Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms

The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of 1H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150...

Full description

Saved in:
Bibliographic Details
Published inTalanta (Oxford) Vol. 68; no. 5; pp. 1683 - 1691
Main Authors Ramadan, Z., Jacobs, D., Grigorov, M., Kochhar, S.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 28.02.2006
Oxford Elsevier
Subjects
Online AccessGet full text
ISSN0039-9140
1873-3573
1873-3573
DOI10.1016/j.talanta.2005.08.042

Cover

Abstract The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of 1H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to 1H NMR-based metabonomic analysis. The 1H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions.
AbstractList The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of (1)H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to (1)H NMR-based metabonomic analysis. The (1)H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions.The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of (1)H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to (1)H NMR-based metabonomic analysis. The (1)H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions.
The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of 1H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to 1H NMR-based metabonomic analysis. The 1H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions.
The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of (1)H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to (1)H NMR-based metabonomic analysis. The (1)H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions.
Author Grigorov, M.
Ramadan, Z.
Kochhar, S.
Jacobs, D.
Author_xml – sequence: 1
  givenname: Z.
  surname: Ramadan
  fullname: Ramadan, Z.
  email: ziad.ramadan@rdls.nestle.com
– sequence: 2
  givenname: D.
  surname: Jacobs
  fullname: Jacobs, D.
– sequence: 3
  givenname: M.
  surname: Grigorov
  fullname: Grigorov, M.
– sequence: 4
  givenname: S.
  surname: Kochhar
  fullname: Kochhar, S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17495601$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18970515$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKeFnwDKBrEh4dqO8xALhCpeUhEbWFs3zs3gkeOktoPUf49HM6gSm258vfjOfZxzxS784omxlxwqDrx5d6gSOvQJKwGgKugqqMUTtuNdK0upWnnBdgCyL3tewyW7ivEAAEKCfMYuede3oLjasfCdEg6Ls6ZYwzJZZ_2-2OLxXYP1xq7oCrPMa57uU4Ee3X208W0x2miCna3POxQrhmQz6AhjKuLdhoEyg34s9uQp5e7o9kuw6fccn7OnE7pIL871mv36_Onnzdfy9seXbzcfb0tTN5DKXhiczISiRWwbpdoOSCKN0I-DIt6DUA2vVSdFL0X-wCBFI0k00Ayymbi8Zm9OffNhdxvFpOe8M7nsGi1b1K2UneQth0y-OpPbMNOo8-Uzhnv9z6YMvD4DGA26KWB2Jj5wbd2rBo4j1YkzYYkx0PSAgD7Gpg_6HJs-xqah0zm2rHv_n87YhMkuPgW07lH1h5Oaspt_LAUdjSVvaLSBTNLjYh_p8BcofbeW
CODEN TLNTA2
CitedBy_id crossref_primary_10_1021_pr500379n
crossref_primary_10_1016_j_aca_2012_12_050
crossref_primary_10_1111_jam_13544
crossref_primary_10_1016_j_trac_2024_118064
crossref_primary_10_1016_j_talanta_2011_10_022
crossref_primary_10_1080_17460441_2020_1722636
crossref_primary_10_1039_C4AY01715C
crossref_primary_10_1016_j_jfoodeng_2024_112129
crossref_primary_10_1002_jssc_202100439
crossref_primary_10_1123_ijspp_2020_0836
crossref_primary_10_1016_j_jpba_2008_10_022
crossref_primary_10_1097_SHK_0000000000001093
crossref_primary_10_1007_s11306_011_0274_7
crossref_primary_10_1002_art_37921
crossref_primary_10_3390_cancers13020311
crossref_primary_10_1007_s11306_015_0884_6
crossref_primary_10_3390_metabo13030445
crossref_primary_10_1002_jcb_27816
crossref_primary_10_1007_s00216_013_7199_0
crossref_primary_10_1111_ijfs_13017
crossref_primary_10_1016_j_saa_2020_119188
crossref_primary_10_1007_s10068_017_0167_2
crossref_primary_10_1007_s11306_006_0041_3
crossref_primary_10_1016_j_resconrec_2021_106088
crossref_primary_10_1038_s41598_024_59850_6
crossref_primary_10_1111_jfpp_12518
crossref_primary_10_1002_bit_24992
crossref_primary_10_3736_jcim20070424
crossref_primary_10_1186_s13765_024_00896_5
crossref_primary_10_1021_acs_jafc_6b00453
crossref_primary_10_1016_j_oraloncology_2019_104506
crossref_primary_10_1039_D1RA03008F
crossref_primary_10_1016_j_jpba_2007_06_030
crossref_primary_10_1371_journal_pone_0277124
crossref_primary_10_1210_jc_2019_01101
crossref_primary_10_1016_j_foodchem_2013_12_066
crossref_primary_10_1021_acsnano_6b03438
crossref_primary_10_3390_metabo13020263
crossref_primary_10_1002_elps_201300053
crossref_primary_10_1111_liv_12863
crossref_primary_10_1007_s11306_017_1283_y
crossref_primary_10_1016_j_scitotenv_2016_05_025
crossref_primary_10_1371_journal_pone_0090823
crossref_primary_10_1016_j_plantsci_2023_111694
crossref_primary_10_1074_mcp_M112_022566
crossref_primary_10_1016_j_aca_2019_06_054
crossref_primary_10_1021_pr060594q
crossref_primary_10_1007_s11306_015_0823_6
crossref_primary_10_1016_j_apgeog_2017_04_005
crossref_primary_10_1534_g3_115_020073
crossref_primary_10_1002_ddr_21213
crossref_primary_10_1016_j_jfca_2021_103932
crossref_primary_10_1002_etc_3002
crossref_primary_10_1155_2013_982438
crossref_primary_10_1002_nbm_1395
crossref_primary_10_1016_j_pnmrs_2011_04_003
crossref_primary_10_1016_j_cbd_2011_09_003
crossref_primary_10_1177_0734242X221135336
crossref_primary_10_3390_plants11070848
crossref_primary_10_1016_j_cca_2024_120020
crossref_primary_10_3389_fmolb_2016_00035
crossref_primary_10_1111_jfpp_16504
crossref_primary_10_1002_jsfa_6241
crossref_primary_10_5812_amh_101585
crossref_primary_10_1142_S0192415X11008828
crossref_primary_10_1016_j_mcm_2009_09_004
crossref_primary_10_1016_j_phytochem_2011_12_023
crossref_primary_10_2174_1389200220666181231124439
crossref_primary_10_1007_s00784_020_03557_1
crossref_primary_10_1007_s12272_013_0250_z
crossref_primary_10_2139_ssrn_4186533
crossref_primary_10_1002_nbm_1428
crossref_primary_10_1016_j_bse_2018_01_003
crossref_primary_10_3390_molecules23071579
crossref_primary_10_1007_s10858_009_9329_8
crossref_primary_10_1016_j_isprsjprs_2025_02_011
crossref_primary_10_1111_2041_210X_12028
crossref_primary_10_1088_1752_7155_10_4_046012
crossref_primary_10_1271_bbb_100799
crossref_primary_10_1016_j_jmir_2020_07_004
crossref_primary_10_1002_bmc_5466
crossref_primary_10_1080_20002297_2021_1886748
crossref_primary_10_1021_acsomega_2c00083
crossref_primary_10_1021_jf401330e
crossref_primary_10_1002_cbdv_202300650
crossref_primary_10_4014_mbl_1902_02002
crossref_primary_10_1016_j_ab_2007_06_008
crossref_primary_10_1002_jbio_201400060
crossref_primary_10_1021_jf204977x
crossref_primary_10_1080_00032719_2019_1687507
crossref_primary_10_3390_plants11020206
crossref_primary_10_3390_beverages8020034
crossref_primary_10_1038_srep10930
crossref_primary_10_1007_s11306_015_0894_4
crossref_primary_10_1186_1471_2105_15_97
crossref_primary_10_1007_s11368_018_2050_z
crossref_primary_10_1088_1752_7163_aaa492
crossref_primary_10_1016_j_jep_2016_07_051
crossref_primary_10_1371_journal_pone_0163258
crossref_primary_10_1002_ddr_21028
crossref_primary_10_1016_j_foodres_2019_108957
crossref_primary_10_1007_s11771_016_3100_6
crossref_primary_10_1039_C7AY00011A
crossref_primary_10_1016_j_foodres_2013_12_011
crossref_primary_10_1002_smll_201900147
crossref_primary_10_3389_fnut_2023_1210215
crossref_primary_10_1007_s11306_012_0484_7
crossref_primary_10_1039_c2mb25105a
crossref_primary_10_1021_acs_jproteome_6b00007
crossref_primary_10_1039_C7AN01019B
crossref_primary_10_1039_c2ay25373a
crossref_primary_10_1039_C8RA08754G
crossref_primary_10_1016_j_pnmrs_2009_07_003
crossref_primary_10_1590_1807_3107bor_2021_vol35_0032
crossref_primary_10_4018_IJDSST_2020070105
crossref_primary_10_1186_1471_2105_10_259
crossref_primary_10_1021_ac060946c
crossref_primary_10_1007_s11306_016_0971_3
crossref_primary_10_1016_j_foodchem_2013_05_060
crossref_primary_10_1021_acs_jchemed_7b00012
crossref_primary_10_1016_j_chemolab_2008_04_005
crossref_primary_10_1088_1752_7155_7_1_017102
crossref_primary_10_1002_mbo3_965
crossref_primary_10_3390_foods9081040
crossref_primary_10_1016_j_talanta_2011_01_015
crossref_primary_10_1007_s11306_014_0717_z
crossref_primary_10_1016_j_berh_2016_02_010
crossref_primary_10_1016_j_gendis_2016_12_001
crossref_primary_10_1371_journal_pone_0180894
crossref_primary_10_1016_j_chemolab_2025_105381
crossref_primary_10_1016_j_chemolab_2014_07_002
crossref_primary_10_3390_metabo12020194
ContentType Journal Article
Copyright 2005 Elsevier B.V.
2006 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier B.V.
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1016/j.talanta.2005.08.042
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3573
EndPage 1691
ExternalDocumentID 18970515
17495601
10_1016_j_talanta_2005_08_042
S0039914005005473
Genre Journal Article
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYJJ
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
K-O
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
WH7
WUQ
XFK
XOL
XPP
YK3
YNT
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
ABDPE
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
APXCP
BNPGV
IQODW
SSH
NPM
7X8
ID FETCH-LOGICAL-c460t-92cafcfa27aa7655780e3aed09db5e1902561458329321450b3263e2606b36f13
IEDL.DBID AIKHN
ISSN 0039-9140
1873-3573
IngestDate Sun Sep 28 11:12:44 EDT 2025
Thu Apr 03 06:59:11 EDT 2025
Mon Jul 21 09:15:55 EDT 2025
Wed Oct 01 04:35:52 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Feb 23 02:30:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords NMR
PLS-DA
Metabonomics
PCA
Genetic algorithms
Performance evaluation
Human
Urine
Discriminant analysis
Metabolite
NMR spectrometry
Pattern recognition
PLS regression
Genetic algorithm
Principal component analysis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-92cafcfa27aa7655780e3aed09db5e1902561458329321450b3263e2606b36f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18970515
PQID 733831710
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_733831710
pubmed_primary_18970515
pascalfrancis_primary_17495601
crossref_primary_10_1016_j_talanta_2005_08_042
crossref_citationtrail_10_1016_j_talanta_2005_08_042
elsevier_sciencedirect_doi_10_1016_j_talanta_2005_08_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-02-28
PublicationDateYYYYMMDD 2006-02-28
PublicationDate_xml – month: 02
  year: 2006
  text: 2006-02-28
  day: 28
PublicationDecade 2000
PublicationPlace Amsterdam
Oxford
PublicationPlace_xml – name: Amsterdam
– name: Oxford
– name: Netherlands
PublicationTitle Talanta (Oxford)
PublicationTitleAlternate Talanta
PublicationYear 2006
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ramadan, Song, Hopke, Johnson, Scow (bib18) 2001; 446
Holmes, Nicholls, Lindon, Connor, Connelly, Haselden, Damment, Spraul, Neidig, Nicholson (bib4) 2000; 13
Gavaghan, Wilson, Nicholson (bib12) 2002; 530
Lindon, Nicholson, Holmes, Everett (bib5) 2000; 12
Lucasius, Kateman (bib20) 1994; 25
Solanky, Bailey, Beckwith-Hall, Davis, Bingham, Holmes, Nicholson, Cassidy (bib10) 2003; 323
Leardi, Gonzalez (bib19) 1998; 41
Lucasius, Kateman (bib15) 1991; 10
Lindon, Nicholson, Holmes, Antti, Bollard, Keun, Beckonert, Ebbels, Reily, Robertson, Stevens, Luke, Breau, Cantor, Bible, Niederhauser, Senn, Schlotterbeck, Sidelmann, Laursen, Tymiak, Car, Lehman-McKeeman, Colet, Loukaci, Thomas (bib8) 2003; 187
Nicholls, Nicholson, Haselden, Waterfield (bib1) 2000; 5
Ebbels, Keun, Beckonert, Antti, Bollard, Holmes, Lindon, Nicholson (bib13) 2003; 490
Claridge (bib14) 1999
Brindle, Antti, Holmes, Tranter, Nicholson, Bethell, Clarke, Schofield, McKilligin, Mosedale, Grainger (bib6) 2003; 9
Broadhurst, Goodacre, Jones, Rowland, Kell (bib17) 1997; 348
Keun, Ebbels, Bollard, Beckonert, Antti, Holmes, Lindon, Nicholson (bib7) 2004; 17
Holmes, Nicholson, Tranter (bib9) 2001; 14
Holmes, Antti (bib11) 2002; 127
Van, Klose, Lucas, Prieto, Luke, Collins, Burt, Chmurny, Issaq, Conrads, Veenstra, Keay (bib21) 2004; 19
Nicholson, Wilson (bib2) 2003; 2
Nicholson, Lindon, Holmes (bib3) 1999; 29
Leardi (bib16) 2001; 15
References_xml – volume: 19
  start-page: 169
  year: 2004
  ident: bib21
  publication-title: Dis. Markers
– volume: 9
  start-page: 477
  year: 2003
  ident: bib6
  publication-title: Nat. Med.
– volume: 187
  start-page: 137
  year: 2003
  ident: bib8
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 446
  start-page: 233
  year: 2001
  ident: bib18
  publication-title: Anal. Chim. Acta
– volume: 15
  start-page: 559
  year: 2001
  ident: bib16
  publication-title: J. Chemom.
– volume: 5
  start-page: 410
  year: 2000
  ident: bib1
  publication-title: Biomarkers
– volume: 14
  start-page: 182
  year: 2001
  ident: bib9
  publication-title: Chem. Res. Toxicol.
– volume: 29
  start-page: 1181
  year: 1999
  ident: bib3
  publication-title: Xenobiotica
– volume: 490
  start-page: 109
  year: 2003
  ident: bib13
  publication-title: Anal. Chim. Acta
– volume: 12
  start-page: 289
  year: 2000
  ident: bib5
  publication-title: Concepts Magn. Reson.
– volume: 13
  start-page: 471
  year: 2000
  ident: bib4
  publication-title: Chem. Res. Toxicol.
– volume: 10
  start-page: 254
  year: 1991
  ident: bib15
  publication-title: TrAC, Trends. Anal. Chem. (Pers. Ed.)
– volume: 41
  start-page: 195
  year: 1998
  ident: bib19
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 2
  start-page: 668
  year: 2003
  ident: bib2
  publication-title: Nat. Rev. Drug Discov.
– volume: 323
  start-page: 197
  year: 2003
  ident: bib10
  publication-title: Anal. Biochem.
– volume: 17
  start-page: 579
  year: 2004
  ident: bib7
  publication-title: Chem. Res. Toxicol.
– year: 1999
  ident: bib14
  article-title: High-Resolution NMR Techniques in Organic Chemistry
– volume: 127
  start-page: 1549
  year: 2002
  ident: bib11
  publication-title: Analyst
– volume: 348
  start-page: 71
  year: 1997
  ident: bib17
  publication-title: Anal. Chim. Acta
– volume: 25
  start-page: 99
  year: 1994
  ident: bib20
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 530
  start-page: 191
  year: 2002
  ident: bib12
  publication-title: FEBS Lett.
SSID ssj0002303
Score 2.2388644
Snippet The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of 1H nuclear magnetic resonance (NMR)...
The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of (1)H nuclear magnetic resonance (NMR)...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1683
SubjectTerms Analytical chemistry
Chemistry
Exact sciences and technology
Genetic algorithms
Metabonomics
NMR
PCA
PLS-DA
Spectrometric and optical methods
Title Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms
URI https://dx.doi.org/10.1016/j.talanta.2005.08.042
https://www.ncbi.nlm.nih.gov/pubmed/18970515
https://www.proquest.com/docview/733831710
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-3573
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002303
  issn: 0039-9140
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-3573
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002303
  issn: 0039-9140
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1873-3573
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002303
  issn: 0039-9140
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3573
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002303
  issn: 0039-9140
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-CchjShBgbW9mofODYtPlw4vhYVUOFaZyG1FtkOw4rKm3Wplf-dt6rnVYcENIuOVh-ieNnvw_7vfcDuMLtb7jgKuCaG3xUZSDLygSR5ULKuDSVi_K9yyb3_HaaTg9g3ObCUFill_1Opm-ltW8Z-tkc1rMZ5fiickX_IEzJ7hDJIRyh_snzDhyNbn5N7nYCGa1sX3tXBkSwT-QZPlKdQfwF5U9X8kHI47dU1MdarXHiKod48bZJulVN16dw4m1KNnLD_gQHdnEGH8YtlNtnWP22DTJ7PjPMYXSjvmIU8f7AanfYjuQUXL5coA5iyhcq6TPK2XW4X9hc07xgxznB_bD1vw2lLvWxd8lwFVIyJFPzh-Vq1vx9Wn-B--uff8aTwIMtBIZnYRPI2KjKVCoWSoksxY0c2kTZMpSlTm1Et5GoyVMUAJKwjdJQo-GXWHSHMp1kVZScQ2eBo_wGTIcKya3Et1Vc6FzbMtFZxqVAxsdx2AXezm9hfCVyAsSYF23I2WPh2UIomWlBQJk87sJgR1a7UhzvEeQt84pXa6pAdfEeae8Vs_cfFFuPMuoCa7lfIDPplkUt7HKzLgQ5_REabl346lbFnjiXgjB1Lv5_YN_h2B0CUVL9D-g0q429RLOo0T04HDxHPb_4XwAxFw66
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4V9gDSasWyry7Q9YEjafNw4vqIqkWFBU4gcbNsx2GLSptt0yu_nZna2YoDQuKSg-VJnBnbM2PPzAdwjMvfcsF1xA23-KjKSJaVjRLHhZRpaSsf5XtdjG_5xV1-14FRmwtDYZVh7_d7-nq3Di2DwM1BPZlQji8qV_QP4pzsDpFtwQeep4I8sP7TJs4DbexQeVdG1H2TxjN4oCqD-AM6nK0M-zFPX1NQH2u9RLZVHu_idYN0rZjO9uBTsCjZqR_0Z-i42T7sjFogty-wuHINino6scwjdKO2YhTvfs9qf9SO5BRaPp-hBmI6lCk5YZSx61G_sLkmrmDHKYH9sOW_FSUunWDvkuEcpFRIpqf388Wk-fu4_Aq3Z79vRuMoQC1ElhdxE8nU6spWOhVaiyLHZRy7TLsylqXJXUJ3kajHc1z-kpCN8tig2Zc5dIYKkxVVkn2D7RmO8gcwE2skdxLfVnFhhsaVmSkKLgWKPU3jLvCWv8qGOuQEhzFVbcDZgwpiIYzMXBFMJk-70P9PVvtCHG8RDFvhqRczSqGyeIu090LYmw-KtT-ZdIG10lcoTLpj0TM3Xy2VIJc_QbOtC9_9rNgQD6UgRJ2f7x_YL9gZ31xdqsvz6z8HsOuPgyi9_hC2m8XKHaGB1JjeegE8A3flD4I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+profiling+using+principal+component+analysis%2C+discriminant+partial+least+squares%2C+and+genetic+algorithms&rft.jtitle=Talanta+%28Oxford%29&rft.au=Ramadan%2C+Z&rft.au=Jacobs%2C+D&rft.au=Grigorov%2C+M&rft.au=Kochhar%2C+S&rft.date=2006-02-28&rft.issn=1873-3573&rft.eissn=1873-3573&rft.volume=68&rft.issue=5&rft.spage=1683&rft_id=info:doi/10.1016%2Fj.talanta.2005.08.042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon