Novel Roles of Unphosphorylated STAT3 in Oncogenesis and Transcriptional Regulation
Signal transducer and activator of transcription 3 (STAT3) is phosphorylated on tyrosine residue 705 in response to growth factors or cytokines to form activated homodimers that drive gene expression. Because the stat3 promoter has a binding site for STAT3 dimers, the amount of STAT3 protein increas...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 65; no. 3; pp. 939 - 947 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.02.2005
|
Subjects | |
Online Access | Get full text |
ISSN | 0008-5472 1538-7445 |
DOI | 10.1158/0008-5472.939.65.3 |
Cover
Abstract | Signal transducer and activator of transcription 3 (STAT3) is phosphorylated on tyrosine residue 705 in response to growth factors or cytokines to form activated homodimers that drive gene expression. Because the stat3 promoter has a binding site for STAT3 dimers, the amount of STAT3 protein increases when STAT3 is activated (e.g., in response to interleukin 6). Unphosphorylated STAT1 is known to drive the expression of certain genes. To explore the possibility of a similar role for the induced expression of unphosphorylated STAT3, we overexpressed either Y705F STAT3, which can not be phosphorylated on residue 705, or wild-type STAT3 in normal human mammary epithelial cells or STAT3-null mouse cells. The levels of many mRNAs were affected strongly by high levels of either form of STAT3. Some genes whose expression was increased by overexpressed STAT3, but not by activated STAT3 dimers, encode well-known oncoproteins (e.g., MRAS and MET). In many tumors, STAT3 is activated constitutively, and thus the unphosphorylated form is likely to be expressed highly, driving oncogene expression by a novel mechanism. In addition, expression of the stat3 gene is increased strongly in response to interleukin 6, and the high levels of unphosphorylated STAT3 that result drive a substantial late phase of gene expression in response to this cytokine. Thus, unphosphorylated STAT3, which activates gene expression by a novel mechanism distinct from that used by STAT3 dimers, is very likely to be an important transcription factor both in cancer and in responses to cytokines. |
---|---|
AbstractList | Signal transducer and activator of transcription 3 (STAT3) is phosphorylated on tyrosine residue 705 in response to growth factors or cytokines to form activated homodimers that drive gene expression. Because the stat3 promoter has a binding site for STAT3 dimers, the amount of STAT3 protein increases when STAT3 is activated (e.g., in response to interleukin 6). Unphosphorylated STAT1 is known to drive the expression of certain genes. To explore the possibility of a similar role for the induced expression of unphosphorylated STAT3, we overexpressed either Y705F STAT3, which can not be phosphorylated on residue 705, or wild-type STAT3 in normal human mammary epithelial cells or STAT3-null mouse cells. The levels of many mRNAs were affected strongly by high levels of either form of STAT3. Some genes whose expression was increased by overexpressed STAT3, but not by activated STAT3 dimers, encode well-known oncoproteins (e.g., MRAS and MET). In many tumors, STAT3 is activated constitutively, and thus the unphosphorylated form is likely to be expressed highly, driving oncogene expression by a novel mechanism. In addition, expression of the stat3 gene is increased strongly in response to interleukin 6, and the high levels of unphosphorylated STAT3 that result drive a substantial late phase of gene expression in response to this cytokine. Thus, unphosphorylated STAT3, which activates gene expression by a novel mechanism distinct from that used by STAT3 dimers, is very likely to be an important transcription factor both in cancer and in responses to cytokines. Signal transducer and activator of transcription 3 (STAT3) is phosphorylated on tyrosine residue 705 in response to growth factors or cytokines to form activated homodimers that drive gene expression. Because the stat3 promoter has a binding site for STAT3 dimers, the amount of STAT3 protein increases when STAT3 is activated (e.g., in response to interleukin 6). Unphosphorylated STAT1 is known to drive the expression of certain genes. To explore the possibility of a similar role for the induced expression of unphosphorylated STAT3, we overexpressed either Y705F STAT3, which can not be phosphorylated on residue 705, or wild-type STAT3 in normal human mammary epithelial cells or STAT3-null mouse cells. The levels of many mRNAs were affected strongly by high levels of either form of STAT3. Some genes whose expression was increased by overexpressed STAT3, but not by activated STAT3 dimers, encode well-known oncoproteins (e.g., MRAS and MET). In many tumors, STAT3 is activated constitutively, and thus the unphosphorylated form is likely to be expressed highly, driving oncogene expression by a novel mechanism. In addition, expression of the stat3 gene is increased strongly in response to interleukin 6, and the high levels of unphosphorylated STAT3 that result drive a substantial late phase of gene expression in response to this cytokine. Thus, unphosphorylated STAT3, which activates gene expression by a novel mechanism distinct from that used by STAT3 dimers, is very likely to be an important transcription factor both in cancer and in responses to cytokines.Signal transducer and activator of transcription 3 (STAT3) is phosphorylated on tyrosine residue 705 in response to growth factors or cytokines to form activated homodimers that drive gene expression. Because the stat3 promoter has a binding site for STAT3 dimers, the amount of STAT3 protein increases when STAT3 is activated (e.g., in response to interleukin 6). Unphosphorylated STAT1 is known to drive the expression of certain genes. To explore the possibility of a similar role for the induced expression of unphosphorylated STAT3, we overexpressed either Y705F STAT3, which can not be phosphorylated on residue 705, or wild-type STAT3 in normal human mammary epithelial cells or STAT3-null mouse cells. The levels of many mRNAs were affected strongly by high levels of either form of STAT3. Some genes whose expression was increased by overexpressed STAT3, but not by activated STAT3 dimers, encode well-known oncoproteins (e.g., MRAS and MET). In many tumors, STAT3 is activated constitutively, and thus the unphosphorylated form is likely to be expressed highly, driving oncogene expression by a novel mechanism. In addition, expression of the stat3 gene is increased strongly in response to interleukin 6, and the high levels of unphosphorylated STAT3 that result drive a substantial late phase of gene expression in response to this cytokine. Thus, unphosphorylated STAT3, which activates gene expression by a novel mechanism distinct from that used by STAT3 dimers, is very likely to be an important transcription factor both in cancer and in responses to cytokines. |
Author | Nguyen, Hannah Schlessinger, Karni Chatterjee-Kishore, Moitreyee Levy, David E. Staugaitis, Susan M. Stark, George R. Yang, Jinbo |
Author_xml | – sequence: 1 givenname: Jinbo surname: Yang fullname: Yang, Jinbo – sequence: 2 givenname: Moitreyee surname: Chatterjee-Kishore fullname: Chatterjee-Kishore, Moitreyee – sequence: 3 givenname: Susan M. surname: Staugaitis fullname: Staugaitis, Susan M. – sequence: 4 givenname: Hannah surname: Nguyen fullname: Nguyen, Hannah – sequence: 5 givenname: Karni surname: Schlessinger fullname: Schlessinger, Karni – sequence: 6 givenname: David E. surname: Levy fullname: Levy, David E. – sequence: 7 givenname: George R. surname: Stark fullname: Stark, George R. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16472262$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15705894$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAUhYMoOj7-gAvpRncdk-bZpYgvEAUd1yFNbzXSScakI_jvTXVUEMTF5XLhO4fLOdto3QcPCO0TPCWEq2OMsSo5k9W0pvVU8CldQxPCqSolY3wdTb6BLbSd0nM-OcF8E20RLjFXNZug-5vwCn1xF3pIReiKB794CilPfOvNAG1xPzuZ0cL54tbb8AgekkuF8W0xi8YnG91icMGbbAGPyyzJxy7a6EyfYG-1d9DD-dns9LK8vr24Oj25Li0TeCjrrpMKuAXCbVUr3HSSS2qxMKKhGOrWKMoqw5myhBFcjdNgwkkrgZIG0x109Om7iOFlCWnQc5cs9L3xEJZJC8kqKij9FySSYikwyeDBClw2c2j1Irq5iW_6K68MHK4Ak6zpu5yBdemHEznsSlSZU5-cjSGlCJ22bvgIZ4jG9ZpgPVaox4b02JDOFWrB9fhs9Uv67f636B3g45vi |
CODEN | CNREA8 |
CitedBy_id | crossref_primary_10_1158_0008_5472_CAN_08_2534 crossref_primary_10_1161_CIRCRESAHA_117_311950 crossref_primary_10_1016_j_prp_2020_153172 crossref_primary_10_1093_jnci_djj334 crossref_primary_10_1002_mrd_21048 crossref_primary_10_1002_jcp_29159 crossref_primary_10_1182_blood_2007_09_111948 crossref_primary_10_1371_journal_pone_0020188 crossref_primary_10_2119_molmed_2011_00007 crossref_primary_10_1038_cr_2008_41 crossref_primary_10_1093_abbs_gmy174 crossref_primary_10_1038_s41401_023_01218_z crossref_primary_10_1016_j_cytogfr_2007_06_013 crossref_primary_10_1038_srep17663 crossref_primary_10_1073_pnas_1400683111 crossref_primary_10_1158_1535_7163_MCT_20_0599 crossref_primary_10_1080_15548627_2017_1280217 crossref_primary_10_2353_ajpath_2010_091280 crossref_primary_10_1074_jbc_M114_564252 crossref_primary_10_1089_jir_2012_0154 crossref_primary_10_1038_sj_onc_1210222 crossref_primary_10_1080_08977194_2018_1473393 crossref_primary_10_1038_s41598_021_92830_8 crossref_primary_10_1186_1476_4598_5_15 crossref_primary_10_1016_j_bcp_2018_02_026 crossref_primary_10_1186_bcr2725 crossref_primary_10_4236_abb_2024_1510039 crossref_primary_10_1007_s10620_008_0401_0 crossref_primary_10_2174_1568026619666190620145052 crossref_primary_10_1016_j_micinf_2007_09_008 crossref_primary_10_1186_s13045_024_01654_2 crossref_primary_10_1074_jbc_M111_323899 crossref_primary_10_1089_jir_2005_25_733 crossref_primary_10_3390_ijms150611013 crossref_primary_10_1172_jci_insight_160606 crossref_primary_10_1016_j_bbrc_2005_02_154 crossref_primary_10_1016_j_cyto_2010_03_009 crossref_primary_10_1016_j_immuni_2012_03_013 crossref_primary_10_3390_v10100538 crossref_primary_10_1016_j_bbrc_2017_06_111 crossref_primary_10_1016_j_biopha_2017_09_055 crossref_primary_10_1158_1541_7786_MCR_08_0095 crossref_primary_10_3390_cancers6010526 crossref_primary_10_1038_cr_2010_183 crossref_primary_10_1074_jbc_M115_657833 crossref_primary_10_1002_mc_22778 crossref_primary_10_1074_jbc_M112_390781 crossref_primary_10_1093_jxb_eru548 crossref_primary_10_1038_s41416_022_02098_6 crossref_primary_10_1186_s13058_019_1131_2 crossref_primary_10_1016_j_jaci_2009_05_004 crossref_primary_10_3390_v12090977 crossref_primary_10_1111_febs_16116 crossref_primary_10_4049_jimmunol_0804388 crossref_primary_10_1016_j_jcmgh_2017_07_003 crossref_primary_10_1128_JVI_00856_20 crossref_primary_10_1371_journal_pone_0067849 crossref_primary_10_1038_nrd2422 crossref_primary_10_1073_pnas_0604042103 crossref_primary_10_1128_mBio_00723_16 crossref_primary_10_1016_j_cyto_2009_07_003 crossref_primary_10_1152_ajpcell_00220_2007 crossref_primary_10_3390_ijms23052878 crossref_primary_10_1002_pros_23787 crossref_primary_10_3892_or_2014_3479 crossref_primary_10_1186_s13578_017_0144_8 crossref_primary_10_1080_15548627_2015_1017192 crossref_primary_10_1038_s41568_018_0090_8 crossref_primary_10_2174_1566523222666220511162934 crossref_primary_10_4161_jkst_22366 crossref_primary_10_1042_BJ20120941 crossref_primary_10_1155_2013_684050 crossref_primary_10_1038_aps_2012_18 crossref_primary_10_1016_j_febslet_2013_01_012 crossref_primary_10_1038_s41598_023_46628_5 crossref_primary_10_1101_cshperspect_a028555 crossref_primary_10_3109_10428194_2010_483748 crossref_primary_10_1039_b606246f crossref_primary_10_3390_biomedicines10102588 crossref_primary_10_1002_mc_22438 crossref_primary_10_1016_j_cytogfr_2016_05_001 crossref_primary_10_1158_0008_5472_CAN_10_3304 crossref_primary_10_1515_bmc_2015_0022 crossref_primary_10_4049_jimmunol_0803721 crossref_primary_10_3390_ijms22063085 crossref_primary_10_1016_j_molcel_2012_09_013 crossref_primary_10_1038_sj_onc_1209708 crossref_primary_10_4161_jkst_24353 crossref_primary_10_1007_s11010_006_9137_3 crossref_primary_10_1016_j_athoracsur_2007_05_014 crossref_primary_10_2353_ajpath_2007_070241 crossref_primary_10_3390_cancers6020897 crossref_primary_10_3390_v10040196 crossref_primary_10_3892_ol_2010_210 crossref_primary_10_1097_TP_0b013e3181739d25 crossref_primary_10_1038_nri1885 crossref_primary_10_1111_j_1440_1681_2011_05659_x crossref_primary_10_1186_1476_4598_9_309 crossref_primary_10_1158_1078_0432_CCR_09_2658 crossref_primary_10_1371_journal_ppat_1006839 crossref_primary_10_1016_j_bbcan_2013_12_005 crossref_primary_10_1002_lt_21985 crossref_primary_10_1016_j_survophthal_2008_04_008 crossref_primary_10_3390_cancers6031394 crossref_primary_10_1186_s12964_024_01632_8 crossref_primary_10_1089_hum_2011_101 crossref_primary_10_1586_ehm_11_63 crossref_primary_10_1096_fba_2019_00049 crossref_primary_10_1128_MCB_00034_14 crossref_primary_10_1158_1541_7786_MCR_05_0261 crossref_primary_10_31083_j_fbl2808187 crossref_primary_10_1016_j_yexcr_2020_112342 crossref_primary_10_1016_j_immuni_2006_08_014 crossref_primary_10_1371_journal_pone_0141493 crossref_primary_10_3390_diagnostics11061037 crossref_primary_10_3389_fcell_2020_00362 crossref_primary_10_3892_mmr_2017_7973 crossref_primary_10_1111_j_1365_2141_2006_06161_x crossref_primary_10_1016_j_bbi_2011_03_012 crossref_primary_10_1016_j_ejca_2005_08_016 crossref_primary_10_1038_onc_2009_202 crossref_primary_10_1016_j_critrevonc_2023_104228 crossref_primary_10_1128_JVI_02601_13 crossref_primary_10_1186_s11658_018_0078_0 crossref_primary_10_1038_s41598_022_07697_0 crossref_primary_10_1080_08977190500178745 crossref_primary_10_3390_biomedicines8120637 crossref_primary_10_1152_ajplung_00377_2007 crossref_primary_10_1016_j_semcdb_2016_02_009 crossref_primary_10_1186_s12868_015_0209_8 crossref_primary_10_1073_pnas_0501643102 crossref_primary_10_1016_j_mito_2011_05_011 crossref_primary_10_1038_onc_2014_72 crossref_primary_10_1016_j_ccell_2019_10_002 crossref_primary_10_3390_cancers14204993 crossref_primary_10_1242_jcs_137422 crossref_primary_10_3390_nu14030653 crossref_primary_10_1083_jcb_200812060 crossref_primary_10_1016_j_toxrep_2014_10_018 crossref_primary_10_1186_s13045_021_01214_y crossref_primary_10_1016_j_bcp_2025_116884 crossref_primary_10_1093_cvr_cvp285 crossref_primary_10_3389_fphar_2022_847906 crossref_primary_10_1073_pnas_1211805110 crossref_primary_10_1172_JCI99245 crossref_primary_10_1093_carcin_bgt125 crossref_primary_10_1158_0008_5472_CAN_08_4922 crossref_primary_10_1038_cddis_2016_23 crossref_primary_10_1111_j_1751_1097_2007_00254_x crossref_primary_10_1016_j_intimp_2023_109748 crossref_primary_10_1099_vir_0_82741_0 crossref_primary_10_3390_ijms140816817 crossref_primary_10_1128_JVI_01745_09 crossref_primary_10_1093_abbs_gmx133 crossref_primary_10_3343_kjlm_2008_28_3_230 crossref_primary_10_1016_j_bbadis_2023_166817 crossref_primary_10_1158_1078_0432_CCR_07_1176 crossref_primary_10_1002_path_2041 crossref_primary_10_3389_fimmu_2019_00603 crossref_primary_10_1038_s41523_020_0157_z crossref_primary_10_1517_14712598_6_3_231 crossref_primary_10_1021_cb700186x crossref_primary_10_1128_JVI_02976_12 crossref_primary_10_1111_bpa_12254 crossref_primary_10_1242_jcs_123042 crossref_primary_10_1136_annrheumdis_2016_209454 crossref_primary_10_1158_1535_7163_MCT_14_0334 crossref_primary_10_1016_j_bbcan_2011_03_003 crossref_primary_10_1038_ncomms7285 crossref_primary_10_1158_0008_5472_CAN_10_3860 crossref_primary_10_1126_scisignal_2001426 crossref_primary_10_1016_j_mitoco_2024_01_001 crossref_primary_10_1631_jzus_B1600184 crossref_primary_10_1074_jbc_M110_105767 crossref_primary_10_1074_jbc_M707514200 crossref_primary_10_4161_jkst_23504 crossref_primary_10_1007_s00335_018_9767_2 crossref_primary_10_1016_j_ctmp_2024_200174 crossref_primary_10_1128_JVI_01762_13 crossref_primary_10_4161_jkst_24716 crossref_primary_10_1093_carcin_bgp249 crossref_primary_10_1002_minf_201500043 crossref_primary_10_1038_s41598_018_35612_z crossref_primary_10_1074_jbc_M511797200 crossref_primary_10_1186_s12917_015_0505_7 crossref_primary_10_1002_cam4_959 crossref_primary_10_1080_15592294_2023_2242688 crossref_primary_10_1126_stke_3432006pe30 crossref_primary_10_15252_embj_201592383 crossref_primary_10_1177_1708538120929504 crossref_primary_10_3390_nu12061663 crossref_primary_10_1074_jbc_R700016200 crossref_primary_10_3390_cells9061451 crossref_primary_10_1007_s00262_008_0466_9 crossref_primary_10_3389_fgene_2016_00162 crossref_primary_10_1189_jlb_0107040 crossref_primary_10_1158_1541_7786_MCR_11_0147 crossref_primary_10_1016_j_jdiacomp_2016_07_005 crossref_primary_10_1093_carcin_bgu163 crossref_primary_10_1124_pr_119_018440 crossref_primary_10_1016_j_semcdb_2008_07_003 crossref_primary_10_1242_jcs_200659 crossref_primary_10_1016_j_prp_2016_03_001 crossref_primary_10_3390_cancers12010240 crossref_primary_10_1158_1078_0432_CCR_06_2491 crossref_primary_10_1038_nature04940 crossref_primary_10_1016_j_gde_2009_11_004 crossref_primary_10_3390_cancers6031408 crossref_primary_10_1530_ERC_15_0540 crossref_primary_10_1038_leu_2009_91 crossref_primary_10_1016_j_biocel_2011_06_007 crossref_primary_10_1016_j_biopha_2017_11_115 crossref_primary_10_1038_s41598_020_73093_1 crossref_primary_10_1074_jbc_M112_440610 crossref_primary_10_1089_jir_2006_26_893 crossref_primary_10_1016_j_ejphar_2023_175776 crossref_primary_10_1007_s12274_022_4525_x crossref_primary_10_1016_j_transproceed_2024_10_020 crossref_primary_10_1038_jid_2014_199 crossref_primary_10_1016_j_bbagen_2018_12_001 crossref_primary_10_3390_ijms19061787 crossref_primary_10_1101_cshperspect_a033621 crossref_primary_10_3109_08977194_2012_660936 crossref_primary_10_1002_mc_22274 crossref_primary_10_1016_j_imbio_2013_04_017 crossref_primary_10_1016_j_biopha_2013_03_020 crossref_primary_10_1016_j_cca_2012_05_007 crossref_primary_10_1042_BCJ20160294 crossref_primary_10_1158_1541_7786_MCR_10_0559 crossref_primary_10_1016_j_acthis_2011_11_010 crossref_primary_10_1016_j_biocel_2019_02_006 crossref_primary_10_1016_j_cyto_2016_05_019 crossref_primary_10_1073_pnas_0806291105 crossref_primary_10_1158_1535_7163_MCT_06_0261 crossref_primary_10_1002_advs_202200169 crossref_primary_10_1517_14728222_11_10_1355 crossref_primary_10_1002_ijc_21539 crossref_primary_10_1002_pro_83 crossref_primary_10_1016_j_ddmec_2013_03_001 crossref_primary_10_3389_fimmu_2017_00271 crossref_primary_10_1016_j_ejcb_2008_09_003 crossref_primary_10_3390_cancers11121930 crossref_primary_10_1074_jbc_M600088200 crossref_primary_10_1136_jcp_2005_035113 crossref_primary_10_3892_etm_2018_6562 crossref_primary_10_1101_gad_1553707 crossref_primary_10_1007_s00705_023_05959_4 crossref_primary_10_1016_j_bbamcr_2012_05_025 crossref_primary_10_1016_j_toxlet_2021_04_018 crossref_primary_10_1073_pnas_1201232109 crossref_primary_10_1074_jbc_M111_257451 crossref_primary_10_1016_j_bbrc_2008_11_147 crossref_primary_10_1016_j_molimm_2011_12_008 crossref_primary_10_1186_s12974_021_02204_0 crossref_primary_10_1200_JCO_2010_31_8907 crossref_primary_10_1038_sj_onc_1209306 crossref_primary_10_1074_jbc_M109_092304 crossref_primary_10_18632_oncotarget_6974 crossref_primary_10_1128_JVI_02008_15 crossref_primary_10_1186_1471_2164_8_85 crossref_primary_10_1158_1078_0432_CCR_06_1387 crossref_primary_10_1016_j_addr_2022_114586 crossref_primary_10_1016_j_biopha_2020_111077 crossref_primary_10_1158_1078_0432_CCR_07_1543 crossref_primary_10_3389_fphar_2019_01071 crossref_primary_10_1158_0008_5472_CAN_07_0031 crossref_primary_10_1007_s00792_011_0380_5 crossref_primary_10_1097_TA_0b013e3182325e02 crossref_primary_10_1016_j_cytogfr_2009_11_005 crossref_primary_10_1016_j_virol_2019_11_017 crossref_primary_10_1089_jir_2010_0100 crossref_primary_10_1016_j_cytogfr_2012_08_005 crossref_primary_10_1038_emm_2016_17 crossref_primary_10_1128_JVI_00125_08 crossref_primary_10_3389_fimmu_2021_626593 crossref_primary_10_1038_cddis_2013_11 crossref_primary_10_1002_mgg3_1744 crossref_primary_10_7554_eLife_82826 crossref_primary_10_1016_j_bbrc_2013_07_105 crossref_primary_10_1073_pnas_0903487106 crossref_primary_10_1002_1878_0261_12928 crossref_primary_10_1038_sj_onc_1210532 crossref_primary_10_1038_onc_2015_150 crossref_primary_10_1016_j_yexmp_2005_11_003 crossref_primary_10_1038_s41419_020_2467_3 crossref_primary_10_1128_JVI_01197_13 crossref_primary_10_1016_j_theriogenology_2014_09_026 crossref_primary_10_1007_s11010_014_2083_6 crossref_primary_10_1096_fj_07_8965com crossref_primary_10_1016_j_fsi_2014_12_031 crossref_primary_10_1002_jcb_23305 crossref_primary_10_1016_j_febslet_2013_01_065 crossref_primary_10_4161_jkst_22313 crossref_primary_10_1038_s41422_018_0080_0 crossref_primary_10_1158_1535_7163_MCT_17_1194 crossref_primary_10_1074_jbc_M109_028324 crossref_primary_10_1038_bjp_2008_1 crossref_primary_10_3390_biomedicines9080956 crossref_primary_10_1038_s41573_023_00746_x crossref_primary_10_1080_2162402X_2015_1031440 crossref_primary_10_4161_jkst_23650 crossref_primary_10_5009_gnl_2012_6_1_45 crossref_primary_10_1016_j_biocel_2009_11_001 crossref_primary_10_1165_rcmb_2018_0328OC crossref_primary_10_1152_ajprenal_00338_2011 crossref_primary_10_1007_s13402_023_00911_9 crossref_primary_10_1016_j_canlet_2022_215880 crossref_primary_10_2174_1574892818666230803100554 crossref_primary_10_3389_fimmu_2022_872286 crossref_primary_10_3389_fimmu_2024_1332817 crossref_primary_10_1074_jbc_M114_603894 crossref_primary_10_1152_ajplung_00037_2018 crossref_primary_10_1038_ncomms15289 crossref_primary_10_1007_s10911_008_9074_8 crossref_primary_10_5301_JBM_2012_9146 crossref_primary_10_1111_j_1745_7254_2007_00525_x crossref_primary_10_1097_PAS_0000000000001691 crossref_primary_10_1186_1747_1028_5_14 crossref_primary_10_1038_sj_onc_1209452 |
Cites_doi | 10.1146/annurev.bi.64.070195.003201 10.1084/jem.189.1.63 10.1002/(SICI)1097-0045(20000215)42:3<239::AID-PROS10>3.0.CO;2-G 10.1038/sj.onc.1204590 10.1038/28101 10.1074/jbc.M213073200 10.1074/jbc.M111302200 10.1073/pnas.92.26.12146 10.1073/pnas.95.26.15623 10.1016/S0014-5793(00)01905-0 10.1093/emboj/19.15.4111 10.1002/j.1460-2075.1990.tb07898.x 10.1097/00001622-199911000-00010 10.1126/science.278.5344.1803 10.1126/science.7541555 10.1016/S1074-7613(02)00336-9 10.1038/sj.onc.1207455 10.1002/j.1460-2075.1996.tb00734.x 10.1006/excr.2001.5405 10.1182/blood.V94.7.2433.419k31_2433_2444 10.1074/jbc.M107527200 10.1128/MCB.16.12.6957 10.1016/S0021-9258(19)51096-1 10.1038/sj.onc.1203486 10.1128/MCB.21.19.6615-6625.2001 10.1073/pnas.93.9.3963 10.1038/sj.onc.1205859 10.1128/MCB.20.2.672-683.2000 10.1038/44611 10.1038/sj.onc.1204349 10.1128/MCB.16.4.1595 10.1016/S0092-8674(00)81959-5 10.1074/jbc.274.34.23850 10.1359/jbmr.1997.12.10.1596 10.1016/S0002-9440(10)64722-0 10.1016/S0092-8674(00)81443-9 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TM 7TO H94 7X8 |
DOI | 10.1158/0008-5472.939.65.3 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | Oncogenes and Growth Factors Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 947 |
ExternalDocumentID | 15705894 16472262 10_1158_0008_5472_939_65_3 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P01 CA 62220 – fundername: NIAID NIH HHS grantid: R01 AI 28900 |
GroupedDBID | --- -ET .55 .GJ 18M 29B 2WC 34G 39C 3O- 53G 5GY 5RE 5VS 6J9 8WZ A6W AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW AENEX AETEA AFFNX AFHIN AFOSN AFRAH AFUMD AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO MVM OHT OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 UDS VH1 W2D W8F WH7 WHG WOQ X7M XJT YKV YZZ ZCG ZGI ADNWM D0S IQODW J5H CGR CUY CVF ECM EIF NPM RHF VXZ 7TM 7TO H94 7X8 |
ID | FETCH-LOGICAL-c460t-9ff78e5ce15c2980bf7573c06a6b30e9da8342a548c141024102b0151d7e31b03 |
ISSN | 0008-5472 |
IngestDate | Fri Sep 05 00:41:12 EDT 2025 Fri Sep 05 04:50:50 EDT 2025 Wed Feb 19 01:43:47 EST 2025 Mon Jul 21 09:16:41 EDT 2025 Thu Apr 24 23:00:03 EDT 2025 Tue Jul 01 02:56:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Carcinogenesis Regulation(control) Transcription factor STAT3 |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c460t-9ff78e5ce15c2980bf7573c06a6b30e9da8342a548c141024102b0151d7e31b03 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 15705894 |
PQID | 17307601 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_67423633 proquest_miscellaneous_17307601 pubmed_primary_15705894 pascalfrancis_primary_16472262 crossref_citationtrail_10_1158_0008_5472_939_65_3 crossref_primary_10_1158_0008_5472_939_65_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-02-01 |
PublicationDateYYYYMMDD | 2005-02-01 |
PublicationDate_xml | – month: 02 year: 2005 text: 2005-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2005 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061621200277000_B5 2022061621200277000_B6 2022061621200277000_B3 2022061621200277000_B4 2022061621200277000_B9 2022061621200277000_B7 2022061621200277000_B8 2022061621200277000_B25 2022061621200277000_B26 2022061621200277000_B23 2022061621200277000_B24 2022061621200277000_B1 2022061621200277000_B21 2022061621200277000_B2 2022061621200277000_B22 2022061621200277000_B20 2022061621200277000_B29 2022061621200277000_B27 2022061621200277000_B28 2022061621200277000_B14 2022061621200277000_B36 2022061621200277000_B15 2022061621200277000_B37 2022061621200277000_B12 2022061621200277000_B34 2022061621200277000_B13 2022061621200277000_B35 2022061621200277000_B10 2022061621200277000_B32 2022061621200277000_B11 2022061621200277000_B33 2022061621200277000_B30 2022061621200277000_B31 2022061621200277000_B18 2022061621200277000_B19 2022061621200277000_B16 2022061621200277000_B38 2022061621200277000_B17 |
References_xml | – ident: 2022061621200277000_B1 doi: 10.1146/annurev.bi.64.070195.003201 – ident: 2022061621200277000_B20 doi: 10.1084/jem.189.1.63 – ident: 2022061621200277000_B13 doi: 10.1002/(SICI)1097-0045(20000215)42:3<239::AID-PROS10>3.0.CO;2-G – ident: 2022061621200277000_B6 doi: 10.1038/sj.onc.1204590 – ident: 2022061621200277000_B27 doi: 10.1038/28101 – ident: 2022061621200277000_B21 doi: 10.1074/jbc.M213073200 – ident: 2022061621200277000_B26 doi: 10.1074/jbc.M111302200 – ident: 2022061621200277000_B32 doi: 10.1073/pnas.92.26.12146 – ident: 2022061621200277000_B17 doi: 10.1073/pnas.95.26.15623 – ident: 2022061621200277000_B19 doi: 10.1016/S0014-5793(00)01905-0 – ident: 2022061621200277000_B15 doi: 10.1093/emboj/19.15.4111 – ident: 2022061621200277000_B18 doi: 10.1002/j.1460-2075.1990.tb07898.x – ident: 2022061621200277000_B7 doi: 10.1097/00001622-199911000-00010 – ident: 2022061621200277000_B30 doi: 10.1126/science.278.5344.1803 – ident: 2022061621200277000_B10 doi: 10.1126/science.7541555 – ident: 2022061621200277000_B16 doi: 10.1016/S1074-7613(02)00336-9 – ident: 2022061621200277000_B14 doi: 10.1038/sj.onc.1207455 – ident: 2022061621200277000_B4 doi: 10.1002/j.1460-2075.1996.tb00734.x – ident: 2022061621200277000_B23 – ident: 2022061621200277000_B37 doi: 10.1006/excr.2001.5405 – ident: 2022061621200277000_B36 doi: 10.1182/blood.V94.7.2433.419k31_2433_2444 – ident: 2022061621200277000_B38 doi: 10.1074/jbc.M107527200 – ident: 2022061621200277000_B29 doi: 10.1128/MCB.16.12.6957 – ident: 2022061621200277000_B2 doi: 10.1016/S0021-9258(19)51096-1 – ident: 2022061621200277000_B8 doi: 10.1038/sj.onc.1203486 – ident: 2022061621200277000_B25 doi: 10.1128/MCB.21.19.6615-6625.2001 – ident: 2022061621200277000_B3 doi: 10.1073/pnas.93.9.3963 – ident: 2022061621200277000_B22 doi: 10.1038/sj.onc.1205859 – ident: 2022061621200277000_B31 doi: 10.1128/MCB.20.2.672-683.2000 – ident: 2022061621200277000_B34 doi: 10.1038/44611 – ident: 2022061621200277000_B11 doi: 10.1038/sj.onc.1204349 – ident: 2022061621200277000_B9 doi: 10.1128/MCB.16.4.1595 – ident: 2022061621200277000_B5 doi: 10.1016/S0092-8674(00)81959-5 – ident: 2022061621200277000_B12 – ident: 2022061621200277000_B35 doi: 10.1074/jbc.274.34.23850 – ident: 2022061621200277000_B33 doi: 10.1359/jbmr.1997.12.10.1596 – ident: 2022061621200277000_B24 doi: 10.1016/S0002-9440(10)64722-0 – ident: 2022061621200277000_B28 doi: 10.1016/S0092-8674(00)81443-9 |
SSID | ssj0005105 |
Score | 2.3497963 |
Snippet | Signal transducer and activator of transcription 3 (STAT3) is phosphorylated on tyrosine residue 705 in response to growth factors or cytokines to form... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 939 |
SubjectTerms | Animals Antineoplastic agents Biological and medical sciences DNA-Binding Proteins - biosynthesis DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism DNA-Binding Proteins - physiology Female Gene Expression Regulation - physiology Gene Expression Regulation, Neoplastic Humans Interleukin-6 - pharmacology Mammary Glands, Human - cytology Mammary Glands, Human - metabolism Mammary Glands, Human - physiology Medical sciences Mice Monomeric GTP-Binding Proteins - biosynthesis Monomeric GTP-Binding Proteins - genetics Neoplasms - genetics Neoplasms - pathology Oncogenes - genetics Pharmacology. Drug treatments Phosphorylation Proto-Oncogene Proteins - biosynthesis Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins c-met ras Proteins - biosynthesis ras Proteins - genetics Receptors, Growth Factor - biosynthesis Receptors, Growth Factor - genetics RNA, Messenger - biosynthesis RNA, Messenger - genetics STAT3 Transcription Factor Trans-Activators - biosynthesis Trans-Activators - genetics Trans-Activators - metabolism Trans-Activators - physiology |
Title | Novel Roles of Unphosphorylated STAT3 in Oncogenesis and Transcriptional Regulation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/15705894 https://www.proquest.com/docview/17307601 https://www.proquest.com/docview/67423633 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbB2Mwxq5ddun0sLfgzLYulh9LaQldk7LNgezJ2IqcZAQ75DLofv2OLo6ddt3twcYYWwadz0dHR5--g9B7GtCckIh4hRLMoxC_ebFWoC0CLoWkJMpNHnIw5P0RPR-zcUMrMrtLNnlP_vjlvpL_sSrcA7vqXbL_YNldo3ADrsG-cAYLw_mvbDysvqtF97PWZNJB36hczqo1HKurRWYiyeQ4ITqjcVnKaqq92txKMpsRqvYXRl5_6sp4tYPVE42IVdfpAc3Mgq9lbhjPslj0WnmEry7xfK7Xi1qkAb1b6JtS3sf5euY4vYNqvgEEqR2mIOLdTjOtrrQjCjVZ2uF0e2V9Yz8rS5e-rvMUrKY2t3yv8BiN9nyvrRPhMEZajjS2EkduTI6tKudNd8-E5UfalnvwVo-zHmkGt3pBf3iZno0uLtLkdJzcRffCCCItvYT_qdGWZ47wWrdWb7Fi4sPNL-yFMQ-X2Rr-qMKWQrl9rmJiluQxeuQmG_jYIucJuqPKp-j-wNEpnqEvBkDYAAhXBb4OIGwAhOclbgEIA4DwNQDhBkDP0ejsNDnpe67Khicp9zeeTtoLxaQKmAxj4edFxCIifZ7xnPgqnmSC0DCDma3UnOBQHzkEkcEkUiTIffICHZRVqV4izEO_gOnxhHIqqQrCjIsJ8UURShKzOGQdFNSdlkonQa8roSxSMxVlQlMhRKo7OoWOTjlLSQd1d-8srQDLb58-2rNF84oukxDysIPe1cZJwZHq1bGsVNV2nQYw1mmC2O1PcM1q4AQ-cmit2rTOIl2ek776Y-uv0YPm53iDDjarrXoLYe0mPzJo_AkO454T |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Roles+of+Unphosphorylated+STAT3+in+Oncogenesis+and+Transcriptional+Regulation&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Yang%2C+Jinbo&rft.au=Chatterjee-Kishore%2C+Moitreyee&rft.au=Staugaitis%2C+Susan+M&rft.au=Nguyen%2C+Hannah&rft.date=2005-02-01&rft.issn=0008-5472&rft.volume=65&rft.issue=3&rft.spage=939&rft.epage=947&rft_id=info:doi/10.1158%2F0008-5472.939.65.3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |