Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters
The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the aerosol optical properties to the visible from the near-infra-red (NIR) spectral region assuming that seawater is totally absorbent in this latter...
Saved in:
| Published in | Remote sensing of environment Vol. 131; pp. 63 - 75 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
Elsevier Inc
15.04.2013
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0034-4257 1879-0704 |
| DOI | 10.1016/j.rse.2012.12.006 |
Cover
| Abstract | The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the aerosol optical properties to the visible from the near-infra-red (NIR) spectral region assuming that seawater is totally absorbent in this latter part of the spectrum, the so-called black pixel assumption. While this assumption is verified for most phytoplankton dominated waters, it is invalid in turbid waters. Consequently, for the past ten years, several algorithms have been developed on alternative assumptions. Studies comparing these algorithms are of great interest for further improvement in water leaving radiance (Lw(λ)) retrievals from satellite images explaining the focus of the present research. Four published atmospheric correction algorithms for MODIS-Aqua are compared: (1) the standard NIR algorithm of NASA, (2) the NIR similarity spectrum algorithm, (3) the NIR-SWIR algorithm and (4) an Artificial Neural Network algorithm. The MODIS-Aqua estimated normalized Lw(λ) are validated with AERONET-Ocean Color data and cruise measurements presenting moderately to highly turbid waters. Based on a match-up exercise, the former three algorithms show the best results in the green region of the spectrum (relative error, RE, between 11 and 20%) and the largest errors in the blue and red region of the spectrum (RE exceeding 30%). In contrast, the Artificial Neural Network algorithm performs better in the red band (RE of 22%). The latter tends to overestimate the normalized Lw(λ) at all wavelengths while the NIR similarity spectrum algorithm tends to underestimate it. Retrievals of aerosol products, such as the Ångström coefficient, α(531,869), and the optical thickness, τ(869), present RE above 44% and 72%, respectively.
The performance of the algorithms is also investigated as a function of water types. For water masses mainly dominated by phytoplankton, the standard NIR algorithm performs better. In contrast, for water masses mainly dominated by detrital and mineral material, the neural network-based algorithm shows the best results. The largest errors are encountered above water masses dominated by high phytoplankton and CDOM concentrations. This work conducted to a number of perspectives for improving the atmospheric correction algorithms.
► Four atmospheric correction algorithms for MODIS Aqua images are validated. ► A validation is also performed as a function of the water type. ► Overall, the standard NIR algorithm of the NASA performs the best. ► Large errors in water leaving reflectance retrievals are still observed. ► The performances of the algorithms are function of the water type. |
|---|---|
| AbstractList | The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the aerosol optical properties to the visible from the near-infra-red (NIR) spectral region assuming that seawater is totally absorbent in this latter part of the spectrum, the so-called black pixel assumption. While this assumption is verified for most phytoplankton dominated waters, it is invalid in turbid waters. Consequently, for the past ten years, several algorithms have been developed on alternative assumptions. Studies comparing these algorithms are of great interest for further improvement in water leaving radiance (Lw(λ)) retrievals from satellite images explaining the focus of the present research. Four published atmospheric correction algorithms for MODIS-Aqua are compared: (1) the standard NIR algorithm of NASA, (2) the NIR similarity spectrum algorithm, (3) the NIR-SWIR algorithm and (4) an Artificial Neural Network algorithm. The MODIS-Aqua estimated normalized Lw(λ) are validated with AERONET-Ocean Color data and cruise measurements presenting moderately to highly turbid waters. Based on a match-up exercise, the former three algorithms show the best results in the green region of the spectrum (relative error, RE, between 11 and 20%) and the largest errors in the blue and red region of the spectrum (RE exceeding 30%). In contrast, the Artificial Neural Network algorithm performs better in the red band (RE of 22%). The latter tends to overestimate the normalized Lw(λ) at all wavelengths while the NIR similarity spectrum algorithm tends to underestimate it. Retrievals of aerosol products, such as the Ångström coefficient, α(531,869), and the optical thickness, τ(869), present RE above 44% and 72%, respectively. The performance of the algorithms is also investigated as a function of water types. For water masses mainly dominated by phytoplankton, the standard NIR algorithm performs better. In contrast, for water masses mainly dominated by detrital and mineral material, the neural network-based algorithm shows the best results. The largest errors are encountered above water masses dominated by high phytoplankton and CDOM concentrations. This work conducted to a number of perspectives for improving the atmospheric correction algorithms The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the aerosol optical properties to the visible from the near-infra-red (NIR) spectral region assuming that seawater is totally absorbent in this latter part of the spectrum, the so-called black pixel assumption. While this assumption is verified for most phytoplankton dominated waters, it is invalid in turbid waters. Consequently, for the past ten years, several algorithms have been developed on alternative assumptions. Studies comparing these algorithms are of great interest for further improvement in water leaving radiance (Lw(λ)) retrievals from satellite images explaining the focus of the present research. Four published atmospheric correction algorithms for MODIS-Aqua are compared: (1) the standard NIR algorithm of NASA, (2) the NIR similarity spectrum algorithm, (3) the NIR-SWIR algorithm and (4) an Artificial Neural Network algorithm. The MODIS-Aqua estimated normalized Lw(λ) are validated with AERONET-Ocean Color data and cruise measurements presenting moderately to highly turbid waters. Based on a match-up exercise, the former three algorithms show the best results in the green region of the spectrum (relative error, RE, between 11 and 20%) and the largest errors in the blue and red region of the spectrum (RE exceeding 30%). In contrast, the Artificial Neural Network algorithm performs better in the red band (RE of 22%). The latter tends to overestimate the normalized Lw(λ) at all wavelengths while the NIR similarity spectrum algorithm tends to underestimate it. Retrievals of aerosol products, such as the Ångström coefficient, α(531,869), and the optical thickness, τ(869), present RE above 44% and 72%, respectively. The performance of the algorithms is also investigated as a function of water types. For water masses mainly dominated by phytoplankton, the standard NIR algorithm performs better. In contrast, for water masses mainly dominated by detrital and mineral material, the neural network-based algorithm shows the best results. The largest errors are encountered above water masses dominated by high phytoplankton and CDOM concentrations. This work conducted to a number of perspectives for improving the atmospheric correction algorithms. ► Four atmospheric correction algorithms for MODIS Aqua images are validated. ► A validation is also performed as a function of the water type. ► Overall, the standard NIR algorithm of the NASA performs the best. ► Large errors in water leaving reflectance retrievals are still observed. ► The performances of the algorithms are function of the water type. The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the aerosol optical properties to the visible from the near-infra-red (NIR) spectral region assuming that seawater is totally absorbent in this latter part of the spectrum, the so-called black pixel assumption. While this assumption is verified for most phytoplankton dominated waters, it is invalid in turbid waters. Consequently, for the past ten years, several algorithms have been developed on alternative assumptions. Studies comparing these algorithms are of great interest for further improvement in water leaving radiance (Lw(λ)) retrievals from satellite images explaining the focus of the present research. Four published atmospheric correction algorithms for MODIS-Aqua are compared: (1) the standard NIR algorithm of NASA, (2) the NIR similarity spectrum algorithm, (3) the NIR-SWIR algorithm and (4) an Artificial Neural Network algorithm. The MODIS-Aqua estimated normalized Lw(λ) are validated with AERONET-Ocean Color data and cruise measurements presenting moderately to highly turbid waters. Based on a match-up exercise, the former three algorithms show the best results in the green region of the spectrum (relative error, RE, between 11 and 20%) and the largest errors in the blue and red region of the spectrum (RE exceeding 30%). In contrast, the Artificial Neural Network algorithm performs better in the red band (RE of 22%). The latter tends to overestimate the normalized Lw(λ) at all wavelengths while the NIR similarity spectrum algorithm tends to underestimate it. Retrievals of aerosol products, such as the Ångström coefficient, α(531,869), and the optical thickness, τ(869), present RE above 44% and 72%, respectively.The performance of the algorithms is also investigated as a function of water types. For water masses mainly dominated by phytoplankton, the standard NIR algorithm performs better. In contrast, for water masses mainly dominated by detrital and mineral material, the neural network-based algorithm shows the best results. The largest errors are encountered above water masses dominated by high phytoplankton and CDOM concentrations. This work conducted to a number of perspectives for improving the atmospheric correction algorithms. |
| Author | Goyens, C. Jamet, C. Schroeder, T. |
| Author_xml | – sequence: 1 givenname: C. surname: Goyens fullname: Goyens, C. organization: CNRS, UMR 8187, Univ Lille Nord de France, ULCO, LOG, F-62930 Wimereux, France – sequence: 2 givenname: C. surname: Jamet fullname: Jamet, C. email: cedric.jamet@univ-littoral.fr organization: CNRS, UMR 8187, Univ Lille Nord de France, ULCO, LOG, F-62930 Wimereux, France – sequence: 3 givenname: T. surname: Schroeder fullname: Schroeder, T. organization: CSIRO Land and Water, 41 Boggo Road, Brisbane, QLD 4102, Australia |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27129260$$DView record in Pascal Francis https://hal.science/hal-00864271$$DView record in HAL |
| BookMark | eNp9kUFvEzEQhS1UJNLCD-C2FyQ4bBg7XnstTlEptFKqHoCzNfHONo6cdWrvBvHvcZrCoYdKI83I_t6zNe-cnQ1xIMbec5hz4Orzdp4yzQVwMS8FoF6xGW-1qUGDPGMzgIWspWj0G3ae8xaAN63mM-avDhgmHH0cqthXfZxSheMu5v2GkneViymRe7zGcB-THze7XLBU3d59vflRLx8mrPwO7ylX8UCpCIYxYR6pK2PpGKrfOFLKb9nrHkOmd0_9gv36dvXz8rpe3X2_uVyuaicVjLVpnAYjUTtsJF8gdE4ZZZCv16ZMCyXBcGhl2zWtI5S9LiyJZi2NkORwccE-nXw3GOw-lb-lPzait9fLlT2eAbRKCs0PvLAfT-w-xYeJ8mh3PjsKAQeKU7ZccxBCqEYV9MMTitlh6BMOzuf_DxQ_YYSCwukT51LMOVFvnR8f91vW4oPlYI-B2a0tgdljYLZUCawo-TPlP_OXNF9OGiobPXhKNjtPg6POH2OzXfQvqP8CNWSv0w |
| CODEN | RSEEA7 |
| CitedBy_id | crossref_primary_10_1016_j_scitotenv_2019_06_339 crossref_primary_10_1016_j_rse_2021_112537 crossref_primary_10_1016_j_rse_2019_01_023 crossref_primary_10_1080_01431161_2019_1577579 crossref_primary_10_3390_rs14246372 crossref_primary_10_3390_rs11141631 crossref_primary_10_3390_rs14081881 crossref_primary_10_1016_j_rsase_2016_09_001 crossref_primary_10_5194_os_12_417_2016 crossref_primary_10_3389_fmars_2017_00041 crossref_primary_10_1016_j_watres_2024_121493 crossref_primary_10_1364_OE_21_021176 crossref_primary_10_3390_rs13214206 crossref_primary_10_3390_rs70911821 crossref_primary_10_1002_2017JC013632 crossref_primary_10_1016_j_watres_2019_115403 crossref_primary_10_1364_OE_27_0A1118 crossref_primary_10_1109_TGRS_2020_3002460 crossref_primary_10_3390_rs12010089 crossref_primary_10_3390_rs8030211 crossref_primary_10_3390_rs10020265 crossref_primary_10_5194_acp_18_3865_2018 crossref_primary_10_1016_j_rse_2013_12_001 crossref_primary_10_3390_rs10030418 crossref_primary_10_1080_01431161_2019_1569279 crossref_primary_10_1109_LGRS_2024_3351328 crossref_primary_10_1080_17538947_2022_2161651 crossref_primary_10_1016_j_rse_2014_11_025 crossref_primary_10_1016_j_isprsjprs_2017_09_011 crossref_primary_10_1016_j_rse_2020_112022 crossref_primary_10_3389_fmars_2023_1129876 crossref_primary_10_3390_rs11060668 crossref_primary_10_3390_rs10071002 crossref_primary_10_5194_bg_13_6441_2016 crossref_primary_10_1109_TGRS_2013_2283523 crossref_primary_10_1016_j_rse_2021_112637 crossref_primary_10_1109_JSTARS_2024_3492322 crossref_primary_10_3389_fmars_2022_998970 crossref_primary_10_1016_j_rse_2015_12_053 crossref_primary_10_1016_j_rse_2019_05_017 crossref_primary_10_3390_rs8050423 crossref_primary_10_3390_rs13010099 crossref_primary_10_1016_j_jmarsys_2018_12_006 crossref_primary_10_3390_rs11131613 crossref_primary_10_1364_OE_498601 crossref_primary_10_1109_TGRS_2022_3228961 crossref_primary_10_1016_j_ocecoaman_2024_107074 crossref_primary_10_3390_rs14051099 crossref_primary_10_1080_01431161_2014_916051 crossref_primary_10_1016_j_envsoft_2015_11_025 crossref_primary_10_1016_j_rse_2016_02_014 crossref_primary_10_3402_tellusb_v65i0_20805 crossref_primary_10_1016_j_rse_2022_112992 crossref_primary_10_1109_JSTARS_2023_3343572 crossref_primary_10_1016_j_ecss_2024_108725 crossref_primary_10_1016_j_jag_2018_10_010 crossref_primary_10_1080_01431161_2014_995273 crossref_primary_10_1590_1809_4430_eng_agric_v38n5p728_740_2018 crossref_primary_10_1016_j_ecss_2018_10_013 crossref_primary_10_3390_rs13122319 crossref_primary_10_1007_s40808_017_0314_z crossref_primary_10_3389_fenvs_2022_900694 crossref_primary_10_1016_j_rse_2015_02_007 crossref_primary_10_3390_rs10091335 crossref_primary_10_1016_j_jag_2025_104417 crossref_primary_10_1134_S0001433817090031 crossref_primary_10_3390_rs16101793 crossref_primary_10_3389_frsen_2024_1359709 crossref_primary_10_1016_j_asr_2017_02_017 crossref_primary_10_1016_j_rse_2017_10_022 crossref_primary_10_1109_JSTARS_2015_2503800 crossref_primary_10_5194_amt_8_1593_2015 crossref_primary_10_1016_j_isprsjprs_2022_10_014 crossref_primary_10_1364_OE_22_013755 crossref_primary_10_1364_OE_27_007642 crossref_primary_10_1109_JSTARS_2013_2252151 crossref_primary_10_3389_fmars_2019_00251 crossref_primary_10_3390_rs14051075 crossref_primary_10_1016_j_rse_2018_07_012 crossref_primary_10_3390_rs14010089 crossref_primary_10_1364_OE_504088 crossref_primary_10_3390_rs11040469 crossref_primary_10_1016_j_jqsrt_2020_107042 crossref_primary_10_1364_OE_23_000033 crossref_primary_10_1016_j_scitotenv_2016_01_020 crossref_primary_10_1016_j_rse_2016_09_004 crossref_primary_10_3390_rs10020345 crossref_primary_10_1080_22797254_2018_1482732 crossref_primary_10_3390_w14040593 crossref_primary_10_1016_j_rse_2014_06_027 crossref_primary_10_1016_j_rse_2017_08_033 crossref_primary_10_1364_OE_529712 crossref_primary_10_1016_j_rse_2022_113153 crossref_primary_10_1016_j_rse_2021_112317 crossref_primary_10_1016_j_isprsjprs_2020_05_003 crossref_primary_10_5721_EuJRS20154822 crossref_primary_10_3390_rs12071073 crossref_primary_10_3390_rs13152899 crossref_primary_10_1007_s13351_022_1146_y crossref_primary_10_1109_TGRS_2023_3234465 crossref_primary_10_3390_rs8090722 crossref_primary_10_1080_01431161_2024_2440133 crossref_primary_10_3389_fmars_2018_00394 crossref_primary_10_1016_j_csr_2015_11_009 crossref_primary_10_1016_j_rse_2017_11_014 crossref_primary_10_1016_j_jqsrt_2021_107515 crossref_primary_10_1029_2018JG004869 crossref_primary_10_1109_JSTARS_2013_2282938 crossref_primary_10_1109_JSTARS_2016_2614814 crossref_primary_10_3390_rs12081285 crossref_primary_10_1016_j_rse_2016_11_012 crossref_primary_10_1016_j_rsma_2020_101495 crossref_primary_10_1002_2015JC011056 crossref_primary_10_1016_j_rsma_2022_102711 crossref_primary_10_3390_rs10081180 crossref_primary_10_3390_rs11202400 crossref_primary_10_1016_j_isprsjprs_2019_04_013 crossref_primary_10_1016_j_rse_2015_10_035 crossref_primary_10_1016_j_rse_2017_07_016 crossref_primary_10_1016_j_jmarsys_2017_01_016 crossref_primary_10_1109_JSTARS_2024_3414588 crossref_primary_10_3390_rs8010001 crossref_primary_10_1109_TGRS_2020_2973157 crossref_primary_10_3389_feart_2019_00116 crossref_primary_10_3390_rs9101063 crossref_primary_10_1016_j_rse_2013_11_021 crossref_primary_10_1016_j_scitotenv_2016_08_019 |
| Cites_doi | 10.1016/j.rse.2009.07.013 10.1016/j.rse.2009.03.011 10.1016/j.rse.2003.10.012 10.1364/AO.33.000443 10.1016/j.rse.2008.11.005 10.1016/j.rse.2007.02.012 10.1016/j.rse.2012.03.004 10.1016/j.rse.2011.01.015 10.1016/j.rse.2011.03.018 10.4319/lo.2006.51.2.1167 10.1016/j.ecss.2006.05.022 10.1109/TGRS.2003.818020 10.1364/OE.17.014029 10.1080/01431160801918599 10.1016/j.rse.2005.07.001 10.1029/2006EO300001 10.1175/2009JTECHO654.1 10.1016/j.pocean.2010.12.001 10.1016/j.rse.2006.11.026 10.1364/AO.49.005545 10.1029/96JC00629 10.1016/j.rse.2009.11.022 10.1364/AO.39.000897 10.1364/OE.15.015722 10.1016/j.rse.2006.01.015 10.1016/j.rse.2007.02.013 10.1016/j.rse.2010.04.027 10.1364/AO.39.003582 10.1016/S0034-4257(02)00085-8 10.1364/OE.18.007521 10.1080/01431160310001592544 10.1364/OE.18.020949 10.1016/0034-4257(87)90029-0 10.1080/01431160600962574 10.1029/96JD02443 10.1364/JOSA.44.000838 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Inc. 2014 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2012 Elsevier Inc. – notice: 2014 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION IQODW 7S9 L.6 1XC |
| DOI | 10.1016/j.rse.2012.12.006 |
| DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences Oceanography |
| EISSN | 1879-0704 |
| EndPage | 75 |
| ExternalDocumentID | oai:HAL:hal-00864271v1 27129260 10_1016_j_rse_2012_12_006 S0034425712004725 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW VOH WUQ XOL ~HD AGCQF AGRNS BNPGV IQODW SSH 7S9 L.6 1XC ABUFD |
| ID | FETCH-LOGICAL-c460t-95c7094a7ca5413a0dc6969a1bb9c693640910848d58cea4f74a7e25b4924eca3 |
| IEDL.DBID | .~1 |
| ISSN | 0034-4257 |
| IngestDate | Tue Oct 14 20:41:42 EDT 2025 Sun Sep 28 06:58:43 EDT 2025 Mon Jul 21 09:15:23 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 Wed Oct 01 02:18:07 EDT 2025 Fri Feb 23 02:30:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Validation MODIS-Aqua Ocean color Atmospheric correction Turbid water Classification atmosphere algorithms turbidity color aerosols evaluation coastal zone phytoplankton plankton Coastal water radiance sea water absorption Space remote sensing near infrared radiation Satellite observation monitoring optical properties marine environment ocean atmospheric correction |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-95c7094a7ca5413a0dc6969a1bb9c693640910848d58cea4f74a7e25b4924eca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6988-6506 |
| PQID | 1710222656 |
| PQPubID | 24069 |
| PageCount | 13 |
| ParticipantIDs | hal_primary_oai_HAL_hal_00864271v1 proquest_miscellaneous_1710222656 pascalfrancis_primary_27129260 crossref_citationtrail_10_1016_j_rse_2012_12_006 crossref_primary_10_1016_j_rse_2012_12_006 elsevier_sciencedirect_doi_10_1016_j_rse_2012_12_006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-04-15 |
| PublicationDateYYYYMMDD | 2013-04-15 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Loisel, Lubac, Dessailly, Duforet-Gaurier, Vantrepotte (bb0300) 2010; 18 Werdell, Franz, Bailey (bb0400) 2010; 114 Cox, Munk (bb0025) 1954; 44 Siegel, Wang, Maritorena, Robinson (bb0365) 2000; 39 Zibordi, Holben, Slutsker, Giles, D'Alimonte, Mélin (bb0425) 2009; 26 Wolfe, Nishihama, Fleig, Kuyper, Roy, Storey (bb0410) 2002; 83 Gordon (bb0280) 1997; 102 Schroeder, Behnert, Schaale, Fischer, Doerffer (bb0145) 2007; 28 O'Reilly, Maritorena, O'Brien, Siegel, Toole, Menzies (bb0335) 2000 Gordon (bb0275) 1987; 22 Lubac, Loisel (bb0305) 2007; 110 Bailey, Werdell (bb0245) 2006; 102 Neukermans, Ruddick, Bernard, Ramon, Nechad, Deschamps (bb0330) 2009; 17 Darecki, Stramski (bb0250) 2004; 89 Dogliotti, Ruddick, Nechad, Lasta (bb0255) 2011 Ruddick, Cauwer, Park, Moore (bb0345) 2006; 51 Gordon, Wang (bb0285) 1994; 33 Stumpf, Arone, Gould, Ransibrahmanakul (bb0370) 2003 Ahmad, Franz, McClain, Kwiatkowska, Werdell, Shettle (bb0235) 2010; 49 Bailey, Franz, Werdell (bb0240) 2010; 18 Loisel, Mériaux, Poteau, Artigas, Lubac, Gardel (bb0090) 2009; SI 56 Werdell, Bailey (bb0395) 2005; 98 Vantrepotte, Loisel, Mériaux, Jamet, Dessailly, Neukermans (bb0380) 2011; SI64 Shi, Wang (bb0355) 2007; 110 Vantrepotte, Loisel, Dessailly, Mériaux (bb0375) 2012; 123 Jamet, Loisel, Kuchinke, Ruddick, Zibordi, Feng (bb0290) 2011; 115 Lubac, Loisel, Guiselin, Astoreca, Artigas, Mériaux (bb0310) 2008; 113 Wang, Shi (bb0385) 2007; 15 Mélin, Zibordi, Djavidnia (bb0320) 2007; 108 Werdell, Franz, Bailey, Harding., Feldman (bb0405) 2007; Vol. 6680 Zibordi, Holben, Hooker, Mélin, Berthon, Slutsker (bb0420) 2006; 87 D'Alimonte, Mélin, Zibordi, Berthon (bb0030) 2003; 41 Doron, Bélanger, Doxoran, Babin (bb0260) 2011; 115 Nechad, Ruddick, Park (bb0325) 2010; 114 Mélin, Vantrepotte, Clerici, D'Alimonte, Zibordi, Berthon (bb0315) 2011; 91 Ruddick, Ovidio, Rijkeboer (bb0350) 2000; 39 Shi, Wang (bb0360) 2009; 113 Feng, Vandemark, Campbell, Holben (bb0265) 2008; 29 Robinson, Franz, Patt, Bailey, Werdell (bb0340) 2003 Zibordi, Stroembeck, Mélin, Berthon (bb0230) 2006; 69 Berthon, Zibordi (bb0020) 2004; 25 Frouin, Schwindling, Deschamps (bb0270) 1996; 101 Kuchinke, Gordon, Franz (bb0295) 2009; Vol. 113 Wang, Son, Shi (bb0390) 2009; 113 Zibordi, Berthon, Mélin, D'Alimonte, Kaitala (bb0415) 2009; 113 Nechad (10.1016/j.rse.2012.12.006_bb0325) 2010; 114 Ruddick (10.1016/j.rse.2012.12.006_bb0345) 2006; 51 Ruddick (10.1016/j.rse.2012.12.006_bb0350) 2000; 39 Jamet (10.1016/j.rse.2012.12.006_bb0290) 2011; 115 Stumpf (10.1016/j.rse.2012.12.006_bb0370) 2003 Ahmad (10.1016/j.rse.2012.12.006_bb0235) 2010; 49 O'Reilly (10.1016/j.rse.2012.12.006_bb0335) 2000 Zibordi (10.1016/j.rse.2012.12.006_bb0420) 2006; 87 Wolfe (10.1016/j.rse.2012.12.006_bb0410) 2002; 83 Darecki (10.1016/j.rse.2012.12.006_bb0250) 2004; 89 Werdell (10.1016/j.rse.2012.12.006_bb0405) 2007; Vol. 6680 Loisel (10.1016/j.rse.2012.12.006_bb0090) 2009; SI 56 Vantrepotte (10.1016/j.rse.2012.12.006_bb0375) 2012; 123 Mélin (10.1016/j.rse.2012.12.006_bb0315) 2011; 91 Zibordi (10.1016/j.rse.2012.12.006_bb0425) 2009; 26 Kuchinke (10.1016/j.rse.2012.12.006_bb0295) 2009; Vol. 113 Werdell (10.1016/j.rse.2012.12.006_bb0395) 2005; 98 Schroeder (10.1016/j.rse.2012.12.006_bb0145) 2007; 28 Neukermans (10.1016/j.rse.2012.12.006_bb0330) 2009; 17 Mélin (10.1016/j.rse.2012.12.006_bb0320) 2007; 108 Gordon (10.1016/j.rse.2012.12.006_bb0285) 1994; 33 Bailey (10.1016/j.rse.2012.12.006_bb0240) 2010; 18 Feng (10.1016/j.rse.2012.12.006_bb0265) 2008; 29 Wang (10.1016/j.rse.2012.12.006_bb0390) 2009; 113 D'Alimonte (10.1016/j.rse.2012.12.006_bb0030) 2003; 41 Werdell (10.1016/j.rse.2012.12.006_bb0400) 2010; 114 Gordon (10.1016/j.rse.2012.12.006_bb0275) 1987; 22 Shi (10.1016/j.rse.2012.12.006_bb0355) 2007; 110 Wang (10.1016/j.rse.2012.12.006_bb0385) 2007; 15 Cox (10.1016/j.rse.2012.12.006_bb0025) 1954; 44 Robinson (10.1016/j.rse.2012.12.006_bb0340) 2003 Shi (10.1016/j.rse.2012.12.006_bb0360) 2009; 113 Frouin (10.1016/j.rse.2012.12.006_bb0270) 1996; 101 Bailey (10.1016/j.rse.2012.12.006_bb0245) 2006; 102 Siegel (10.1016/j.rse.2012.12.006_bb0365) 2000; 39 Gordon (10.1016/j.rse.2012.12.006_bb0280) 1997; 102 Zibordi (10.1016/j.rse.2012.12.006_bb0415) 2009; 113 Dogliotti (10.1016/j.rse.2012.12.006_bb0255) 2011 Loisel (10.1016/j.rse.2012.12.006_bb0300) 2010; 18 Berthon (10.1016/j.rse.2012.12.006_bb0020) 2004; 25 Vantrepotte (10.1016/j.rse.2012.12.006_bb0380) 2011; SI64 Zibordi (10.1016/j.rse.2012.12.006_bb0230) 2006; 69 Lubac (10.1016/j.rse.2012.12.006_bb0305) 2007; 110 Doron (10.1016/j.rse.2012.12.006_bb0260) 2011; 115 Lubac (10.1016/j.rse.2012.12.006_bb0310) 2008; 113 |
| References_xml | – year: 2011 ident: bb0255 article-title: Improving water reflectance retrieval from MODIS imagery in the highly turbid waters of La Plata River publication-title: Proceedings of VI International Conference “Current Problems in Optics of Natural Waters” – volume: 102 start-page: 17081 year: 1997 end-page: 17106 ident: bb0280 article-title: Atmospheric correction of ocean color imagery in the Earth Observing system era publication-title: Journal of Geophysical Research – volume: 29 start-page: 4479 year: 2008 end-page: 4497 ident: bb0265 article-title: Evaluation of MODIS ocean color products at a northeast United States coast site near the Martha's Vineyard Coastal Observatory publication-title: International of Remote Sensing – volume: 115 start-page: 1955 year: 2011 end-page: 1965 ident: bb0290 article-title: Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements publication-title: Remote Sensing of Environment – volume: 39 start-page: 897 year: 2000 end-page: 912 ident: bb0350 article-title: Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters publication-title: Applied Optics – volume: 22 start-page: 103 year: 1987 end-page: 126 ident: bb0275 article-title: Calibration requirements and methodology for remote sensors viewing the ocean in the visible publication-title: Remote Sensing of Environment – volume: 91 start-page: 229 year: 2011 end-page: 244 ident: bb0315 article-title: Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea publication-title: Progress in Oceanography – volume: 98 start-page: 122 year: 2005 end-page: 140 ident: bb0395 article-title: An improved bio-optical data set for ocean color algorithm development and satellite data product validation publication-title: Remote Sensing of Environment – volume: 33 start-page: 443 year: 1994 end-page: 452 ident: bb0285 article-title: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preminilary algorithm publication-title: Applied Optics – start-page: 9 year: 2000 end-page: 23 ident: bb0335 article-title: Ocean color chlorophyll a algorithms for seawifs, oc2, and oc4: Version 4 publication-title: SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. NASA/Tech. Memo. 2000-206892 – volume: 28 start-page: 1469 year: 2007 end-page: 1486 ident: bb0145 article-title: Atmospheric correction algorithm for MERIS above case-2 waters publication-title: International Journal of Remote Sensing – volume: 18 start-page: 7521 year: 2010 end-page: 7527 ident: bb0240 article-title: Estimations of near-infrared water-leaving reflectance for satellite ocean color data processing publication-title: Optics Express – volume: 115 start-page: 1617 year: 2011 end-page: 1631 ident: bb0260 article-title: Spectral variations in the near-infrared ocean reflectance publication-title: Remote Sensing of Environment – volume: 114 start-page: 854 year: 2010 end-page: 866 ident: bb0325 article-title: Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters publication-title: Remote Sensing of Environment – volume: 123 year: 2012 ident: bb0375 article-title: Optical classification of contrasted coastal waters publication-title: Remote Sensing of Environment – volume: 69 start-page: 649 year: 2006 end-page: 654 ident: bb0230 article-title: Tower-based radiometric observations at a coastal site in the Baltic Proper publication-title: Estuarine, Coastal and Shelf Science – volume: 18 start-page: 20949 year: 2010 end-page: 20952 ident: bb0300 article-title: Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: An in situ approach publication-title: Optics Express – volume: 83 start-page: 31 year: 2002 end-page: 49 ident: bb0410 article-title: Achieving sub-pixel geolocation accuracy in support of MODIS land pixel publication-title: Remote Sensing of Environment – volume: 44 start-page: 838 year: 1954 end-page: 850 ident: bb0025 article-title: Measurements of the roughness of the sea surface from photographs of the sun's glitter publication-title: Journal of the Optical Society of America – volume: SI64 start-page: 1750 year: 2011 end-page: 1754 ident: bb0380 article-title: Seasonal and inter-annual (19982010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters publication-title: Journal of Coastal Research – volume: 89 start-page: 326 year: 2004 end-page: 350 ident: bb0250 article-title: An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea publication-title: Remote Sensing of Environment – volume: 110 start-page: 45 year: 2007 end-page: 58 ident: bb0305 article-title: Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea publication-title: Remote Sensing of Environment – volume: 114 start-page: 2238 year: 2010 end-page: 2247 ident: bb0400 article-title: Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake bay publication-title: Remote Sensing of Environment – volume: 108 start-page: 436 year: 2007 end-page: 450 ident: bb0320 article-title: Development and validation of a technique for merging satellite derived aerosol optical depth from SeaWiFS and MODIS publication-title: Remote Sensing of Environment – volume: 51 start-page: 1167 year: 2006 end-page: 1179 ident: bb0345 article-title: Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters publication-title: Limnology and Oceanography – start-page: 51 year: 2003 end-page: 59 ident: bb0370 article-title: A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters publication-title: SeaWiFS Postlaunch Technical Report Series, Chap.9, NASA/TM-2003-206892 – volume: 41 start-page: 2833 year: 2003 end-page: 2843 ident: bb0030 article-title: Use of the novelty detection technique to identify the range of applicability of the empirical ocean color algorithms publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 102 start-page: 12 year: 2006 end-page: 23 ident: bb0245 article-title: A multi-sensor approach for the on-orbit validation of ocean color satellite data products publication-title: Remote Sensing of Environment – volume: 25 start-page: 1527 year: 2004 end-page: 1532 ident: bb0020 article-title: Bio-optical relationships for the northern Adriatic Sea publication-title: International Journal of Remote Sensing – volume: 17 start-page: 14029 year: 2009 end-page: 14052 ident: bb0330 article-title: Mapping total suspended matter from geostationary satellites: A feasibility study with SEVIRI in the Southern North Sea publication-title: Optics Express – volume: 113 start-page: C06026 year: 2008 ident: bb0310 article-title: Hyperspectral and multispectral ocean color inversions to detect publication-title: Journal of Geophysiscal Research – volume: 113 start-page: 1587 year: 2009 end-page: 1597 ident: bb0360 article-title: An assessment of the black ocean pixel assumption for MODIS SWIR bands publication-title: Remote Sensing of Environment – volume: 49 start-page: 5545 year: 2010 end-page: 5560 ident: bb0235 article-title: New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans publication-title: Applied Optics – volume: 39 start-page: 3582 year: 2000 end-page: 3591 ident: bb0365 article-title: Atmospheric correction of satellite ocean color imagery: The black pixel assumption publication-title: Applied Optics – volume: 101 start-page: 14361 year: 1996 end-page: 14371 ident: bb0270 article-title: Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications publication-title: Journal of Geophysical Research – volume: SI 56 start-page: 1532 year: 2009 end-page: 1536 ident: bb0090 article-title: Analyze of inherent optical properties of French Guiana coastal waters for remote sensing applications publication-title: Journal of Coastal Research – volume: 110 start-page: 149 year: 2007 end-page: 161 ident: bb0355 article-title: Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing publication-title: Remote Sensing of Environment – volume: Vol. 113 start-page: 571 year: 2009 end-page: 587 ident: bb0295 publication-title: Spectral optimization for constituent retrieval in Case 2 waters I: Implementation and performance – start-page: 34 year: 2003 end-page: 40 ident: bb0340 article-title: Masks and flags updates publication-title: SeaWiFS Postlaunch Technical Report Series, Chap.6, NASA/TM-2003-206892 – volume: 113 start-page: 2574 year: 2009 end-page: 2591 ident: bb0415 article-title: Validation of satellite ocean color primary producs at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland publication-title: Remote Sensing of Environment – volume: 87 start-page: 293 year: 2006 end-page: 297 ident: bb0420 article-title: A network for standardized ocean color validation measurements publication-title: EOS Transactions – volume: Vol. 6680 start-page: 12 year: 2007 ident: bb0405 article-title: Approach for the long-term spatial and temporal evaluation of ocean color satellite data products in a coastal environment publication-title: Proceeding of SPIE – volume: 26 start-page: 1634 year: 2009 end-page: 1651 ident: bb0425 article-title: Aeronet-oc: A network for the validation of ocean color primary products publication-title: Journal of the Atmospheric and Oceanic Technology – volume: 15 start-page: 15722 year: 2007 end-page: 15733 ident: bb0385 article-title: The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing publication-title: Optics Express – volume: 113 start-page: 635 year: 2009 end-page: 644 ident: bb0390 article-title: Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data publication-title: Remote Sensing of Environment – volume: 113 start-page: 2574 year: 2009 ident: 10.1016/j.rse.2012.12.006_bb0415 article-title: Validation of satellite ocean color primary producs at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.07.013 – year: 2011 ident: 10.1016/j.rse.2012.12.006_bb0255 article-title: Improving water reflectance retrieval from MODIS imagery in the highly turbid waters of La Plata River – volume: 113 start-page: 1587 year: 2009 ident: 10.1016/j.rse.2012.12.006_bb0360 article-title: An assessment of the black ocean pixel assumption for MODIS SWIR bands publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.03.011 – volume: 89 start-page: 326 year: 2004 ident: 10.1016/j.rse.2012.12.006_bb0250 article-title: An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2003.10.012 – volume: 33 start-page: 443 year: 1994 ident: 10.1016/j.rse.2012.12.006_bb0285 article-title: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preminilary algorithm publication-title: Applied Optics doi: 10.1364/AO.33.000443 – volume: 113 start-page: 635 year: 2009 ident: 10.1016/j.rse.2012.12.006_bb0390 article-title: Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2008.11.005 – volume: SI64 start-page: 1750 year: 2011 ident: 10.1016/j.rse.2012.12.006_bb0380 article-title: Seasonal and inter-annual (19982010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters publication-title: Journal of Coastal Research – volume: 110 start-page: 45 year: 2007 ident: 10.1016/j.rse.2012.12.006_bb0305 article-title: Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.02.012 – volume: SI 56 start-page: 1532 year: 2009 ident: 10.1016/j.rse.2012.12.006_bb0090 article-title: Analyze of inherent optical properties of French Guiana coastal waters for remote sensing applications publication-title: Journal of Coastal Research – volume: 123 year: 2012 ident: 10.1016/j.rse.2012.12.006_bb0375 article-title: Optical classification of contrasted coastal waters publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2012.03.004 – volume: 115 start-page: 1617 year: 2011 ident: 10.1016/j.rse.2012.12.006_bb0260 article-title: Spectral variations in the near-infrared ocean reflectance publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.01.015 – volume: 115 start-page: 1955 year: 2011 ident: 10.1016/j.rse.2012.12.006_bb0290 article-title: Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.03.018 – volume: 51 start-page: 1167 year: 2006 ident: 10.1016/j.rse.2012.12.006_bb0345 article-title: Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters publication-title: Limnology and Oceanography doi: 10.4319/lo.2006.51.2.1167 – volume: 69 start-page: 649 year: 2006 ident: 10.1016/j.rse.2012.12.006_bb0230 article-title: Tower-based radiometric observations at a coastal site in the Baltic Proper publication-title: Estuarine, Coastal and Shelf Science doi: 10.1016/j.ecss.2006.05.022 – volume: 41 start-page: 2833 year: 2003 ident: 10.1016/j.rse.2012.12.006_bb0030 article-title: Use of the novelty detection technique to identify the range of applicability of the empirical ocean color algorithms publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2003.818020 – volume: 17 start-page: 14029 year: 2009 ident: 10.1016/j.rse.2012.12.006_bb0330 article-title: Mapping total suspended matter from geostationary satellites: A feasibility study with SEVIRI in the Southern North Sea publication-title: Optics Express doi: 10.1364/OE.17.014029 – start-page: 51 year: 2003 ident: 10.1016/j.rse.2012.12.006_bb0370 article-title: A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters – volume: 29 start-page: 4479 year: 2008 ident: 10.1016/j.rse.2012.12.006_bb0265 article-title: Evaluation of MODIS ocean color products at a northeast United States coast site near the Martha's Vineyard Coastal Observatory publication-title: International of Remote Sensing doi: 10.1080/01431160801918599 – volume: 98 start-page: 122 year: 2005 ident: 10.1016/j.rse.2012.12.006_bb0395 article-title: An improved bio-optical data set for ocean color algorithm development and satellite data product validation publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.07.001 – volume: 87 start-page: 293 year: 2006 ident: 10.1016/j.rse.2012.12.006_bb0420 article-title: A network for standardized ocean color validation measurements publication-title: EOS Transactions doi: 10.1029/2006EO300001 – volume: 26 start-page: 1634 year: 2009 ident: 10.1016/j.rse.2012.12.006_bb0425 article-title: Aeronet-oc: A network for the validation of ocean color primary products publication-title: Journal of the Atmospheric and Oceanic Technology doi: 10.1175/2009JTECHO654.1 – volume: 91 start-page: 229 year: 2011 ident: 10.1016/j.rse.2012.12.006_bb0315 article-title: Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea publication-title: Progress in Oceanography doi: 10.1016/j.pocean.2010.12.001 – volume: 108 start-page: 436 year: 2007 ident: 10.1016/j.rse.2012.12.006_bb0320 article-title: Development and validation of a technique for merging satellite derived aerosol optical depth from SeaWiFS and MODIS publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.11.026 – volume: 49 start-page: 5545 year: 2010 ident: 10.1016/j.rse.2012.12.006_bb0235 article-title: New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans publication-title: Applied Optics doi: 10.1364/AO.49.005545 – volume: 101 start-page: 14361 year: 1996 ident: 10.1016/j.rse.2012.12.006_bb0270 article-title: Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications publication-title: Journal of Geophysical Research doi: 10.1029/96JC00629 – start-page: 34 year: 2003 ident: 10.1016/j.rse.2012.12.006_bb0340 article-title: Masks and flags updates – volume: 113 start-page: C06026 year: 2008 ident: 10.1016/j.rse.2012.12.006_bb0310 article-title: Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters publication-title: Journal of Geophysiscal Research – volume: 114 start-page: 854 year: 2010 ident: 10.1016/j.rse.2012.12.006_bb0325 article-title: Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.11.022 – volume: 39 start-page: 897 year: 2000 ident: 10.1016/j.rse.2012.12.006_bb0350 article-title: Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters publication-title: Applied Optics doi: 10.1364/AO.39.000897 – volume: 15 start-page: 15722 year: 2007 ident: 10.1016/j.rse.2012.12.006_bb0385 article-title: The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing publication-title: Optics Express doi: 10.1364/OE.15.015722 – volume: 102 start-page: 12 year: 2006 ident: 10.1016/j.rse.2012.12.006_bb0245 article-title: A multi-sensor approach for the on-orbit validation of ocean color satellite data products publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.01.015 – volume: 110 start-page: 149 year: 2007 ident: 10.1016/j.rse.2012.12.006_bb0355 article-title: Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.02.013 – volume: Vol. 6680 start-page: 12 year: 2007 ident: 10.1016/j.rse.2012.12.006_bb0405 article-title: Approach for the long-term spatial and temporal evaluation of ocean color satellite data products in a coastal environment – volume: 114 start-page: 2238 year: 2010 ident: 10.1016/j.rse.2012.12.006_bb0400 article-title: Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake bay publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2010.04.027 – volume: Vol. 113 start-page: 571 year: 2009 ident: 10.1016/j.rse.2012.12.006_bb0295 – volume: 39 start-page: 3582 year: 2000 ident: 10.1016/j.rse.2012.12.006_bb0365 article-title: Atmospheric correction of satellite ocean color imagery: The black pixel assumption publication-title: Applied Optics doi: 10.1364/AO.39.003582 – start-page: 9 year: 2000 ident: 10.1016/j.rse.2012.12.006_bb0335 article-title: Ocean color chlorophyll a algorithms for seawifs, oc2, and oc4: Version 4 – volume: 83 start-page: 31 year: 2002 ident: 10.1016/j.rse.2012.12.006_bb0410 article-title: Achieving sub-pixel geolocation accuracy in support of MODIS land pixel publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(02)00085-8 – volume: 18 start-page: 7521 year: 2010 ident: 10.1016/j.rse.2012.12.006_bb0240 article-title: Estimations of near-infrared water-leaving reflectance for satellite ocean color data processing publication-title: Optics Express doi: 10.1364/OE.18.007521 – volume: 25 start-page: 1527 year: 2004 ident: 10.1016/j.rse.2012.12.006_bb0020 article-title: Bio-optical relationships for the northern Adriatic Sea publication-title: International Journal of Remote Sensing doi: 10.1080/01431160310001592544 – volume: 18 start-page: 20949 year: 2010 ident: 10.1016/j.rse.2012.12.006_bb0300 article-title: Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: An in situ approach publication-title: Optics Express doi: 10.1364/OE.18.020949 – volume: 22 start-page: 103 year: 1987 ident: 10.1016/j.rse.2012.12.006_bb0275 article-title: Calibration requirements and methodology for remote sensors viewing the ocean in the visible publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(87)90029-0 – volume: 28 start-page: 1469 year: 2007 ident: 10.1016/j.rse.2012.12.006_bb0145 article-title: Atmospheric correction algorithm for MERIS above case-2 waters publication-title: International Journal of Remote Sensing doi: 10.1080/01431160600962574 – volume: 102 start-page: 17081 year: 1997 ident: 10.1016/j.rse.2012.12.006_bb0280 article-title: Atmospheric correction of ocean color imagery in the Earth Observing system era publication-title: Journal of Geophysical Research doi: 10.1029/96JD02443 – volume: 44 start-page: 838 year: 1954 ident: 10.1016/j.rse.2012.12.006_bb0025 article-title: Measurements of the roughness of the sea surface from photographs of the sun's glitter publication-title: Journal of the Optical Society of America doi: 10.1364/JOSA.44.000838 |
| SSID | ssj0015871 |
| Score | 2.4678113 |
| Snippet | The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the... |
| SourceID | hal proquest pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 63 |
| SubjectTerms | aerosols algorithms Animal, plant and microbial ecology Applied geophysics Atmospheric correction Biological and medical sciences Classification coastal water color Earth Sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques Internal geophysics MODIS-Aqua neural networks Ocean color Oceanography optical properties phytoplankton remote sensing satellites Sciences of the Universe seawater Teledetection and vegetation maps Turbid water Validation wavelengths |
| Title | Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters |
| URI | https://dx.doi.org/10.1016/j.rse.2012.12.006 https://www.proquest.com/docview/1710222656 https://hal.science/hal-00864271 |
| Volume | 131 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qRSxI0dPSq_VYxSchNptsvh6PevWqtj5ooW_LZm_Xi_Qu10tO6Yt_uzObDylKH4RAQjJZlp3Z-UhmfgPwGo1cHNpZ7qE5sJ4g8Nkc_VaPqjiFsrkyGRU4n53H0wvx4TK63ILjrhaG0ipb3d_odKet2ztH7WoerYqCanxDQRLHAwd5SIXmAs8o029_9WkePEqTpmteKDyi7v5suhyvdUVImTxwXwSp6dG_bdO9OSVJPlqpCtfNNg0v_tLdziCdPIbd1pNk42ayT2DLLAewN_lTuIYP251bDeBh2-18fjOAB-9dO9-bp1BMerBvVlpmcUym6kVZEdhAoZmm3h2u8oGpq2_luqjniwrJ1uzs87vTL974eqNYsUCdVDHKBWUu813RJ1S8xDPO4aciAM9ncHEy-Xo89drmC54WsV97WaQTDP1UolWEhk75Mx1ncaZ4nmd4FcaCPI1UpLMo1UYJi6xNTBDlAiM6o1W4B9vLcmn2gQVZHvpCRzPDLRL5inMTmsjiEL5VSToEv1t2qVtkcmqQcSW7FLTvEjkliVMSD-TUEN70r6waWI67iEXHS3lLtiSajbtee4V874cnHO7p-JOkexQIiiDhP_gQRrfEoifHp0GGweIQXnZyInHn0u8YtTTlppI8cdE2OtQH_zfB57ATuOYcwuPRIWzX6415gS5SnY_cHhjB_fHpx-n5bz47D4I |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ2iTEILCRPkYBvGEFBYndj4eq9HRQTse2KS9WY7rrEFr0zUtaC_87dw5H2gC7QEpUiL7Ylk--z6Su_sBvEMlF4X5NPNQHeSeoOKzGdqtHmVxCp1n2qaU4Dw5jUbn4vOFvNiCozYXhsIqG9lfy3QnrZuWw2Y1D5dFQTm-oaAdxwNX8lBuwz0hg5g8sA-_ujgPLpO4hs0LhUfk7a9NF-S1qqhUJg_cJ0FCPfq3ctqeUZTkg6WucOHyGvHiL-HtNNLxI3jYmJJsUM_2MWzZRQ_2h38y17CzObpVD3YbuPPZTQ_uf3J4vjdPoBh21b5ZmbMcx2R6PS8rqjZQGGYIvMOlPjB9dVmuivVsXiHZik2-fjz55g2uN5oVcxRKFaNgUOZC3zV9Q8VHvOMcfmqq4PkUzo-HZ0cjr0Ff8IyI_LWXShOj76djoyVqOu1PTZRGqeZZluJTGAkyNRKRTGVirBY58ja2gcwEunTW6HAfdhblwj4DFqRZ6Asjp5bnSORrzm1oZY5D-LmOkz747bIr05QmJ4SMK9XGoH1XyClFnFJ4Iaf68L57ZVnX5biLWLS8VLc2l0K9cddrb5Hv3fBUiHs0GCtqI09QBDH_wftwcGtbdOTYG6ToLfbhTbtPFB5d-h-jF7bcVIrHzt1Gi_r5_03wNeyOziZjNT45_fIC9gKH1CE8Ll_Cznq1sa_QXlpnB-48_AZlrREX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+four+atmospheric+correction+algorithms+for+MODIS-Aqua+images+over+contrasted+coastal+waters&rft.jtitle=Remote+sensing+of+environment&rft.au=Goyens%2C+C.&rft.au=Jamet%2C+C.&rft.au=Schroeder%2C+T.&rft.date=2013-04-15&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=131&rft.spage=63&rft.epage=75&rft_id=info:doi/10.1016%2Fj.rse.2012.12.006&rft.externalDocID=S0034425712004725 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |