Assessment Analysis of Flood Susceptibility in Tropical Desert Area: A Case Study of Yemen
Flooding is one of the catastrophic natural hazards worldwide that can easily cause devastating effects on human life and property. Remote sensing devices are becoming increasingly important in monitoring and assessing natural disaster susceptibility and hazards. The proposed research work pursues a...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 16; p. 4050 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
19.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs14164050 |
Cover
Abstract | Flooding is one of the catastrophic natural hazards worldwide that can easily cause devastating effects on human life and property. Remote sensing devices are becoming increasingly important in monitoring and assessing natural disaster susceptibility and hazards. The proposed research work pursues an assessment analysis of flood susceptibility in a tropical desert environment: a case study of Yemen. The base data for this research were collected and organized from meteorological, satellite images, remote sensing data, essential geographic data, and various data sources and used as input data into four machine learning (ML) algorithms. In this study, RS data (Sentinel-1 images) were used to detect flooded areas in the study area. We also used the Sentinel application platform (SNAP 7.0) for Sentinel-1 image analysis and detecting flood zones in the study locations. Flood spots were discovered and verified using Google Earth images, Landsat images, and press sources to create a flood inventory map of flooded areas in the study area. Four ML algorithms were used to map flash flood susceptibility (FFS) in Tarim city (Yemen): K-nearest neighbor (KNN), Naïve Bayes (NB), random forests (RF), and eXtreme gradient boosting (XGBoost). Twelve flood conditioning factors were prepared, assessed in multicollinearity, and used with flood inventories as input parameters to run each model. A total of 600 random flood and non-flood points were chosen, where 75% and 25% were used as training and validation datasets. The confusion matrix and the area under the receiver operating characteristic curve (AUROC) were used to validate the susceptibility maps. The results obtained reveal that all models had a high capacity to predict floods (AUC > 0.90). Further, in terms of performance, the tree-based ensemble algorithms (RF, XGBoost) outperform other ML algorithms, where the RF algorithm provides robust performance (AUC = 0.982) for assessing flood-prone areas with only a few adjustments required prior to training the model. The value of the research lies in the fact that the proposed models are being tested for the first time in Yemen to assess flood susceptibility, which can also be used to assess, for example, earthquakes, landslides, and other disasters. Furthermore, this work makes significant contributions to the worldwide effort to reduce the risk of natural disasters, particularly in Yemen. This will, therefore, help to enhance environmental sustainability. |
---|---|
AbstractList | Flooding is one of the catastrophic natural hazards worldwide that can easily cause devastating effects on human life and property. Remote sensing devices are becoming increasingly important in monitoring and assessing natural disaster susceptibility and hazards. The proposed research work pursues an assessment analysis of flood susceptibility in a tropical desert environment: a case study of Yemen. The base data for this research were collected and organized from meteorological, satellite images, remote sensing data, essential geographic data, and various data sources and used as input data into four machine learning (ML) algorithms. In this study, RS data (Sentinel-1 images) were used to detect flooded areas in the study area. We also used the Sentinel application platform (SNAP 7.0) for Sentinel-1 image analysis and detecting flood zones in the study locations. Flood spots were discovered and verified using Google Earth images, Landsat images, and press sources to create a flood inventory map of flooded areas in the study area. Four ML algorithms were used to map flash flood susceptibility (FFS) in Tarim city (Yemen): K-nearest neighbor (KNN), Naïve Bayes (NB), random forests (RF), and eXtreme gradient boosting (XGBoost). Twelve flood conditioning factors were prepared, assessed in multicollinearity, and used with flood inventories as input parameters to run each model. A total of 600 random flood and non-flood points were chosen, where 75% and 25% were used as training and validation datasets. The confusion matrix and the area under the receiver operating characteristic curve (AUROC) were used to validate the susceptibility maps. The results obtained reveal that all models had a high capacity to predict floods (AUC > 0.90). Further, in terms of performance, the tree-based ensemble algorithms (RF, XGBoost) outperform other ML algorithms, where the RF algorithm provides robust performance (AUC = 0.982) for assessing flood-prone areas with only a few adjustments required prior to training the model. The value of the research lies in the fact that the proposed models are being tested for the first time in Yemen to assess flood susceptibility, which can also be used to assess, for example, earthquakes, landslides, and other disasters. Furthermore, this work makes significant contributions to the worldwide effort to reduce the risk of natural disasters, particularly in Yemen. This will, therefore, help to enhance environmental sustainability. |
Author | Kaku, Dawuda Usman Liu, Xingpeng Aydda, Ali Zhang, Jiquan Al-Masnay, Yousef A. Ullah, Kashif Habib, Tayyiba Al-Aizari, Ali R. Islam, Abu Reza Md. Towfiqul Nizeyimana, Jean Claude AL-Hameedi, Wafaa M. M. Al-Shaibah, Bazel Khalil, Yasser M. |
Author_xml | – sequence: 1 givenname: Ali R. orcidid: 0000-0003-4190-771X surname: Al-Aizari fullname: Al-Aizari, Ali R. – sequence: 2 givenname: Yousef A. surname: Al-Masnay fullname: Al-Masnay, Yousef A. – sequence: 3 givenname: Ali orcidid: 0000-0003-1754-615X surname: Aydda fullname: Aydda, Ali – sequence: 4 givenname: Jiquan surname: Zhang fullname: Zhang, Jiquan – sequence: 5 givenname: Kashif orcidid: 0000-0003-2880-0977 surname: Ullah fullname: Ullah, Kashif – sequence: 6 givenname: Abu Reza Md. Towfiqul orcidid: 0000-0001-5779-1382 surname: Islam fullname: Islam, Abu Reza Md. Towfiqul – sequence: 7 givenname: Tayyiba surname: Habib fullname: Habib, Tayyiba – sequence: 8 givenname: Dawuda Usman surname: Kaku fullname: Kaku, Dawuda Usman – sequence: 9 givenname: Jean Claude surname: Nizeyimana fullname: Nizeyimana, Jean Claude – sequence: 10 givenname: Bazel orcidid: 0000-0002-6267-2879 surname: Al-Shaibah fullname: Al-Shaibah, Bazel – sequence: 11 givenname: Yasser M. surname: Khalil fullname: Khalil, Yasser M. – sequence: 12 givenname: Wafaa M. M. orcidid: 0000-0002-9743-1549 surname: AL-Hameedi fullname: AL-Hameedi, Wafaa M. M. – sequence: 13 givenname: Xingpeng surname: Liu fullname: Liu, Xingpeng |
BookMark | eNptkU-LFDEQxYOs4LruxU8Q8CLCrPnb3fE2zLrrwoKHXQ96CdXpimTIdMYkfZhvb8ZRlMW61KP4vQdV9ZKczWlGQl5zdiWlYe9z4Yp3imn2jJwL1ouVEkac_aNfkMtStqyVlNwwdU6-rUvBUnY4V7qeIR5KKDR5ehNTmujDUhzuaxhDDPVAw0wfc9oHB5FeY8HcPBnhA13TDRSkD3WZDkf3V2yBr8hzD7Hg5e9-Qb7cfHzcfFrdf76926zvV051rK5MZzrujBbKwzCMWgyT9LwXbuRNaOQT-IkbZIo57ceRSxhGhsY3waQX8oLcnXKnBFu7z2EH-WATBPtrkPJ3C7kGF9E6I5zToCelmOoZDgM4PbjOeKld30PLenvK2uf0Y8FS7S60E8QIM6alWNHzQfad7FRD3zxBt2nJ7YRHijWAG943ip0ol1MpGb11oUINaa4ZQrSc2ePv7N_fNcu7J5Y_O_0H_gkHppmd |
CitedBy_id | crossref_primary_10_3390_su15064909 crossref_primary_10_1080_10106049_2023_2243884 crossref_primary_10_3390_rs16234525 crossref_primary_10_1007_s11269_024_03940_7 crossref_primary_10_1007_s42452_023_05445_1 crossref_primary_10_1016_j_pce_2024_103750 crossref_primary_10_1016_j_pce_2024_103772 crossref_primary_10_1016_j_acags_2024_100183 crossref_primary_10_1186_s12302_024_01001_9 crossref_primary_10_1007_s11069_024_06596_z crossref_primary_10_1007_s12665_024_11988_2 crossref_primary_10_3390_land12040810 crossref_primary_10_1007_s12145_024_01505_1 crossref_primary_10_1007_s10661_024_12676_1 crossref_primary_10_1016_j_heliyon_2023_e14617 crossref_primary_10_1007_s40710_024_00683_w crossref_primary_10_1080_10106049_2023_2285355 crossref_primary_10_3390_rs16020336 crossref_primary_10_1016_j_ijdrr_2024_104919 crossref_primary_10_1016_j_ecolind_2024_112621 crossref_primary_10_1080_19475705_2024_2360000 crossref_primary_10_17211_tcd_1345962 crossref_primary_10_1007_s10661_025_13894_x crossref_primary_10_1007_s41024_024_00537_w crossref_primary_10_1080_19475705_2024_2357650 crossref_primary_10_3390_su152014928 crossref_primary_10_1016_j_uclim_2025_102297 crossref_primary_10_1007_s11356_024_34691_y crossref_primary_10_1080_17538947_2024_2311325 crossref_primary_10_3390_rs16163032 crossref_primary_10_1016_j_jenvman_2024_123094 crossref_primary_10_1007_s10661_023_12264_9 crossref_primary_10_1016_j_jhydrol_2024_130692 crossref_primary_10_1007_s11269_024_03826_8 crossref_primary_10_1007_s12665_023_11062_3 crossref_primary_10_1007_s00477_024_02772_6 crossref_primary_10_1016_j_scitotenv_2023_162285 crossref_primary_10_3390_rs16060988 crossref_primary_10_1088_1748_9326_ad8a72 crossref_primary_10_1016_j_jafrearsci_2024_105431 crossref_primary_10_1007_s12145_024_01285_8 |
Cites_doi | 10.1016/j.jhydrol.2019.03.073 10.3390/w12061549 10.3133/pp422C 10.1016/j.scitotenv.2019.134979 10.1016/S0165-1889(98)00034-7 10.1016/j.scitotenv.2017.09.262 10.1016/j.catena.2020.105114 10.1007/s12517-018-4095-0 10.1016/j.jenvman.2021.112449 10.1007/s11069-016-2357-2 10.1016/j.scitotenv.2018.06.197 10.1007/s11069-011-9844-2 10.3390/rs12203423 10.3390/su13063126 10.1016/j.scitotenv.2020.143785 10.1016/j.jhydrol.2021.126382 10.1155/2020/4271376 10.1145/2939672.2939785 10.1016/j.scitotenv.2019.136492 10.3390/rs12213568 10.1016/j.ijdrr.2019.101211 10.1016/j.scitotenv.2017.10.114 10.1080/10106049.2021.1920636 10.1016/j.jhydrol.2005.04.022 10.3390/rs12020266 10.1016/j.scitotenv.2018.10.064 10.1016/j.catena.2014.10.017 10.1016/j.jhydrol.2020.125615 10.1016/j.scitotenv.2017.10.037 10.1016/j.jhydrol.2017.04.048 10.1016/j.jenvman.2021.112067 10.1016/B978-0-12-815226-3.00013-2 10.1007/s00477-015-1021-9 10.1007/978-3-642-38652-7 10.1016/j.scitotenv.2019.07.197 10.1016/j.psep.2020.08.006 10.1016/S0034-4257(01)00295-4 10.1007/s12665-011-1504-z 10.1016/j.catena.2011.01.014 10.1109/IGARSS.2014.6946711 10.1007/s12517-015-2195-7 10.1016/j.jclepro.2020.122757 10.1016/j.catena.2018.12.011 10.1007/s11069-012-0165-x 10.1007/s11269-013-0364-6 10.3390/su9101735 10.1007/s40808-019-00593-z 10.1002/hyp.3360050103 10.1016/j.gsf.2022.101425 10.1007/978-1-4020-9139-1_31 10.3390/ijgi7100411 10.3390/rs12152478 10.1080/19475705.2021.1880977 10.20944/preprints202008.0089.v1 10.1016/j.jhydrol.2020.125552 10.3390/su13020971 10.3390/ECRS-3-06201 10.1016/j.jhydrol.2014.03.008 10.1007/s00521-020-05529-8 10.1007/s12517-022-09531-3 10.3390/w12010239 10.1038/sdata.2015.66 10.1371/journal.pone.0229153 10.1007/978-981-10-7748-7_3 10.1007/s10661-016-5665-9 10.1080/02626667909491834 10.1016/j.jenvman.2019.06.102 10.1016/B978-0-12-815998-9.00017-8 10.3390/urbansci1010007 10.1080/10106049.2015.1041559 10.1016/j.gsf.2020.10.007 10.2166/wcc.2021.051 10.1016/j.enggeo.2009.12.004 10.1080/02626667.2011.555836 10.1016/j.scitotenv.2018.01.266 10.5194/hess-22-373-2018 10.1007/s11069-015-1605-1 10.1061/41114(371)206 10.1016/j.scitotenv.2019.134514 10.1007/s11069-019-03615-2 10.1177/001316446002000104 10.1007/978-3-319-55342-9_4 10.1007/s11069-021-05098-6 10.1111/gwat.13094 10.1007/s11356-021-13255-4 10.1016/j.scitotenv.2018.12.397 10.3390/rs12030475 10.1023/A:1010933404324 10.1016/j.jenvman.2020.110485 10.1016/j.atmosres.2013.11.002 10.7717/peerj.7653 10.1080/19475705.2018.1506509 10.1080/01431161.2016.1192304 10.1007/s12517-015-1859-7 10.1007/s12145-021-00653-y 10.3390/su11195426 10.1016/j.earscirev.2020.103225 10.1023/B:NHAZ.0000007201.80743.fc 10.1002/hyp.5852 10.1016/j.rse.2020.111664 10.1061/(ASCE)HE.1943-5584.0001794 10.1016/j.jenvman.2018.03.089 10.1016/j.jhydrol.2019.124482 10.1016/j.gsf.2020.09.006 10.1007/s11269-021-02944-x 10.19026/rjaset.6.3920 10.3390/f12050553 10.1007/s10668-021-01377-1 10.1201/9780367816377 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs14164050 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_c92cc5a5d440470e88ac58c69f35c77a 10_3390_rs14164050 |
GeographicLocations | Yemen |
GeographicLocations_xml | – name: Yemen |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c460t-96961c9524fa88b528d3f172cb1d3f5e1dafd19e040c5fbb13a8b0e9f13a03f23 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:31:11 EDT 2025 Fri Sep 05 13:04:01 EDT 2025 Fri Jul 25 09:34:45 EDT 2025 Tue Jul 01 01:59:45 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-96961c9524fa88b528d3f172cb1d3f5e1dafd19e040c5fbb13a8b0e9f13a03f23 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6267-2879 0000-0003-2880-0977 0000-0003-4190-771X 0000-0002-9743-1549 0000-0001-5779-1382 0000-0003-1754-615X |
OpenAccessLink | https://doaj.org/article/c92cc5a5d440470e88ac58c69f35c77a |
PQID | 2706431917 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c92cc5a5d440470e88ac58c69f35c77a proquest_miscellaneous_2718376364 proquest_journals_2706431917 crossref_citationtrail_10_3390_rs14164050 crossref_primary_10_3390_rs14164050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220819 |
PublicationDateYYYYMMDD | 2022-08-19 |
PublicationDate_xml | – month: 08 year: 2022 text: 20220819 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_94 Ahmadisharaf (ref_119) 2019; 24 Termeh (ref_112) 2018; 615 ref_99 Yalcin (ref_85) 2011; 85 ref_98 ref_97 Breiman (ref_71) 2001; 45 Wang (ref_29) 2021; 289 Tehrany (ref_7) 2018; 10 Leung (ref_77) 2007; 2007 ref_16 Hong (ref_111) 2018; 621 Arabameri (ref_46) 2021; 284 Cohen (ref_82) 1960; 20 DeVries (ref_63) 2020; 240 Hu (ref_1) 2018; 643 Panahi (ref_23) 2021; 199 Abbot (ref_65) 2014; 138 Cheng (ref_17) 2006; 316 ref_20 Chowdary (ref_21) 2013; 27 Satarzadeh (ref_113) 2021; 111 ref_27 Zhu (ref_73) 2020; 145 Khosravi (ref_39) 2016; 188 ref_72 Kourgialas (ref_10) 2011; 56 Merghadi (ref_76) 2020; 207 Choubin (ref_110) 2019; 651 ref_79 ref_75 ref_74 Costache (ref_107) 2020; 265 AlThuwaynee (ref_42) 2021; 28 Chen (ref_116) 2020; 701 Pham (ref_49) 2021; 59 Remondo (ref_80) 2003; 30 Nassar (ref_19) 2018; 11 Wang (ref_36) 2020; 582 Valavi (ref_24) 2018; 217 Funk (ref_88) 2015; 2 Meraj (ref_93) 2015; 77 Tehrany (ref_100) 2014; 512 Wang (ref_84) 2019; 247 Bui (ref_59) 2011; 59 Macek (ref_89) 2021; 757 Tehrany (ref_108) 2015; 125 Pham (ref_95) 2021; 592 Edouard (ref_9) 2018; 560 Costache (ref_26) 2020; 711 Ma (ref_34) 2021; 598 Khosravi (ref_106) 2020; 591 ref_50 Costache (ref_30) 2019; 691 Moore (ref_91) 1991; 5 Tehrany (ref_22) 2019; 175 ref_58 ref_57 Tehrany (ref_12) 2015; 29 ref_55 ref_53 ref_52 Mohammadi (ref_66) 2020; 2020 Coskun (ref_114) 2012; 63 Opolot (ref_14) 2013; 6 Roy (ref_86) 2020; 272 Costache (ref_25) 2018; 659 Moore (ref_92) 1992; 47 Evers (ref_18) 2018; 22 Ullah (ref_101) 2022; 13 ref_61 ref_60 Madhuri (ref_51) 2021; 12 Khosravi (ref_105) 2016; 83 Rahmati (ref_28) 2016; 31 ref_69 Ali (ref_47) 2021; 14 ref_68 ref_67 Malik (ref_13) 2021; 23 ref_64 ref_62 Foody (ref_83) 2002; 80 Kelly (ref_78) 1999; 23 Ahmed (ref_109) 2022; 15 Zhao (ref_115) 2018; 615 Elhanafy (ref_56) 2016; 9 ref_117 ref_118 Lin (ref_11) 2019; 97 Frattini (ref_81) 2010; 111 Sanyal (ref_15) 2005; 19 Ma (ref_48) 2020; 33 ref_35 ref_33 Twele (ref_70) 2016; 37 Beven (ref_90) 1979; 24 ref_38 Tehrany (ref_31) 2019; 7 ref_37 Khosravi (ref_5) 2018; 627 Soliman (ref_54) 2015; 8 Ali (ref_102) 2019; 5 Chakrabortty (ref_87) 2021; 35 Islam (ref_96) 2020; 12 Costache (ref_6) 2020; 712 ref_44 ref_43 ref_41 ref_3 ref_2 Khosravi (ref_40) 2019; 573 Arabameri (ref_45) 2021; 12 Li (ref_103) 2019; 38 ref_8 Kia (ref_32) 2012; 67 ref_4 Shahabi (ref_104) 2020; 12 |
References_xml | – volume: 573 start-page: 311 year: 2019 ident: ref_40 article-title: A Comparative Assessment of Flood Susceptibility Modeling Using Multi-Criteria Decision-Making Analysis and Machine Learning Methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.03.073 – ident: ref_37 doi: 10.3390/w12061549 – ident: ref_99 doi: 10.3133/pp422C – volume: 701 start-page: 134979 year: 2020 ident: ref_116 article-title: Modeling Flood Susceptibility Using Data-Driven Approaches of Naïve Bayes Tree, Alternating Decision Tree, And Random Forest Methods publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134979 – volume: 23 start-page: 491 year: 1999 ident: ref_78 article-title: Bayesian Learning, Growth, And Pollution publication-title: J. Econ. Dyn. Control doi: 10.1016/S0165-1889(98)00034-7 – volume: 615 start-page: 438 year: 2018 ident: ref_112 article-title: Flood Susceptibility Mapping Using Novel Ensembles of Adaptive Neuro Fuzzy Inference System and Metaheuristic Algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.262 – volume: 199 start-page: 105114 year: 2021 ident: ref_23 article-title: Flood Spatial Prediction Modeling Using a Hybrid of Meta-Optimization and Support Vector Regression Modeling publication-title: Catena doi: 10.1016/j.catena.2020.105114 – volume: 11 start-page: 765 year: 2018 ident: ref_19 article-title: Evaluation of Flood Susceptibility Mapping Using Logistic Regression and GIS Conditioning Factors publication-title: Arab. J. Geosci. doi: 10.1007/s12517-018-4095-0 – volume: 289 start-page: 112449 year: 2021 ident: ref_29 article-title: Flood Susceptibility Mapping by Integrating Frequency Ratio and Index of Entropy with Multilayer Perceptron and Classification and Regression Tree publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112449 – volume: 83 start-page: 947 year: 2016 ident: ref_105 article-title: A GIS-Based Flood Susceptibility Assessment and Its Mapping in Iran: A Comparison Between Frequency Ratio and Weights-of-Evidence Bivariate Statistical Models with Multi-Criteria Decision-Making Technique publication-title: Nat. Hazards doi: 10.1007/s11069-016-2357-2 – volume: 643 start-page: 171 year: 2018 ident: ref_1 article-title: Flood-Induced Mortality Across the Globe: Spatiotemporal Pattern and Influencing Factors publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.197 – volume: 59 start-page: 1413 year: 2011 ident: ref_59 article-title: Landslide Susceptibility Analysis in the Hoa Binh Province of Vietnam Using Statistical Index and Logistic Regression publication-title: Nat. Hazards doi: 10.1007/s11069-011-9844-2 – ident: ref_41 doi: 10.3390/rs12203423 – ident: ref_20 doi: 10.3390/su13063126 – volume: 757 start-page: 143785 year: 2021 ident: ref_89 article-title: Topographic Wetness Index Calculation Guidelines Based on Measured Soil Moisture and Plant Species Composition publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143785 – volume: 598 start-page: 126382 year: 2021 ident: ref_34 article-title: XGBoost-Based Method for Flash Flood Risk Assessment publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126382 – volume: 2020 start-page: 4271376 year: 2020 ident: ref_66 article-title: Flood Detection and Susceptibility Mapping Using Sentinel-1 Time Series, Alternating Decision Trees, and Bag-ADTree Models publication-title: Complexity doi: 10.1155/2020/4271376 – ident: ref_4 – ident: ref_79 doi: 10.1145/2939672.2939785 – volume: 712 start-page: 136492 year: 2020 ident: ref_6 article-title: Identification of Areas Prone to Flash-Flood Phenomena Using Multiple-Criteria Decision-Making, Bivariate Statistics, Machine Learning and Their Ensembles publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.136492 – volume: 47 start-page: 423 year: 1992 ident: ref_92 article-title: Length-Slope Factors for the Revised Universal Soil Loss Equation: Simplified Method of Estimation publication-title: J. Soil Water Conserv. – ident: ref_62 – ident: ref_8 doi: 10.3390/rs12213568 – volume: 38 start-page: 101211 year: 2019 ident: ref_103 article-title: Flood Susceptibility Modeling and Hazard Perception in Rwanda publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2019.101211 – volume: 621 start-page: 1124 year: 2018 ident: ref_111 article-title: Flood Susceptibility Assessment in Hengfeng Area Coupling Adaptive Neuro-Fuzzy Inference System with Genetic Algorithm and Differential Evolution publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.114 – ident: ref_33 doi: 10.1080/10106049.2021.1920636 – volume: 316 start-page: 129 year: 2006 ident: ref_17 article-title: Using Genetic Algorithm and TOPSIS For Xinanjiang Model Calibration with A Single Procedure publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.04.022 – ident: ref_38 doi: 10.3390/rs12020266 – ident: ref_97 – volume: 651 start-page: 2087 year: 2019 ident: ref_110 article-title: An Ensemble Prediction of Flood Susceptibility Using Multivariate Discriminant Analysis, Classification and Regression Trees, And Support Vector Machines publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.064 – ident: ref_53 – volume: 125 start-page: 91 year: 2015 ident: ref_108 article-title: Flood Susceptibility Assessment Using GIS-Based Support Vector Machine Model with Different Kernel Types publication-title: CATENA doi: 10.1016/j.catena.2014.10.017 – ident: ref_3 – volume: 592 start-page: 125615 year: 2021 ident: ref_95 article-title: Can Deep Learning Algorithms Outperform Benchmark Machine Learning Algorithms in Flood Susceptibility Modeling? publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125615 – volume: 615 start-page: 1133 year: 2018 ident: ref_115 article-title: Mapping Flood Susceptibility in Mountainous Areas on a National Scale in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.037 – volume: 560 start-page: 480 year: 2018 ident: ref_9 article-title: Ensemble-Based Flash-Flood Modelling: Taking into Account Hydrodynamic Parameters and Initial Soil Moisture Uncertainties publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.04.048 – volume: 284 start-page: 112067 year: 2021 ident: ref_46 article-title: Comparison of Multi-Criteria and Artificial Intelligence Models for Land-Subsidence Susceptibility Zonation publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112067 – ident: ref_61 doi: 10.1016/B978-0-12-815226-3.00013-2 – volume: 29 start-page: 1149 year: 2015 ident: ref_12 article-title: Flood Susceptibility Analysis and Its Verification Using a Novel Ensemble Support Vector Machine and Frequency Ratio Method publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-015-1021-9 – ident: ref_75 doi: 10.1007/978-3-642-38652-7 – volume: 691 start-page: 1098 year: 2019 ident: ref_30 article-title: Spatial Prediction of Flood Potential Using New Ensembles of Bivariate Statistics and Artificial Intelligence: A Case Study at the Putna River Catchment of Romania publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.197 – volume: 145 start-page: 293 year: 2020 ident: ref_73 article-title: Application of Machine Learning Techniques for Predicting the Consequences of Construction Accidents in China publication-title: Process. Saf. Environ. Prot. doi: 10.1016/j.psep.2020.08.006 – volume: 80 start-page: 185 year: 2002 ident: ref_83 article-title: Status of Land Cover Classification Accuracy assessment publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00295-4 – volume: 67 start-page: 251 year: 2012 ident: ref_32 article-title: An Artificial Neural Network Model for Flood Simulation Using GIS: Johor River Basin, Malaysia publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-1504-z – volume: 85 start-page: 274 year: 2011 ident: ref_85 article-title: A GIS-Based Comparative Study of Frequency Ratio, Analytical Hierarchy Process, Bivariate Statistics and Logistics Regression Methods for Landslide Susceptibility Mapping in Trabzon, NE Turkey publication-title: Catena doi: 10.1016/j.catena.2011.01.014 – ident: ref_64 doi: 10.1109/IGARSS.2014.6946711 – volume: 9 start-page: 88 year: 2016 ident: ref_56 article-title: Statistical Analysis of Morphometric and Hydrologic Parameters in Arid Regions, Case Study of Wadi Hadramaut publication-title: Arab. J. Geosci. doi: 10.1007/s12517-015-2195-7 – volume: 272 start-page: 122757 year: 2020 ident: ref_86 article-title: Threats of Climate and Land Use Change on Future Flood Susceptibility publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.122757 – volume: 175 start-page: 174 year: 2019 ident: ref_22 article-title: Identifying the Essential Flood Conditioning Factors for Flood Prone Area Mapping Using Machine Learning Techniques publication-title: Catena doi: 10.1016/j.catena.2018.12.011 – volume: 63 start-page: 461 year: 2012 ident: ref_114 article-title: The Analysis of 2004 Flood on Kozdere Stream in Istanbul publication-title: Nat. Hazards doi: 10.1007/s11069-012-0165-x – volume: 27 start-page: 3555 year: 2013 ident: ref_21 article-title: Multi-Criteria Decision-Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS publication-title: Water Resour. Manag. doi: 10.1007/s11269-013-0364-6 – ident: ref_118 doi: 10.3390/su9101735 – volume: 5 start-page: 1083 year: 2019 ident: ref_102 article-title: Application of GIS-Based Analytic Hierarchy Process and Frequency Ratio Model to Flood Vulnerable Mapping and Risk Area Estimation at Sundarban Region, India publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-019-00593-z – volume: 5 start-page: 3 year: 1991 ident: ref_91 article-title: Digital Terrain Modelling: A Review of Hydrological, Geomorphological, And Biological Applications publication-title: Hydrol. Process. doi: 10.1002/hyp.3360050103 – volume: 13 start-page: 101425 year: 2022 ident: ref_101 article-title: Multi-Hazard Susceptibility Mapping Based on Convolutional Neural Networks publication-title: Geosci. Front. doi: 10.1016/j.gsf.2022.101425 – ident: ref_16 doi: 10.1007/978-1-4020-9139-1_31 – ident: ref_69 doi: 10.3390/ijgi7100411 – ident: ref_44 doi: 10.3390/rs12152478 – volume: 12 start-page: 469 year: 2021 ident: ref_45 article-title: Prediction of Gully Erosion Susceptibility Mapping Using Novel Ensemble Machine Learning Algorithms publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2021.1880977 – ident: ref_74 doi: 10.20944/preprints202008.0089.v1 – volume: 591 start-page: 125552 year: 2020 ident: ref_106 article-title: Convolutional Neural Network Approach for Spatial Prediction of Flood Hazard at National Scale of Iran publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125552 – ident: ref_50 doi: 10.3390/su13020971 – ident: ref_67 doi: 10.3390/ECRS-3-06201 – volume: 512 start-page: 332 year: 2014 ident: ref_100 article-title: Flood Susceptibility Mapping Using a Novel Ensemble Weights-Of-Evidence and Support Vector Machine Models in GIS publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.008 – volume: 33 start-page: 10881 year: 2020 ident: ref_48 article-title: Machine Learning for Landslides Prevention: A Survey publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05529-8 – ident: ref_98 – volume: 15 start-page: 217 year: 2022 ident: ref_109 article-title: Random Forest and Naïve Bayes Approaches as Tools for Flash Flood Hazard Susceptibility Prediction, South Ras El-Zait, Gulf of Suez Coast, Egypt publication-title: Arab. J. Geosci. doi: 10.1007/s12517-022-09531-3 – ident: ref_35 doi: 10.3390/w12010239 – volume: 2 start-page: 150066 year: 2015 ident: ref_88 article-title: The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes publication-title: Sci. Data doi: 10.1038/sdata.2015.66 – ident: ref_27 doi: 10.1371/journal.pone.0229153 – ident: ref_55 doi: 10.1007/978-981-10-7748-7_3 – volume: 188 start-page: 1 year: 2016 ident: ref_39 article-title: Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-016-5665-9 – volume: 24 start-page: 43 year: 1979 ident: ref_90 article-title: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant publication-title: Hydrol. Sci. J. doi: 10.1080/02626667909491834 – volume: 247 start-page: 712 year: 2019 ident: ref_84 article-title: Flood Susceptibility Mapping in Dingnan County (China) Using Adaptive Neuro-Fuzzy Inference System with Biogeography Based Optimization and Imperialistic Competitive Algorithm publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.06.102 – ident: ref_43 doi: 10.1016/B978-0-12-815998-9.00017-8 – ident: ref_94 doi: 10.3390/urbansci1010007 – volume: 31 start-page: 42 year: 2016 ident: ref_28 article-title: Flood Susceptibility Mapping Using Frequency Ratio and Weights-Of-Evidence Models in The Golastan Province, Iran publication-title: Geocarto Int. doi: 10.1080/10106049.2015.1041559 – volume: 12 start-page: 101100 year: 2020 ident: ref_104 article-title: Flash Flood Susceptibility Mapping Using a Novel Deep Learning Model Based on Deep Belief Network, Back Propagation and Genetic Algorithm publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.10.007 – volume: 12 start-page: 2608 year: 2021 ident: ref_51 article-title: Application of Machine Learning Algorithms for Flood Susceptibility Assessment and Risk Management publication-title: J. Water Clim. Chang. doi: 10.2166/wcc.2021.051 – volume: 111 start-page: 62 year: 2010 ident: ref_81 article-title: Techniques for Evaluating the Performance of Landslide Susceptibility Models publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2009.12.004 – volume: 56 start-page: 212 year: 2011 ident: ref_10 article-title: Flood Aanagement and a GIS Modelling Method to Assess Flood-Hazard Areas—A Case Study publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2011.555836 – volume: 627 start-page: 744 year: 2018 ident: ref_5 article-title: A Comparative Assessment of Decision Trees Algorithms for Flash Flood Susceptibility Modeling at Haraz Watershed, Northern Iran publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.266 – volume: 22 start-page: 373 year: 2018 ident: ref_18 article-title: Participatory Flood Vulnerability Assessment: A Multi-Criteria Approach publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-373-2018 – volume: 77 start-page: 153 year: 2015 ident: ref_93 article-title: Assessing the Influence of Watershed Characteristics on the Flood Vulnerability of Jhelum Basin in Kashmir Himalaya publication-title: Nat. Hazards doi: 10.1007/s11069-015-1605-1 – ident: ref_52 doi: 10.1061/41114(371)206 – volume: 711 start-page: 134514 year: 2020 ident: ref_26 article-title: Comparative Assessment of The Flash-Flood Potential Within Small Mountain Catchments Using Bivariate Statistics and Their Novel Hybrid Integration with Machine Learning Models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134514 – volume: 97 start-page: 455 year: 2019 ident: ref_11 article-title: Urban Flood Susceptibility Analysis Using a GIS-Based Multi-Criteria Analysis Framework publication-title: Nat. Hazards doi: 10.1007/s11069-019-03615-2 – volume: 20 start-page: 37 year: 1960 ident: ref_82 article-title: A Coefficient of Agreement for Nominal Scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 – ident: ref_60 doi: 10.1007/978-3-319-55342-9_4 – volume: 111 start-page: 1355 year: 2021 ident: ref_113 article-title: Flood Hazard Mapping in Western Iran: Assessment of Deep Learning Vis-À-Vis Machine Learning Models publication-title: Nat. Hazards doi: 10.1007/s11069-021-05098-6 – volume: 59 start-page: 745 year: 2021 ident: ref_49 article-title: Groundwater Potential Mapping Using GIS -Based Hybrid Artificial Intelligence Methods publication-title: Ground Water doi: 10.1111/gwat.13094 – volume: 28 start-page: 43544 year: 2021 ident: ref_42 article-title: Demystifying Uncertainty in PM10 Susceptibility Mapping Using Variable Drop-Off in Extreme-Gradient Boosting (XGB) And Random Forest (RF) Algorithms publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-13255-4 – volume: 2007 start-page: 123 year: 2007 ident: ref_77 article-title: Naive Bayesian Classifier publication-title: Polytech. Univ. Dep. Comput. Sci. Financ. Risk Eng. – volume: 659 start-page: 1115 year: 2018 ident: ref_25 article-title: Flash-Flood Potential Assessment in the Upper and Middle Sector of Prahova River Catchment (Romania). A Comparative Approach Between Four Hybrid Models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.397 – ident: ref_58 doi: 10.3390/rs12030475 – volume: 45 start-page: 5 year: 2001 ident: ref_71 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 265 start-page: 110485 year: 2020 ident: ref_107 article-title: Novel Hybrid Models Between Bivariate Statistics, Artificial Neural Networks and Boosting Algorithms for Flood Susceptibility Assessment publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.110485 – volume: 138 start-page: 166 year: 2014 ident: ref_65 article-title: Input Selection and Optimisation for Monthly Rainfall Forecasting in Queensland, Australia, Using Artificial Neural Networks publication-title: Atmospheric Res. doi: 10.1016/j.atmosres.2013.11.002 – volume: 7 start-page: e7653 year: 2019 ident: ref_31 article-title: A novel GIS-Based Ensemble Technique for Flood Susceptibility Mapping Using Evidential Belief Function and Support Vector Machine: Brisbane, Australia publication-title: PeerJ doi: 10.7717/peerj.7653 – volume: 10 start-page: 79 year: 2018 ident: ref_7 article-title: Evaluating the Application of The Statistical Index Method in Flood Susceptibility Mapping and Its Comparison with Frequency Ratio and Logistic Regression Methods publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2018.1506509 – volume: 37 start-page: 2990 year: 2016 ident: ref_70 article-title: Sentinel-1-Based Flood Mapping: A Fully Automated Processing Chain publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1192304 – volume: 8 start-page: 10169 year: 2015 ident: ref_54 article-title: Hydrological Analysis and Flood Mitigation at Wadi Hadramawt, Yemen publication-title: Arab. J. Geosci. doi: 10.1007/s12517-015-1859-7 – volume: 14 start-page: 1227 year: 2021 ident: ref_47 article-title: Spatial Modeling and Susceptibility Zonation of Landslides Using Random Forest, Naïve Bayes and K-Nearest Neighbor in A Complicated Terrain publication-title: Earth Sci. Informatics doi: 10.1007/s12145-021-00653-y – ident: ref_117 doi: 10.3390/su11195426 – volume: 207 start-page: 103225 year: 2020 ident: ref_76 article-title: Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance publication-title: Earth-Science Rev. doi: 10.1016/j.earscirev.2020.103225 – volume: 30 start-page: 437 year: 2003 ident: ref_80 article-title: Validation of Landslide Susceptibility Maps; Examples and Applications from a Case Study in Northern Spain publication-title: Nat. Hazards doi: 10.1023/B:NHAZ.0000007201.80743.fc – volume: 19 start-page: 3699 year: 2005 ident: ref_15 article-title: Remote Sensing and GIS-Based Flood Vulnerability Assessment of Human Settlements: A Case Study of Gangetic West Bengal, India publication-title: Hydrol. Process. doi: 10.1002/hyp.5852 – ident: ref_2 – volume: 240 start-page: 111664 year: 2020 ident: ref_63 article-title: Rapid and Robust Monitoring of Flood Events Using Sentinel-1 and Landsat Data on the Google Earth Engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111664 – volume: 24 start-page: 3119001 year: 2019 ident: ref_119 article-title: Calibration and Validation of Watershed Models and Advances in Uncertainty Analysis in TMDL Studies publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0001794 – volume: 217 start-page: 1 year: 2018 ident: ref_24 article-title: Novel Forecasting Approaches Using Combination of Machine Learning and Statistical Models for Flood Susceptibility Mapping publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.03.089 – volume: 582 start-page: 124482 year: 2020 ident: ref_36 article-title: Flood Susceptibility Mapping Using Convolutional Neural Network Frameworks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124482 – volume: 12 start-page: 101075 year: 2020 ident: ref_96 article-title: Flood Susceptibility Modelling Using Advanced Ensemble Machine Learning Models publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.09.006 – ident: ref_57 – volume: 35 start-page: 4251 year: 2021 ident: ref_87 article-title: Impact of Climate Change on Future Flood Susceptibility: An Evaluation Based on Deep Learning Algorithms and GCM Model publication-title: Water Resour. Manag. doi: 10.1007/s11269-021-02944-x – volume: 6 start-page: 1884 year: 2013 ident: ref_14 article-title: Application of Remote Sensing and Geographical Information Systems in Flood Management: A Review publication-title: Res. J. Appl. Sci. Eng. Technol. doi: 10.19026/rjaset.6.3920 – ident: ref_68 doi: 10.3390/f12050553 – volume: 23 start-page: 16713 year: 2021 ident: ref_13 article-title: GIS-Based Statistical Model for the Prediction of Flood Hazard Susceptibility publication-title: Environ. Dev. Sustain. doi: 10.1007/s10668-021-01377-1 – ident: ref_72 doi: 10.1201/9780367816377 |
SSID | ssj0000331904 |
Score | 2.5103607 |
Snippet | Flooding is one of the catastrophic natural hazards worldwide that can easily cause devastating effects on human life and property. Remote sensing devices are... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4050 |
SubjectTerms | Accuracy Algorithms Bayesian analysis Case studies Climate change data collection Desert environments Deserts Disaster management Disaster risk Earthquakes environmental sustainability flash flooding Flash floods Flood mapping Flood predictions Flooded areas Flooding Floods Geographic information systems Hazard assessment humans Image analysis Image processing Internet inventories Landsat Landsat satellites Landslides Landslides & mudslides Machine learning machine learning algorithms Mapping Meteorological satellites Natural disasters Neural networks Population growth Precipitation Rain Remote sensing remote sensing data Risk reduction Runoff Satellite imagery Seismic activity Sensors Storm damage Susceptibility Tarim city Training Urbanization Yemen |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB62m0N7KWmTkG2ToJJccjCRLcuWA6Xshiyh0CXkAWkvRtYjLRR769097L_vjNd2KA25CXukw0jz1OgbgBNd2NiJpn07nuDYZSZQGAkF3FpNcOCh8JSH_DZLru7jrw_yYQCz7i0MlVV2OrFR1LYylCM_i1IynhRdfJn_CahrFN2udi00dNtawX5uIMZewRaqZMmHsDW5nF3f9FkXLnAJHm9wSgXG-2f1IkSfBN0W_o9lagD8_9PPjdGZbsPb1ltk4832voOBK9_D67Zx-c_1DvwY98iarMMXYZVnU6pHZ7erRVO10hTArtmvkt3V1Zy2hWG86Wqcgz7jORuzCzRmjGoK1zT7O-UMd-F-enl3cRW07RICEyd8GRDOTWgyGcVeK1XISFnh0T8xRYgD6UKrvQ0zh2JrpC-KUGhVcJd5HHDhI7EHw7Iq3T4wIaxBSU6LVMg4iYziXmqntY90mBmdjOC0Y1VuWixxamnxO8eYgtiaP7F1BMc97XyDoPEs1YQ43lMQ6nXzoaof81aIcpNFxkgtLYEaptwppY1UJsm8kCZN9QgOuv3KW1Fc5E8HZwSf-t8oRHQzoktXrYgGNRtq2iT-8PISH-FNRO8fCBM3O4Dhsl65Q_RKlsVRe9T-Ag5X4Yo priority: 102 providerName: ProQuest |
Title | Assessment Analysis of Flood Susceptibility in Tropical Desert Area: A Case Study of Yemen |
URI | https://www.proquest.com/docview/2706431917 https://www.proquest.com/docview/2718376364 https://doaj.org/article/c92cc5a5d440470e88ac58c69f35c77a |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RONBLBRTUbWFlBJceIpw4Tmxuy2NBCFBVQAIukePYAgll0T4O--8742QXEEhceoqVjKVoxjP-xpl8A7Bryip1IrRvxxWcOm0jhZlQxKvKEB14LDydQ15cZqc36dmtvH3V6otqwhp64EZxe1Yn1kojKyKyy7lTylipbKa9kDbPAzTimr9KpkIMFri0eNrwkQrM6_eGoxixB8IT_mYHCkT97-Jw2Fz6K_CtRYWs17zNKiy4eg2W2wblD9PvcN-bM2iyGY8IG3jWp7pzdjUZheqUUOg6ZY81ux4Onkn9DPNKN8Q5iA33WY8d4qbFqHZwSrPv6GxwHW76x9eHp1HbFiGyacbHEfHZxFbLJPVGqVImqhIecYgtYxxIF1fGV7F26J5W-rKMhVEld9rjgAufiA1YrAe1-wFMiMqix-ZlLmSaJVZxL40zxicm1tZkHfg9U1VhW85wal3xVGDuQGotXtTagZ257HPDlPGh1AFpfC5B7NbhBtq8aG1efGbzDmzO7FW0LjcqkpzQFaWfHdieP0ZnoS8gpnaDCclgBMOImqU__8d7_IKvCf0NQQy5ehMWx8OJ20KMMi678EX1T7qw1Du6OL_C68Hx5Z-_3bBI_wHKt-fF |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V20O5IJ5ioYARcOAQ1bHjPJAqtC1dbWm7QrCVCpfU8QOQULJkd4X2z_HbmMkmqRCIW29WMo6i8XheHn8D8EIXNnKyad-OEhy5zAQpRkIBt1YTHHgoPeUhz6bx5Dx6d6EutuBXdxeGyio7ndgoalsZypHviYSMJ0UXb-Y_AuoaRaerXQsN3bZWsPsNxFh7sePErX9iCLfYP36L6_1SiPHR7HAStF0GAhPFfBkQPExoMiUir9O0UCK10qNZN0WIA-VCq70NM4fSbpQvilDqtOAu8zjg0hPwAZqA7YgSKAPYPjiavv_QZ3m4xF_m0QYXVcqM79WLEH0gdJP4H5awaRjwlz1ojNz4FtxsvVM22ojTbdhy5R3YaRulf13fhc-jHsmTdXgmrPJsTPXv7ONq0VTJNAW3a_atZLO6mpMYMIxvXY1z0Ed9zUbsEI0noxrGNc3-RDnKe3B-LYy7D4OyKt0DYFJag5ojKRLkYixMyr3STmsvdJgZHQ_hVceq3LTY5dRC43uOMQyxNb9i6xCe97TzDWLHP6kOiOM9BaFsNw-q-kvebtrcZMIYpZUlEMWEuzTVRqUmzrxUJkn0EHa79crbrb_IrwR1CM_617hp6SRGl65aEQ1qUtTscfTw_594CjuT2dlpfno8PXkENwTdvSA83mwXBst65R6jR7QsnrRix-DyuiX9NzOkHu4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFD4sK6gv4hVHV42oDz6USZumTQSRcde66-oiuAurLzXNRQVpx84MMn_NX-c5nbaLKL7tW2iTUk6-nEty8h2Ax6ZyqRdd-XZEcOq1jRRGQhF3zhAdeCwC7UO-O8r2T9I3p_J0C34Nd2EorXLQiZ2ido2lPfJpkpPxpOhiGvq0iPd7xYv5j4gqSNFJ61BOYwORQ7_-ieHb4vnBHs71kyQpXh3v7kd9hYHIphlfRkQNE1stkzQYpSqZKCcCmnRbxdiQPnYmuFh7RLqVoapiYVTFvQ7Y4CIQ6QGq_wu5wHVCt9SL1-P-Dhf4szzdMKIKofm0XcTo_aCDxP-wgV2pgL8sQWfeiqtwpfdL2WwDpGuw5evrcKkvkf51fQM-zUYOTzYwmbAmsIIy39mH1aLLj-lSbdfsW82O22ZOAGAY2foWx6B3-ozN2C6aTUbZi2sa_ZF2J2_CybmI7RZs103tbwMTwlnUGXmVC5lmiVU8SOONCYmJtTXZBJ4Ooiptz1pOxTO-lxi9kFjLM7FO4NHYd77h6vhnr5ck8bEH8Wt3D5r2S9kv19LqxFpppCP6xJx7pYyVymY6CGnz3ExgZ5ivsl_0i_IMohN4OL7G5UpnMKb2zYr6oA5FnZ6ld_7_iQdwEfFdvj04OrwLlxO6dEFEvHoHtpftyt9DV2hZ3e8wx-DzeYP8N2ddHIo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+Analysis+of+Flood+Susceptibility+in+Tropical+Desert+Area%3A+A+Case+Study+of+Yemen&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Al-Aizari%2C+Ali+R.&rft.au=Al-Masnay%2C+Yousef+A.&rft.au=Aydda%2C+Ali&rft.au=Zhang%2C+Jiquan&rft.date=2022-08-19&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=16&rft.spage=4050&rft_id=info:doi/10.3390%2Frs14164050&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14164050 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |