Deep Learning-Based Thermal Image Analysis for Pavement Defect Detection and Classification Considering Complex Pavement Conditions

Automatic damage detection using deep learning warrants an extensive data source that captures complex pavement conditions. This paper proposes a thermal-RGB fusion image-based pavement damage detection model, wherein the fused RGB-thermal image is formed through multi-source sensor information to a...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 1; p. 106
Main Authors Chen, Cheng, Chandra, Sindhu, Han, Yufan, Seo, Hyungjoon
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2022
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs14010106

Cover

Abstract Automatic damage detection using deep learning warrants an extensive data source that captures complex pavement conditions. This paper proposes a thermal-RGB fusion image-based pavement damage detection model, wherein the fused RGB-thermal image is formed through multi-source sensor information to achieve fast and accurate defect detection including complex pavement conditions. The proposed method uses pre-trained EfficientNet B4 as the backbone architecture and generates an argument dataset (containing non-uniform illumination, camera noise, and scales of thermal images too) to achieve high pavement damage detection accuracy. This paper tests separately the performance of different input data (RGB, thermal, MSX, and fused image) to test the influence of input data and network on the detection results. The results proved that the fused image’s damage detection accuracy can be as high as 98.34% and by using the dataset after augmentation, the detection model deems to be more stable to achieve 98.35% precision, 98.34% recall, and 98.34% F1-score.
AbstractList Automatic damage detection using deep learning warrants an extensive data source that captures complex pavement conditions. This paper proposes a thermal-RGB fusion image-based pavement damage detection model, wherein the fused RGB-thermal image is formed through multi-source sensor information to achieve fast and accurate defect detection including complex pavement conditions. The proposed method uses pre-trained EfficientNet B4 as the backbone architecture and generates an argument dataset (containing non-uniform illumination, camera noise, and scales of thermal images too) to achieve high pavement damage detection accuracy. This paper tests separately the performance of different input data (RGB, thermal, MSX, and fused image) to test the influence of input data and network on the detection results. The results proved that the fused image’s damage detection accuracy can be as high as 98.34% and by using the dataset after augmentation, the detection model deems to be more stable to achieve 98.35% precision, 98.34% recall, and 98.34% F1-score.
Author Chandra, Sindhu
Seo, Hyungjoon
Chen, Cheng
Han, Yufan
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0002-1989-8602
  surname: Chen
  fullname: Chen, Cheng
– sequence: 2
  givenname: Sindhu
  surname: Chandra
  fullname: Chandra, Sindhu
– sequence: 3
  givenname: Yufan
  surname: Han
  fullname: Han, Yufan
– sequence: 4
  givenname: Hyungjoon
  orcidid: 0000-0001-7002-2908
  surname: Seo
  fullname: Seo, Hyungjoon
BookMark eNp9kUFv1DAQhSNUJErphV8QiQsCBcaO7WSPZVtgpZXgUM7WJBkvXjl2sLPAnvvH8e4iiiqEfXij8TdPI7-nxZkPnoriOYM3db2AtzExASxf9ag459DwSvAFP_urflJcprSFfOqaLUCcF3fXRFO5Joze-k31DhMN5e1XiiO6cjXihsorj26fbCpNiOVn_E4j-bm8JkP9QeYsNvgS_VAuHaZkje3x2FoGn-xAMTvnepwc_bw3yI-DPWDpWfHYoEt0-Vsvii_vb26XH6v1pw-r5dW66oWCuUJoVVe3SvYLAtGSGuquZc3AhDG87VrgDaPWKJDScGLQYtMgo6Y1QhoYqL4oViffIeBWT9GOGPc6oNXHRogbjXG2vSPNAaQiRqqXUhAsUIIB7Lq-UYo1jGev1yevnZ9w_wOd-2PIQB_i0PdxZPrliZ5i-LajNOvRpp6cQ09hlzRXtRJCNRIy-uIBug27mCM4UKzlkkleZwpOVB9DSpGM7u18_PQ5onX_3uHVg5H_LPwLHc-2Xw
CitedBy_id crossref_primary_10_3390_info15030169
crossref_primary_10_3390_drones8030099
crossref_primary_10_3390_s23125656
crossref_primary_10_3390_app14114424
crossref_primary_10_3390_rs15102517
crossref_primary_10_1016_j_autcon_2022_104575
crossref_primary_10_1016_j_autcon_2023_105226
crossref_primary_10_3390_rs14081877
crossref_primary_10_1016_j_ndteint_2022_102709
crossref_primary_10_1016_j_aej_2023_05_049
crossref_primary_10_1109_JSEN_2023_3234335
crossref_primary_10_1007_s00138_024_01637_w
crossref_primary_10_1007_s42947_023_00290_2
crossref_primary_10_1016_j_isprsjprs_2022_11_012
crossref_primary_10_1061_JITSE4_ISENG_2313
crossref_primary_10_3390_electronics12153348
crossref_primary_10_1016_j_autcon_2024_105594
crossref_primary_10_1061_JPEODX_PVENG_1747
crossref_primary_10_32604_cmc_2023_034654
crossref_primary_10_9712_KASS_2023_23_3_95
crossref_primary_10_3390_s22155781
crossref_primary_10_1007_s13369_024_09495_4
crossref_primary_10_1109_ACCESS_2024_3481649
crossref_primary_10_1016_j_autcon_2024_105797
crossref_primary_10_3390_asi7010011
crossref_primary_10_1016_j_autcon_2024_105355
crossref_primary_10_1061_JPEODX_PVENG_1181
crossref_primary_10_3390_su15010561
crossref_primary_10_3390_su15010568
crossref_primary_10_1080_10298436_2023_2180641
crossref_primary_10_1109_TITS_2024_3353257
crossref_primary_10_1016_j_autcon_2024_105363
crossref_primary_10_3390_math12162542
crossref_primary_10_1016_j_scs_2023_104991
crossref_primary_10_3390_s24103015
crossref_primary_10_1109_ACCESS_2023_3305670
crossref_primary_10_3390_s23104582
crossref_primary_10_3390_s24020464
crossref_primary_10_3390_s22239365
crossref_primary_10_1016_j_ndteint_2022_102652
crossref_primary_10_1016_j_treng_2024_100274
crossref_primary_10_1109_ACCESS_2023_3332468
crossref_primary_10_1007_s12205_024_1066_8
crossref_primary_10_1080_10298436_2024_2434910
crossref_primary_10_1016_j_conbuildmat_2022_128264
crossref_primary_10_1177_03611981241239958
crossref_primary_10_1007_s11440_022_01779_z
crossref_primary_10_1016_j_conbuildmat_2025_140740
crossref_primary_10_3390_s22083044
crossref_primary_10_3389_fphy_2022_1081805
Cites_doi 10.3390/s20154198
10.1016/j.apsusc.2013.09.002
10.1080/10298436.2016.1155709
10.1016/j.measurement.2021.109900
10.1016/j.conbuildmat.2020.120080
10.4103/0256-4602.62225
10.1016/j.conbuildmat.2020.120474
10.1061/(ASCE)CP.1943-5487.0000918
10.1016/j.autcon.2021.103833
10.1016/j.autcon.2021.103788
10.1016/j.conbuildmat.2020.118513
10.1080/10298436.2021.1888092
10.1111/mice.12564
10.1080/10298436.2021.1945056
10.1016/j.compag.2020.105652
10.3390/ma13132960
10.1016/j.ijfatigue.2017.11.013
10.1109/TITS.2021.3084809
10.3390/s19194251
10.1016/j.asoc.2020.106691
10.1061/(ASCE)MT.1943-5533.0001413
10.1016/j.autcon.2020.103171
10.1061/(ASCE)CF.1943-5509.0001557
10.1016/j.biosystemseng.2019.01.002
10.1080/14680629.2017.1350598
10.1016/j.conbuildmat.2017.09.110
10.1016/j.tust.2021.104118
10.1016/j.engappai.2021.104391
10.1016/j.autcon.2019.103055
10.1061/(ASCE)CP.1943-5487.0000736
10.1016/j.autcon.2021.103786
10.1016/j.ijtst.2021.04.008
10.1109/TITS.2018.2791476
10.1016/j.autcon.2020.103291
10.1111/mice.12263
10.1111/mice.12334
10.1080/1029843042000198568
10.1016/j.patrec.2011.11.004
10.1520/GTJ20150245
10.1016/j.chaos.2021.111310
10.1016/j.ecoinf.2020.101182
10.1016/j.optlaseng.2019.05.005
10.1111/mice.12622
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
COVID
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/rs14010106
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
Coronavirus Research Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_20056e1e6c554e09a50f0abbc7661712
10.3390/rs14010106
10_3390_rs14010106
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
COVID
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7S9
L.6
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c460t-a086b3865c9e048e6d3b817d14ff28b80271e8f6055f2e108a77a1e78f45f0de3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Tue Oct 14 18:55:16 EDT 2025
Sun Oct 26 02:36:04 EDT 2025
Fri Sep 05 14:44:04 EDT 2025
Sat Sep 06 14:20:03 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Thu Oct 16 04:31:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-a086b3865c9e048e6d3b817d14ff28b80271e8f6055f2e108a77a1e78f45f0de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1989-8602
0000-0001-7002-2908
OpenAccessLink https://www.proquest.com/docview/2618251523?pq-origsite=%requestingapplication%&accountid=15518
PQID 2618251523
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_20056e1e6c554e09a50f0abbc7661712
unpaywall_primary_10_3390_rs14010106
proquest_miscellaneous_2636446750
proquest_journals_2618251523
crossref_citationtrail_10_3390_rs14010106
crossref_primary_10_3390_rs14010106
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Guan (ref_8) 2021; 129
Rezaie (ref_28) 2020; 261
Wang (ref_33) 2021; 128
Chun (ref_30) 2020; 36
Liu (ref_11) 2020; 35
Pan (ref_42) 2020; 176
Du (ref_45) 2021; 184
Zou (ref_12) 2012; 33
ref_36
Kaige (ref_20) 2018; 32
ref_34
Peng (ref_14) 2020; 263
Golestani (ref_3) 2018; 19
ref_10
ref_32
Hu (ref_13) 2010; 27
Dhakal (ref_46) 2016; 28
Gopalakrishnan (ref_17) 2017; 157
Qin (ref_29) 2018; 28
Akyol (ref_44) 2021; 61
Seo (ref_24) 2017; 40
Yichang (ref_26) 2020; 34
Teltayev (ref_2) 2018; 19
Raza (ref_31) 2021; 104
Kechen (ref_38) 2013; 285
Han (ref_7) 2020; 111
Dan (ref_4) 2003; 4
Seo (ref_25) 2021; 116
Murat (ref_41) 2021; 151
Majidifard (ref_21) 2020; 247
Marques (ref_40) 2020; 96
Cha (ref_18) 2017; 32
Seungbo (ref_15) 2021; 130
Petrie (ref_39) 2019; 179
Dongho (ref_16) 2020; 118
Tan (ref_43) 2019; 97
Golrokh (ref_23) 2021; 35
Elkashef (ref_1) 2018; 108
ref_27
ref_9
Zhou (ref_22) 2020; 114
Huang (ref_37) 2018; 37
Cha (ref_19) 2017; 33
Zhang (ref_47) 2018; 19
ref_5
Fu (ref_35) 2019; 121
ref_6
References_xml – ident: ref_9
  doi: 10.3390/s20154198
– volume: 285
  start-page: 858
  year: 2013
  ident: ref_38
  article-title: A Noise Robust Method Based on Completed Local Binary Patterns for Hot-Rolled Steel Strip Surface Defects
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.09.002
– volume: 19
  start-page: 48
  year: 2018
  ident: ref_3
  article-title: An Optimum Selection Strategy of Reflective Cracking Mitigation Methods for an Asphalt Concrete Overlay over Flexible Pavements
  publication-title: Int. J. Pavement Eng. Tatari
  doi: 10.1080/10298436.2016.1155709
– volume: 184
  start-page: 109900
  year: 2021
  ident: ref_45
  article-title: Application of image technology on pavement distress detection: A review
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109900
– volume: 263
  start-page: 120080
  year: 2020
  ident: ref_14
  article-title: A triple-thresholds pavement crack detection method leveraging random structured forest
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120080
– volume: 27
  start-page: 398
  year: 2010
  ident: ref_13
  article-title: Automatic Pavement Crack Detection Using Texture and Shape Descriptors
  publication-title: IETE Tech. Rev.
  doi: 10.4103/0256-4602.62225
– volume: 261
  start-page: 120474
  year: 2020
  ident: ref_28
  article-title: Comparison of crack segmentation using digital image correlation measurements and deep learning
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120474
– volume: 34
  start-page: 04020038
  year: 2020
  ident: ref_26
  article-title: Machine Learning for Crack Detection: Review and Model Performance Comparison
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000918
– volume: 130
  start-page: 103833
  year: 2021
  ident: ref_15
  article-title: Road Surface Damage Detection Based on Hierarchical Architecture Using Lightweight Auto-Encoder Network
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103833
– volume: 129
  start-page: 103788
  year: 2021
  ident: ref_8
  article-title: Automated pixel-level pavement distress detection based on stereo vision and deep learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103788
– volume: 247
  start-page: 118513
  year: 2020
  ident: ref_21
  article-title: Deep machine learning approach to develop a new asphalt pavement condition index
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118513
– ident: ref_10
  doi: 10.1080/10298436.2021.1888092
– volume: 36
  start-page: 61
  year: 2020
  ident: ref_30
  article-title: Automatic detection method of cracks from concrete surface imagery using two-step light gradient boosting machine
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12564
– ident: ref_6
  doi: 10.1080/10298436.2021.1945056
– volume: 176
  start-page: 105652
  year: 2020
  ident: ref_42
  article-title: Efficientnet-B4-Ranger: A Novel Method for Greenhouse Cucumber Disease Recognition under Natural Complex Environment
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105652
– ident: ref_32
  doi: 10.3390/ma13132960
– volume: 108
  start-page: 90
  year: 2018
  ident: ref_1
  article-title: Investigation of fatigue and thermal cracking behavior of rejuvenated reclaimed asphalt pavement binders and mixtures
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2017.11.013
– ident: ref_34
  doi: 10.1109/TITS.2021.3084809
– ident: ref_27
  doi: 10.3390/s19194251
– volume: 28
  start-page: 1498
  year: 2018
  ident: ref_29
  article-title: Deepcrack: Learning Hierarchical Convolutional Features for Crack Detection
  publication-title: IEEE Trans. Image Process.
– volume: 96
  start-page: 106691
  year: 2020
  ident: ref_40
  article-title: Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106691
– volume: 28
  start-page: 04015118
  year: 2016
  ident: ref_46
  article-title: Use of Infrared Thermography to Detect Thermal Segregation in Asphalt Overlay and Reflective Cracking Potential
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0001413
– volume: 114
  start-page: 103171
  year: 2020
  ident: ref_22
  article-title: Deep learning-based roadway crack classification using laser-scanned range images: A comparative study on hyperparameter selection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103171
– volume: 35
  start-page: 04020143
  year: 2021
  ident: ref_23
  article-title: Real-Time Thermal Imaging-Based System for Asphalt Pavement Surface Distress Inspection and 3D Crack Profiling
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0001557
– volume: 179
  start-page: 126
  year: 2019
  ident: ref_39
  article-title: The accuracy and utility of a low cost thermal camera and smartphone-based system to assess grapevine water status
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.01.002
– volume: 19
  start-page: 1832
  year: 2018
  ident: ref_2
  article-title: Predicting thermal cracking of asphalt pavements from bitumen and mix properties
  publication-title: Road Mater. Pavement Des.
  doi: 10.1080/14680629.2017.1350598
– volume: 157
  start-page: 322
  year: 2017
  ident: ref_17
  article-title: Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.09.110
– volume: 116
  start-page: 104118
  year: 2021
  ident: ref_25
  article-title: Infrared thermography for detecting cracks in pillar models with different reinforcing systems
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.104118
– volume: 104
  start-page: 104391
  year: 2021
  ident: ref_31
  article-title: Automatic Pixel-Level Crack Segmentation in Images Using Fully Convolutional Neural Network Based on Residual Blocks and Pixel Local Weights
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104391
– volume: 111
  start-page: 103055
  year: 2020
  ident: ref_7
  article-title: Heating process monitoring and evaluation of hot in-place recycling of asphalt pavement using infrared thermal imaging
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.103055
– volume: 32
  start-page: 04018001
  year: 2018
  ident: ref_20
  article-title: Unified Approach to Pavement Crack and Sealed Crack Detection Using Preclassification Based on Transfer Learning
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000736
– volume: 128
  start-page: 103786
  year: 2021
  ident: ref_33
  article-title: Semi-supervised semantic segmentation network for surface crack detection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103786
– volume: 37
  start-page: 56
  year: 2018
  ident: ref_37
  article-title: A Retinex Image Enhancement Based on L Channel Illumination Estimation and Gamma Function
  publication-title: Tech. Autom. Appl.
– volume: 97
  start-page: 6105
  year: 2019
  ident: ref_43
  article-title: Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks
  publication-title: Pap. Presented Int. Conf. Mach. Learn.
– ident: ref_5
  doi: 10.1016/j.ijtst.2021.04.008
– volume: 19
  start-page: 3935
  year: 2018
  ident: ref_47
  article-title: A Kinect-Based Approach for 3D Pavement Surface Reconstruction and Cracking Recognition
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2791476
– volume: 118
  start-page: 103291
  year: 2020
  ident: ref_16
  article-title: Hybrid Pixel-Level Concrete Crack Segmentation and Quantification across Complex Backgrounds Using Deep Learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103291
– volume: 32
  start-page: 361
  year: 2017
  ident: ref_18
  article-title: Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12263
– volume: 33
  start-page: 731
  year: 2017
  ident: ref_19
  article-title: Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12334
– ident: ref_36
– volume: 4
  start-page: 165
  year: 2003
  ident: ref_4
  article-title: State of the Art Report on Ageing Test Methods for Bituminous Pavement Materials
  publication-title: Int. J. Pavement Eng. Tatari
  doi: 10.1080/1029843042000198568
– volume: 33
  start-page: 227
  year: 2012
  ident: ref_12
  article-title: CrackTree: Automatic crack detection from pavement images
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.11.004
– volume: 40
  start-page: 371
  year: 2017
  ident: ref_24
  article-title: Crack Detection in Pillars Using Infrared Thermographic Imaging
  publication-title: Geotech. Test. J.
  doi: 10.1520/GTJ20150245
– volume: 151
  start-page: 111310
  year: 2021
  ident: ref_41
  article-title: C+Effxnet: A Novel Hybrid Approach for Covid-19 Diagnosis on Ct Images Based on Cbam and Efficientnet
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111310
– volume: 61
  start-page: 101182
  year: 2021
  ident: ref_44
  article-title: Plant Leaf Disease Classification Using Efficientnet Deep Learning Model
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101182
– volume: 121
  start-page: 397
  year: 2019
  ident: ref_35
  article-title: A deep-learning-based approach for fast and robust steel surface defects classification
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2019.05.005
– volume: 35
  start-page: 1291
  year: 2020
  ident: ref_11
  article-title: Automated pavement crack detection and segmentation based on two-step convolutional neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12622
SSID ssj0000331904
Score 2.5489428
Snippet Automatic damage detection using deep learning warrants an extensive data source that captures complex pavement conditions. This paper proposes a thermal-RGB...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 106
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Automation
Cameras
Cracks
Damage detection
data collection
Datasets
Deep learning
Image analysis
Image classification
Image processing
Lasers
lighting
Machine learning
multichannel image fusion
Neural networks
pavement defect detection
Pavements
Remote sensing
Sensors
thermal analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLvSCWlpEWkCuyoVDhBPn4Rx5rbY9VD2AxC3yYwyHEFa7WbV75o8z42SXRUJw4RQpGVmWZzwznzP-hrFDXVaUKOvYEg1ApsDHOncy9topVD-x6Icq3z_F-Cr7fZ1fr7X6opqwnh64X7hjOvUoIIHCYuADUelceKGNsSVGljL0F06FqtbAVPDBEk1LZD0fqURcfzydEZQgBPQsAgWi_mfZ5ea8nejFP900a4Fm9IltDRkiP-ln9pl9gHabbQ7Nym8XX9jDOcCED8SoN_EpxiHHUd3oYhv-6w4dBF9SjXBMSflfHTjBO34OVLuBjy7UX7Vct46HrphULxRUxJcNPHFkTr6igf9PA-BH15d4fWVXo4vLs3E89FKIbVaILtaoEUP9PW0FuGmhcNKopHRJ5n2qjEJ0moDyCG5yn0IilC5LnUCpfJZ74UDusI32voVdxiWkCiG4pcwhczY1uXdQpcYIY6WXacSOlutb24FonPpdNDUCDtJF_aSLiP1cyU56eo0XpU5JTSsJosQOL9BQ6sFQ6rcMJWJ7SyXXwz6d1Ygf6e4uovGI_Vh9xh1Gv010C_dzkpGYNCKwEhE7XBnHK9P99h7T_c4-pnTTIpz27LGNbjqHfcx_OnMQTP0Rg6IB7w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeygX3oiFgozohUO6sZ3XnlBLqQqHqgdWKqfIj3FBhOxqNwuUK3-cGcfZUoQQ4hQpmUSOZjz-PmfyDWO7upwSUNaJJRmArAKf6NypxGtXoftJRT9U-Z4Ux7Ps7Vl-FjfcVrGsEqn4x5CkZVrKhPopTUQ2ETjBi8nC-Zdf4k4SIn2SfpG5us62ihyx-IhtzU5O999TR7nh3l6TVCG3nyxXRCeIBV1ZhYJY_xWEub1uF_riq26aXxabo1usHobZ15h82lt3Zs9-_03B8f_f4za7GXEo3-8D5w67Bu1dth1bon-4uMd-HAIseJRfPU8OcLVzHIMKE3nD33zGNMQHQROOwJef6qA83vFDoAoRPHShyqvlunU89N6kqqQQCHxoE4pP5pSRGvh2-QC86PpCsvtsdvT63avjJHZsSGxWpF2i0e-GuojaKWBqgMIpU4nSicx7WZkKObCAyiOFyr0EkVa6LLWAsvJZ7lMH6gEbtfMWHjKuQFZI9C3hk8xZaXLvYCqNSY1VXskxezF4sLZRzpy6ajQ10hrydn3p7TF7vrFd9CIef7Q6oEDYWJDwdjgxX57XcR5T1868AAGFRRwG6VTnqU-1MbZEoFMKHNbOEEZ1zAarGlkq_SGMnH_Mnm0u4zymjzO6hfmabBRCU6Rv6ZjtbsLvL8N99G9mj9kNSX9shF2jHTbqlmt4gjiqM0_jZPkJxEcXOQ
  priority: 102
  providerName: Unpaywall
Title Deep Learning-Based Thermal Image Analysis for Pavement Defect Detection and Classification Considering Complex Pavement Conditions
URI https://www.proquest.com/docview/2618251523
https://www.proquest.com/docview/2636446750
https://www.mdpi.com/2072-4292/14/1/106/pdf?version=1640604253
https://doaj.org/article/20056e1e6c554e09a50f0abbc7661712
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yaFcEE8RKNEieuFgdf3eHBBKSENBEEVApHKy9lkOxgmpI-iZP87MxnaohHqybK_slWd29pv17PcBnMh8REBZBppoABJhXSBTEwdOGoHmJxZ9X-U7z86XyYeL9OIA5u1eGCqrbGOiD9RmpWmN_BSRPu2yxLzpzfpnQKpR9He1ldCQjbSCee0pxg6hHxEzVg_6k7P54nO36sJjdDme7HhKY8z3TzdXlGJQZnRjZvIE_jdQ59G2WsvrX7Is_5mAZvfgboMc2Xhn6vtwYKsHcNSImH-_fgh_ptauWUOYehlMcH4yDN0AQ2_J3v_AwMFaChKGUJUtpOcKr9nUUk0HHmpfl1UxWRnm1TKpjsibjrXCnvhkRjGktL_3D8CbZlf69QiWs7Ovb8-DRmMh0EnG60CipRTpfuqRxcFsMxMrEeYmTJyLhBKYtYZWOEx6UhfZkAuZ5zK0uXBJ6rix8WPoVavKPgEW20hgaq4JUSRGRyp1xo4ipbjSsYujAbxqv2-hGwJy0sEoC0xEyBbF3hYDeNm1Xe9oN_7bakJm6loQVba_sNpcFs3II53NNLOhzTQiJ8tHMuWOS6V0jtAkD7Fbx62Ri2b8XhV7bxvAi-42jjz6nSIru9pSmxjBJCZcfAAnnXPc0t2nt7_pGdyJaG-FX985hl692drniHhqNYRDMXs3hP54-unjl2Hj1EO_foBny_li_O0vkegFzw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9hAuiKcIFFhEOXCwuvb6eagQIa0SWqIKtVJvZh-z7cE4IXFUcuZ_8duYcWyHSqi3nizZq_XKMzv7zXr2-xjbU0lGQFl5hmgAwhScpyIrPadsiuYnFv26yncSj87DLxfRxRb7056FobLKNibWgdpODe2R7yPSp1OWmDd9nP30SDWK_q62EhqqkVawBzXFWHOw4xhW15jCLQ7GQ7T3-yA4Ojz7PPIalQHPhLGoPIVj1aR8aTJAd4bYSp36ifVD54JUp5i3-ZA6hP2RC8AXqUoS5UOSujBywoLEfu-xnVCGGSZ_O4PDyem3bpdHSHRxEa55UaXMxP58QSkNZWI3VsJaMOAGyu0ty5laXaui-GfBO3rIHjRIlX9au9YjtgXlY9ZrRNOvVk_Y7yHAjDcErZfeANdDy9HtMNQXfPwDAxVvKU84QmN-qmpu8ooPgWpI8FLVdWAlV6XltTon1S3VrsJbIVHsmVPMKuDXpgN8aNelZk_Z-Z187Wdsu5yW8JxxCUEKWhpCMKE1gY6chSzQWmgjnQz67EP7fXPTEJ6T7kaRY-JDtsg3tuizd13b2Zrm47-tBmSmrgVRc9c3pvPLvJnppOsZxeBDbBCpgchUJJxQWpsEoVDi47B2WyPnTbxY5Bvv7rO33WOc6fT7RpUwXVIbieAVEzzRZ3udc9wy3Be3v-kN643Ovp7kJ-PJ8Ut2P6BzHfXe0i7bruZLeIVoq9KvG5fm7Ptdz6K_b048zg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgXxFNsKWBEOXCI1onzPCBEWZYuRVUPVOot-DEuh5Dd7kNlz_wrfh0zzmOphHrrKVJiOVZmPP7GGX8fY_sqKwgoq8AQDUCcgwtUYmXglM3R_MSi76t8j9PD0_jLWXK2xf50Z2GorLKLiT5Q26mhPfIhIn06ZYl509C1ZREno_H72UVAClL0p7WT02hc5AjWl5i-Ld5NRmjrN1E0_vTt42HQKgwEJk7FMlA4Tk2ql6YAdGVIrdR5mNkwdi7KdY45Wwi5Q8ifuAhCkassUyFkuYsTJyxI7PcWu50RizudUh9_7vd3hETnFnHDiCplIYbzBSUzlINdWQO9VMAVfLuzqmdqfamq6p-lbnyf3WsxKv_QONUDtgX1Q7bTyqX_WD9iv0cAM95Ss54HB7gSWo4Oh0G-4pOfGKJ4R3bCERTzE-VZyZd8BFQ9gpelrwCruaot97qcVLHknYR3EqLYM6doVcGvTQf40DZFZo_Z6Y186ydsu57W8JRxCVEOWhrCLrE1kU6chSLSWmgjnYwG7G33fUvTUp2T4kZVYspDtig3thiw133bWUPw8d9WB2SmvgWRcvsb0_l52c5xUvRMUgghNYjRQBQqEU4orU2GICgLcVh7nZHLNlIsyo1fD9ir_jHOcfpxo2qYrqiNRNiKqZ0YsP3eOa4Z7u71b3rJ7uDcKb9Ojo-esbsRHejwm0p7bHs5X8FzhFlL_cL7M2ffb3oC_QXIAzpo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeygX3oiFgozohUO6sZ3XnlBLqQqHqgdWKqfIj3FBhOxqNwuUK3-cGcfZUoQQ4hQpmUSOZjz-PmfyDWO7upwSUNaJJRmArAKf6NypxGtXoftJRT9U-Z4Ux7Ps7Vl-FjfcVrGsEqn4x5CkZVrKhPopTUQ2ETjBi8nC-Zdf4k4SIn2SfpG5us62ihyx-IhtzU5O999TR7nh3l6TVCG3nyxXRCeIBV1ZhYJY_xWEub1uF_riq26aXxabo1usHobZ15h82lt3Zs9-_03B8f_f4za7GXEo3-8D5w67Bu1dth1bon-4uMd-HAIseJRfPU8OcLVzHIMKE3nD33zGNMQHQROOwJef6qA83vFDoAoRPHShyqvlunU89N6kqqQQCHxoE4pP5pSRGvh2-QC86PpCsvtsdvT63avjJHZsSGxWpF2i0e-GuojaKWBqgMIpU4nSicx7WZkKObCAyiOFyr0EkVa6LLWAsvJZ7lMH6gEbtfMWHjKuQFZI9C3hk8xZaXLvYCqNSY1VXskxezF4sLZRzpy6ajQ10hrydn3p7TF7vrFd9CIef7Q6oEDYWJDwdjgxX57XcR5T1868AAGFRRwG6VTnqU-1MbZEoFMKHNbOEEZ1zAarGlkq_SGMnH_Mnm0u4zymjzO6hfmabBRCU6Rv6ZjtbsLvL8N99G9mj9kNSX9shF2jHTbqlmt4gjiqM0_jZPkJxEcXOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Thermal+Image+Analysis+for+Pavement+Defect+Detection+and+Classification+Considering+Complex+Pavement+Conditions&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Cheng&rft.au=Chandra%2C+Sindhu&rft.au=Han%2C+Yufan&rft.au=Seo%2C+Hyungjoon&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=1&rft.spage=106&rft_id=info:doi/10.3390%2Frs14010106&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon