Assessment Analysis of Flood Susceptibility in Tropical Desert Area: A Case Study of Yemen

Flooding is one of the catastrophic natural hazards worldwide that can easily cause devastating effects on human life and property. Remote sensing devices are becoming increasingly important in monitoring and assessing natural disaster susceptibility and hazards. The proposed research work pursues a...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 16; p. 4050
Main Authors Al-Aizari, Ali R., Al-Masnay, Yousef A., Aydda, Ali, Zhang, Jiquan, Ullah, Kashif, Islam, Abu Reza Md. Towfiqul, Habib, Tayyiba, Kaku, Dawuda Usman, Nizeyimana, Jean Claude, Al-Shaibah, Bazel, Khalil, Yasser M., AL-Hameedi, Wafaa M. M., Liu, Xingpeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.08.2022
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs14164050

Cover

Abstract Flooding is one of the catastrophic natural hazards worldwide that can easily cause devastating effects on human life and property. Remote sensing devices are becoming increasingly important in monitoring and assessing natural disaster susceptibility and hazards. The proposed research work pursues an assessment analysis of flood susceptibility in a tropical desert environment: a case study of Yemen. The base data for this research were collected and organized from meteorological, satellite images, remote sensing data, essential geographic data, and various data sources and used as input data into four machine learning (ML) algorithms. In this study, RS data (Sentinel-1 images) were used to detect flooded areas in the study area. We also used the Sentinel application platform (SNAP 7.0) for Sentinel-1 image analysis and detecting flood zones in the study locations. Flood spots were discovered and verified using Google Earth images, Landsat images, and press sources to create a flood inventory map of flooded areas in the study area. Four ML algorithms were used to map flash flood susceptibility (FFS) in Tarim city (Yemen): K-nearest neighbor (KNN), Naïve Bayes (NB), random forests (RF), and eXtreme gradient boosting (XGBoost). Twelve flood conditioning factors were prepared, assessed in multicollinearity, and used with flood inventories as input parameters to run each model. A total of 600 random flood and non-flood points were chosen, where 75% and 25% were used as training and validation datasets. The confusion matrix and the area under the receiver operating characteristic curve (AUROC) were used to validate the susceptibility maps. The results obtained reveal that all models had a high capacity to predict floods (AUC > 0.90). Further, in terms of performance, the tree-based ensemble algorithms (RF, XGBoost) outperform other ML algorithms, where the RF algorithm provides robust performance (AUC = 0.982) for assessing flood-prone areas with only a few adjustments required prior to training the model. The value of the research lies in the fact that the proposed models are being tested for the first time in Yemen to assess flood susceptibility, which can also be used to assess, for example, earthquakes, landslides, and other disasters. Furthermore, this work makes significant contributions to the worldwide effort to reduce the risk of natural disasters, particularly in Yemen. This will, therefore, help to enhance environmental sustainability.
AbstractList Flooding is one of the catastrophic natural hazards worldwide that can easily cause devastating effects on human life and property. Remote sensing devices are becoming increasingly important in monitoring and assessing natural disaster susceptibility and hazards. The proposed research work pursues an assessment analysis of flood susceptibility in a tropical desert environment: a case study of Yemen. The base data for this research were collected and organized from meteorological, satellite images, remote sensing data, essential geographic data, and various data sources and used as input data into four machine learning (ML) algorithms. In this study, RS data (Sentinel-1 images) were used to detect flooded areas in the study area. We also used the Sentinel application platform (SNAP 7.0) for Sentinel-1 image analysis and detecting flood zones in the study locations. Flood spots were discovered and verified using Google Earth images, Landsat images, and press sources to create a flood inventory map of flooded areas in the study area. Four ML algorithms were used to map flash flood susceptibility (FFS) in Tarim city (Yemen): K-nearest neighbor (KNN), Naïve Bayes (NB), random forests (RF), and eXtreme gradient boosting (XGBoost). Twelve flood conditioning factors were prepared, assessed in multicollinearity, and used with flood inventories as input parameters to run each model. A total of 600 random flood and non-flood points were chosen, where 75% and 25% were used as training and validation datasets. The confusion matrix and the area under the receiver operating characteristic curve (AUROC) were used to validate the susceptibility maps. The results obtained reveal that all models had a high capacity to predict floods (AUC > 0.90). Further, in terms of performance, the tree-based ensemble algorithms (RF, XGBoost) outperform other ML algorithms, where the RF algorithm provides robust performance (AUC = 0.982) for assessing flood-prone areas with only a few adjustments required prior to training the model. The value of the research lies in the fact that the proposed models are being tested for the first time in Yemen to assess flood susceptibility, which can also be used to assess, for example, earthquakes, landslides, and other disasters. Furthermore, this work makes significant contributions to the worldwide effort to reduce the risk of natural disasters, particularly in Yemen. This will, therefore, help to enhance environmental sustainability.
Author Kaku, Dawuda Usman
Liu, Xingpeng
Aydda, Ali
Zhang, Jiquan
Al-Masnay, Yousef A.
Ullah, Kashif
Habib, Tayyiba
Al-Aizari, Ali R.
Islam, Abu Reza Md. Towfiqul
Nizeyimana, Jean Claude
AL-Hameedi, Wafaa M. M.
Al-Shaibah, Bazel
Khalil, Yasser M.
Author_xml – sequence: 1
  givenname: Ali R.
  orcidid: 0000-0003-4190-771X
  surname: Al-Aizari
  fullname: Al-Aizari, Ali R.
– sequence: 2
  givenname: Yousef A.
  surname: Al-Masnay
  fullname: Al-Masnay, Yousef A.
– sequence: 3
  givenname: Ali
  orcidid: 0000-0003-1754-615X
  surname: Aydda
  fullname: Aydda, Ali
– sequence: 4
  givenname: Jiquan
  surname: Zhang
  fullname: Zhang, Jiquan
– sequence: 5
  givenname: Kashif
  orcidid: 0000-0003-2880-0977
  surname: Ullah
  fullname: Ullah, Kashif
– sequence: 6
  givenname: Abu Reza Md. Towfiqul
  orcidid: 0000-0001-5779-1382
  surname: Islam
  fullname: Islam, Abu Reza Md. Towfiqul
– sequence: 7
  givenname: Tayyiba
  surname: Habib
  fullname: Habib, Tayyiba
– sequence: 8
  givenname: Dawuda Usman
  surname: Kaku
  fullname: Kaku, Dawuda Usman
– sequence: 9
  givenname: Jean Claude
  surname: Nizeyimana
  fullname: Nizeyimana, Jean Claude
– sequence: 10
  givenname: Bazel
  orcidid: 0000-0002-6267-2879
  surname: Al-Shaibah
  fullname: Al-Shaibah, Bazel
– sequence: 11
  givenname: Yasser M.
  surname: Khalil
  fullname: Khalil, Yasser M.
– sequence: 12
  givenname: Wafaa M. M.
  orcidid: 0000-0002-9743-1549
  surname: AL-Hameedi
  fullname: AL-Hameedi, Wafaa M. M.
– sequence: 13
  givenname: Xingpeng
  surname: Liu
  fullname: Liu, Xingpeng
BookMark eNptkU-LFDEQxYOs4LruxU8Q8CLCrPnb3fE2zLrrwoKHXQ96CdXpimTIdMYkfZhvb8ZRlMW61KP4vQdV9ZKczWlGQl5zdiWlYe9z4Yp3imn2jJwL1ouVEkac_aNfkMtStqyVlNwwdU6-rUvBUnY4V7qeIR5KKDR5ehNTmujDUhzuaxhDDPVAw0wfc9oHB5FeY8HcPBnhA13TDRSkD3WZDkf3V2yBr8hzD7Hg5e9-Qb7cfHzcfFrdf76926zvV051rK5MZzrujBbKwzCMWgyT9LwXbuRNaOQT-IkbZIo57ceRSxhGhsY3waQX8oLcnXKnBFu7z2EH-WATBPtrkPJ3C7kGF9E6I5zToCelmOoZDgM4PbjOeKld30PLenvK2uf0Y8FS7S60E8QIM6alWNHzQfad7FRD3zxBt2nJ7YRHijWAG943ip0ol1MpGb11oUINaa4ZQrSc2ePv7N_fNcu7J5Y_O_0H_gkHppmd
CitedBy_id crossref_primary_10_3390_su15064909
crossref_primary_10_1080_10106049_2023_2243884
crossref_primary_10_3390_rs16234525
crossref_primary_10_1007_s11269_024_03940_7
crossref_primary_10_1007_s42452_023_05445_1
crossref_primary_10_1016_j_pce_2024_103750
crossref_primary_10_1016_j_pce_2024_103772
crossref_primary_10_1016_j_acags_2024_100183
crossref_primary_10_1186_s12302_024_01001_9
crossref_primary_10_1007_s11069_024_06596_z
crossref_primary_10_1007_s12665_024_11988_2
crossref_primary_10_3390_land12040810
crossref_primary_10_1007_s12145_024_01505_1
crossref_primary_10_1007_s10661_024_12676_1
crossref_primary_10_1016_j_heliyon_2023_e14617
crossref_primary_10_1007_s40710_024_00683_w
crossref_primary_10_1080_10106049_2023_2285355
crossref_primary_10_3390_rs16020336
crossref_primary_10_1016_j_ijdrr_2024_104919
crossref_primary_10_1016_j_ecolind_2024_112621
crossref_primary_10_1080_19475705_2024_2360000
crossref_primary_10_17211_tcd_1345962
crossref_primary_10_1007_s10661_025_13894_x
crossref_primary_10_1007_s41024_024_00537_w
crossref_primary_10_1080_19475705_2024_2357650
crossref_primary_10_3390_su152014928
crossref_primary_10_1016_j_uclim_2025_102297
crossref_primary_10_1007_s11356_024_34691_y
crossref_primary_10_1080_17538947_2024_2311325
crossref_primary_10_3390_rs16163032
crossref_primary_10_1016_j_jenvman_2024_123094
crossref_primary_10_1007_s10661_023_12264_9
crossref_primary_10_1016_j_jhydrol_2024_130692
crossref_primary_10_1007_s11269_024_03826_8
crossref_primary_10_1007_s12665_023_11062_3
crossref_primary_10_1007_s00477_024_02772_6
crossref_primary_10_1016_j_scitotenv_2023_162285
crossref_primary_10_3390_rs16060988
crossref_primary_10_1088_1748_9326_ad8a72
crossref_primary_10_1016_j_jafrearsci_2024_105431
crossref_primary_10_1007_s12145_024_01285_8
Cites_doi 10.1016/j.jhydrol.2019.03.073
10.3390/w12061549
10.3133/pp422C
10.1016/j.scitotenv.2019.134979
10.1016/S0165-1889(98)00034-7
10.1016/j.scitotenv.2017.09.262
10.1016/j.catena.2020.105114
10.1007/s12517-018-4095-0
10.1016/j.jenvman.2021.112449
10.1007/s11069-016-2357-2
10.1016/j.scitotenv.2018.06.197
10.1007/s11069-011-9844-2
10.3390/rs12203423
10.3390/su13063126
10.1016/j.scitotenv.2020.143785
10.1016/j.jhydrol.2021.126382
10.1155/2020/4271376
10.1145/2939672.2939785
10.1016/j.scitotenv.2019.136492
10.3390/rs12213568
10.1016/j.ijdrr.2019.101211
10.1016/j.scitotenv.2017.10.114
10.1080/10106049.2021.1920636
10.1016/j.jhydrol.2005.04.022
10.3390/rs12020266
10.1016/j.scitotenv.2018.10.064
10.1016/j.catena.2014.10.017
10.1016/j.jhydrol.2020.125615
10.1016/j.scitotenv.2017.10.037
10.1016/j.jhydrol.2017.04.048
10.1016/j.jenvman.2021.112067
10.1016/B978-0-12-815226-3.00013-2
10.1007/s00477-015-1021-9
10.1007/978-3-642-38652-7
10.1016/j.scitotenv.2019.07.197
10.1016/j.psep.2020.08.006
10.1016/S0034-4257(01)00295-4
10.1007/s12665-011-1504-z
10.1016/j.catena.2011.01.014
10.1109/IGARSS.2014.6946711
10.1007/s12517-015-2195-7
10.1016/j.jclepro.2020.122757
10.1016/j.catena.2018.12.011
10.1007/s11069-012-0165-x
10.1007/s11269-013-0364-6
10.3390/su9101735
10.1007/s40808-019-00593-z
10.1002/hyp.3360050103
10.1016/j.gsf.2022.101425
10.1007/978-1-4020-9139-1_31
10.3390/ijgi7100411
10.3390/rs12152478
10.1080/19475705.2021.1880977
10.20944/preprints202008.0089.v1
10.1016/j.jhydrol.2020.125552
10.3390/su13020971
10.3390/ECRS-3-06201
10.1016/j.jhydrol.2014.03.008
10.1007/s00521-020-05529-8
10.1007/s12517-022-09531-3
10.3390/w12010239
10.1038/sdata.2015.66
10.1371/journal.pone.0229153
10.1007/978-981-10-7748-7_3
10.1007/s10661-016-5665-9
10.1080/02626667909491834
10.1016/j.jenvman.2019.06.102
10.1016/B978-0-12-815998-9.00017-8
10.3390/urbansci1010007
10.1080/10106049.2015.1041559
10.1016/j.gsf.2020.10.007
10.2166/wcc.2021.051
10.1016/j.enggeo.2009.12.004
10.1080/02626667.2011.555836
10.1016/j.scitotenv.2018.01.266
10.5194/hess-22-373-2018
10.1007/s11069-015-1605-1
10.1061/41114(371)206
10.1016/j.scitotenv.2019.134514
10.1007/s11069-019-03615-2
10.1177/001316446002000104
10.1007/978-3-319-55342-9_4
10.1007/s11069-021-05098-6
10.1111/gwat.13094
10.1007/s11356-021-13255-4
10.1016/j.scitotenv.2018.12.397
10.3390/rs12030475
10.1023/A:1010933404324
10.1016/j.jenvman.2020.110485
10.1016/j.atmosres.2013.11.002
10.7717/peerj.7653
10.1080/19475705.2018.1506509
10.1080/01431161.2016.1192304
10.1007/s12517-015-1859-7
10.1007/s12145-021-00653-y
10.3390/su11195426
10.1016/j.earscirev.2020.103225
10.1023/B:NHAZ.0000007201.80743.fc
10.1002/hyp.5852
10.1016/j.rse.2020.111664
10.1061/(ASCE)HE.1943-5584.0001794
10.1016/j.jenvman.2018.03.089
10.1016/j.jhydrol.2019.124482
10.1016/j.gsf.2020.09.006
10.1007/s11269-021-02944-x
10.19026/rjaset.6.3920
10.3390/f12050553
10.1007/s10668-021-01377-1
10.1201/9780367816377
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14164050
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_c92cc5a5d440470e88ac58c69f35c77a
10_3390_rs14164050
GeographicLocations Yemen
GeographicLocations_xml – name: Yemen
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c460t-96961c9524fa88b528d3f172cb1d3f5e1dafd19e040c5fbb13a8b0e9f13a03f23
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:31:11 EDT 2025
Fri Sep 05 13:04:01 EDT 2025
Fri Jul 25 09:34:45 EDT 2025
Tue Jul 01 01:59:45 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-96961c9524fa88b528d3f172cb1d3f5e1dafd19e040c5fbb13a8b0e9f13a03f23
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6267-2879
0000-0003-2880-0977
0000-0003-4190-771X
0000-0002-9743-1549
0000-0001-5779-1382
0000-0003-1754-615X
OpenAccessLink https://doaj.org/article/c92cc5a5d440470e88ac58c69f35c77a
PQID 2706431917
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_c92cc5a5d440470e88ac58c69f35c77a
proquest_miscellaneous_2718376364
proquest_journals_2706431917
crossref_citationtrail_10_3390_rs14164050
crossref_primary_10_3390_rs14164050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220819
PublicationDateYYYYMMDD 2022-08-19
PublicationDate_xml – month: 08
  year: 2022
  text: 20220819
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
Ahmadisharaf (ref_119) 2019; 24
Termeh (ref_112) 2018; 615
ref_99
Yalcin (ref_85) 2011; 85
ref_98
ref_97
Breiman (ref_71) 2001; 45
Wang (ref_29) 2021; 289
Tehrany (ref_7) 2018; 10
Leung (ref_77) 2007; 2007
ref_16
Hong (ref_111) 2018; 621
Arabameri (ref_46) 2021; 284
Cohen (ref_82) 1960; 20
DeVries (ref_63) 2020; 240
Hu (ref_1) 2018; 643
Panahi (ref_23) 2021; 199
Abbot (ref_65) 2014; 138
Cheng (ref_17) 2006; 316
ref_20
Chowdary (ref_21) 2013; 27
Satarzadeh (ref_113) 2021; 111
ref_27
Zhu (ref_73) 2020; 145
Khosravi (ref_39) 2016; 188
ref_72
Kourgialas (ref_10) 2011; 56
Merghadi (ref_76) 2020; 207
Choubin (ref_110) 2019; 651
ref_79
ref_75
ref_74
Costache (ref_107) 2020; 265
AlThuwaynee (ref_42) 2021; 28
Chen (ref_116) 2020; 701
Pham (ref_49) 2021; 59
Remondo (ref_80) 2003; 30
Nassar (ref_19) 2018; 11
Wang (ref_36) 2020; 582
Valavi (ref_24) 2018; 217
Funk (ref_88) 2015; 2
Meraj (ref_93) 2015; 77
Tehrany (ref_100) 2014; 512
Wang (ref_84) 2019; 247
Bui (ref_59) 2011; 59
Macek (ref_89) 2021; 757
Tehrany (ref_108) 2015; 125
Pham (ref_95) 2021; 592
Edouard (ref_9) 2018; 560
Costache (ref_26) 2020; 711
Ma (ref_34) 2021; 598
Khosravi (ref_106) 2020; 591
ref_50
Costache (ref_30) 2019; 691
Moore (ref_91) 1991; 5
Tehrany (ref_22) 2019; 175
ref_58
ref_57
Tehrany (ref_12) 2015; 29
ref_55
ref_53
ref_52
Mohammadi (ref_66) 2020; 2020
Coskun (ref_114) 2012; 63
Opolot (ref_14) 2013; 6
Roy (ref_86) 2020; 272
Costache (ref_25) 2018; 659
Moore (ref_92) 1992; 47
Evers (ref_18) 2018; 22
Ullah (ref_101) 2022; 13
ref_61
ref_60
Madhuri (ref_51) 2021; 12
Khosravi (ref_105) 2016; 83
Rahmati (ref_28) 2016; 31
ref_69
Ali (ref_47) 2021; 14
ref_68
ref_67
Malik (ref_13) 2021; 23
ref_64
ref_62
Foody (ref_83) 2002; 80
Kelly (ref_78) 1999; 23
Ahmed (ref_109) 2022; 15
Zhao (ref_115) 2018; 615
Elhanafy (ref_56) 2016; 9
ref_117
ref_118
Lin (ref_11) 2019; 97
Frattini (ref_81) 2010; 111
Sanyal (ref_15) 2005; 19
Ma (ref_48) 2020; 33
ref_35
ref_33
Twele (ref_70) 2016; 37
Beven (ref_90) 1979; 24
ref_38
Tehrany (ref_31) 2019; 7
ref_37
Khosravi (ref_5) 2018; 627
Soliman (ref_54) 2015; 8
Ali (ref_102) 2019; 5
Chakrabortty (ref_87) 2021; 35
Islam (ref_96) 2020; 12
Costache (ref_6) 2020; 712
ref_44
ref_43
ref_41
ref_3
ref_2
Khosravi (ref_40) 2019; 573
Arabameri (ref_45) 2021; 12
Li (ref_103) 2019; 38
ref_8
Kia (ref_32) 2012; 67
ref_4
Shahabi (ref_104) 2020; 12
References_xml – volume: 573
  start-page: 311
  year: 2019
  ident: ref_40
  article-title: A Comparative Assessment of Flood Susceptibility Modeling Using Multi-Criteria Decision-Making Analysis and Machine Learning Methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.073
– ident: ref_37
  doi: 10.3390/w12061549
– ident: ref_99
  doi: 10.3133/pp422C
– volume: 701
  start-page: 134979
  year: 2020
  ident: ref_116
  article-title: Modeling Flood Susceptibility Using Data-Driven Approaches of Naïve Bayes Tree, Alternating Decision Tree, And Random Forest Methods
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134979
– volume: 23
  start-page: 491
  year: 1999
  ident: ref_78
  article-title: Bayesian Learning, Growth, And Pollution
  publication-title: J. Econ. Dyn. Control
  doi: 10.1016/S0165-1889(98)00034-7
– volume: 615
  start-page: 438
  year: 2018
  ident: ref_112
  article-title: Flood Susceptibility Mapping Using Novel Ensembles of Adaptive Neuro Fuzzy Inference System and Metaheuristic Algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.262
– volume: 199
  start-page: 105114
  year: 2021
  ident: ref_23
  article-title: Flood Spatial Prediction Modeling Using a Hybrid of Meta-Optimization and Support Vector Regression Modeling
  publication-title: Catena
  doi: 10.1016/j.catena.2020.105114
– volume: 11
  start-page: 765
  year: 2018
  ident: ref_19
  article-title: Evaluation of Flood Susceptibility Mapping Using Logistic Regression and GIS Conditioning Factors
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-018-4095-0
– volume: 289
  start-page: 112449
  year: 2021
  ident: ref_29
  article-title: Flood Susceptibility Mapping by Integrating Frequency Ratio and Index of Entropy with Multilayer Perceptron and Classification and Regression Tree
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112449
– volume: 83
  start-page: 947
  year: 2016
  ident: ref_105
  article-title: A GIS-Based Flood Susceptibility Assessment and Its Mapping in Iran: A Comparison Between Frequency Ratio and Weights-of-Evidence Bivariate Statistical Models with Multi-Criteria Decision-Making Technique
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2357-2
– volume: 643
  start-page: 171
  year: 2018
  ident: ref_1
  article-title: Flood-Induced Mortality Across the Globe: Spatiotemporal Pattern and Influencing Factors
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.197
– volume: 59
  start-page: 1413
  year: 2011
  ident: ref_59
  article-title: Landslide Susceptibility Analysis in the Hoa Binh Province of Vietnam Using Statistical Index and Logistic Regression
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-011-9844-2
– ident: ref_41
  doi: 10.3390/rs12203423
– ident: ref_20
  doi: 10.3390/su13063126
– volume: 757
  start-page: 143785
  year: 2021
  ident: ref_89
  article-title: Topographic Wetness Index Calculation Guidelines Based on Measured Soil Moisture and Plant Species Composition
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143785
– volume: 598
  start-page: 126382
  year: 2021
  ident: ref_34
  article-title: XGBoost-Based Method for Flash Flood Risk Assessment
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126382
– volume: 2020
  start-page: 4271376
  year: 2020
  ident: ref_66
  article-title: Flood Detection and Susceptibility Mapping Using Sentinel-1 Time Series, Alternating Decision Trees, and Bag-ADTree Models
  publication-title: Complexity
  doi: 10.1155/2020/4271376
– ident: ref_4
– ident: ref_79
  doi: 10.1145/2939672.2939785
– volume: 712
  start-page: 136492
  year: 2020
  ident: ref_6
  article-title: Identification of Areas Prone to Flash-Flood Phenomena Using Multiple-Criteria Decision-Making, Bivariate Statistics, Machine Learning and Their Ensembles
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.136492
– volume: 47
  start-page: 423
  year: 1992
  ident: ref_92
  article-title: Length-Slope Factors for the Revised Universal Soil Loss Equation: Simplified Method of Estimation
  publication-title: J. Soil Water Conserv.
– ident: ref_62
– ident: ref_8
  doi: 10.3390/rs12213568
– volume: 38
  start-page: 101211
  year: 2019
  ident: ref_103
  article-title: Flood Susceptibility Modeling and Hazard Perception in Rwanda
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2019.101211
– volume: 621
  start-page: 1124
  year: 2018
  ident: ref_111
  article-title: Flood Susceptibility Assessment in Hengfeng Area Coupling Adaptive Neuro-Fuzzy Inference System with Genetic Algorithm and Differential Evolution
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.114
– ident: ref_33
  doi: 10.1080/10106049.2021.1920636
– volume: 316
  start-page: 129
  year: 2006
  ident: ref_17
  article-title: Using Genetic Algorithm and TOPSIS For Xinanjiang Model Calibration with A Single Procedure
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.04.022
– ident: ref_38
  doi: 10.3390/rs12020266
– ident: ref_97
– volume: 651
  start-page: 2087
  year: 2019
  ident: ref_110
  article-title: An Ensemble Prediction of Flood Susceptibility Using Multivariate Discriminant Analysis, Classification and Regression Trees, And Support Vector Machines
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.064
– ident: ref_53
– volume: 125
  start-page: 91
  year: 2015
  ident: ref_108
  article-title: Flood Susceptibility Assessment Using GIS-Based Support Vector Machine Model with Different Kernel Types
  publication-title: CATENA
  doi: 10.1016/j.catena.2014.10.017
– ident: ref_3
– volume: 592
  start-page: 125615
  year: 2021
  ident: ref_95
  article-title: Can Deep Learning Algorithms Outperform Benchmark Machine Learning Algorithms in Flood Susceptibility Modeling?
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125615
– volume: 615
  start-page: 1133
  year: 2018
  ident: ref_115
  article-title: Mapping Flood Susceptibility in Mountainous Areas on a National Scale in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.037
– volume: 560
  start-page: 480
  year: 2018
  ident: ref_9
  article-title: Ensemble-Based Flash-Flood Modelling: Taking into Account Hydrodynamic Parameters and Initial Soil Moisture Uncertainties
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.04.048
– volume: 284
  start-page: 112067
  year: 2021
  ident: ref_46
  article-title: Comparison of Multi-Criteria and Artificial Intelligence Models for Land-Subsidence Susceptibility Zonation
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112067
– ident: ref_61
  doi: 10.1016/B978-0-12-815226-3.00013-2
– volume: 29
  start-page: 1149
  year: 2015
  ident: ref_12
  article-title: Flood Susceptibility Analysis and Its Verification Using a Novel Ensemble Support Vector Machine and Frequency Ratio Method
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-015-1021-9
– ident: ref_75
  doi: 10.1007/978-3-642-38652-7
– volume: 691
  start-page: 1098
  year: 2019
  ident: ref_30
  article-title: Spatial Prediction of Flood Potential Using New Ensembles of Bivariate Statistics and Artificial Intelligence: A Case Study at the Putna River Catchment of Romania
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.197
– volume: 145
  start-page: 293
  year: 2020
  ident: ref_73
  article-title: Application of Machine Learning Techniques for Predicting the Consequences of Construction Accidents in China
  publication-title: Process. Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.08.006
– volume: 80
  start-page: 185
  year: 2002
  ident: ref_83
  article-title: Status of Land Cover Classification Accuracy assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00295-4
– volume: 67
  start-page: 251
  year: 2012
  ident: ref_32
  article-title: An Artificial Neural Network Model for Flood Simulation Using GIS: Johor River Basin, Malaysia
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1504-z
– volume: 85
  start-page: 274
  year: 2011
  ident: ref_85
  article-title: A GIS-Based Comparative Study of Frequency Ratio, Analytical Hierarchy Process, Bivariate Statistics and Logistics Regression Methods for Landslide Susceptibility Mapping in Trabzon, NE Turkey
  publication-title: Catena
  doi: 10.1016/j.catena.2011.01.014
– ident: ref_64
  doi: 10.1109/IGARSS.2014.6946711
– volume: 9
  start-page: 88
  year: 2016
  ident: ref_56
  article-title: Statistical Analysis of Morphometric and Hydrologic Parameters in Arid Regions, Case Study of Wadi Hadramaut
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-015-2195-7
– volume: 272
  start-page: 122757
  year: 2020
  ident: ref_86
  article-title: Threats of Climate and Land Use Change on Future Flood Susceptibility
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122757
– volume: 175
  start-page: 174
  year: 2019
  ident: ref_22
  article-title: Identifying the Essential Flood Conditioning Factors for Flood Prone Area Mapping Using Machine Learning Techniques
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.011
– volume: 63
  start-page: 461
  year: 2012
  ident: ref_114
  article-title: The Analysis of 2004 Flood on Kozdere Stream in Istanbul
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0165-x
– volume: 27
  start-page: 3555
  year: 2013
  ident: ref_21
  article-title: Multi-Criteria Decision-Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-013-0364-6
– ident: ref_118
  doi: 10.3390/su9101735
– volume: 5
  start-page: 1083
  year: 2019
  ident: ref_102
  article-title: Application of GIS-Based Analytic Hierarchy Process and Frequency Ratio Model to Flood Vulnerable Mapping and Risk Area Estimation at Sundarban Region, India
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-019-00593-z
– volume: 5
  start-page: 3
  year: 1991
  ident: ref_91
  article-title: Digital Terrain Modelling: A Review of Hydrological, Geomorphological, And Biological Applications
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.3360050103
– volume: 13
  start-page: 101425
  year: 2022
  ident: ref_101
  article-title: Multi-Hazard Susceptibility Mapping Based on Convolutional Neural Networks
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2022.101425
– ident: ref_16
  doi: 10.1007/978-1-4020-9139-1_31
– ident: ref_69
  doi: 10.3390/ijgi7100411
– ident: ref_44
  doi: 10.3390/rs12152478
– volume: 12
  start-page: 469
  year: 2021
  ident: ref_45
  article-title: Prediction of Gully Erosion Susceptibility Mapping Using Novel Ensemble Machine Learning Algorithms
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2021.1880977
– ident: ref_74
  doi: 10.20944/preprints202008.0089.v1
– volume: 591
  start-page: 125552
  year: 2020
  ident: ref_106
  article-title: Convolutional Neural Network Approach for Spatial Prediction of Flood Hazard at National Scale of Iran
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125552
– ident: ref_50
  doi: 10.3390/su13020971
– ident: ref_67
  doi: 10.3390/ECRS-3-06201
– volume: 512
  start-page: 332
  year: 2014
  ident: ref_100
  article-title: Flood Susceptibility Mapping Using a Novel Ensemble Weights-Of-Evidence and Support Vector Machine Models in GIS
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.008
– volume: 33
  start-page: 10881
  year: 2020
  ident: ref_48
  article-title: Machine Learning for Landslides Prevention: A Survey
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05529-8
– ident: ref_98
– volume: 15
  start-page: 217
  year: 2022
  ident: ref_109
  article-title: Random Forest and Naïve Bayes Approaches as Tools for Flash Flood Hazard Susceptibility Prediction, South Ras El-Zait, Gulf of Suez Coast, Egypt
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-022-09531-3
– ident: ref_35
  doi: 10.3390/w12010239
– volume: 2
  start-page: 150066
  year: 2015
  ident: ref_88
  article-title: The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes
  publication-title: Sci. Data
  doi: 10.1038/sdata.2015.66
– ident: ref_27
  doi: 10.1371/journal.pone.0229153
– ident: ref_55
  doi: 10.1007/978-981-10-7748-7_3
– volume: 188
  start-page: 1
  year: 2016
  ident: ref_39
  article-title: Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5665-9
– volume: 24
  start-page: 43
  year: 1979
  ident: ref_90
  article-title: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667909491834
– volume: 247
  start-page: 712
  year: 2019
  ident: ref_84
  article-title: Flood Susceptibility Mapping in Dingnan County (China) Using Adaptive Neuro-Fuzzy Inference System with Biogeography Based Optimization and Imperialistic Competitive Algorithm
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.06.102
– ident: ref_43
  doi: 10.1016/B978-0-12-815998-9.00017-8
– ident: ref_94
  doi: 10.3390/urbansci1010007
– volume: 31
  start-page: 42
  year: 2016
  ident: ref_28
  article-title: Flood Susceptibility Mapping Using Frequency Ratio and Weights-Of-Evidence Models in The Golastan Province, Iran
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2015.1041559
– volume: 12
  start-page: 101100
  year: 2020
  ident: ref_104
  article-title: Flash Flood Susceptibility Mapping Using a Novel Deep Learning Model Based on Deep Belief Network, Back Propagation and Genetic Algorithm
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.10.007
– volume: 12
  start-page: 2608
  year: 2021
  ident: ref_51
  article-title: Application of Machine Learning Algorithms for Flood Susceptibility Assessment and Risk Management
  publication-title: J. Water Clim. Chang.
  doi: 10.2166/wcc.2021.051
– volume: 111
  start-page: 62
  year: 2010
  ident: ref_81
  article-title: Techniques for Evaluating the Performance of Landslide Susceptibility Models
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2009.12.004
– volume: 56
  start-page: 212
  year: 2011
  ident: ref_10
  article-title: Flood Aanagement and a GIS Modelling Method to Assess Flood-Hazard Areas—A Case Study
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2011.555836
– volume: 627
  start-page: 744
  year: 2018
  ident: ref_5
  article-title: A Comparative Assessment of Decision Trees Algorithms for Flash Flood Susceptibility Modeling at Haraz Watershed, Northern Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.266
– volume: 22
  start-page: 373
  year: 2018
  ident: ref_18
  article-title: Participatory Flood Vulnerability Assessment: A Multi-Criteria Approach
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-373-2018
– volume: 77
  start-page: 153
  year: 2015
  ident: ref_93
  article-title: Assessing the Influence of Watershed Characteristics on the Flood Vulnerability of Jhelum Basin in Kashmir Himalaya
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1605-1
– ident: ref_52
  doi: 10.1061/41114(371)206
– volume: 711
  start-page: 134514
  year: 2020
  ident: ref_26
  article-title: Comparative Assessment of The Flash-Flood Potential Within Small Mountain Catchments Using Bivariate Statistics and Their Novel Hybrid Integration with Machine Learning Models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134514
– volume: 97
  start-page: 455
  year: 2019
  ident: ref_11
  article-title: Urban Flood Susceptibility Analysis Using a GIS-Based Multi-Criteria Analysis Framework
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-019-03615-2
– volume: 20
  start-page: 37
  year: 1960
  ident: ref_82
  article-title: A Coefficient of Agreement for Nominal Scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– ident: ref_60
  doi: 10.1007/978-3-319-55342-9_4
– volume: 111
  start-page: 1355
  year: 2021
  ident: ref_113
  article-title: Flood Hazard Mapping in Western Iran: Assessment of Deep Learning Vis-À-Vis Machine Learning Models
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-021-05098-6
– volume: 59
  start-page: 745
  year: 2021
  ident: ref_49
  article-title: Groundwater Potential Mapping Using GIS -Based Hybrid Artificial Intelligence Methods
  publication-title: Ground Water
  doi: 10.1111/gwat.13094
– volume: 28
  start-page: 43544
  year: 2021
  ident: ref_42
  article-title: Demystifying Uncertainty in PM10 Susceptibility Mapping Using Variable Drop-Off in Extreme-Gradient Boosting (XGB) And Random Forest (RF) Algorithms
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-13255-4
– volume: 2007
  start-page: 123
  year: 2007
  ident: ref_77
  article-title: Naive Bayesian Classifier
  publication-title: Polytech. Univ. Dep. Comput. Sci. Financ. Risk Eng.
– volume: 659
  start-page: 1115
  year: 2018
  ident: ref_25
  article-title: Flash-Flood Potential Assessment in the Upper and Middle Sector of Prahova River Catchment (Romania). A Comparative Approach Between Four Hybrid Models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.397
– ident: ref_58
  doi: 10.3390/rs12030475
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_71
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 265
  start-page: 110485
  year: 2020
  ident: ref_107
  article-title: Novel Hybrid Models Between Bivariate Statistics, Artificial Neural Networks and Boosting Algorithms for Flood Susceptibility Assessment
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.110485
– volume: 138
  start-page: 166
  year: 2014
  ident: ref_65
  article-title: Input Selection and Optimisation for Monthly Rainfall Forecasting in Queensland, Australia, Using Artificial Neural Networks
  publication-title: Atmospheric Res.
  doi: 10.1016/j.atmosres.2013.11.002
– volume: 7
  start-page: e7653
  year: 2019
  ident: ref_31
  article-title: A novel GIS-Based Ensemble Technique for Flood Susceptibility Mapping Using Evidential Belief Function and Support Vector Machine: Brisbane, Australia
  publication-title: PeerJ
  doi: 10.7717/peerj.7653
– volume: 10
  start-page: 79
  year: 2018
  ident: ref_7
  article-title: Evaluating the Application of The Statistical Index Method in Flood Susceptibility Mapping and Its Comparison with Frequency Ratio and Logistic Regression Methods
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2018.1506509
– volume: 37
  start-page: 2990
  year: 2016
  ident: ref_70
  article-title: Sentinel-1-Based Flood Mapping: A Fully Automated Processing Chain
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1192304
– volume: 8
  start-page: 10169
  year: 2015
  ident: ref_54
  article-title: Hydrological Analysis and Flood Mitigation at Wadi Hadramawt, Yemen
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-015-1859-7
– volume: 14
  start-page: 1227
  year: 2021
  ident: ref_47
  article-title: Spatial Modeling and Susceptibility Zonation of Landslides Using Random Forest, Naïve Bayes and K-Nearest Neighbor in A Complicated Terrain
  publication-title: Earth Sci. Informatics
  doi: 10.1007/s12145-021-00653-y
– ident: ref_117
  doi: 10.3390/su11195426
– volume: 207
  start-page: 103225
  year: 2020
  ident: ref_76
  article-title: Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance
  publication-title: Earth-Science Rev.
  doi: 10.1016/j.earscirev.2020.103225
– volume: 30
  start-page: 437
  year: 2003
  ident: ref_80
  article-title: Validation of Landslide Susceptibility Maps; Examples and Applications from a Case Study in Northern Spain
  publication-title: Nat. Hazards
  doi: 10.1023/B:NHAZ.0000007201.80743.fc
– volume: 19
  start-page: 3699
  year: 2005
  ident: ref_15
  article-title: Remote Sensing and GIS-Based Flood Vulnerability Assessment of Human Settlements: A Case Study of Gangetic West Bengal, India
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.5852
– ident: ref_2
– volume: 240
  start-page: 111664
  year: 2020
  ident: ref_63
  article-title: Rapid and Robust Monitoring of Flood Events Using Sentinel-1 and Landsat Data on the Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111664
– volume: 24
  start-page: 3119001
  year: 2019
  ident: ref_119
  article-title: Calibration and Validation of Watershed Models and Advances in Uncertainty Analysis in TMDL Studies
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0001794
– volume: 217
  start-page: 1
  year: 2018
  ident: ref_24
  article-title: Novel Forecasting Approaches Using Combination of Machine Learning and Statistical Models for Flood Susceptibility Mapping
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.03.089
– volume: 582
  start-page: 124482
  year: 2020
  ident: ref_36
  article-title: Flood Susceptibility Mapping Using Convolutional Neural Network Frameworks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124482
– volume: 12
  start-page: 101075
  year: 2020
  ident: ref_96
  article-title: Flood Susceptibility Modelling Using Advanced Ensemble Machine Learning Models
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.09.006
– ident: ref_57
– volume: 35
  start-page: 4251
  year: 2021
  ident: ref_87
  article-title: Impact of Climate Change on Future Flood Susceptibility: An Evaluation Based on Deep Learning Algorithms and GCM Model
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-021-02944-x
– volume: 6
  start-page: 1884
  year: 2013
  ident: ref_14
  article-title: Application of Remote Sensing and Geographical Information Systems in Flood Management: A Review
  publication-title: Res. J. Appl. Sci. Eng. Technol.
  doi: 10.19026/rjaset.6.3920
– ident: ref_68
  doi: 10.3390/f12050553
– volume: 23
  start-page: 16713
  year: 2021
  ident: ref_13
  article-title: GIS-Based Statistical Model for the Prediction of Flood Hazard Susceptibility
  publication-title: Environ. Dev. Sustain.
  doi: 10.1007/s10668-021-01377-1
– ident: ref_72
  doi: 10.1201/9780367816377
SSID ssj0000331904
Score 2.5103607
Snippet Flooding is one of the catastrophic natural hazards worldwide that can easily cause devastating effects on human life and property. Remote sensing devices are...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4050
SubjectTerms Accuracy
Algorithms
Bayesian analysis
Case studies
Climate change
data collection
Desert environments
Deserts
Disaster management
Disaster risk
Earthquakes
environmental sustainability
flash flooding
Flash floods
Flood mapping
Flood predictions
Flooded areas
Flooding
Floods
Geographic information systems
Hazard assessment
humans
Image analysis
Image processing
Internet
inventories
Landsat
Landsat satellites
Landslides
Landslides & mudslides
Machine learning
machine learning algorithms
Mapping
Meteorological satellites
Natural disasters
Neural networks
Population growth
Precipitation
Rain
Remote sensing
remote sensing data
Risk reduction
Runoff
Satellite imagery
Seismic activity
Sensors
Storm damage
Susceptibility
Tarim city
Training
Urbanization
Yemen
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB62m0N7KWmTkG2ToJJccjCRLcuWA6Xshiyh0CXkAWkvRtYjLRR769097L_vjNd2KA25CXukw0jz1OgbgBNd2NiJpn07nuDYZSZQGAkF3FpNcOCh8JSH_DZLru7jrw_yYQCz7i0MlVV2OrFR1LYylCM_i1IynhRdfJn_CahrFN2udi00dNtawX5uIMZewRaqZMmHsDW5nF3f9FkXLnAJHm9wSgXG-2f1IkSfBN0W_o9lagD8_9PPjdGZbsPb1ltk4832voOBK9_D67Zx-c_1DvwY98iarMMXYZVnU6pHZ7erRVO10hTArtmvkt3V1Zy2hWG86Wqcgz7jORuzCzRmjGoK1zT7O-UMd-F-enl3cRW07RICEyd8GRDOTWgyGcVeK1XISFnh0T8xRYgD6UKrvQ0zh2JrpC-KUGhVcJd5HHDhI7EHw7Iq3T4wIaxBSU6LVMg4iYziXmqntY90mBmdjOC0Y1VuWixxamnxO8eYgtiaP7F1BMc97XyDoPEs1YQ43lMQ6nXzoaof81aIcpNFxkgtLYEaptwppY1UJsm8kCZN9QgOuv3KW1Fc5E8HZwSf-t8oRHQzoktXrYgGNRtq2iT-8PISH-FNRO8fCBM3O4Dhsl65Q_RKlsVRe9T-Ag5X4Yo
  priority: 102
  providerName: ProQuest
Title Assessment Analysis of Flood Susceptibility in Tropical Desert Area: A Case Study of Yemen
URI https://www.proquest.com/docview/2706431917
https://www.proquest.com/docview/2718376364
https://doaj.org/article/c92cc5a5d440470e88ac58c69f35c77a
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RONBLBRTUbWFlBJceIpw4Tmxuy2NBCFBVQAIukePYAgll0T4O--8742QXEEhceoqVjKVoxjP-xpl8A7Bryip1IrRvxxWcOm0jhZlQxKvKEB14LDydQ15cZqc36dmtvH3V6otqwhp64EZxe1Yn1kojKyKyy7lTylipbKa9kDbPAzTimr9KpkIMFri0eNrwkQrM6_eGoxixB8IT_mYHCkT97-Jw2Fz6K_CtRYWs17zNKiy4eg2W2wblD9PvcN-bM2iyGY8IG3jWp7pzdjUZheqUUOg6ZY81ux4Onkn9DPNKN8Q5iA33WY8d4qbFqHZwSrPv6GxwHW76x9eHp1HbFiGyacbHEfHZxFbLJPVGqVImqhIecYgtYxxIF1fGV7F26J5W-rKMhVEld9rjgAufiA1YrAe1-wFMiMqix-ZlLmSaJVZxL40zxicm1tZkHfg9U1VhW85wal3xVGDuQGotXtTagZ257HPDlPGh1AFpfC5B7NbhBtq8aG1efGbzDmzO7FW0LjcqkpzQFaWfHdieP0ZnoS8gpnaDCclgBMOImqU__8d7_IKvCf0NQQy5ehMWx8OJ20KMMi678EX1T7qw1Du6OL_C68Hx5Z-_3bBI_wHKt-fF
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V20O5IJ5ioYARcOAQ1bHjPJAqtC1dbWm7QrCVCpfU8QOQULJkd4X2z_HbmMkmqRCIW29WMo6i8XheHn8D8EIXNnKyad-OEhy5zAQpRkIBt1YTHHgoPeUhz6bx5Dx6d6EutuBXdxeGyio7ndgoalsZypHviYSMJ0UXb-Y_AuoaRaerXQsN3bZWsPsNxFh7sePErX9iCLfYP36L6_1SiPHR7HAStF0GAhPFfBkQPExoMiUir9O0UCK10qNZN0WIA-VCq70NM4fSbpQvilDqtOAu8zjg0hPwAZqA7YgSKAPYPjiavv_QZ3m4xF_m0QYXVcqM79WLEH0gdJP4H5awaRjwlz1ojNz4FtxsvVM22ojTbdhy5R3YaRulf13fhc-jHsmTdXgmrPJsTPXv7ONq0VTJNAW3a_atZLO6mpMYMIxvXY1z0Ed9zUbsEI0noxrGNc3-RDnKe3B-LYy7D4OyKt0DYFJag5ojKRLkYixMyr3STmsvdJgZHQ_hVceq3LTY5dRC43uOMQyxNb9i6xCe97TzDWLHP6kOiOM9BaFsNw-q-kvebtrcZMIYpZUlEMWEuzTVRqUmzrxUJkn0EHa79crbrb_IrwR1CM_617hp6SRGl65aEQ1qUtTscfTw_594CjuT2dlpfno8PXkENwTdvSA83mwXBst65R6jR7QsnrRix-DyuiX9NzOkHu4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFD4sK6gv4hVHV42oDz6USZumTQSRcde66-oiuAurLzXNRQVpx84MMn_NX-c5nbaLKL7tW2iTUk6-nEty8h2Ax6ZyqRdd-XZEcOq1jRRGQhF3zhAdeCwC7UO-O8r2T9I3p_J0C34Nd2EorXLQiZ2ido2lPfJpkpPxpOhiGvq0iPd7xYv5j4gqSNFJ61BOYwORQ7_-ieHb4vnBHs71kyQpXh3v7kd9hYHIphlfRkQNE1stkzQYpSqZKCcCmnRbxdiQPnYmuFh7RLqVoapiYVTFvQ7Y4CIQ6QGq_wu5wHVCt9SL1-P-Dhf4szzdMKIKofm0XcTo_aCDxP-wgV2pgL8sQWfeiqtwpfdL2WwDpGuw5evrcKkvkf51fQM-zUYOTzYwmbAmsIIy39mH1aLLj-lSbdfsW82O22ZOAGAY2foWx6B3-ozN2C6aTUbZi2sa_ZF2J2_CybmI7RZs103tbwMTwlnUGXmVC5lmiVU8SOONCYmJtTXZBJ4Ooiptz1pOxTO-lxi9kFjLM7FO4NHYd77h6vhnr5ck8bEH8Wt3D5r2S9kv19LqxFpppCP6xJx7pYyVymY6CGnz3ExgZ5ivsl_0i_IMohN4OL7G5UpnMKb2zYr6oA5FnZ6ld_7_iQdwEfFdvj04OrwLlxO6dEFEvHoHtpftyt9DV2hZ3e8wx-DzeYP8N2ddHIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+Analysis+of+Flood+Susceptibility+in+Tropical+Desert+Area%3A+A+Case+Study+of+Yemen&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Al-Aizari%2C+Ali+R.&rft.au=Al-Masnay%2C+Yousef+A.&rft.au=Aydda%2C+Ali&rft.au=Zhang%2C+Jiquan&rft.date=2022-08-19&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=16&rft.spage=4050&rft_id=info:doi/10.3390%2Frs14164050&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14164050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon