP8JSTe69JAVvv0fK3xHnhaAy_rP5vbJTrtchfeAo1p7QB6PJ9PZt4POdOBsPp1VP34D01sgYQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a28PYw8RVlA0wEogXouVip8nDhNrRqWNbmVAn9hYc2-mQuqR0qab-OX4b5yROOgk08bK3KHFiO8fn5uR8H8C7MPXRqRru-CYTDu8KgTqnM0f5RgRZGnmKU6Hw6SgcnvMvF-JiDX43tTD0W2VjEytDrQtFe-R7fpeQzImg5NPsl0OsUfR1taHQkJZaQe9XEGO2sOPYLG8whbveP_qM8n7v-4eD8cHQsSwDjuKhWzpS4OBMpimyQedtjDBulFJ9ajcIVeirTIaR1hgJ6BD9p0lTnukg4IHSRkW-F-BzH8AGD3iMyd9GfzA6-9bu8hDqZuSGNdxREMTunpzMLaiGIffhCqrivuUSK-aAv_3DFmwu8plc3sjp9JYDPHwE2zZyZb16qT2GNZM_ga3eqqOnUJfzOqNCG3aGoSVrKJFYkbFBRbjzU7HxvOL4YX10oJoVOas3NvD4-yUOh31FK3Zly0NZbzpBKZSXV0zmmvXykh2guc6XqwvP4PxeXvhzWM-L3LwAlgmju8aTmDRS6obRbhSngadiabwolLIDfvNmE2Uxz4l6Y5pg7kPiSP4hjg58bG-a1ZAfdzfvk8japoTXXZ0o5pPEqn_iZZ5SaO90KnCiOkYfJHBSIk65wihKd-ADCTwhq4IDVNIWR-A0CZ8r6WGgxwmzFbvbbdZEYs3NdbJSjg68bS-joaCvPzI3xQLbRAQ-SHwDHXDatfQ_M3x5d5dvYHM4Pj1JTo5Gxzvw0McosP5JbxfWy_nCvMKorUxfW9Vg8OO-tfEPK8lYng |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4amwTsAXEVgQFGAvFC1NycJg8TSrdWG4NSoU3sLXNsp0PqktKlmvoX-VWckzjpJNDEy96qxq3tHPs7x5fzfQDvwsxDp6oD29M5t4M-5zjnVG5LT3M_zyJXBpQo_HUcHpwEn0_56Qb8bnNh6Fpli4k1UKtS0h55z-sTkzkJlPRycy1isj_6NP9lk4IUnbS2chrCyCyo3ZpuzCR5HOnVFS7nLncP99H27z1vNDzeO7CN4oAtg9CpbMGxoTpXFOWgI9eaayfKKFe174cy9GQuwkgpjApUiL5UZ1mQK98PfKm0jDzXx_-9A1t0-IUgsTUYjiffux0fYuCMnLChPvL92OmJ6cIQbGhyJQ6njO5r7rFWEfjbV2zDvWUxF6srMZtdc4ajh_DARLEsaYbdI9jQxWPYTtYVPYEmtdcel0qzCYaZrJVHYmXOhrX4zk_Jjhe13g8boDNVrCxYs8mBn3-cY3PYN0S0C5MqypLZFK1QnV8wUSiWFBXbQ-guVusHT-HkVl74M9gsykI_B5ZzrfraFbiApGUcRr5RnPmujIV2o1AIC7z2zabS8J-TDMcsxXUQmSP9hzks-Nj9aN7Qf9xcfEAm64oSd3f9RbmYpgYKUjd3pUTsUxnHjqoY_RHHTvE4CyRGVMqCD2TwlBAGGyiFSZTAbhJXV5pg0BcQfytWt9OOidRAz2W6nigWvO0eI2jQSZAodLnEMhEREZL2gAV2N5b-p4cvbq7yDdzFWZl-ORwfvYT7HgaEzX29HdisFkv9CgO4KnttZgaDs9uejH8A80BczQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoAeeFcYClokJC64jr0POyfkVq0qJEIPjSgna19OI1I7ch1Q-fXM2Ou0AoSAmxWvZY929ptvNjvfEPJa6gSCquNh4koR8lQIWHO2DE3iBCt1FhuOhcIfpvJ4xt-fiTO_4Xbpj1VCKr7oQDoZp2mIcoZRzCIWiUxGK1u---p3kmKZpgI8lGe3yZYUwMVHZGs2Pck_Y0e54dleaohBbh-peeMFLRxC91hgBfWNcNSp9v-Kzdvkzrpaqatvarm8EXyO7pNi-Oz-zMmXvXWr98z3nxQd_9-uB-Se56U07x3pIbnlqkdkO7825THpi3XDaW0dPQHiSIeGR7Qu6WHXTmdh6GnTdfCh-xAeLa0r2m9bwPWnczCYfgSMuvDFnzRfzutm0Z5fUFVZmlctPQAwrq6ubzwhs6PD04Pj0DdtCA2X4zZUAubalRaJInAh54QbZxrLfVMmjUxMqWRmLRArK4GOOK15aRnjzFhnsiRmO2RU1ZV7SmgpnE1drCAlxMQMuGw20Sw2E-XiTCoVkGSYu8J4RXNsrLEsILPBCS9-M-EBebt5aNULevx5-D46xWYoqnF3P9TNvPCLu4jL2BhAM6sFGGonEGEEGCUmmhvgSDYgb9ClCsQM-ECjfOkDmInqW0UONI6jIiu8bnfwusKDyWWRpCjij715AvJqcxtgAP_bUZWr1zAmQ2lB7CYQkHDjrX9j4bN_HP-c3E2A6PXn8HbJqG3W7gUQs1a_9KvvBynuNek |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Node+Path+Planning+of+Electric+Tractor+Based+on+Improved+Whale+Optimization+Algorithm+and+Ant+Colony+Algorithm&rft.jtitle=Agriculture+%28Basel%29&rft.au=Chuandong+Liang&rft.au=Kui+Pan&rft.au=Mi+Zhao&rft.au=Min+Lu&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=13&rft.issue=3&rft.spage=586&rft_id=info:doi/10.3390%2Fagriculture13030586&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1f1cc053db5348d98765fd359b4c022d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |