Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms
The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of 1H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150...
Saved in:
| Published in | Talanta (Oxford) Vol. 68; no. 5; pp. 1683 - 1691 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
28.02.2006
Oxford Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0039-9140 1873-3573 1873-3573 |
| DOI | 10.1016/j.talanta.2005.08.042 |
Cover
| Abstract | The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of
1H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to
1H NMR-based metabonomic analysis. The
1H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions. |
|---|---|
| AbstractList | The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of (1)H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to (1)H NMR-based metabonomic analysis. The (1)H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions.The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of (1)H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to (1)H NMR-based metabonomic analysis. The (1)H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions. The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of 1H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to 1H NMR-based metabonomic analysis. The 1H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions. The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of (1)H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to (1)H NMR-based metabonomic analysis. The (1)H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions. |
| Author | Grigorov, M. Ramadan, Z. Kochhar, S. Jacobs, D. |
| Author_xml | – sequence: 1 givenname: Z. surname: Ramadan fullname: Ramadan, Z. email: ziad.ramadan@rdls.nestle.com – sequence: 2 givenname: D. surname: Jacobs fullname: Jacobs, D. – sequence: 3 givenname: M. surname: Grigorov fullname: Grigorov, M. – sequence: 4 givenname: S. surname: Kochhar fullname: Kochhar, S. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17495601$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18970515$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtv1DAUhS1URKeFnwDKBrEh4dqO8xALhCpeUhEbWFs3zs3gkeOktoPUf49HM6gSm258vfjOfZxzxS784omxlxwqDrx5d6gSOvQJKwGgKugqqMUTtuNdK0upWnnBdgCyL3tewyW7ivEAAEKCfMYuede3oLjasfCdEg6Ls6ZYwzJZZ_2-2OLxXYP1xq7oCrPMa57uU4Ee3X208W0x2miCna3POxQrhmQz6AhjKuLdhoEyg34s9uQp5e7o9kuw6fccn7OnE7pIL871mv36_Onnzdfy9seXbzcfb0tTN5DKXhiczISiRWwbpdoOSCKN0I-DIt6DUA2vVSdFL0X-wCBFI0k00Ayymbi8Zm9OffNhdxvFpOe8M7nsGi1b1K2UneQth0y-OpPbMNOo8-Uzhnv9z6YMvD4DGA26KWB2Jj5wbd2rBo4j1YkzYYkx0PSAgD7Gpg_6HJs-xqah0zm2rHv_n87YhMkuPgW07lH1h5Oaspt_LAUdjSVvaLSBTNLjYh_p8BcofbeW |
| CODEN | TLNTA2 |
| CitedBy_id | crossref_primary_10_1021_pr500379n crossref_primary_10_1016_j_aca_2012_12_050 crossref_primary_10_1111_jam_13544 crossref_primary_10_1016_j_trac_2024_118064 crossref_primary_10_1016_j_talanta_2011_10_022 crossref_primary_10_1080_17460441_2020_1722636 crossref_primary_10_1039_C4AY01715C crossref_primary_10_1016_j_jfoodeng_2024_112129 crossref_primary_10_1002_jssc_202100439 crossref_primary_10_1123_ijspp_2020_0836 crossref_primary_10_1016_j_jpba_2008_10_022 crossref_primary_10_1097_SHK_0000000000001093 crossref_primary_10_1007_s11306_011_0274_7 crossref_primary_10_1002_art_37921 crossref_primary_10_3390_cancers13020311 crossref_primary_10_1007_s11306_015_0884_6 crossref_primary_10_3390_metabo13030445 crossref_primary_10_1002_jcb_27816 crossref_primary_10_1007_s00216_013_7199_0 crossref_primary_10_1111_ijfs_13017 crossref_primary_10_1016_j_saa_2020_119188 crossref_primary_10_1007_s10068_017_0167_2 crossref_primary_10_1007_s11306_006_0041_3 crossref_primary_10_1016_j_resconrec_2021_106088 crossref_primary_10_1038_s41598_024_59850_6 crossref_primary_10_1111_jfpp_12518 crossref_primary_10_1002_bit_24992 crossref_primary_10_3736_jcim20070424 crossref_primary_10_1186_s13765_024_00896_5 crossref_primary_10_1021_acs_jafc_6b00453 crossref_primary_10_1016_j_oraloncology_2019_104506 crossref_primary_10_1039_D1RA03008F crossref_primary_10_1016_j_jpba_2007_06_030 crossref_primary_10_1371_journal_pone_0277124 crossref_primary_10_1210_jc_2019_01101 crossref_primary_10_1016_j_foodchem_2013_12_066 crossref_primary_10_1021_acsnano_6b03438 crossref_primary_10_3390_metabo13020263 crossref_primary_10_1002_elps_201300053 crossref_primary_10_1111_liv_12863 crossref_primary_10_1007_s11306_017_1283_y crossref_primary_10_1016_j_scitotenv_2016_05_025 crossref_primary_10_1371_journal_pone_0090823 crossref_primary_10_1016_j_plantsci_2023_111694 crossref_primary_10_1074_mcp_M112_022566 crossref_primary_10_1016_j_aca_2019_06_054 crossref_primary_10_1021_pr060594q crossref_primary_10_1007_s11306_015_0823_6 crossref_primary_10_1016_j_apgeog_2017_04_005 crossref_primary_10_1534_g3_115_020073 crossref_primary_10_1002_ddr_21213 crossref_primary_10_1016_j_jfca_2021_103932 crossref_primary_10_1002_etc_3002 crossref_primary_10_1155_2013_982438 crossref_primary_10_1002_nbm_1395 crossref_primary_10_1016_j_pnmrs_2011_04_003 crossref_primary_10_1016_j_cbd_2011_09_003 crossref_primary_10_1177_0734242X221135336 crossref_primary_10_3390_plants11070848 crossref_primary_10_1016_j_cca_2024_120020 crossref_primary_10_3389_fmolb_2016_00035 crossref_primary_10_1111_jfpp_16504 crossref_primary_10_1002_jsfa_6241 crossref_primary_10_5812_amh_101585 crossref_primary_10_1142_S0192415X11008828 crossref_primary_10_1016_j_mcm_2009_09_004 crossref_primary_10_1016_j_phytochem_2011_12_023 crossref_primary_10_2174_1389200220666181231124439 crossref_primary_10_1007_s00784_020_03557_1 crossref_primary_10_1007_s12272_013_0250_z crossref_primary_10_2139_ssrn_4186533 crossref_primary_10_1002_nbm_1428 crossref_primary_10_1016_j_bse_2018_01_003 crossref_primary_10_3390_molecules23071579 crossref_primary_10_1007_s10858_009_9329_8 crossref_primary_10_1016_j_isprsjprs_2025_02_011 crossref_primary_10_1111_2041_210X_12028 crossref_primary_10_1088_1752_7155_10_4_046012 crossref_primary_10_1271_bbb_100799 crossref_primary_10_1016_j_jmir_2020_07_004 crossref_primary_10_1002_bmc_5466 crossref_primary_10_1080_20002297_2021_1886748 crossref_primary_10_1021_acsomega_2c00083 crossref_primary_10_1021_jf401330e crossref_primary_10_1002_cbdv_202300650 crossref_primary_10_4014_mbl_1902_02002 crossref_primary_10_1016_j_ab_2007_06_008 crossref_primary_10_1002_jbio_201400060 crossref_primary_10_1021_jf204977x crossref_primary_10_1080_00032719_2019_1687507 crossref_primary_10_3390_plants11020206 crossref_primary_10_3390_beverages8020034 crossref_primary_10_1038_srep10930 crossref_primary_10_1007_s11306_015_0894_4 crossref_primary_10_1186_1471_2105_15_97 crossref_primary_10_1007_s11368_018_2050_z crossref_primary_10_1088_1752_7163_aaa492 crossref_primary_10_1016_j_jep_2016_07_051 crossref_primary_10_1371_journal_pone_0163258 crossref_primary_10_1002_ddr_21028 crossref_primary_10_1016_j_foodres_2019_108957 crossref_primary_10_1007_s11771_016_3100_6 crossref_primary_10_1039_C7AY00011A crossref_primary_10_1016_j_foodres_2013_12_011 crossref_primary_10_1002_smll_201900147 crossref_primary_10_3389_fnut_2023_1210215 crossref_primary_10_1007_s11306_012_0484_7 crossref_primary_10_1039_c2mb25105a crossref_primary_10_1021_acs_jproteome_6b00007 crossref_primary_10_1039_C7AN01019B crossref_primary_10_1039_c2ay25373a crossref_primary_10_1039_C8RA08754G crossref_primary_10_1016_j_pnmrs_2009_07_003 crossref_primary_10_1590_1807_3107bor_2021_vol35_0032 crossref_primary_10_4018_IJDSST_2020070105 crossref_primary_10_1186_1471_2105_10_259 crossref_primary_10_1021_ac060946c crossref_primary_10_1007_s11306_016_0971_3 crossref_primary_10_1016_j_foodchem_2013_05_060 crossref_primary_10_1021_acs_jchemed_7b00012 crossref_primary_10_1016_j_chemolab_2008_04_005 crossref_primary_10_1088_1752_7155_7_1_017102 crossref_primary_10_1002_mbo3_965 crossref_primary_10_3390_foods9081040 crossref_primary_10_1016_j_talanta_2011_01_015 crossref_primary_10_1007_s11306_014_0717_z crossref_primary_10_1016_j_berh_2016_02_010 crossref_primary_10_1016_j_gendis_2016_12_001 crossref_primary_10_1371_journal_pone_0180894 crossref_primary_10_1016_j_chemolab_2025_105381 crossref_primary_10_1016_j_chemolab_2014_07_002 crossref_primary_10_3390_metabo12020194 |
| ContentType | Journal Article |
| Copyright | 2005 Elsevier B.V. 2006 INIST-CNRS |
| Copyright_xml | – notice: 2005 Elsevier B.V. – notice: 2006 INIST-CNRS |
| DBID | AAYXX CITATION IQODW NPM 7X8 |
| DOI | 10.1016/j.talanta.2005.08.042 |
| DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-3573 |
| EndPage | 1691 |
| ExternalDocumentID | 18970515 17495601 10_1016_j_talanta_2005_08_042 S0039914005005473 |
| Genre | Journal Article |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYJJ ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEZE ADIYS ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q G8K GBLVA HMU HVGLF HZ~ IHE J1W K-O KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K TN5 TWZ WH7 WUQ XFK XOL XPP YK3 YNT ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD ABDPE AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIGII APXCP BNPGV IQODW SSH NPM 7X8 |
| ID | FETCH-LOGICAL-c460t-92cafcfa27aa7655780e3aed09db5e1902561458329321450b3263e2606b36f13 |
| IEDL.DBID | AIKHN |
| ISSN | 0039-9140 1873-3573 |
| IngestDate | Sun Sep 28 11:12:44 EDT 2025 Thu Apr 03 06:59:11 EDT 2025 Mon Jul 21 09:15:55 EDT 2025 Wed Oct 01 04:35:52 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Feb 23 02:30:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | NMR PLS-DA Metabonomics PCA Genetic algorithms Performance evaluation Human Urine Discriminant analysis Metabolite NMR spectrometry Pattern recognition PLS regression Genetic algorithm Principal component analysis |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-92cafcfa27aa7655780e3aed09db5e1902561458329321450b3263e2606b36f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 18970515 |
| PQID | 733831710 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_733831710 pubmed_primary_18970515 pascalfrancis_primary_17495601 crossref_primary_10_1016_j_talanta_2005_08_042 crossref_citationtrail_10_1016_j_talanta_2005_08_042 elsevier_sciencedirect_doi_10_1016_j_talanta_2005_08_042 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2006-02-28 |
| PublicationDateYYYYMMDD | 2006-02-28 |
| PublicationDate_xml | – month: 02 year: 2006 text: 2006-02-28 day: 28 |
| PublicationDecade | 2000 |
| PublicationPlace | Amsterdam Oxford |
| PublicationPlace_xml | – name: Amsterdam – name: Oxford – name: Netherlands |
| PublicationTitle | Talanta (Oxford) |
| PublicationTitleAlternate | Talanta |
| PublicationYear | 2006 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Ramadan, Song, Hopke, Johnson, Scow (bib18) 2001; 446 Holmes, Nicholls, Lindon, Connor, Connelly, Haselden, Damment, Spraul, Neidig, Nicholson (bib4) 2000; 13 Gavaghan, Wilson, Nicholson (bib12) 2002; 530 Lindon, Nicholson, Holmes, Everett (bib5) 2000; 12 Lucasius, Kateman (bib20) 1994; 25 Solanky, Bailey, Beckwith-Hall, Davis, Bingham, Holmes, Nicholson, Cassidy (bib10) 2003; 323 Leardi, Gonzalez (bib19) 1998; 41 Lucasius, Kateman (bib15) 1991; 10 Lindon, Nicholson, Holmes, Antti, Bollard, Keun, Beckonert, Ebbels, Reily, Robertson, Stevens, Luke, Breau, Cantor, Bible, Niederhauser, Senn, Schlotterbeck, Sidelmann, Laursen, Tymiak, Car, Lehman-McKeeman, Colet, Loukaci, Thomas (bib8) 2003; 187 Nicholls, Nicholson, Haselden, Waterfield (bib1) 2000; 5 Ebbels, Keun, Beckonert, Antti, Bollard, Holmes, Lindon, Nicholson (bib13) 2003; 490 Claridge (bib14) 1999 Brindle, Antti, Holmes, Tranter, Nicholson, Bethell, Clarke, Schofield, McKilligin, Mosedale, Grainger (bib6) 2003; 9 Broadhurst, Goodacre, Jones, Rowland, Kell (bib17) 1997; 348 Keun, Ebbels, Bollard, Beckonert, Antti, Holmes, Lindon, Nicholson (bib7) 2004; 17 Holmes, Nicholson, Tranter (bib9) 2001; 14 Holmes, Antti (bib11) 2002; 127 Van, Klose, Lucas, Prieto, Luke, Collins, Burt, Chmurny, Issaq, Conrads, Veenstra, Keay (bib21) 2004; 19 Nicholson, Wilson (bib2) 2003; 2 Nicholson, Lindon, Holmes (bib3) 1999; 29 Leardi (bib16) 2001; 15 |
| References_xml | – volume: 19 start-page: 169 year: 2004 ident: bib21 publication-title: Dis. Markers – volume: 9 start-page: 477 year: 2003 ident: bib6 publication-title: Nat. Med. – volume: 187 start-page: 137 year: 2003 ident: bib8 publication-title: Toxicol. Appl. Pharmacol. – volume: 446 start-page: 233 year: 2001 ident: bib18 publication-title: Anal. Chim. Acta – volume: 15 start-page: 559 year: 2001 ident: bib16 publication-title: J. Chemom. – volume: 5 start-page: 410 year: 2000 ident: bib1 publication-title: Biomarkers – volume: 14 start-page: 182 year: 2001 ident: bib9 publication-title: Chem. Res. Toxicol. – volume: 29 start-page: 1181 year: 1999 ident: bib3 publication-title: Xenobiotica – volume: 490 start-page: 109 year: 2003 ident: bib13 publication-title: Anal. Chim. Acta – volume: 12 start-page: 289 year: 2000 ident: bib5 publication-title: Concepts Magn. Reson. – volume: 13 start-page: 471 year: 2000 ident: bib4 publication-title: Chem. Res. Toxicol. – volume: 10 start-page: 254 year: 1991 ident: bib15 publication-title: TrAC, Trends. Anal. Chem. (Pers. Ed.) – volume: 41 start-page: 195 year: 1998 ident: bib19 publication-title: Chemom. Intell. Lab. Syst. – volume: 2 start-page: 668 year: 2003 ident: bib2 publication-title: Nat. Rev. Drug Discov. – volume: 323 start-page: 197 year: 2003 ident: bib10 publication-title: Anal. Biochem. – volume: 17 start-page: 579 year: 2004 ident: bib7 publication-title: Chem. Res. Toxicol. – year: 1999 ident: bib14 article-title: High-Resolution NMR Techniques in Organic Chemistry – volume: 127 start-page: 1549 year: 2002 ident: bib11 publication-title: Analyst – volume: 348 start-page: 71 year: 1997 ident: bib17 publication-title: Anal. Chim. Acta – volume: 25 start-page: 99 year: 1994 ident: bib20 publication-title: Chemom. Intell. Lab. Syst. – volume: 530 start-page: 191 year: 2002 ident: bib12 publication-title: FEBS Lett. |
| SSID | ssj0002303 |
| Score | 2.2388644 |
| Snippet | The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of
1H nuclear magnetic resonance (NMR)... The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of (1)H nuclear magnetic resonance (NMR)... |
| SourceID | proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1683 |
| SubjectTerms | Analytical chemistry Chemistry Exact sciences and technology Genetic algorithms Metabonomics NMR PCA PLS-DA Spectrometric and optical methods |
| Title | Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms |
| URI | https://dx.doi.org/10.1016/j.talanta.2005.08.042 https://www.ncbi.nlm.nih.gov/pubmed/18970515 https://www.proquest.com/docview/733831710 |
| Volume | 68 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3573 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002303 issn: 0039-9140 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-3573 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002303 issn: 0039-9140 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1873-3573 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002303 issn: 0039-9140 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3573 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002303 issn: 0039-9140 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-CchjShBgbW9mofODYtPlw4vhYVUOFaZyG1FtkOw4rKm3Wplf-dt6rnVYcENIuOVh-ieNnvw_7vfcDuMLtb7jgKuCaG3xUZSDLygSR5ULKuDSVi_K9yyb3_HaaTg9g3ObCUFill_1Opm-ltW8Z-tkc1rMZ5fiickX_IEzJ7hDJIRyh_snzDhyNbn5N7nYCGa1sX3tXBkSwT-QZPlKdQfwF5U9X8kHI47dU1MdarXHiKod48bZJulVN16dw4m1KNnLD_gQHdnEGH8YtlNtnWP22DTJ7PjPMYXSjvmIU8f7AanfYjuQUXL5coA5iyhcq6TPK2XW4X9hc07xgxznB_bD1vw2lLvWxd8lwFVIyJFPzh-Vq1vx9Wn-B--uff8aTwIMtBIZnYRPI2KjKVCoWSoksxY0c2kTZMpSlTm1Et5GoyVMUAJKwjdJQo-GXWHSHMp1kVZScQ2eBo_wGTIcKya3Et1Vc6FzbMtFZxqVAxsdx2AXezm9hfCVyAsSYF23I2WPh2UIomWlBQJk87sJgR1a7UhzvEeQt84pXa6pAdfEeae8Vs_cfFFuPMuoCa7lfIDPplkUt7HKzLgQ5_REabl346lbFnjiXgjB1Lv5_YN_h2B0CUVL9D-g0q429RLOo0T04HDxHPb_4XwAxFw66 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4V9gDSasWyry7Q9YEjafNw4vqIqkWFBU4gcbNsx2GLSptt0yu_nZna2YoDQuKSg-VJnBnbM2PPzAdwjMvfcsF1xA23-KjKSJaVjRLHhZRpaSsf5XtdjG_5xV1-14FRmwtDYZVh7_d7-nq3Di2DwM1BPZlQji8qV_QP4pzsDpFtwQeep4I8sP7TJs4DbexQeVdG1H2TxjN4oCqD-AM6nK0M-zFPX1NQH2u9RLZVHu_idYN0rZjO9uBTsCjZqR_0Z-i42T7sjFogty-wuHINino6scwjdKO2YhTvfs9qf9SO5BRaPp-hBmI6lCk5YZSx61G_sLkmrmDHKYH9sOW_FSUunWDvkuEcpFRIpqf388Wk-fu4_Aq3Z79vRuMoQC1ElhdxE8nU6spWOhVaiyLHZRy7TLsylqXJXUJ3kajHc1z-kpCN8tig2Zc5dIYKkxVVkn2D7RmO8gcwE2skdxLfVnFhhsaVmSkKLgWKPU3jLvCWv8qGOuQEhzFVbcDZgwpiIYzMXBFMJk-70P9PVvtCHG8RDFvhqRczSqGyeIu090LYmw-KtT-ZdIG10lcoTLpj0TM3Xy2VIJc_QbOtC9_9rNgQD6UgRJ2f7x_YL9gZ31xdqsvz6z8HsOuPgyi9_hC2m8XKHaGB1JjeegE8A3flD4I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+profiling+using+principal+component+analysis%2C+discriminant+partial+least+squares%2C+and+genetic+algorithms&rft.jtitle=Talanta+%28Oxford%29&rft.au=Ramadan%2C+Z&rft.au=Jacobs%2C+D&rft.au=Grigorov%2C+M&rft.au=Kochhar%2C+S&rft.date=2006-02-28&rft.issn=1873-3573&rft.eissn=1873-3573&rft.volume=68&rft.issue=5&rft.spage=1683&rft_id=info:doi/10.1016%2Fj.talanta.2005.08.042&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon |