Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters

The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the aerosol optical properties to the visible from the near-infra-red (NIR) spectral region assuming that seawater is totally absorbent in this latter...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 131; pp. 63 - 75
Main Authors Goyens, C., Jamet, C., Schroeder, T.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 15.04.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
DOI10.1016/j.rse.2012.12.006

Cover

Abstract The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the aerosol optical properties to the visible from the near-infra-red (NIR) spectral region assuming that seawater is totally absorbent in this latter part of the spectrum, the so-called black pixel assumption. While this assumption is verified for most phytoplankton dominated waters, it is invalid in turbid waters. Consequently, for the past ten years, several algorithms have been developed on alternative assumptions. Studies comparing these algorithms are of great interest for further improvement in water leaving radiance (Lw(λ)) retrievals from satellite images explaining the focus of the present research. Four published atmospheric correction algorithms for MODIS-Aqua are compared: (1) the standard NIR algorithm of NASA, (2) the NIR similarity spectrum algorithm, (3) the NIR-SWIR algorithm and (4) an Artificial Neural Network algorithm. The MODIS-Aqua estimated normalized Lw(λ) are validated with AERONET-Ocean Color data and cruise measurements presenting moderately to highly turbid waters. Based on a match-up exercise, the former three algorithms show the best results in the green region of the spectrum (relative error, RE, between 11 and 20%) and the largest errors in the blue and red region of the spectrum (RE exceeding 30%). In contrast, the Artificial Neural Network algorithm performs better in the red band (RE of 22%). The latter tends to overestimate the normalized Lw(λ) at all wavelengths while the NIR similarity spectrum algorithm tends to underestimate it. Retrievals of aerosol products, such as the Ångström coefficient, α(531,869), and the optical thickness, τ(869), present RE above 44% and 72%, respectively. The performance of the algorithms is also investigated as a function of water types. For water masses mainly dominated by phytoplankton, the standard NIR algorithm performs better. In contrast, for water masses mainly dominated by detrital and mineral material, the neural network-based algorithm shows the best results. The largest errors are encountered above water masses dominated by high phytoplankton and CDOM concentrations. This work conducted to a number of perspectives for improving the atmospheric correction algorithms. ► Four atmospheric correction algorithms for MODIS Aqua images are validated. ► A validation is also performed as a function of the water type. ► Overall, the standard NIR algorithm of the NASA performs the best. ► Large errors in water leaving reflectance retrievals are still observed. ► The performances of the algorithms are function of the water type.
AbstractList The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the aerosol optical properties to the visible from the near-infra-red (NIR) spectral region assuming that seawater is totally absorbent in this latter part of the spectrum, the so-called black pixel assumption. While this assumption is verified for most phytoplankton dominated waters, it is invalid in turbid waters. Consequently, for the past ten years, several algorithms have been developed on alternative assumptions. Studies comparing these algorithms are of great interest for further improvement in water leaving radiance (Lw(λ)) retrievals from satellite images explaining the focus of the present research. Four published atmospheric correction algorithms for MODIS-Aqua are compared: (1) the standard NIR algorithm of NASA, (2) the NIR similarity spectrum algorithm, (3) the NIR-SWIR algorithm and (4) an Artificial Neural Network algorithm. The MODIS-Aqua estimated normalized Lw(λ) are validated with AERONET-Ocean Color data and cruise measurements presenting moderately to highly turbid waters. Based on a match-up exercise, the former three algorithms show the best results in the green region of the spectrum (relative error, RE, between 11 and 20%) and the largest errors in the blue and red region of the spectrum (RE exceeding 30%). In contrast, the Artificial Neural Network algorithm performs better in the red band (RE of 22%). The latter tends to overestimate the normalized Lw(λ) at all wavelengths while the NIR similarity spectrum algorithm tends to underestimate it. Retrievals of aerosol products, such as the Ångström coefficient, α(531,869), and the optical thickness, τ(869), present RE above 44% and 72%, respectively. The performance of the algorithms is also investigated as a function of water types. For water masses mainly dominated by phytoplankton, the standard NIR algorithm performs better. In contrast, for water masses mainly dominated by detrital and mineral material, the neural network-based algorithm shows the best results. The largest errors are encountered above water masses dominated by high phytoplankton and CDOM concentrations. This work conducted to a number of perspectives for improving the atmospheric correction algorithms
The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the aerosol optical properties to the visible from the near-infra-red (NIR) spectral region assuming that seawater is totally absorbent in this latter part of the spectrum, the so-called black pixel assumption. While this assumption is verified for most phytoplankton dominated waters, it is invalid in turbid waters. Consequently, for the past ten years, several algorithms have been developed on alternative assumptions. Studies comparing these algorithms are of great interest for further improvement in water leaving radiance (Lw(λ)) retrievals from satellite images explaining the focus of the present research. Four published atmospheric correction algorithms for MODIS-Aqua are compared: (1) the standard NIR algorithm of NASA, (2) the NIR similarity spectrum algorithm, (3) the NIR-SWIR algorithm and (4) an Artificial Neural Network algorithm. The MODIS-Aqua estimated normalized Lw(λ) are validated with AERONET-Ocean Color data and cruise measurements presenting moderately to highly turbid waters. Based on a match-up exercise, the former three algorithms show the best results in the green region of the spectrum (relative error, RE, between 11 and 20%) and the largest errors in the blue and red region of the spectrum (RE exceeding 30%). In contrast, the Artificial Neural Network algorithm performs better in the red band (RE of 22%). The latter tends to overestimate the normalized Lw(λ) at all wavelengths while the NIR similarity spectrum algorithm tends to underestimate it. Retrievals of aerosol products, such as the Ångström coefficient, α(531,869), and the optical thickness, τ(869), present RE above 44% and 72%, respectively. The performance of the algorithms is also investigated as a function of water types. For water masses mainly dominated by phytoplankton, the standard NIR algorithm performs better. In contrast, for water masses mainly dominated by detrital and mineral material, the neural network-based algorithm shows the best results. The largest errors are encountered above water masses dominated by high phytoplankton and CDOM concentrations. This work conducted to a number of perspectives for improving the atmospheric correction algorithms. ► Four atmospheric correction algorithms for MODIS Aqua images are validated. ► A validation is also performed as a function of the water type. ► Overall, the standard NIR algorithm of the NASA performs the best. ► Large errors in water leaving reflectance retrievals are still observed. ► The performances of the algorithms are function of the water type.
The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the aerosol optical properties to the visible from the near-infra-red (NIR) spectral region assuming that seawater is totally absorbent in this latter part of the spectrum, the so-called black pixel assumption. While this assumption is verified for most phytoplankton dominated waters, it is invalid in turbid waters. Consequently, for the past ten years, several algorithms have been developed on alternative assumptions. Studies comparing these algorithms are of great interest for further improvement in water leaving radiance (Lw(λ)) retrievals from satellite images explaining the focus of the present research. Four published atmospheric correction algorithms for MODIS-Aqua are compared: (1) the standard NIR algorithm of NASA, (2) the NIR similarity spectrum algorithm, (3) the NIR-SWIR algorithm and (4) an Artificial Neural Network algorithm. The MODIS-Aqua estimated normalized Lw(λ) are validated with AERONET-Ocean Color data and cruise measurements presenting moderately to highly turbid waters. Based on a match-up exercise, the former three algorithms show the best results in the green region of the spectrum (relative error, RE, between 11 and 20%) and the largest errors in the blue and red region of the spectrum (RE exceeding 30%). In contrast, the Artificial Neural Network algorithm performs better in the red band (RE of 22%). The latter tends to overestimate the normalized Lw(λ) at all wavelengths while the NIR similarity spectrum algorithm tends to underestimate it. Retrievals of aerosol products, such as the Ångström coefficient, α(531,869), and the optical thickness, τ(869), present RE above 44% and 72%, respectively.The performance of the algorithms is also investigated as a function of water types. For water masses mainly dominated by phytoplankton, the standard NIR algorithm performs better. In contrast, for water masses mainly dominated by detrital and mineral material, the neural network-based algorithm shows the best results. The largest errors are encountered above water masses dominated by high phytoplankton and CDOM concentrations. This work conducted to a number of perspectives for improving the atmospheric correction algorithms.
Author Goyens, C.
Jamet, C.
Schroeder, T.
Author_xml – sequence: 1
  givenname: C.
  surname: Goyens
  fullname: Goyens, C.
  organization: CNRS, UMR 8187, Univ Lille Nord de France, ULCO, LOG, F-62930 Wimereux, France
– sequence: 2
  givenname: C.
  surname: Jamet
  fullname: Jamet, C.
  email: cedric.jamet@univ-littoral.fr
  organization: CNRS, UMR 8187, Univ Lille Nord de France, ULCO, LOG, F-62930 Wimereux, France
– sequence: 3
  givenname: T.
  surname: Schroeder
  fullname: Schroeder, T.
  organization: CSIRO Land and Water, 41 Boggo Road, Brisbane, QLD 4102, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27129260$$DView record in Pascal Francis
https://hal.science/hal-00864271$$DView record in HAL
BookMark eNp9kUFvEzEQhS1UJNLCD-C2FyQ4bBg7XnstTlEptFKqHoCzNfHONo6cdWrvBvHvcZrCoYdKI83I_t6zNe-cnQ1xIMbec5hz4Orzdp4yzQVwMS8FoF6xGW-1qUGDPGMzgIWspWj0G3ae8xaAN63mM-avDhgmHH0cqthXfZxSheMu5v2GkneViymRe7zGcB-THze7XLBU3d59vflRLx8mrPwO7ylX8UCpCIYxYR6pK2PpGKrfOFLKb9nrHkOmd0_9gv36dvXz8rpe3X2_uVyuaicVjLVpnAYjUTtsJF8gdE4ZZZCv16ZMCyXBcGhl2zWtI5S9LiyJZi2NkORwccE-nXw3GOw-lb-lPzait9fLlT2eAbRKCs0PvLAfT-w-xYeJ8mh3PjsKAQeKU7ZccxBCqEYV9MMTitlh6BMOzuf_DxQ_YYSCwukT51LMOVFvnR8f91vW4oPlYI-B2a0tgdljYLZUCawo-TPlP_OXNF9OGiobPXhKNjtPg6POH2OzXfQvqP8CNWSv0w
CODEN RSEEA7
CitedBy_id crossref_primary_10_1016_j_scitotenv_2019_06_339
crossref_primary_10_1016_j_rse_2021_112537
crossref_primary_10_1016_j_rse_2019_01_023
crossref_primary_10_1080_01431161_2019_1577579
crossref_primary_10_3390_rs14246372
crossref_primary_10_3390_rs11141631
crossref_primary_10_3390_rs14081881
crossref_primary_10_1016_j_rsase_2016_09_001
crossref_primary_10_5194_os_12_417_2016
crossref_primary_10_3389_fmars_2017_00041
crossref_primary_10_1016_j_watres_2024_121493
crossref_primary_10_1364_OE_21_021176
crossref_primary_10_3390_rs13214206
crossref_primary_10_3390_rs70911821
crossref_primary_10_1002_2017JC013632
crossref_primary_10_1016_j_watres_2019_115403
crossref_primary_10_1364_OE_27_0A1118
crossref_primary_10_1109_TGRS_2020_3002460
crossref_primary_10_3390_rs12010089
crossref_primary_10_3390_rs8030211
crossref_primary_10_3390_rs10020265
crossref_primary_10_5194_acp_18_3865_2018
crossref_primary_10_1016_j_rse_2013_12_001
crossref_primary_10_3390_rs10030418
crossref_primary_10_1080_01431161_2019_1569279
crossref_primary_10_1109_LGRS_2024_3351328
crossref_primary_10_1080_17538947_2022_2161651
crossref_primary_10_1016_j_rse_2014_11_025
crossref_primary_10_1016_j_isprsjprs_2017_09_011
crossref_primary_10_1016_j_rse_2020_112022
crossref_primary_10_3389_fmars_2023_1129876
crossref_primary_10_3390_rs11060668
crossref_primary_10_3390_rs10071002
crossref_primary_10_5194_bg_13_6441_2016
crossref_primary_10_1109_TGRS_2013_2283523
crossref_primary_10_1016_j_rse_2021_112637
crossref_primary_10_1109_JSTARS_2024_3492322
crossref_primary_10_3389_fmars_2022_998970
crossref_primary_10_1016_j_rse_2015_12_053
crossref_primary_10_1016_j_rse_2019_05_017
crossref_primary_10_3390_rs8050423
crossref_primary_10_3390_rs13010099
crossref_primary_10_1016_j_jmarsys_2018_12_006
crossref_primary_10_3390_rs11131613
crossref_primary_10_1364_OE_498601
crossref_primary_10_1109_TGRS_2022_3228961
crossref_primary_10_1016_j_ocecoaman_2024_107074
crossref_primary_10_3390_rs14051099
crossref_primary_10_1080_01431161_2014_916051
crossref_primary_10_1016_j_envsoft_2015_11_025
crossref_primary_10_1016_j_rse_2016_02_014
crossref_primary_10_3402_tellusb_v65i0_20805
crossref_primary_10_1016_j_rse_2022_112992
crossref_primary_10_1109_JSTARS_2023_3343572
crossref_primary_10_1016_j_ecss_2024_108725
crossref_primary_10_1016_j_jag_2018_10_010
crossref_primary_10_1080_01431161_2014_995273
crossref_primary_10_1590_1809_4430_eng_agric_v38n5p728_740_2018
crossref_primary_10_1016_j_ecss_2018_10_013
crossref_primary_10_3390_rs13122319
crossref_primary_10_1007_s40808_017_0314_z
crossref_primary_10_3389_fenvs_2022_900694
crossref_primary_10_1016_j_rse_2015_02_007
crossref_primary_10_3390_rs10091335
crossref_primary_10_1016_j_jag_2025_104417
crossref_primary_10_1134_S0001433817090031
crossref_primary_10_3390_rs16101793
crossref_primary_10_3389_frsen_2024_1359709
crossref_primary_10_1016_j_asr_2017_02_017
crossref_primary_10_1016_j_rse_2017_10_022
crossref_primary_10_1109_JSTARS_2015_2503800
crossref_primary_10_5194_amt_8_1593_2015
crossref_primary_10_1016_j_isprsjprs_2022_10_014
crossref_primary_10_1364_OE_22_013755
crossref_primary_10_1364_OE_27_007642
crossref_primary_10_1109_JSTARS_2013_2252151
crossref_primary_10_3389_fmars_2019_00251
crossref_primary_10_3390_rs14051075
crossref_primary_10_1016_j_rse_2018_07_012
crossref_primary_10_3390_rs14010089
crossref_primary_10_1364_OE_504088
crossref_primary_10_3390_rs11040469
crossref_primary_10_1016_j_jqsrt_2020_107042
crossref_primary_10_1364_OE_23_000033
crossref_primary_10_1016_j_scitotenv_2016_01_020
crossref_primary_10_1016_j_rse_2016_09_004
crossref_primary_10_3390_rs10020345
crossref_primary_10_1080_22797254_2018_1482732
crossref_primary_10_3390_w14040593
crossref_primary_10_1016_j_rse_2014_06_027
crossref_primary_10_1016_j_rse_2017_08_033
crossref_primary_10_1364_OE_529712
crossref_primary_10_1016_j_rse_2022_113153
crossref_primary_10_1016_j_rse_2021_112317
crossref_primary_10_1016_j_isprsjprs_2020_05_003
crossref_primary_10_5721_EuJRS20154822
crossref_primary_10_3390_rs12071073
crossref_primary_10_3390_rs13152899
crossref_primary_10_1007_s13351_022_1146_y
crossref_primary_10_1109_TGRS_2023_3234465
crossref_primary_10_3390_rs8090722
crossref_primary_10_1080_01431161_2024_2440133
crossref_primary_10_3389_fmars_2018_00394
crossref_primary_10_1016_j_csr_2015_11_009
crossref_primary_10_1016_j_rse_2017_11_014
crossref_primary_10_1016_j_jqsrt_2021_107515
crossref_primary_10_1029_2018JG004869
crossref_primary_10_1109_JSTARS_2013_2282938
crossref_primary_10_1109_JSTARS_2016_2614814
crossref_primary_10_3390_rs12081285
crossref_primary_10_1016_j_rse_2016_11_012
crossref_primary_10_1016_j_rsma_2020_101495
crossref_primary_10_1002_2015JC011056
crossref_primary_10_1016_j_rsma_2022_102711
crossref_primary_10_3390_rs10081180
crossref_primary_10_3390_rs11202400
crossref_primary_10_1016_j_isprsjprs_2019_04_013
crossref_primary_10_1016_j_rse_2015_10_035
crossref_primary_10_1016_j_rse_2017_07_016
crossref_primary_10_1016_j_jmarsys_2017_01_016
crossref_primary_10_1109_JSTARS_2024_3414588
crossref_primary_10_3390_rs8010001
crossref_primary_10_1109_TGRS_2020_2973157
crossref_primary_10_3389_feart_2019_00116
crossref_primary_10_3390_rs9101063
crossref_primary_10_1016_j_rse_2013_11_021
crossref_primary_10_1016_j_scitotenv_2016_08_019
Cites_doi 10.1016/j.rse.2009.07.013
10.1016/j.rse.2009.03.011
10.1016/j.rse.2003.10.012
10.1364/AO.33.000443
10.1016/j.rse.2008.11.005
10.1016/j.rse.2007.02.012
10.1016/j.rse.2012.03.004
10.1016/j.rse.2011.01.015
10.1016/j.rse.2011.03.018
10.4319/lo.2006.51.2.1167
10.1016/j.ecss.2006.05.022
10.1109/TGRS.2003.818020
10.1364/OE.17.014029
10.1080/01431160801918599
10.1016/j.rse.2005.07.001
10.1029/2006EO300001
10.1175/2009JTECHO654.1
10.1016/j.pocean.2010.12.001
10.1016/j.rse.2006.11.026
10.1364/AO.49.005545
10.1029/96JC00629
10.1016/j.rse.2009.11.022
10.1364/AO.39.000897
10.1364/OE.15.015722
10.1016/j.rse.2006.01.015
10.1016/j.rse.2007.02.013
10.1016/j.rse.2010.04.027
10.1364/AO.39.003582
10.1016/S0034-4257(02)00085-8
10.1364/OE.18.007521
10.1080/01431160310001592544
10.1364/OE.18.020949
10.1016/0034-4257(87)90029-0
10.1080/01431160600962574
10.1029/96JD02443
10.1364/JOSA.44.000838
ContentType Journal Article
Copyright 2012 Elsevier Inc.
2014 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: 2014 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
7S9
L.6
1XC
DOI 10.1016/j.rse.2012.12.006
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
Oceanography
EISSN 1879-0704
EndPage 75
ExternalDocumentID oai:HAL:hal-00864271v1
27129260
10_1016_j_rse_2012_12_006
S0034425712004725
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
VOH
WUQ
XOL
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
7S9
L.6
1XC
ABUFD
ID FETCH-LOGICAL-c460t-95c7094a7ca5413a0dc6969a1bb9c693640910848d58cea4f74a7e25b4924eca3
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Tue Oct 14 20:41:42 EDT 2025
Sun Sep 28 06:58:43 EDT 2025
Mon Jul 21 09:15:23 EDT 2025
Thu Apr 24 23:06:07 EDT 2025
Wed Oct 01 02:18:07 EDT 2025
Fri Feb 23 02:30:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Validation
MODIS-Aqua
Ocean color
Atmospheric correction
Turbid water
Classification
atmosphere
algorithms
turbidity
color
aerosols
evaluation
coastal zone
phytoplankton
plankton
Coastal water
radiance
sea water
absorption
Space remote sensing
near infrared radiation
Satellite observation
monitoring
optical properties
marine environment
ocean
atmospheric correction
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-95c7094a7ca5413a0dc6969a1bb9c693640910848d58cea4f74a7e25b4924eca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6988-6506
PQID 1710222656
PQPubID 24069
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_00864271v1
proquest_miscellaneous_1710222656
pascalfrancis_primary_27129260
crossref_citationtrail_10_1016_j_rse_2012_12_006
crossref_primary_10_1016_j_rse_2012_12_006
elsevier_sciencedirect_doi_10_1016_j_rse_2012_12_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-15
PublicationDateYYYYMMDD 2013-04-15
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-15
  day: 15
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Remote sensing of environment
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Loisel, Lubac, Dessailly, Duforet-Gaurier, Vantrepotte (bb0300) 2010; 18
Werdell, Franz, Bailey (bb0400) 2010; 114
Cox, Munk (bb0025) 1954; 44
Siegel, Wang, Maritorena, Robinson (bb0365) 2000; 39
Zibordi, Holben, Slutsker, Giles, D'Alimonte, Mélin (bb0425) 2009; 26
Wolfe, Nishihama, Fleig, Kuyper, Roy, Storey (bb0410) 2002; 83
Gordon (bb0280) 1997; 102
Schroeder, Behnert, Schaale, Fischer, Doerffer (bb0145) 2007; 28
O'Reilly, Maritorena, O'Brien, Siegel, Toole, Menzies (bb0335) 2000
Gordon (bb0275) 1987; 22
Lubac, Loisel (bb0305) 2007; 110
Bailey, Werdell (bb0245) 2006; 102
Neukermans, Ruddick, Bernard, Ramon, Nechad, Deschamps (bb0330) 2009; 17
Darecki, Stramski (bb0250) 2004; 89
Dogliotti, Ruddick, Nechad, Lasta (bb0255) 2011
Ruddick, Cauwer, Park, Moore (bb0345) 2006; 51
Gordon, Wang (bb0285) 1994; 33
Stumpf, Arone, Gould, Ransibrahmanakul (bb0370) 2003
Ahmad, Franz, McClain, Kwiatkowska, Werdell, Shettle (bb0235) 2010; 49
Bailey, Franz, Werdell (bb0240) 2010; 18
Loisel, Mériaux, Poteau, Artigas, Lubac, Gardel (bb0090) 2009; SI 56
Werdell, Bailey (bb0395) 2005; 98
Vantrepotte, Loisel, Mériaux, Jamet, Dessailly, Neukermans (bb0380) 2011; SI64
Shi, Wang (bb0355) 2007; 110
Vantrepotte, Loisel, Dessailly, Mériaux (bb0375) 2012; 123
Jamet, Loisel, Kuchinke, Ruddick, Zibordi, Feng (bb0290) 2011; 115
Lubac, Loisel, Guiselin, Astoreca, Artigas, Mériaux (bb0310) 2008; 113
Wang, Shi (bb0385) 2007; 15
Mélin, Zibordi, Djavidnia (bb0320) 2007; 108
Werdell, Franz, Bailey, Harding., Feldman (bb0405) 2007; Vol. 6680
Zibordi, Holben, Hooker, Mélin, Berthon, Slutsker (bb0420) 2006; 87
D'Alimonte, Mélin, Zibordi, Berthon (bb0030) 2003; 41
Doron, Bélanger, Doxoran, Babin (bb0260) 2011; 115
Nechad, Ruddick, Park (bb0325) 2010; 114
Mélin, Vantrepotte, Clerici, D'Alimonte, Zibordi, Berthon (bb0315) 2011; 91
Ruddick, Ovidio, Rijkeboer (bb0350) 2000; 39
Shi, Wang (bb0360) 2009; 113
Feng, Vandemark, Campbell, Holben (bb0265) 2008; 29
Robinson, Franz, Patt, Bailey, Werdell (bb0340) 2003
Zibordi, Stroembeck, Mélin, Berthon (bb0230) 2006; 69
Berthon, Zibordi (bb0020) 2004; 25
Frouin, Schwindling, Deschamps (bb0270) 1996; 101
Kuchinke, Gordon, Franz (bb0295) 2009; Vol. 113
Wang, Son, Shi (bb0390) 2009; 113
Zibordi, Berthon, Mélin, D'Alimonte, Kaitala (bb0415) 2009; 113
Nechad (10.1016/j.rse.2012.12.006_bb0325) 2010; 114
Ruddick (10.1016/j.rse.2012.12.006_bb0345) 2006; 51
Ruddick (10.1016/j.rse.2012.12.006_bb0350) 2000; 39
Jamet (10.1016/j.rse.2012.12.006_bb0290) 2011; 115
Stumpf (10.1016/j.rse.2012.12.006_bb0370) 2003
Ahmad (10.1016/j.rse.2012.12.006_bb0235) 2010; 49
O'Reilly (10.1016/j.rse.2012.12.006_bb0335) 2000
Zibordi (10.1016/j.rse.2012.12.006_bb0420) 2006; 87
Wolfe (10.1016/j.rse.2012.12.006_bb0410) 2002; 83
Darecki (10.1016/j.rse.2012.12.006_bb0250) 2004; 89
Werdell (10.1016/j.rse.2012.12.006_bb0405) 2007; Vol. 6680
Loisel (10.1016/j.rse.2012.12.006_bb0090) 2009; SI 56
Vantrepotte (10.1016/j.rse.2012.12.006_bb0375) 2012; 123
Mélin (10.1016/j.rse.2012.12.006_bb0315) 2011; 91
Zibordi (10.1016/j.rse.2012.12.006_bb0425) 2009; 26
Kuchinke (10.1016/j.rse.2012.12.006_bb0295) 2009; Vol. 113
Werdell (10.1016/j.rse.2012.12.006_bb0395) 2005; 98
Schroeder (10.1016/j.rse.2012.12.006_bb0145) 2007; 28
Neukermans (10.1016/j.rse.2012.12.006_bb0330) 2009; 17
Mélin (10.1016/j.rse.2012.12.006_bb0320) 2007; 108
Gordon (10.1016/j.rse.2012.12.006_bb0285) 1994; 33
Bailey (10.1016/j.rse.2012.12.006_bb0240) 2010; 18
Feng (10.1016/j.rse.2012.12.006_bb0265) 2008; 29
Wang (10.1016/j.rse.2012.12.006_bb0390) 2009; 113
D'Alimonte (10.1016/j.rse.2012.12.006_bb0030) 2003; 41
Werdell (10.1016/j.rse.2012.12.006_bb0400) 2010; 114
Gordon (10.1016/j.rse.2012.12.006_bb0275) 1987; 22
Shi (10.1016/j.rse.2012.12.006_bb0355) 2007; 110
Wang (10.1016/j.rse.2012.12.006_bb0385) 2007; 15
Cox (10.1016/j.rse.2012.12.006_bb0025) 1954; 44
Robinson (10.1016/j.rse.2012.12.006_bb0340) 2003
Shi (10.1016/j.rse.2012.12.006_bb0360) 2009; 113
Frouin (10.1016/j.rse.2012.12.006_bb0270) 1996; 101
Bailey (10.1016/j.rse.2012.12.006_bb0245) 2006; 102
Siegel (10.1016/j.rse.2012.12.006_bb0365) 2000; 39
Gordon (10.1016/j.rse.2012.12.006_bb0280) 1997; 102
Zibordi (10.1016/j.rse.2012.12.006_bb0415) 2009; 113
Dogliotti (10.1016/j.rse.2012.12.006_bb0255) 2011
Loisel (10.1016/j.rse.2012.12.006_bb0300) 2010; 18
Berthon (10.1016/j.rse.2012.12.006_bb0020) 2004; 25
Vantrepotte (10.1016/j.rse.2012.12.006_bb0380) 2011; SI64
Zibordi (10.1016/j.rse.2012.12.006_bb0230) 2006; 69
Lubac (10.1016/j.rse.2012.12.006_bb0305) 2007; 110
Doron (10.1016/j.rse.2012.12.006_bb0260) 2011; 115
Lubac (10.1016/j.rse.2012.12.006_bb0310) 2008; 113
References_xml – year: 2011
  ident: bb0255
  article-title: Improving water reflectance retrieval from MODIS imagery in the highly turbid waters of La Plata River
  publication-title: Proceedings of VI International Conference “Current Problems in Optics of Natural Waters”
– volume: 102
  start-page: 17081
  year: 1997
  end-page: 17106
  ident: bb0280
  article-title: Atmospheric correction of ocean color imagery in the Earth Observing system era
  publication-title: Journal of Geophysical Research
– volume: 29
  start-page: 4479
  year: 2008
  end-page: 4497
  ident: bb0265
  article-title: Evaluation of MODIS ocean color products at a northeast United States coast site near the Martha's Vineyard Coastal Observatory
  publication-title: International of Remote Sensing
– volume: 115
  start-page: 1955
  year: 2011
  end-page: 1965
  ident: bb0290
  article-title: Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements
  publication-title: Remote Sensing of Environment
– volume: 39
  start-page: 897
  year: 2000
  end-page: 912
  ident: bb0350
  article-title: Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters
  publication-title: Applied Optics
– volume: 22
  start-page: 103
  year: 1987
  end-page: 126
  ident: bb0275
  article-title: Calibration requirements and methodology for remote sensors viewing the ocean in the visible
  publication-title: Remote Sensing of Environment
– volume: 91
  start-page: 229
  year: 2011
  end-page: 244
  ident: bb0315
  article-title: Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea
  publication-title: Progress in Oceanography
– volume: 98
  start-page: 122
  year: 2005
  end-page: 140
  ident: bb0395
  article-title: An improved bio-optical data set for ocean color algorithm development and satellite data product validation
  publication-title: Remote Sensing of Environment
– volume: 33
  start-page: 443
  year: 1994
  end-page: 452
  ident: bb0285
  article-title: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preminilary algorithm
  publication-title: Applied Optics
– start-page: 9
  year: 2000
  end-page: 23
  ident: bb0335
  article-title: Ocean color chlorophyll a algorithms for seawifs, oc2, and oc4: Version 4
  publication-title: SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. NASA/Tech. Memo. 2000-206892
– volume: 28
  start-page: 1469
  year: 2007
  end-page: 1486
  ident: bb0145
  article-title: Atmospheric correction algorithm for MERIS above case-2 waters
  publication-title: International Journal of Remote Sensing
– volume: 18
  start-page: 7521
  year: 2010
  end-page: 7527
  ident: bb0240
  article-title: Estimations of near-infrared water-leaving reflectance for satellite ocean color data processing
  publication-title: Optics Express
– volume: 115
  start-page: 1617
  year: 2011
  end-page: 1631
  ident: bb0260
  article-title: Spectral variations in the near-infrared ocean reflectance
  publication-title: Remote Sensing of Environment
– volume: 114
  start-page: 854
  year: 2010
  end-page: 866
  ident: bb0325
  article-title: Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters
  publication-title: Remote Sensing of Environment
– volume: 123
  year: 2012
  ident: bb0375
  article-title: Optical classification of contrasted coastal waters
  publication-title: Remote Sensing of Environment
– volume: 69
  start-page: 649
  year: 2006
  end-page: 654
  ident: bb0230
  article-title: Tower-based radiometric observations at a coastal site in the Baltic Proper
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 18
  start-page: 20949
  year: 2010
  end-page: 20952
  ident: bb0300
  article-title: Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: An in situ approach
  publication-title: Optics Express
– volume: 83
  start-page: 31
  year: 2002
  end-page: 49
  ident: bb0410
  article-title: Achieving sub-pixel geolocation accuracy in support of MODIS land pixel
  publication-title: Remote Sensing of Environment
– volume: 44
  start-page: 838
  year: 1954
  end-page: 850
  ident: bb0025
  article-title: Measurements of the roughness of the sea surface from photographs of the sun's glitter
  publication-title: Journal of the Optical Society of America
– volume: SI64
  start-page: 1750
  year: 2011
  end-page: 1754
  ident: bb0380
  article-title: Seasonal and inter-annual (19982010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters
  publication-title: Journal of Coastal Research
– volume: 89
  start-page: 326
  year: 2004
  end-page: 350
  ident: bb0250
  article-title: An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea
  publication-title: Remote Sensing of Environment
– volume: 110
  start-page: 45
  year: 2007
  end-page: 58
  ident: bb0305
  article-title: Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea
  publication-title: Remote Sensing of Environment
– volume: 114
  start-page: 2238
  year: 2010
  end-page: 2247
  ident: bb0400
  article-title: Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake bay
  publication-title: Remote Sensing of Environment
– volume: 108
  start-page: 436
  year: 2007
  end-page: 450
  ident: bb0320
  article-title: Development and validation of a technique for merging satellite derived aerosol optical depth from SeaWiFS and MODIS
  publication-title: Remote Sensing of Environment
– volume: 51
  start-page: 1167
  year: 2006
  end-page: 1179
  ident: bb0345
  article-title: Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters
  publication-title: Limnology and Oceanography
– start-page: 51
  year: 2003
  end-page: 59
  ident: bb0370
  article-title: A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters
  publication-title: SeaWiFS Postlaunch Technical Report Series, Chap.9, NASA/TM-2003-206892
– volume: 41
  start-page: 2833
  year: 2003
  end-page: 2843
  ident: bb0030
  article-title: Use of the novelty detection technique to identify the range of applicability of the empirical ocean color algorithms
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 102
  start-page: 12
  year: 2006
  end-page: 23
  ident: bb0245
  article-title: A multi-sensor approach for the on-orbit validation of ocean color satellite data products
  publication-title: Remote Sensing of Environment
– volume: 25
  start-page: 1527
  year: 2004
  end-page: 1532
  ident: bb0020
  article-title: Bio-optical relationships for the northern Adriatic Sea
  publication-title: International Journal of Remote Sensing
– volume: 17
  start-page: 14029
  year: 2009
  end-page: 14052
  ident: bb0330
  article-title: Mapping total suspended matter from geostationary satellites: A feasibility study with SEVIRI in the Southern North Sea
  publication-title: Optics Express
– volume: 113
  start-page: C06026
  year: 2008
  ident: bb0310
  article-title: Hyperspectral and multispectral ocean color inversions to detect
  publication-title: Journal of Geophysiscal Research
– volume: 113
  start-page: 1587
  year: 2009
  end-page: 1597
  ident: bb0360
  article-title: An assessment of the black ocean pixel assumption for MODIS SWIR bands
  publication-title: Remote Sensing of Environment
– volume: 49
  start-page: 5545
  year: 2010
  end-page: 5560
  ident: bb0235
  article-title: New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans
  publication-title: Applied Optics
– volume: 39
  start-page: 3582
  year: 2000
  end-page: 3591
  ident: bb0365
  article-title: Atmospheric correction of satellite ocean color imagery: The black pixel assumption
  publication-title: Applied Optics
– volume: 101
  start-page: 14361
  year: 1996
  end-page: 14371
  ident: bb0270
  article-title: Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications
  publication-title: Journal of Geophysical Research
– volume: SI 56
  start-page: 1532
  year: 2009
  end-page: 1536
  ident: bb0090
  article-title: Analyze of inherent optical properties of French Guiana coastal waters for remote sensing applications
  publication-title: Journal of Coastal Research
– volume: 110
  start-page: 149
  year: 2007
  end-page: 161
  ident: bb0355
  article-title: Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing
  publication-title: Remote Sensing of Environment
– volume: Vol. 113
  start-page: 571
  year: 2009
  end-page: 587
  ident: bb0295
  publication-title: Spectral optimization for constituent retrieval in Case 2 waters I: Implementation and performance
– start-page: 34
  year: 2003
  end-page: 40
  ident: bb0340
  article-title: Masks and flags updates
  publication-title: SeaWiFS Postlaunch Technical Report Series, Chap.6, NASA/TM-2003-206892
– volume: 113
  start-page: 2574
  year: 2009
  end-page: 2591
  ident: bb0415
  article-title: Validation of satellite ocean color primary producs at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland
  publication-title: Remote Sensing of Environment
– volume: 87
  start-page: 293
  year: 2006
  end-page: 297
  ident: bb0420
  article-title: A network for standardized ocean color validation measurements
  publication-title: EOS Transactions
– volume: Vol. 6680
  start-page: 12
  year: 2007
  ident: bb0405
  article-title: Approach for the long-term spatial and temporal evaluation of ocean color satellite data products in a coastal environment
  publication-title: Proceeding of SPIE
– volume: 26
  start-page: 1634
  year: 2009
  end-page: 1651
  ident: bb0425
  article-title: Aeronet-oc: A network for the validation of ocean color primary products
  publication-title: Journal of the Atmospheric and Oceanic Technology
– volume: 15
  start-page: 15722
  year: 2007
  end-page: 15733
  ident: bb0385
  article-title: The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing
  publication-title: Optics Express
– volume: 113
  start-page: 635
  year: 2009
  end-page: 644
  ident: bb0390
  article-title: Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data
  publication-title: Remote Sensing of Environment
– volume: 113
  start-page: 2574
  year: 2009
  ident: 10.1016/j.rse.2012.12.006_bb0415
  article-title: Validation of satellite ocean color primary producs at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.07.013
– year: 2011
  ident: 10.1016/j.rse.2012.12.006_bb0255
  article-title: Improving water reflectance retrieval from MODIS imagery in the highly turbid waters of La Plata River
– volume: 113
  start-page: 1587
  year: 2009
  ident: 10.1016/j.rse.2012.12.006_bb0360
  article-title: An assessment of the black ocean pixel assumption for MODIS SWIR bands
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.03.011
– volume: 89
  start-page: 326
  year: 2004
  ident: 10.1016/j.rse.2012.12.006_bb0250
  article-title: An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2003.10.012
– volume: 33
  start-page: 443
  year: 1994
  ident: 10.1016/j.rse.2012.12.006_bb0285
  article-title: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preminilary algorithm
  publication-title: Applied Optics
  doi: 10.1364/AO.33.000443
– volume: 113
  start-page: 635
  year: 2009
  ident: 10.1016/j.rse.2012.12.006_bb0390
  article-title: Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2008.11.005
– volume: SI64
  start-page: 1750
  year: 2011
  ident: 10.1016/j.rse.2012.12.006_bb0380
  article-title: Seasonal and inter-annual (19982010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters
  publication-title: Journal of Coastal Research
– volume: 110
  start-page: 45
  year: 2007
  ident: 10.1016/j.rse.2012.12.006_bb0305
  article-title: Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.02.012
– volume: SI 56
  start-page: 1532
  year: 2009
  ident: 10.1016/j.rse.2012.12.006_bb0090
  article-title: Analyze of inherent optical properties of French Guiana coastal waters for remote sensing applications
  publication-title: Journal of Coastal Research
– volume: 123
  year: 2012
  ident: 10.1016/j.rse.2012.12.006_bb0375
  article-title: Optical classification of contrasted coastal waters
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2012.03.004
– volume: 115
  start-page: 1617
  year: 2011
  ident: 10.1016/j.rse.2012.12.006_bb0260
  article-title: Spectral variations in the near-infrared ocean reflectance
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.01.015
– volume: 115
  start-page: 1955
  year: 2011
  ident: 10.1016/j.rse.2012.12.006_bb0290
  article-title: Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.03.018
– volume: 51
  start-page: 1167
  year: 2006
  ident: 10.1016/j.rse.2012.12.006_bb0345
  article-title: Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters
  publication-title: Limnology and Oceanography
  doi: 10.4319/lo.2006.51.2.1167
– volume: 69
  start-page: 649
  year: 2006
  ident: 10.1016/j.rse.2012.12.006_bb0230
  article-title: Tower-based radiometric observations at a coastal site in the Baltic Proper
  publication-title: Estuarine, Coastal and Shelf Science
  doi: 10.1016/j.ecss.2006.05.022
– volume: 41
  start-page: 2833
  year: 2003
  ident: 10.1016/j.rse.2012.12.006_bb0030
  article-title: Use of the novelty detection technique to identify the range of applicability of the empirical ocean color algorithms
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2003.818020
– volume: 17
  start-page: 14029
  year: 2009
  ident: 10.1016/j.rse.2012.12.006_bb0330
  article-title: Mapping total suspended matter from geostationary satellites: A feasibility study with SEVIRI in the Southern North Sea
  publication-title: Optics Express
  doi: 10.1364/OE.17.014029
– start-page: 51
  year: 2003
  ident: 10.1016/j.rse.2012.12.006_bb0370
  article-title: A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters
– volume: 29
  start-page: 4479
  year: 2008
  ident: 10.1016/j.rse.2012.12.006_bb0265
  article-title: Evaluation of MODIS ocean color products at a northeast United States coast site near the Martha's Vineyard Coastal Observatory
  publication-title: International of Remote Sensing
  doi: 10.1080/01431160801918599
– volume: 98
  start-page: 122
  year: 2005
  ident: 10.1016/j.rse.2012.12.006_bb0395
  article-title: An improved bio-optical data set for ocean color algorithm development and satellite data product validation
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.07.001
– volume: 87
  start-page: 293
  year: 2006
  ident: 10.1016/j.rse.2012.12.006_bb0420
  article-title: A network for standardized ocean color validation measurements
  publication-title: EOS Transactions
  doi: 10.1029/2006EO300001
– volume: 26
  start-page: 1634
  year: 2009
  ident: 10.1016/j.rse.2012.12.006_bb0425
  article-title: Aeronet-oc: A network for the validation of ocean color primary products
  publication-title: Journal of the Atmospheric and Oceanic Technology
  doi: 10.1175/2009JTECHO654.1
– volume: 91
  start-page: 229
  year: 2011
  ident: 10.1016/j.rse.2012.12.006_bb0315
  article-title: Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea
  publication-title: Progress in Oceanography
  doi: 10.1016/j.pocean.2010.12.001
– volume: 108
  start-page: 436
  year: 2007
  ident: 10.1016/j.rse.2012.12.006_bb0320
  article-title: Development and validation of a technique for merging satellite derived aerosol optical depth from SeaWiFS and MODIS
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.11.026
– volume: 49
  start-page: 5545
  year: 2010
  ident: 10.1016/j.rse.2012.12.006_bb0235
  article-title: New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans
  publication-title: Applied Optics
  doi: 10.1364/AO.49.005545
– volume: 101
  start-page: 14361
  year: 1996
  ident: 10.1016/j.rse.2012.12.006_bb0270
  article-title: Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications
  publication-title: Journal of Geophysical Research
  doi: 10.1029/96JC00629
– start-page: 34
  year: 2003
  ident: 10.1016/j.rse.2012.12.006_bb0340
  article-title: Masks and flags updates
– volume: 113
  start-page: C06026
  year: 2008
  ident: 10.1016/j.rse.2012.12.006_bb0310
  article-title: Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters
  publication-title: Journal of Geophysiscal Research
– volume: 114
  start-page: 854
  year: 2010
  ident: 10.1016/j.rse.2012.12.006_bb0325
  article-title: Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.11.022
– volume: 39
  start-page: 897
  year: 2000
  ident: 10.1016/j.rse.2012.12.006_bb0350
  article-title: Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters
  publication-title: Applied Optics
  doi: 10.1364/AO.39.000897
– volume: 15
  start-page: 15722
  year: 2007
  ident: 10.1016/j.rse.2012.12.006_bb0385
  article-title: The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing
  publication-title: Optics Express
  doi: 10.1364/OE.15.015722
– volume: 102
  start-page: 12
  year: 2006
  ident: 10.1016/j.rse.2012.12.006_bb0245
  article-title: A multi-sensor approach for the on-orbit validation of ocean color satellite data products
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.01.015
– volume: 110
  start-page: 149
  year: 2007
  ident: 10.1016/j.rse.2012.12.006_bb0355
  article-title: Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.02.013
– volume: Vol. 6680
  start-page: 12
  year: 2007
  ident: 10.1016/j.rse.2012.12.006_bb0405
  article-title: Approach for the long-term spatial and temporal evaluation of ocean color satellite data products in a coastal environment
– volume: 114
  start-page: 2238
  year: 2010
  ident: 10.1016/j.rse.2012.12.006_bb0400
  article-title: Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake bay
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2010.04.027
– volume: Vol. 113
  start-page: 571
  year: 2009
  ident: 10.1016/j.rse.2012.12.006_bb0295
– volume: 39
  start-page: 3582
  year: 2000
  ident: 10.1016/j.rse.2012.12.006_bb0365
  article-title: Atmospheric correction of satellite ocean color imagery: The black pixel assumption
  publication-title: Applied Optics
  doi: 10.1364/AO.39.003582
– start-page: 9
  year: 2000
  ident: 10.1016/j.rse.2012.12.006_bb0335
  article-title: Ocean color chlorophyll a algorithms for seawifs, oc2, and oc4: Version 4
– volume: 83
  start-page: 31
  year: 2002
  ident: 10.1016/j.rse.2012.12.006_bb0410
  article-title: Achieving sub-pixel geolocation accuracy in support of MODIS land pixel
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00085-8
– volume: 18
  start-page: 7521
  year: 2010
  ident: 10.1016/j.rse.2012.12.006_bb0240
  article-title: Estimations of near-infrared water-leaving reflectance for satellite ocean color data processing
  publication-title: Optics Express
  doi: 10.1364/OE.18.007521
– volume: 25
  start-page: 1527
  year: 2004
  ident: 10.1016/j.rse.2012.12.006_bb0020
  article-title: Bio-optical relationships for the northern Adriatic Sea
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160310001592544
– volume: 18
  start-page: 20949
  year: 2010
  ident: 10.1016/j.rse.2012.12.006_bb0300
  article-title: Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: An in situ approach
  publication-title: Optics Express
  doi: 10.1364/OE.18.020949
– volume: 22
  start-page: 103
  year: 1987
  ident: 10.1016/j.rse.2012.12.006_bb0275
  article-title: Calibration requirements and methodology for remote sensors viewing the ocean in the visible
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(87)90029-0
– volume: 28
  start-page: 1469
  year: 2007
  ident: 10.1016/j.rse.2012.12.006_bb0145
  article-title: Atmospheric correction algorithm for MERIS above case-2 waters
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160600962574
– volume: 102
  start-page: 17081
  year: 1997
  ident: 10.1016/j.rse.2012.12.006_bb0280
  article-title: Atmospheric correction of ocean color imagery in the Earth Observing system era
  publication-title: Journal of Geophysical Research
  doi: 10.1029/96JD02443
– volume: 44
  start-page: 838
  year: 1954
  ident: 10.1016/j.rse.2012.12.006_bb0025
  article-title: Measurements of the roughness of the sea surface from photographs of the sun's glitter
  publication-title: Journal of the Optical Society of America
  doi: 10.1364/JOSA.44.000838
SSID ssj0015871
Score 2.4678113
Snippet The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the...
SourceID hal
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms aerosols
algorithms
Animal, plant and microbial ecology
Applied geophysics
Atmospheric correction
Biological and medical sciences
Classification
coastal water
color
Earth Sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Internal geophysics
MODIS-Aqua
neural networks
Ocean color
Oceanography
optical properties
phytoplankton
remote sensing
satellites
Sciences of the Universe
seawater
Teledetection and vegetation maps
Turbid water
Validation
wavelengths
Title Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters
URI https://dx.doi.org/10.1016/j.rse.2012.12.006
https://www.proquest.com/docview/1710222656
https://hal.science/hal-00864271
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qRSxI0dPSq_VYxSchNptsvh6PevWqtj5ooW_LZm_Xi_Qu10tO6Yt_uzObDylKH4RAQjJZlp3Z-UhmfgPwGo1cHNpZ7qE5sJ4g8Nkc_VaPqjiFsrkyGRU4n53H0wvx4TK63ILjrhaG0ipb3d_odKet2ztH7WoerYqCanxDQRLHAwd5SIXmAs8o029_9WkePEqTpmteKDyi7v5suhyvdUVImTxwXwSp6dG_bdO9OSVJPlqpCtfNNg0v_tLdziCdPIbd1pNk42ayT2DLLAewN_lTuIYP251bDeBh2-18fjOAB-9dO9-bp1BMerBvVlpmcUym6kVZEdhAoZmm3h2u8oGpq2_luqjniwrJ1uzs87vTL974eqNYsUCdVDHKBWUu813RJ1S8xDPO4aciAM9ncHEy-Xo89drmC54WsV97WaQTDP1UolWEhk75Mx1ncaZ4nmd4FcaCPI1UpLMo1UYJi6xNTBDlAiM6o1W4B9vLcmn2gQVZHvpCRzPDLRL5inMTmsjiEL5VSToEv1t2qVtkcmqQcSW7FLTvEjkliVMSD-TUEN70r6waWI67iEXHS3lLtiSajbtee4V874cnHO7p-JOkexQIiiDhP_gQRrfEoifHp0GGweIQXnZyInHn0u8YtTTlppI8cdE2OtQH_zfB57ATuOYcwuPRIWzX6415gS5SnY_cHhjB_fHpx-n5bz47D4I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ2iTEILCRPkYBvGEFBYndj4eq9HRQTse2KS9WY7rrEFr0zUtaC_87dw5H2gC7QEpUiL7Ylk--z6Su_sBvEMlF4X5NPNQHeSeoOKzGdqtHmVxCp1n2qaU4Dw5jUbn4vOFvNiCozYXhsIqG9lfy3QnrZuWw2Y1D5dFQTm-oaAdxwNX8lBuwz0hg5g8sA-_ujgPLpO4hs0LhUfk7a9NF-S1qqhUJg_cJ0FCPfq3ctqeUZTkg6WucOHyGvHiL-HtNNLxI3jYmJJsUM_2MWzZRQ_2h38y17CzObpVD3YbuPPZTQ_uf3J4vjdPoBh21b5ZmbMcx2R6PS8rqjZQGGYIvMOlPjB9dVmuivVsXiHZik2-fjz55g2uN5oVcxRKFaNgUOZC3zV9Q8VHvOMcfmqq4PkUzo-HZ0cjr0Ff8IyI_LWXShOj76djoyVqOu1PTZRGqeZZluJTGAkyNRKRTGVirBY58ja2gcwEunTW6HAfdhblwj4DFqRZ6Asjp5bnSORrzm1oZY5D-LmOkz747bIr05QmJ4SMK9XGoH1XyClFnFJ4Iaf68L57ZVnX5biLWLS8VLc2l0K9cddrb5Hv3fBUiHs0GCtqI09QBDH_wftwcGtbdOTYG6ToLfbhTbtPFB5d-h-jF7bcVIrHzt1Gi_r5_03wNeyOziZjNT45_fIC9gKH1CE8Ll_Cznq1sa_QXlpnB-48_AZlrREX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+four+atmospheric+correction+algorithms+for+MODIS-Aqua+images+over+contrasted+coastal+waters&rft.jtitle=Remote+sensing+of+environment&rft.au=Goyens%2C+C.&rft.au=Jamet%2C+C.&rft.au=Schroeder%2C+T.&rft.date=2013-04-15&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=131&rft.spage=63&rft.epage=75&rft_id=info:doi/10.1016%2Fj.rse.2012.12.006&rft.externalDocID=S0034425712004725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon