Deep Learning-Based Thermal Image Analysis for Pavement Defect Detection and Classification Considering Complex Pavement Conditions
Automatic damage detection using deep learning warrants an extensive data source that captures complex pavement conditions. This paper proposes a thermal-RGB fusion image-based pavement damage detection model, wherein the fused RGB-thermal image is formed through multi-source sensor information to a...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 1; p. 106 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs14010106 |
Cover
| Abstract | Automatic damage detection using deep learning warrants an extensive data source that captures complex pavement conditions. This paper proposes a thermal-RGB fusion image-based pavement damage detection model, wherein the fused RGB-thermal image is formed through multi-source sensor information to achieve fast and accurate defect detection including complex pavement conditions. The proposed method uses pre-trained EfficientNet B4 as the backbone architecture and generates an argument dataset (containing non-uniform illumination, camera noise, and scales of thermal images too) to achieve high pavement damage detection accuracy. This paper tests separately the performance of different input data (RGB, thermal, MSX, and fused image) to test the influence of input data and network on the detection results. The results proved that the fused image’s damage detection accuracy can be as high as 98.34% and by using the dataset after augmentation, the detection model deems to be more stable to achieve 98.35% precision, 98.34% recall, and 98.34% F1-score. |
|---|---|
| AbstractList | Automatic damage detection using deep learning warrants an extensive data source that captures complex pavement conditions. This paper proposes a thermal-RGB fusion image-based pavement damage detection model, wherein the fused RGB-thermal image is formed through multi-source sensor information to achieve fast and accurate defect detection including complex pavement conditions. The proposed method uses pre-trained EfficientNet B4 as the backbone architecture and generates an argument dataset (containing non-uniform illumination, camera noise, and scales of thermal images too) to achieve high pavement damage detection accuracy. This paper tests separately the performance of different input data (RGB, thermal, MSX, and fused image) to test the influence of input data and network on the detection results. The results proved that the fused image’s damage detection accuracy can be as high as 98.34% and by using the dataset after augmentation, the detection model deems to be more stable to achieve 98.35% precision, 98.34% recall, and 98.34% F1-score. |
| Author | Chandra, Sindhu Seo, Hyungjoon Chen, Cheng Han, Yufan |
| Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0002-1989-8602 surname: Chen fullname: Chen, Cheng – sequence: 2 givenname: Sindhu surname: Chandra fullname: Chandra, Sindhu – sequence: 3 givenname: Yufan surname: Han fullname: Han, Yufan – sequence: 4 givenname: Hyungjoon orcidid: 0000-0001-7002-2908 surname: Seo fullname: Seo, Hyungjoon |
| BookMark | eNp9kUFv1DAQhSNUJErphV8QiQsCBcaO7WSPZVtgpZXgUM7WJBkvXjl2sLPAnvvH8e4iiiqEfXij8TdPI7-nxZkPnoriOYM3db2AtzExASxf9ag459DwSvAFP_urflJcprSFfOqaLUCcF3fXRFO5Joze-k31DhMN5e1XiiO6cjXihsorj26fbCpNiOVn_E4j-bm8JkP9QeYsNvgS_VAuHaZkje3x2FoGn-xAMTvnepwc_bw3yI-DPWDpWfHYoEt0-Vsvii_vb26XH6v1pw-r5dW66oWCuUJoVVe3SvYLAtGSGuquZc3AhDG87VrgDaPWKJDScGLQYtMgo6Y1QhoYqL4oViffIeBWT9GOGPc6oNXHRogbjXG2vSPNAaQiRqqXUhAsUIIB7Lq-UYo1jGev1yevnZ9w_wOd-2PIQB_i0PdxZPrliZ5i-LajNOvRpp6cQ09hlzRXtRJCNRIy-uIBug27mCM4UKzlkkleZwpOVB9DSpGM7u18_PQ5onX_3uHVg5H_LPwLHc-2Xw |
| CitedBy_id | crossref_primary_10_3390_info15030169 crossref_primary_10_3390_drones8030099 crossref_primary_10_3390_s23125656 crossref_primary_10_3390_app14114424 crossref_primary_10_3390_rs15102517 crossref_primary_10_1016_j_autcon_2022_104575 crossref_primary_10_1016_j_autcon_2023_105226 crossref_primary_10_3390_rs14081877 crossref_primary_10_1016_j_ndteint_2022_102709 crossref_primary_10_1016_j_aej_2023_05_049 crossref_primary_10_1109_JSEN_2023_3234335 crossref_primary_10_1007_s00138_024_01637_w crossref_primary_10_1007_s42947_023_00290_2 crossref_primary_10_1016_j_isprsjprs_2022_11_012 crossref_primary_10_1061_JITSE4_ISENG_2313 crossref_primary_10_3390_electronics12153348 crossref_primary_10_1016_j_autcon_2024_105594 crossref_primary_10_1061_JPEODX_PVENG_1747 crossref_primary_10_32604_cmc_2023_034654 crossref_primary_10_9712_KASS_2023_23_3_95 crossref_primary_10_3390_s22155781 crossref_primary_10_1007_s13369_024_09495_4 crossref_primary_10_1109_ACCESS_2024_3481649 crossref_primary_10_1016_j_autcon_2024_105797 crossref_primary_10_3390_asi7010011 crossref_primary_10_1016_j_autcon_2024_105355 crossref_primary_10_1061_JPEODX_PVENG_1181 crossref_primary_10_3390_su15010561 crossref_primary_10_3390_su15010568 crossref_primary_10_1080_10298436_2023_2180641 crossref_primary_10_1109_TITS_2024_3353257 crossref_primary_10_1016_j_autcon_2024_105363 crossref_primary_10_3390_math12162542 crossref_primary_10_1016_j_scs_2023_104991 crossref_primary_10_3390_s24103015 crossref_primary_10_1109_ACCESS_2023_3305670 crossref_primary_10_3390_s23104582 crossref_primary_10_3390_s24020464 crossref_primary_10_3390_s22239365 crossref_primary_10_1016_j_ndteint_2022_102652 crossref_primary_10_1016_j_treng_2024_100274 crossref_primary_10_1109_ACCESS_2023_3332468 crossref_primary_10_1007_s12205_024_1066_8 crossref_primary_10_1080_10298436_2024_2434910 crossref_primary_10_1016_j_conbuildmat_2022_128264 crossref_primary_10_1177_03611981241239958 crossref_primary_10_1007_s11440_022_01779_z crossref_primary_10_1016_j_conbuildmat_2025_140740 crossref_primary_10_3390_s22083044 crossref_primary_10_3389_fphy_2022_1081805 |
| Cites_doi | 10.3390/s20154198 10.1016/j.apsusc.2013.09.002 10.1080/10298436.2016.1155709 10.1016/j.measurement.2021.109900 10.1016/j.conbuildmat.2020.120080 10.4103/0256-4602.62225 10.1016/j.conbuildmat.2020.120474 10.1061/(ASCE)CP.1943-5487.0000918 10.1016/j.autcon.2021.103833 10.1016/j.autcon.2021.103788 10.1016/j.conbuildmat.2020.118513 10.1080/10298436.2021.1888092 10.1111/mice.12564 10.1080/10298436.2021.1945056 10.1016/j.compag.2020.105652 10.3390/ma13132960 10.1016/j.ijfatigue.2017.11.013 10.1109/TITS.2021.3084809 10.3390/s19194251 10.1016/j.asoc.2020.106691 10.1061/(ASCE)MT.1943-5533.0001413 10.1016/j.autcon.2020.103171 10.1061/(ASCE)CF.1943-5509.0001557 10.1016/j.biosystemseng.2019.01.002 10.1080/14680629.2017.1350598 10.1016/j.conbuildmat.2017.09.110 10.1016/j.tust.2021.104118 10.1016/j.engappai.2021.104391 10.1016/j.autcon.2019.103055 10.1061/(ASCE)CP.1943-5487.0000736 10.1016/j.autcon.2021.103786 10.1016/j.ijtst.2021.04.008 10.1109/TITS.2018.2791476 10.1016/j.autcon.2020.103291 10.1111/mice.12263 10.1111/mice.12334 10.1080/1029843042000198568 10.1016/j.patrec.2011.11.004 10.1520/GTJ20150245 10.1016/j.chaos.2021.111310 10.1016/j.ecoinf.2020.101182 10.1016/j.optlaseng.2019.05.005 10.1111/mice.12622 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU COVID DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/rs14010106 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database Coronavirus Research Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_20056e1e6c554e09a50f0abbc7661712 10.3390/rs14010106 10_3390_rs14010106 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K COVID DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO 7S9 L.6 ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c460t-a086b3865c9e048e6d3b817d14ff28b80271e8f6055f2e108a77a1e78f45f0de3 |
| IEDL.DBID | BENPR |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 18:55:16 EDT 2025 Sun Oct 26 02:36:04 EDT 2025 Fri Sep 05 14:44:04 EDT 2025 Sat Sep 06 14:20:03 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Thu Oct 16 04:31:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-a086b3865c9e048e6d3b817d14ff28b80271e8f6055f2e108a77a1e78f45f0de3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1989-8602 0000-0001-7002-2908 |
| OpenAccessLink | https://www.proquest.com/docview/2618251523?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2618251523 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_20056e1e6c554e09a50f0abbc7661712 unpaywall_primary_10_3390_rs14010106 proquest_miscellaneous_2636446750 proquest_journals_2618251523 crossref_citationtrail_10_3390_rs14010106 crossref_primary_10_3390_rs14010106 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Guan (ref_8) 2021; 129 Rezaie (ref_28) 2020; 261 Wang (ref_33) 2021; 128 Chun (ref_30) 2020; 36 Liu (ref_11) 2020; 35 Pan (ref_42) 2020; 176 Du (ref_45) 2021; 184 Zou (ref_12) 2012; 33 ref_36 Kaige (ref_20) 2018; 32 ref_34 Peng (ref_14) 2020; 263 Golestani (ref_3) 2018; 19 ref_10 ref_32 Hu (ref_13) 2010; 27 Dhakal (ref_46) 2016; 28 Gopalakrishnan (ref_17) 2017; 157 Qin (ref_29) 2018; 28 Akyol (ref_44) 2021; 61 Seo (ref_24) 2017; 40 Yichang (ref_26) 2020; 34 Teltayev (ref_2) 2018; 19 Raza (ref_31) 2021; 104 Kechen (ref_38) 2013; 285 Han (ref_7) 2020; 111 Dan (ref_4) 2003; 4 Seo (ref_25) 2021; 116 Murat (ref_41) 2021; 151 Majidifard (ref_21) 2020; 247 Marques (ref_40) 2020; 96 Cha (ref_18) 2017; 32 Seungbo (ref_15) 2021; 130 Petrie (ref_39) 2019; 179 Dongho (ref_16) 2020; 118 Tan (ref_43) 2019; 97 Golrokh (ref_23) 2021; 35 Elkashef (ref_1) 2018; 108 ref_27 ref_9 Zhou (ref_22) 2020; 114 Huang (ref_37) 2018; 37 Cha (ref_19) 2017; 33 Zhang (ref_47) 2018; 19 ref_5 Fu (ref_35) 2019; 121 ref_6 |
| References_xml | – ident: ref_9 doi: 10.3390/s20154198 – volume: 285 start-page: 858 year: 2013 ident: ref_38 article-title: A Noise Robust Method Based on Completed Local Binary Patterns for Hot-Rolled Steel Strip Surface Defects publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.09.002 – volume: 19 start-page: 48 year: 2018 ident: ref_3 article-title: An Optimum Selection Strategy of Reflective Cracking Mitigation Methods for an Asphalt Concrete Overlay over Flexible Pavements publication-title: Int. J. Pavement Eng. Tatari doi: 10.1080/10298436.2016.1155709 – volume: 184 start-page: 109900 year: 2021 ident: ref_45 article-title: Application of image technology on pavement distress detection: A review publication-title: Measurement doi: 10.1016/j.measurement.2021.109900 – volume: 263 start-page: 120080 year: 2020 ident: ref_14 article-title: A triple-thresholds pavement crack detection method leveraging random structured forest publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120080 – volume: 27 start-page: 398 year: 2010 ident: ref_13 article-title: Automatic Pavement Crack Detection Using Texture and Shape Descriptors publication-title: IETE Tech. Rev. doi: 10.4103/0256-4602.62225 – volume: 261 start-page: 120474 year: 2020 ident: ref_28 article-title: Comparison of crack segmentation using digital image correlation measurements and deep learning publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120474 – volume: 34 start-page: 04020038 year: 2020 ident: ref_26 article-title: Machine Learning for Crack Detection: Review and Model Performance Comparison publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000918 – volume: 130 start-page: 103833 year: 2021 ident: ref_15 article-title: Road Surface Damage Detection Based on Hierarchical Architecture Using Lightweight Auto-Encoder Network publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103833 – volume: 129 start-page: 103788 year: 2021 ident: ref_8 article-title: Automated pixel-level pavement distress detection based on stereo vision and deep learning publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103788 – volume: 247 start-page: 118513 year: 2020 ident: ref_21 article-title: Deep machine learning approach to develop a new asphalt pavement condition index publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118513 – ident: ref_10 doi: 10.1080/10298436.2021.1888092 – volume: 36 start-page: 61 year: 2020 ident: ref_30 article-title: Automatic detection method of cracks from concrete surface imagery using two-step light gradient boosting machine publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12564 – ident: ref_6 doi: 10.1080/10298436.2021.1945056 – volume: 176 start-page: 105652 year: 2020 ident: ref_42 article-title: Efficientnet-B4-Ranger: A Novel Method for Greenhouse Cucumber Disease Recognition under Natural Complex Environment publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105652 – ident: ref_32 doi: 10.3390/ma13132960 – volume: 108 start-page: 90 year: 2018 ident: ref_1 article-title: Investigation of fatigue and thermal cracking behavior of rejuvenated reclaimed asphalt pavement binders and mixtures publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2017.11.013 – ident: ref_34 doi: 10.1109/TITS.2021.3084809 – ident: ref_27 doi: 10.3390/s19194251 – volume: 28 start-page: 1498 year: 2018 ident: ref_29 article-title: Deepcrack: Learning Hierarchical Convolutional Features for Crack Detection publication-title: IEEE Trans. Image Process. – volume: 96 start-page: 106691 year: 2020 ident: ref_40 article-title: Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106691 – volume: 28 start-page: 04015118 year: 2016 ident: ref_46 article-title: Use of Infrared Thermography to Detect Thermal Segregation in Asphalt Overlay and Reflective Cracking Potential publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0001413 – volume: 114 start-page: 103171 year: 2020 ident: ref_22 article-title: Deep learning-based roadway crack classification using laser-scanned range images: A comparative study on hyperparameter selection publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103171 – volume: 35 start-page: 04020143 year: 2021 ident: ref_23 article-title: Real-Time Thermal Imaging-Based System for Asphalt Pavement Surface Distress Inspection and 3D Crack Profiling publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0001557 – volume: 179 start-page: 126 year: 2019 ident: ref_39 article-title: The accuracy and utility of a low cost thermal camera and smartphone-based system to assess grapevine water status publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2019.01.002 – volume: 19 start-page: 1832 year: 2018 ident: ref_2 article-title: Predicting thermal cracking of asphalt pavements from bitumen and mix properties publication-title: Road Mater. Pavement Des. doi: 10.1080/14680629.2017.1350598 – volume: 157 start-page: 322 year: 2017 ident: ref_17 article-title: Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.09.110 – volume: 116 start-page: 104118 year: 2021 ident: ref_25 article-title: Infrared thermography for detecting cracks in pillar models with different reinforcing systems publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.104118 – volume: 104 start-page: 104391 year: 2021 ident: ref_31 article-title: Automatic Pixel-Level Crack Segmentation in Images Using Fully Convolutional Neural Network Based on Residual Blocks and Pixel Local Weights publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104391 – volume: 111 start-page: 103055 year: 2020 ident: ref_7 article-title: Heating process monitoring and evaluation of hot in-place recycling of asphalt pavement using infrared thermal imaging publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.103055 – volume: 32 start-page: 04018001 year: 2018 ident: ref_20 article-title: Unified Approach to Pavement Crack and Sealed Crack Detection Using Preclassification Based on Transfer Learning publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000736 – volume: 128 start-page: 103786 year: 2021 ident: ref_33 article-title: Semi-supervised semantic segmentation network for surface crack detection publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103786 – volume: 37 start-page: 56 year: 2018 ident: ref_37 article-title: A Retinex Image Enhancement Based on L Channel Illumination Estimation and Gamma Function publication-title: Tech. Autom. Appl. – volume: 97 start-page: 6105 year: 2019 ident: ref_43 article-title: Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks publication-title: Pap. Presented Int. Conf. Mach. Learn. – ident: ref_5 doi: 10.1016/j.ijtst.2021.04.008 – volume: 19 start-page: 3935 year: 2018 ident: ref_47 article-title: A Kinect-Based Approach for 3D Pavement Surface Reconstruction and Cracking Recognition publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2791476 – volume: 118 start-page: 103291 year: 2020 ident: ref_16 article-title: Hybrid Pixel-Level Concrete Crack Segmentation and Quantification across Complex Backgrounds Using Deep Learning publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103291 – volume: 32 start-page: 361 year: 2017 ident: ref_18 article-title: Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12263 – volume: 33 start-page: 731 year: 2017 ident: ref_19 article-title: Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12334 – ident: ref_36 – volume: 4 start-page: 165 year: 2003 ident: ref_4 article-title: State of the Art Report on Ageing Test Methods for Bituminous Pavement Materials publication-title: Int. J. Pavement Eng. Tatari doi: 10.1080/1029843042000198568 – volume: 33 start-page: 227 year: 2012 ident: ref_12 article-title: CrackTree: Automatic crack detection from pavement images publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2011.11.004 – volume: 40 start-page: 371 year: 2017 ident: ref_24 article-title: Crack Detection in Pillars Using Infrared Thermographic Imaging publication-title: Geotech. Test. J. doi: 10.1520/GTJ20150245 – volume: 151 start-page: 111310 year: 2021 ident: ref_41 article-title: C+Effxnet: A Novel Hybrid Approach for Covid-19 Diagnosis on Ct Images Based on Cbam and Efficientnet publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111310 – volume: 61 start-page: 101182 year: 2021 ident: ref_44 article-title: Plant Leaf Disease Classification Using Efficientnet Deep Learning Model publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101182 – volume: 121 start-page: 397 year: 2019 ident: ref_35 article-title: A deep-learning-based approach for fast and robust steel surface defects classification publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2019.05.005 – volume: 35 start-page: 1291 year: 2020 ident: ref_11 article-title: Automated pavement crack detection and segmentation based on two-step convolutional neural network publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12622 |
| SSID | ssj0000331904 |
| Score | 2.5489428 |
| Snippet | Automatic damage detection using deep learning warrants an extensive data source that captures complex pavement conditions. This paper proposes a thermal-RGB... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 106 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Automation Cameras Cracks Damage detection data collection Datasets Deep learning Image analysis Image classification Image processing Lasers lighting Machine learning multichannel image fusion Neural networks pavement defect detection Pavements Remote sensing Sensors thermal analysis Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLvSCWlpEWkCuyoVDhBPn4Rx5rbY9VD2AxC3yYwyHEFa7WbV75o8z42SXRUJw4RQpGVmWZzwznzP-hrFDXVaUKOvYEg1ApsDHOncy9topVD-x6Icq3z_F-Cr7fZ1fr7X6opqwnh64X7hjOvUoIIHCYuADUelceKGNsSVGljL0F06FqtbAVPDBEk1LZD0fqURcfzydEZQgBPQsAgWi_mfZ5ea8nejFP900a4Fm9IltDRkiP-ln9pl9gHabbQ7Nym8XX9jDOcCED8SoN_EpxiHHUd3oYhv-6w4dBF9SjXBMSflfHTjBO34OVLuBjy7UX7Vct46HrphULxRUxJcNPHFkTr6igf9PA-BH15d4fWVXo4vLs3E89FKIbVaILtaoEUP9PW0FuGmhcNKopHRJ5n2qjEJ0moDyCG5yn0IilC5LnUCpfJZ74UDusI32voVdxiWkCiG4pcwhczY1uXdQpcYIY6WXacSOlutb24FonPpdNDUCDtJF_aSLiP1cyU56eo0XpU5JTSsJosQOL9BQ6sFQ6rcMJWJ7SyXXwz6d1Ygf6e4uovGI_Vh9xh1Gv010C_dzkpGYNCKwEhE7XBnHK9P99h7T_c4-pnTTIpz27LGNbjqHfcx_OnMQTP0Rg6IB7w priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeygX3oiFgozohUO6sZ3XnlBLqQqHqgdWKqfIj3FBhOxqNwuUK3-cGcfZUoQQ4hQpmUSOZjz-PmfyDWO7upwSUNaJJRmArAKf6NypxGtXoftJRT9U-Z4Ux7Ps7Vl-FjfcVrGsEqn4x5CkZVrKhPopTUQ2ETjBi8nC-Zdf4k4SIn2SfpG5us62ihyx-IhtzU5O999TR7nh3l6TVCG3nyxXRCeIBV1ZhYJY_xWEub1uF_riq26aXxabo1usHobZ15h82lt3Zs9-_03B8f_f4za7GXEo3-8D5w67Bu1dth1bon-4uMd-HAIseJRfPU8OcLVzHIMKE3nD33zGNMQHQROOwJef6qA83vFDoAoRPHShyqvlunU89N6kqqQQCHxoE4pP5pSRGvh2-QC86PpCsvtsdvT63avjJHZsSGxWpF2i0e-GuojaKWBqgMIpU4nSicx7WZkKObCAyiOFyr0EkVa6LLWAsvJZ7lMH6gEbtfMWHjKuQFZI9C3hk8xZaXLvYCqNSY1VXskxezF4sLZRzpy6ajQ10hrydn3p7TF7vrFd9CIef7Q6oEDYWJDwdjgxX57XcR5T1868AAGFRRwG6VTnqU-1MbZEoFMKHNbOEEZ1zAarGlkq_SGMnH_Mnm0u4zymjzO6hfmabBRCU6Rv6ZjtbsLvL8N99G9mj9kNSX9shF2jHTbqlmt4gjiqM0_jZPkJxEcXOQ priority: 102 providerName: Unpaywall |
| Title | Deep Learning-Based Thermal Image Analysis for Pavement Defect Detection and Classification Considering Complex Pavement Conditions |
| URI | https://www.proquest.com/docview/2618251523 https://www.proquest.com/docview/2636446750 https://www.mdpi.com/2072-4292/14/1/106/pdf?version=1640604253 https://doaj.org/article/20056e1e6c554e09a50f0abbc7661712 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yaFcEE8RKNEieuFgdf3eHBBKSENBEEVApHKy9lkOxgmpI-iZP87MxnaohHqybK_slWd29pv17PcBnMh8REBZBppoABJhXSBTEwdOGoHmJxZ9X-U7z86XyYeL9OIA5u1eGCqrbGOiD9RmpWmN_BSRPu2yxLzpzfpnQKpR9He1ldCQjbSCee0pxg6hHxEzVg_6k7P54nO36sJjdDme7HhKY8z3TzdXlGJQZnRjZvIE_jdQ59G2WsvrX7Is_5mAZvfgboMc2Xhn6vtwYKsHcNSImH-_fgh_ptauWUOYehlMcH4yDN0AQ2_J3v_AwMFaChKGUJUtpOcKr9nUUk0HHmpfl1UxWRnm1TKpjsibjrXCnvhkRjGktL_3D8CbZlf69QiWs7Ovb8-DRmMh0EnG60CipRTpfuqRxcFsMxMrEeYmTJyLhBKYtYZWOEx6UhfZkAuZ5zK0uXBJ6rix8WPoVavKPgEW20hgaq4JUSRGRyp1xo4ipbjSsYujAbxqv2-hGwJy0sEoC0xEyBbF3hYDeNm1Xe9oN_7bakJm6loQVba_sNpcFs3II53NNLOhzTQiJ8tHMuWOS6V0jtAkD7Fbx62Ri2b8XhV7bxvAi-42jjz6nSIru9pSmxjBJCZcfAAnnXPc0t2nt7_pGdyJaG-FX985hl692drniHhqNYRDMXs3hP54-unjl2Hj1EO_foBny_li_O0vkegFzw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9hAuiKcIFFhEOXCwuvb6eagQIa0SWqIKtVJvZh-z7cE4IXFUcuZ_8duYcWyHSqi3nizZq_XKMzv7zXr2-xjbU0lGQFl5hmgAwhScpyIrPadsiuYnFv26yncSj87DLxfRxRb7056FobLKNibWgdpODe2R7yPSp1OWmDd9nP30SDWK_q62EhqqkVawBzXFWHOw4xhW15jCLQ7GQ7T3-yA4Ojz7PPIalQHPhLGoPIVj1aR8aTJAd4bYSp36ifVD54JUp5i3-ZA6hP2RC8AXqUoS5UOSujBywoLEfu-xnVCGGSZ_O4PDyem3bpdHSHRxEa55UaXMxP58QSkNZWI3VsJaMOAGyu0ty5laXaui-GfBO3rIHjRIlX9au9YjtgXlY9ZrRNOvVk_Y7yHAjDcErZfeANdDy9HtMNQXfPwDAxVvKU84QmN-qmpu8ooPgWpI8FLVdWAlV6XltTon1S3VrsJbIVHsmVPMKuDXpgN8aNelZk_Z-Z187Wdsu5yW8JxxCUEKWhpCMKE1gY6chSzQWmgjnQz67EP7fXPTEJ6T7kaRY-JDtsg3tuizd13b2Zrm47-tBmSmrgVRc9c3pvPLvJnppOsZxeBDbBCpgchUJJxQWpsEoVDi47B2WyPnTbxY5Bvv7rO33WOc6fT7RpUwXVIbieAVEzzRZ3udc9wy3Be3v-kN643Ovp7kJ-PJ8Ut2P6BzHfXe0i7bruZLeIVoq9KvG5fm7Ptdz6K_b048zg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgXxFNsKWBEOXCI1onzPCBEWZYuRVUPVOot-DEuh5Dd7kNlz_wrfh0zzmOphHrrKVJiOVZmPP7GGX8fY_sqKwgoq8AQDUCcgwtUYmXglM3R_MSi76t8j9PD0_jLWXK2xf50Z2GorLKLiT5Q26mhPfIhIn06ZYl509C1ZREno_H72UVAClL0p7WT02hc5AjWl5i-Ld5NRmjrN1E0_vTt42HQKgwEJk7FMlA4Tk2ql6YAdGVIrdR5mNkwdi7KdY45Wwi5Q8ifuAhCkassUyFkuYsTJyxI7PcWu50RizudUh9_7vd3hETnFnHDiCplIYbzBSUzlINdWQO9VMAVfLuzqmdqfamq6p-lbnyf3WsxKv_QONUDtgX1Q7bTyqX_WD9iv0cAM95Ss54HB7gSWo4Oh0G-4pOfGKJ4R3bCERTzE-VZyZd8BFQ9gpelrwCruaot97qcVLHknYR3EqLYM6doVcGvTQf40DZFZo_Z6Y186ydsu57W8JRxCVEOWhrCLrE1kU6chSLSWmgjnYwG7G33fUvTUp2T4kZVYspDtig3thiw133bWUPw8d9WB2SmvgWRcvsb0_l52c5xUvRMUgghNYjRQBQqEU4orU2GICgLcVh7nZHLNlIsyo1fD9ir_jHOcfpxo2qYrqiNRNiKqZ0YsP3eOa4Z7u71b3rJ7uDcKb9Ojo-esbsRHejwm0p7bHs5X8FzhFlL_cL7M2ffb3oC_QXIAzpo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeygX3oiFgozohUO6sZ3XnlBLqQqHqgdWKqfIj3FBhOxqNwuUK3-cGcfZUoQQ4hQpmUSOZjz-PmfyDWO7upwSUNaJJRmArAKf6NypxGtXoftJRT9U-Z4Ux7Ps7Vl-FjfcVrGsEqn4x5CkZVrKhPopTUQ2ETjBi8nC-Zdf4k4SIn2SfpG5us62ihyx-IhtzU5O999TR7nh3l6TVCG3nyxXRCeIBV1ZhYJY_xWEub1uF_riq26aXxabo1usHobZ15h82lt3Zs9-_03B8f_f4za7GXEo3-8D5w67Bu1dth1bon-4uMd-HAIseJRfPU8OcLVzHIMKE3nD33zGNMQHQROOwJef6qA83vFDoAoRPHShyqvlunU89N6kqqQQCHxoE4pP5pSRGvh2-QC86PpCsvtsdvT63avjJHZsSGxWpF2i0e-GuojaKWBqgMIpU4nSicx7WZkKObCAyiOFyr0EkVa6LLWAsvJZ7lMH6gEbtfMWHjKuQFZI9C3hk8xZaXLvYCqNSY1VXskxezF4sLZRzpy6ajQ10hrydn3p7TF7vrFd9CIef7Q6oEDYWJDwdjgxX57XcR5T1868AAGFRRwG6VTnqU-1MbZEoFMKHNbOEEZ1zAarGlkq_SGMnH_Mnm0u4zymjzO6hfmabBRCU6Rv6ZjtbsLvL8N99G9mj9kNSX9shF2jHTbqlmt4gjiqM0_jZPkJxEcXOQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Thermal+Image+Analysis+for+Pavement+Defect+Detection+and+Classification+Considering+Complex+Pavement+Conditions&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Cheng&rft.au=Chandra%2C+Sindhu&rft.au=Han%2C+Yufan&rft.au=Seo%2C+Hyungjoon&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=1&rft.spage=106&rft_id=info:doi/10.3390%2Frs14010106&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |