Multi-Node Path Planning of Electric Tractor Based on Improved Whale Optimization Algorithm and Ant Colony Algorithm

Under the “Double Carbon” background, the development of green agricultural machinery is very fast. An important factor that determines the performance of electric farm machinery is the endurance capacity, which is directly related to the running path of farm machinery. The optimized driving path ca...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 13; no. 3; p. 586
Main Authors Liang, Chuandong, Pan, Kui, Zhao, Mi, Lu, Min
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2023
Subjects
Online AccessGet full text
ISSN2077-0472
2077-0472
DOI10.3390/agriculture13030586

Cover

Abstract Under the “Double Carbon” background, the development of green agricultural machinery is very fast. An important factor that determines the performance of electric farm machinery is the endurance capacity, which is directly related to the running path of farm machinery. The optimized driving path can reduce the operating loss and extend the mileage of agricultural machinery, then multi-node path planning helps to improve the working efficiency of electric tractors. Ant Colony Optimization (ACO) is often used to solve multi-node path planning problems. However, ACO has some problems, such as poor global search ability, few initial pheromones, poor convergence, and weak optimization ability, which is not conducive to obtaining the optimal path. This paper proposes a multi-node path planning algorithm based on Improved Whale Optimized ACO, named IWOA-ACO. The algorithm first introduces reverse learning strategy, nonlinear convergence factor, and adaptive inertia weight factor to improve the global and local convergence ability. Then, an appropriate evaluation function is designed to evaluate the solving process and obtain the best fitting parameters of ACO. Finally, the optimal objective function, fast convergence, and stable operation requirements are achieved through the best fitting parameters to obtain the global path optimization. The simulation results show that in flat environment, the length and energy consumption of IWOA-ACO planned path are the same as those of PSO-ACO, and are 0.61% less than those of WOA-ACO. In addition, in bump environment, the length and energy consumption of IWOA-ACO planned path are 1.91% and 4.32% less than those of PSO-ACO, and are 1.95% and 1.25% less than those of WOA-ACO. Therefore, it is helpful to improve the operating efficiency along with the endurance of electric tractors, which has practical application value.
AbstractList Under the “Double Carbon” background, the development of green agricultural machinery is very fast. An important factor that determines the performance of electric farm machinery is the endurance capacity, which is directly related to the running path of farm machinery. The optimized driving path can reduce the operating loss and extend the mileage of agricultural machinery, then multi-node path planning helps to improve the working efficiency of electric tractors. Ant Colony Optimization (ACO) is often used to solve multi-node path planning problems. However, ACO has some problems, such as poor global search ability, few initial pheromones, poor convergence, and weak optimization ability, which is not conducive to obtaining the optimal path. This paper proposes a multi-node path planning algorithm based on Improved Whale Optimized ACO, named IWOA-ACO. The algorithm first introduces reverse learning strategy, nonlinear convergence factor, and adaptive inertia weight factor to improve the global and local convergence ability. Then, an appropriate evaluation function is designed to evaluate the solving process and obtain the best fitting parameters of ACO. Finally, the optimal objective function, fast convergence, and stable operation requirements are achieved through the best fitting parameters to obtain the global path optimization. The simulation results show that in flat environment, the length and energy consumption of IWOA-ACO planned path are the same as those of PSO-ACO, and are 0.61% less than those of WOA-ACO. In addition, in bump environment, the length and energy consumption of IWOA-ACO planned path are 1.91% and 4.32% less than those of PSO-ACO, and are 1.95% and 1.25% less than those of WOA-ACO. Therefore, it is helpful to improve the operating efficiency along with the endurance of electric tractors, which has practical application value.
Audience Academic
Author Liang, Chuandong
Lu, Min
Zhao, Mi
Pan, Kui
Author_xml – sequence: 1
  givenname: Chuandong
  surname: Liang
  fullname: Liang, Chuandong
– sequence: 2
  givenname: Kui
  surname: Pan
  fullname: Pan, Kui
– sequence: 3
  givenname: Mi
  orcidid: 0000-0002-3046-1612
  surname: Zhao
  fullname: Zhao, Mi
– sequence: 4
  givenname: Min
  surname: Lu
  fullname: Lu, Min
BookMark eNqNUsFu1DAQjVCRKKVfwMUSFy4pdhw7znFZFbpSoT0UcbQc28l65diL4xQtX9_pBgGqkMA-eDQz783MG78sTkIMtiheE3xBaYvfqSE5Pfs8J0soppgJ_qw4rXDTlLhuqpM_7BfF-TTtMJyWUIH5aZE_AdKVn6Ox6FblLbr1KgQXBhR7dOmtzkCO7pLSOSb0Xk3WoBjQZtyneA_2163yFt3ssxvdD5UdxFZ-iMnl7YhUMGgVMlpHH8Phd-BV8bxXfrLnP9-z4suHy7v1VXl983GzXl2XuuY4l4qJxtjeMM64aKm1zGLR0VqQhnLNK90rLozhpDIcC2K7ru4NpTXVxmpREXpWbBZeE9VO7pMbVTrIqJw8OmIapErZaW8l6YnWmFHTMShgWtFwBmSs7WqNq8oAV71wzWGvDt-V978ICZaPi5B_WQTA3i4w0OvbbKcsRzdp60FlG-dJVgIqUcoFg9Q3T1J3cU4BBJJV0xLGcMsfZ7pYsgYQXrrQxwzLgWvs6DT8jN6Bf9XUtOakPnbQLgCd4jQl20vt8nFTAHT-H93TJ9j_mfkBGtrQZQ
CitedBy_id crossref_primary_10_3390_agriculture13040871
crossref_primary_10_3390_agriculture13091686
crossref_primary_10_1016_j_compag_2024_109628
crossref_primary_10_1016_j_iot_2024_101173
crossref_primary_10_59717_j_xinn_energy_2024_100064
crossref_primary_10_1007_s11370_024_00525_6
crossref_primary_10_3390_su16146199
crossref_primary_10_3390_agriculture14091473
crossref_primary_10_3390_electronics13173443
Cites_doi 10.1016/j.ejor.2022.06.019
10.1002/rob.21908
10.1016/j.swevo.2022.101056
10.1016/j.asoc.2017.07.051
10.3390/agriculture13010056
10.1016/j.asoc.2015.01.067
10.1016/S1881-8366(13)80003-1
10.1016/j.advengsoft.2016.01.008
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
SOI
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/agriculture13030586
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database

CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_1f1cc053db5348d98765fd359b4c022d
10.3390/agriculture13030586
A743461486
10_3390_agriculture13030586
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
SOI
7S9
L.6
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c460t-a587defd5656893ee5e08b3481736c62cfa68dd612d6081ebb4fd3343cdec8213
IEDL.DBID DOA
ISSN 2077-0472
IngestDate Fri Oct 03 12:52:16 EDT 2025
Sun Oct 26 04:12:09 EDT 2025
Thu Sep 04 19:14:39 EDT 2025
Mon Jun 30 15:12:53 EDT 2025
Mon Oct 20 16:08:30 EDT 2025
Thu Oct 16 04:41:37 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-a587defd5656893ee5e08b3481736c62cfa68dd612d6081ebb4fd3343cdec8213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3046-1612
OpenAccessLink https://doaj.org/article/1f1cc053db5348d98765fd359b4c022d
PQID 2791550961
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_1f1cc053db5348d98765fd359b4c022d
unpaywall_primary_10_3390_agriculture13030586
proquest_miscellaneous_2887633685
proquest_journals_2791550961
gale_infotracacademiconefile_A743461486
crossref_citationtrail_10_3390_agriculture13030586
crossref_primary_10_3390_agriculture13030586
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lei (ref_24) 2020; 34
Lv (ref_25) 2021; 28
Li (ref_21) 2022; 39
Shang (ref_6) 2020; 34
Meng (ref_19) 2021; 44
Wang (ref_13) 2019; 47
Stodola (ref_15) 2022; 70
ref_17
Ellefsen (ref_10) 2017; 61
Yang (ref_23) 2021; 29
Jiang (ref_12) 2015; 35
He (ref_26) 2021; 38
Mirjalili (ref_18) 2016; 95
(ref_11) 2015; 30
Wang (ref_4) 2020; 51
Yuan (ref_16) 2022; 34
Jing (ref_5) 2020; 51
Li (ref_20) 2021; 32
Bing (ref_2) 2021; 07
Ueka (ref_3) 2013; 6
Ljungqvist (ref_7) 2019; 36
ref_29
ref_28
ref_27
Zhang (ref_1) 2012; 34
ref_9
ref_8
Huang (ref_22) 2019; 55
Morin (ref_14) 2023; 305
References_xml – ident: ref_28
– volume: 29
  start-page: 187
  year: 2021
  ident: ref_23
  article-title: Improved whale optimization algorithm and application in path planning
  publication-title: Comput. Meas. Control
– ident: ref_9
– volume: 35
  start-page: 114
  year: 2015
  ident: ref_12
  article-title: Improved ant colony algorithm for travelling salesman problem
  publication-title: J. Comput. Appl.
– volume: 305
  start-page: 53
  year: 2023
  ident: ref_14
  article-title: Ant colony optimization for path planning in search and rescue operations
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2022.06.019
– volume: 51
  start-page: 92
  year: 2020
  ident: ref_4
  article-title: Path planning approach based on improved ant colony optimization for sprayer UAV
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 51
  start-page: 333
  year: 2020
  ident: ref_5
  article-title: Three dimensional path planning method for navigation of farmland leveling based on improved ant colony algorithm
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 36
  start-page: 1345
  year: 2019
  ident: ref_7
  article-title: A path planning and path-following control framework for a general 2-trailer with a car-like tractor
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21908
– volume: 70
  start-page: 101056
  year: 2022
  ident: ref_15
  article-title: Adaptive ant Colony optimization with node clustering applied to the travelling salesman problem
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101056
– volume: 61
  start-page: 264
  year: 2017
  ident: ref_10
  article-title: Multi objective coverage path planning: Enabling automated inspection of complex, real-world structures
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.07.051
– volume: 07
  start-page: 22
  year: 2021
  ident: ref_2
  article-title: Current status of electric tractor research in China
  publication-title: Agric. Dev. Equip.
– volume: 44
  start-page: 82
  year: 2021
  ident: ref_19
  article-title: Whale optimization algorithm based on elite reverse learning and Lévy flight
  publication-title: Electron. Meas. Technol.
– volume: 34
  start-page: 50
  year: 2020
  ident: ref_6
  article-title: Research on path planning algorithms for multi-operating points of electric tractors based on optimal energy consumption
  publication-title: J. Chongqing Univ. Technol. Nat. Sci.
– volume: 28
  start-page: 33
  year: 2021
  ident: ref_25
  article-title: A review on optimization methods of standard particle swarm optimization
  publication-title: Sci. Technol. Innov.
– ident: ref_29
– ident: ref_27
– ident: ref_8
  doi: 10.3390/agriculture13010056
– volume: 55
  start-page: 220
  year: 2019
  ident: ref_22
  article-title: Improved whale optimization algorithm and its application
  publication-title: Comput. Eng. Appl.
– volume: 38
  start-page: 3640
  year: 2021
  ident: ref_26
  article-title: Multi-class algorithm of WOA-SVM using Lévy flight and elite opposition-based learning
  publication-title: Appl. Res. Comput.
– volume: 34
  start-page: 225
  year: 2022
  ident: ref_16
  article-title: Multi-objective point path planning based on improved PSO algorithm
  publication-title: J. Zhejiang Univ. Sci. Technol.
– volume: 34
  start-page: 235
  year: 2020
  ident: ref_24
  article-title: Robot path planning based on particle swarm optimization and ant colony fusion algorithm
  publication-title: J. Chongqing Univ. Technol. Nat. Sci.
– volume: 34
  start-page: 236
  year: 2012
  ident: ref_1
  article-title: Current situation and development of electric agricultural machinery in China
  publication-title: J. Agric. Mech. Res.
– ident: ref_17
– volume: 39
  start-page: 1415
  year: 2022
  ident: ref_21
  article-title: Multi-strategy improved whale optimization algorithm
  publication-title: Appl. Res. Comput.
– volume: 30
  start-page: 319
  year: 2015
  ident: ref_11
  article-title: Mobile robot path planning using artificial bee colony and evolutionary programming
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.067
– volume: 47
  start-page: 237
  year: 2019
  ident: ref_13
  article-title: Research on multi-point path planning of greenhouse robot based on parallel ant colony algorithm
  publication-title: Jiangsu Agric. Sci.
– volume: 32
  start-page: 938
  year: 2021
  ident: ref_20
  article-title: Flexible job shop AGV fusion scheduling method based on HGWOA
  publication-title: China Mech. Eng.
– volume: 6
  start-page: 160
  year: 2013
  ident: ref_3
  article-title: Study on the development of the electric tractor: Specifications and traveling and tilling performance of a prototype tractor
  publication-title: Eng. Agric. Environ. Food
  doi: 10.1016/S1881-8366(13)80003-1
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_18
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
SSID ssj0000913806
Score 2.3081865
Snippet Under the “Double Carbon” background, the development of green agricultural machinery is very fast. An important factor that determines the performance of...
Under the "Double Carbon" background, the development of green agricultural machinery is very fast. An important factor that determines the performance of...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 586
SubjectTerms ACO
Agricultural equipment
Agricultural machinery
agricultural machinery and equipment
Agricultural production
Agricultural technology
agriculture
Algorithms
Ant colony optimization
Cetacea
Convergence
Efficiency
electric tractor
Electric vehicles
Endurance capacity
energy
Energy consumption
Farm equipment
Farm machinery
Farm tractors
Feedback
Foraging behavior
IWOA
Machine learning
Mathematical optimization
Nodes
Objective function
Optimization algorithms
Parameters
Path planning
Pheromones
Planning
Sustainable agriculture
system optimization
Tractors
Traveling salesman problem
whales
Whales & whaling
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB7q9UH7IP7EaJUVBF8MvSS7e7kHkVy5UgTPIi32bdlfuQrX5DxzSP97Z5JNrqAU30KyYbOZnZlvN5nvA3gnTYpJ1fM49aWI-UQI9DlXxjb1IitNnlhOhcJfFvL0gn--FJd7sOhrYei3yj4mtoHa1Zb2yI_SCTGZk0DJp_XPmFSj6OtqL6Ghg7SC-9hSjN2D_ZSYsUawP5svzr4Nuy7EgpmPZUc_lOF6_0gvN4HkwlM4Hwuqqr6Volom_7_j9QHc31ZrffNbr1a3EtLJI3gYkCQrOtM_hj1fPYGDYtfRU-jKa-NF7Tw7Q6jHeokiVpds3grg_LDsfNNq7rAZJjTH6op1Gw14_P0KH4d9xahyHco1WbFa4ltprq6ZrhwrqoYdY_isbnYXnsHFyfz8-DQOMgux5XLcxFqgdXzpCNohevFe-HFuqEB3kkkrU1tqmTuHUMhJBBDeGF66LOOZdd7maZI9h1FVV_4FsFJ4N_GJxkUcLaUQfeZTkyV2qn2SS60jSPs3q2zgICcpjJXCtQiZQ_3DHBF8GG5adxQcdzefkcmGpsSf3Z6oN0sV3FElZWItxh9nBA7UTTEnCByUmBpuEdW4CN6TwRV5OT6g1aFYAYdJfFmqQODFiUMVuzvs54QK7v9L7SZrBG-Hy-i49DVGV77eYpucyACJ_z-CeJhL_zPCl3d3-QoepIjEuh_lDmHUbLb-NSKnxrwJ7vAHJDUbZA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoAeeFcYClokJC64jr0POyfkVq0qJEIPjSgna19OI1I7ch1Q-fXM2Ou0AoSAmxWvZY929ptvNjvfEPJa6gSCquNh4koR8lQIWHO2DE3iBCt1FhuOhcIfpvJ4xt-fiTO_4Xbpj1VCKr7oQDoZp2mIcoZRzCIWiUxGK1u---p3kmKZpgI8lGe3yZYUwMVHZGs2Pck_Y0e54dleaohBbh-peeMFLRxC91hgBfWNcNSp9v-Kzdvkzrpaqatvarm8EXyO7pNi-Oz-zMmXvXWr98z3nxQd_9-uB-Se56U07x3pIbnlqkdkO7825THpi3XDaW0dPQHiSIeGR7Qu6WHXTmdh6GnTdfCh-xAeLa0r2m9bwPWnczCYfgSMuvDFnzRfzutm0Z5fUFVZmlctPQAwrq6ubzwhs6PD04Pj0DdtCA2X4zZUAubalRaJInAh54QbZxrLfVMmjUxMqWRmLRArK4GOOK15aRnjzFhnsiRmO2RU1ZV7SmgpnE1drCAlxMQMuGw20Sw2E-XiTCoVkGSYu8J4RXNsrLEsILPBCS9-M-EBebt5aNULevx5-D46xWYoqnF3P9TNvPCLu4jL2BhAM6sFGGonEGEEGCUmmhvgSDYgb9ClCsQM-ECjfOkDmInqW0UONI6jIiu8bnfwusKDyWWRpCjij715AvJqcxtgAP_bUZWr1zAmQ2lB7CYQkHDjrX9j4bN_HP-c3E2A6PXn8HbJqG3W7gUQs1a_9KvvBynuNek
  priority: 102
  providerName: Unpaywall
Title Multi-Node Path Planning of Electric Tractor Based on Improved Whale Optimization Algorithm and Ant Colony Algorithm
URI https://www.proquest.com/docview/2791550961
https://www.proquest.com/docview/2887633685
https://www.mdpi.com/2077-0472/13/3/586/pdf?version=1677573048
https://doaj.org/article/1f1cc053db5348d98765fd359b4c022d
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5KemhzKE0fVG0atlDopSKS9uHVUQ4OIVDXlJimp2VfSgLOKrgyJf--M5LsGFrSHHrTY4V2d17f2JpvCPkobQFBNfC0CLVI-UgIsDlfp64IgtVW5Y5jofCXqTyZ89Nzcb7V6gu_CevpgfuNO8zr3DnQFG8F48pDiixF7ZkoLXcQfzx630yVW8lU54PLnKlM9jRDDPL6Q3OxHMgsArrtTGD19FYo6hj7__TLu-TJKt6Y219msdgKPMfPybMBMdKqn-keeRTiC7Jb3b3oJenLaNNp4wOdAaSj61ZEtKnppGt0c-Xo2bLrrUPHELg8bSLtf1CA4--XMB36FbzH9VCWSavFRbO8ai-vqYmeVrGlR-Am4-3djVdkfjw5OzpJh3YKqeMya1MjQAqh9gjhAKWEIEKmLBbijph0snC1kcp7gDxeAlAI1nLYaMaZ88GpImevyU5sYnhDaC2CH4XcQLKGKROgTFValrvShFxJYxJSrHdWu4FrHFteLDTkHCgO_RdxJOTz5qGbnmrj_uFjFNlmKPJkdxdAe_SgPfpf2pOQTyhwjdYME3RmKEqAZSIvlq4AYHHkSoXX7a91Qg9m_lMXI6TXx645CfmwuQ0Giv-6mBiaFYxRSPqHPP8JSTe69JAVvv0fK3xHnhaAy_rP5vbJTrtchfeAo1p7QB6PJ9PZt4POdOBsPp1VP34D01sgYQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a28PYw8RVlA0wEogXouVip8nDhNrRqWNbmVAn9hYc2-mQuqR0qab-OX4b5yROOgk08bK3KHFiO8fn5uR8H8C7MPXRqRru-CYTDu8KgTqnM0f5RgRZGnmKU6Hw6SgcnvMvF-JiDX43tTD0W2VjEytDrQtFe-R7fpeQzImg5NPsl0OsUfR1taHQkJZaQe9XEGO2sOPYLG8whbveP_qM8n7v-4eD8cHQsSwDjuKhWzpS4OBMpimyQedtjDBulFJ9ajcIVeirTIaR1hgJ6BD9p0lTnukg4IHSRkW-F-BzH8AGD3iMyd9GfzA6-9bu8hDqZuSGNdxREMTunpzMLaiGIffhCqrivuUSK-aAv_3DFmwu8plc3sjp9JYDPHwE2zZyZb16qT2GNZM_ga3eqqOnUJfzOqNCG3aGoSVrKJFYkbFBRbjzU7HxvOL4YX10oJoVOas3NvD4-yUOh31FK3Zly0NZbzpBKZSXV0zmmvXykh2guc6XqwvP4PxeXvhzWM-L3LwAlgmju8aTmDRS6obRbhSngadiabwolLIDfvNmE2Uxz4l6Y5pg7kPiSP4hjg58bG-a1ZAfdzfvk8japoTXXZ0o5pPEqn_iZZ5SaO90KnCiOkYfJHBSIk65wihKd-ADCTwhq4IDVNIWR-A0CZ8r6WGgxwmzFbvbbdZEYs3NdbJSjg68bS-joaCvPzI3xQLbRAQ-SHwDHXDatfQ_M3x5d5dvYHM4Pj1JTo5Gxzvw0McosP5JbxfWy_nCvMKorUxfW9Vg8OO-tfEPK8lYng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4amwTsAXEVgQFGAvFC1NycJg8TSrdWG4NSoU3sLXNsp0PqktKlmvoX-VWckzjpJNDEy96qxq3tHPs7x5fzfQDvwsxDp6oD29M5t4M-5zjnVG5LT3M_zyJXBpQo_HUcHpwEn0_56Qb8bnNh6Fpli4k1UKtS0h55z-sTkzkJlPRycy1isj_6NP9lk4IUnbS2chrCyCyo3ZpuzCR5HOnVFS7nLncP99H27z1vNDzeO7CN4oAtg9CpbMGxoTpXFOWgI9eaayfKKFe174cy9GQuwkgpjApUiL5UZ1mQK98PfKm0jDzXx_-9A1t0-IUgsTUYjiffux0fYuCMnLChPvL92OmJ6cIQbGhyJQ6njO5r7rFWEfjbV2zDvWUxF6srMZtdc4ajh_DARLEsaYbdI9jQxWPYTtYVPYEmtdcel0qzCYaZrJVHYmXOhrX4zk_Jjhe13g8boDNVrCxYs8mBn3-cY3PYN0S0C5MqypLZFK1QnV8wUSiWFBXbQ-guVusHT-HkVl74M9gsykI_B5ZzrfraFbiApGUcRr5RnPmujIV2o1AIC7z2zabS8J-TDMcsxXUQmSP9hzks-Nj9aN7Qf9xcfEAm64oSd3f9RbmYpgYKUjd3pUTsUxnHjqoY_RHHTvE4CyRGVMqCD2TwlBAGGyiFSZTAbhJXV5pg0BcQfytWt9OOidRAz2W6nigWvO0eI2jQSZAodLnEMhEREZL2gAV2N5b-p4cvbq7yDdzFWZl-ORwfvYT7HgaEzX29HdisFkv9CgO4KnttZgaDs9uejH8A80BczQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoAeeFcYClokJC64jr0POyfkVq0qJEIPjSgna19OI1I7ch1Q-fXM2Ou0AoSAmxWvZY929ptvNjvfEPJa6gSCquNh4koR8lQIWHO2DE3iBCt1FhuOhcIfpvJ4xt-fiTO_4Xbpj1VCKr7oQDoZp2mIcoZRzCIWiUxGK1u---p3kmKZpgI8lGe3yZYUwMVHZGs2Pck_Y0e54dleaohBbh-peeMFLRxC91hgBfWNcNSp9v-Kzdvkzrpaqatvarm8EXyO7pNi-Oz-zMmXvXWr98z3nxQd_9-uB-Se56U07x3pIbnlqkdkO7825THpi3XDaW0dPQHiSIeGR7Qu6WHXTmdh6GnTdfCh-xAeLa0r2m9bwPWnczCYfgSMuvDFnzRfzutm0Z5fUFVZmlctPQAwrq6ubzwhs6PD04Pj0DdtCA2X4zZUAubalRaJInAh54QbZxrLfVMmjUxMqWRmLRArK4GOOK15aRnjzFhnsiRmO2RU1ZV7SmgpnE1drCAlxMQMuGw20Sw2E-XiTCoVkGSYu8J4RXNsrLEsILPBCS9-M-EBebt5aNULevx5-D46xWYoqnF3P9TNvPCLu4jL2BhAM6sFGGonEGEEGCUmmhvgSDYgb9ClCsQM-ECjfOkDmInqW0UONI6jIiu8bnfwusKDyWWRpCjij715AvJqcxtgAP_bUZWr1zAmQ2lB7CYQkHDjrX9j4bN_HP-c3E2A6PXn8HbJqG3W7gUQs1a_9KvvBynuNek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Node+Path+Planning+of+Electric+Tractor+Based+on+Improved+Whale+Optimization+Algorithm+and+Ant+Colony+Algorithm&rft.jtitle=Agriculture+%28Basel%29&rft.au=Chuandong+Liang&rft.au=Kui+Pan&rft.au=Mi+Zhao&rft.au=Min+Lu&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=13&rft.issue=3&rft.spage=586&rft_id=info:doi/10.3390%2Fagriculture13030586&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1f1cc053db5348d98765fd359b4c022d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon