An advanced quantum support vector machine for power quality disturbance detection and identification
Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately dete...
        Saved in:
      
    
          | Published in | EPJ quantum technology Vol. 11; no. 1; p. 70 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.12.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2662-4400 2196-0763 2196-0763  | 
| DOI | 10.1140/epjqt/s40507-024-00283-5 | 
Cover
| Abstract | Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately detecting and identifying PQDs is crucial for ensuring reliable system operation. This paper explores the application of quantum algorithms in the field of power quality and proposes a novel method using Quantum Support Vector Machines (QSVM) to detect and identify PQDs, which marks the first application of QSVM in PQD analysis. The QSVM model employed involves three main stages: quantum feature mapping, quantum kernel computation, and model training. Quantum feature mapping uses quantum circuits to map classical data into a high-dimensional Hilbert space, enhancing feature separability. Quantum kernel computation calculates the inner products between features for model training. Rigorous theoretical and experimental analyses validate our approach. This method achieves a time complexity of
O
(
N
2
log
(
N
)
)
, superior to classical SVM algorithms. Simulation results show high accuracy in PQDs detection, achieving a 100% detection rate and a 96.25% accuracy rate in single PQD identification. Experimental outcomes demonstrate robustness, maintaining over 87% accuracy even with increased noise levels, confirming its effectiveness in PQDs detection and identification. | 
    
|---|---|
| AbstractList | Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately detecting and identifying PQDs is crucial for ensuring reliable system operation. This paper explores the application of quantum algorithms in the field of power quality and proposes a novel method using Quantum Support Vector Machines (QSVM) to detect and identify PQDs, which marks the first application of QSVM in PQD analysis. The QSVM model employed involves three main stages: quantum feature mapping, quantum kernel computation, and model training. Quantum feature mapping uses quantum circuits to map classical data into a high-dimensional Hilbert space, enhancing feature separability. Quantum kernel computation calculates the inner products between features for model training. Rigorous theoretical and experimental analyses validate our approach. This method achieves a time complexity of O(N2log(N)), superior to classical SVM algorithms. Simulation results show high accuracy in PQDs detection, achieving a 100% detection rate and a 96.25% accuracy rate in single PQD identification. Experimental outcomes demonstrate robustness, maintaining over 87% accuracy even with increased noise levels, confirming its effectiveness in PQDs detection and identification. Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately detecting and identifying PQDs is crucial for ensuring reliable system operation. This paper explores the application of quantum algorithms in the field of power quality and proposes a novel method using Quantum Support Vector Machines (QSVM) to detect and identify PQDs, which marks the first application of QSVM in PQD analysis. The QSVM model employed involves three main stages: quantum feature mapping, quantum kernel computation, and model training. Quantum feature mapping uses quantum circuits to map classical data into a high-dimensional Hilbert space, enhancing feature separability. Quantum kernel computation calculates the inner products between features for model training. Rigorous theoretical and experimental analyses validate our approach. This method achieves a time complexity of O ( N 2 log ( N ) ) , superior to classical SVM algorithms. Simulation results show high accuracy in PQDs detection, achieving a 100% detection rate and a 96.25% accuracy rate in single PQD identification. Experimental outcomes demonstrate robustness, maintaining over 87% accuracy even with increased noise levels, confirming its effectiveness in PQDs detection and identification.  | 
    
| ArticleNumber | 70 | 
    
| Author | Liu, Hao Jin, Yu Li, Xin-Hao Cheng, Long Wang, Qing-Le Li, Yue Zhang, Ke-Jia Li, Yuan-Cheng  | 
    
| Author_xml | – sequence: 1 givenname: Qing-Le surname: Wang fullname: Wang, Qing-Le organization: North China Electric Power University – sequence: 2 givenname: Yu surname: Jin fullname: Jin, Yu organization: North China Electric Power University – sequence: 3 givenname: Xin-Hao surname: Li fullname: Li, Xin-Hao organization: Electric Power Science Research Institute, Guizhou Power Grid Co., Ltd – sequence: 4 givenname: Yue surname: Li fullname: Li, Yue organization: Electric Power Science Research Institute, Guizhou Power Grid Co., Ltd – sequence: 5 givenname: Yuan-Cheng surname: Li fullname: Li, Yuan-Cheng email: ncepua@163.com organization: North China Electric Power University – sequence: 6 givenname: Ke-Jia surname: Zhang fullname: Zhang, Ke-Jia organization: North China Electric Power University – sequence: 7 givenname: Hao surname: Liu fullname: Liu, Hao organization: North China Electric Power University – sequence: 8 givenname: Long surname: Cheng fullname: Cheng, Long organization: North China Electric Power University  | 
    
| BookMark | eNqVUF1r3DAQFCWFpmn-g6DPblaWLMsvhRD6BYG8tM9iT161OnyyT5IT7t9Xdxco9KXp0y7LzOzMvGUXcY7EGBfwQQgFN7Rs9-UmK-igb6BVDUBrZNO9YpetGHQDvZYXdde6bZQCeMOuc94CgBBtZ0R_yeg2chwfMToa-X7FWNYdz-uyzKnwR3JlTnyH7leIxH3dl_mJ0hE4hXLgY8hlTZsjm49UKjzMVS-OPIwUS_DB4fH0jr32OGW6fp5X7MfnT9_vvjb3D1--3d3eN05pKE0_CD-iaRUqMMZoROdRO6G7zUaicTUd9Z3XvSEvpSQ3DmrwRpPvJXh08ooNZ901Lnh4wmmySwo7TAcrwB4rs6fK7LkyWyuzp8psV7nvz9wlzfuVcrHbeU2x2rVSiEHKVg5DRX08o1yac07krQvllLEkDNNL3pi_BP7D4XO6XCnxJ6U_Dv_J_Q2ekKrr | 
    
| CitedBy_id | crossref_primary_10_3390_app15052721 | 
    
| Cites_doi | 10.1016/j.eswa.2008.07.030 10.1109/ICHQP.2016.7783388 10.1103/PhysRevA.104.022418 10.1038/npjqi.2015.23 10.1016/j.asoc.2009.10.013 10.1038/nature23879 10.1007/s11433-022-1921-y 10.1023/A:1009715923555 10.1002/wics.101 10.1016/j.epsr.2022.108695 10.1109/TKDE.2021.3130598 10.1038/s41598-020-58928-1 10.1016/j.eswa.2015.04.002 10.3390/s22207958 10.1109/TIM.2006.884126 10.1109/ACCESS.2023.3274732 10.1038/s41586-019-0980-2 10.1038/s41586-019-1666-5 10.1109/TITS.2019.2891235 10.1103/PhysRevLett.113.130503 10.1109/TIE.2013.2272276 10.1038/s41586-020-03093-8 10.1016/j.eswa.2009.09.057 10.1007/BF00116251 10.1109/ACCESS.2019.2924918 10.1038/nature14539 10.1007/BF02650179 10.1109/TPWRD.2007.911125 10.1007/s11433-023-2337-2 10.1038/s41534-019-0130-6 10.1103/PhysRevLett.122.040504 10.1016/S0378-7796(02)00035-4 10.1109/ACCESS.2020.3025190 10.1016/j.asoc.2015.05.048 10.3923/jas.2009.2688.2700 10.1109/ACCESS.2019.2898211 10.1080/03772063.2023.2245350 10.1109/IEEESTD.2019.8796486  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| DOI | 10.1140/epjqt/s40507-024-00283-5 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 2196-0763 | 
    
| ExternalDocumentID | 10.1140/epjqt/s40507-024-00283-5 10_1140_epjqt_s40507_024_00283_5  | 
    
| GrantInformation_xml | – fundername: Guizhou Power Grid Co., Ltd., China grantid: GZKJXM20222149; GZKJXM20222149; GZKJXM20222149; GZKJXM20222149; GZKJXM20222149; GZKJXM20222149; GZKJXM20222149; GZKJXM20222149  | 
    
| GroupedDBID | -A0 0R~ 5VS 8FE 8FG AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS ASPBG BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON GROUPED_DOAJ HCIFZ IAO ISR ITC KQ8 M~E OK1 P62 PIMPY PROAC RSV SOJ TUS AASML AAYXX CITATION PHGZM PHGZT PQGLB PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c460t-791fda824a408886aacfa6c165bb3a8c002e75f678ef333ecd949f86ef730fac3 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 2662-4400 2196-0763  | 
    
| IngestDate | Sun Sep 07 11:09:05 EDT 2025 Sat Oct 11 06:12:12 EDT 2025 Thu Apr 24 22:57:00 EDT 2025 Wed Oct 01 03:06:05 EDT 2025 Fri Feb 21 02:37:43 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Quantum support vector machine Power quality disturbance detection Power quality disturbance Quantum feature mapping Power quality disturbance identification  | 
    
| Language | English | 
    
| License | cc-by-nc-nd | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c460t-791fda824a408886aacfa6c165bb3a8c002e75f678ef333ecd949f86ef730fac3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://doi.org/10.1140/epjqt/s40507-024-00283-5 | 
    
| PQID | 3119332399 | 
    
| PQPubID | 2034768 | 
    
| ParticipantIDs | unpaywall_primary_10_1140_epjqt_s40507_024_00283_5 proquest_journals_3119332399 crossref_citationtrail_10_1140_epjqt_s40507_024_00283_5 crossref_primary_10_1140_epjqt_s40507_024_00283_5 springer_journals_10_1140_epjqt_s40507_024_00283_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20241200 2024-12-00 20241201  | 
    
| PublicationDateYYYYMMDD | 2024-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | EPJ quantum technology | 
    
| PublicationTitleAbbrev | EPJ Quantum Technol | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | Khetarpal, Nagpal, Al-Numay, Siano, Arya, Kassarwani (CR22) 2023; 11 Hossain, Ali, Swarna, Hasan, Habib, Rahman (CR34) 2021 Arute, Arya, Babbush, Bacon, Bardin, Barends (CR3) 2019; 574 Zhao, Yang (CR19) 2006 Montanaro (CR24) 2016; 2 Kandala, Mezzacapo, Temme, Takita, Brink, Chow (CR2) 2017; 549 Quinlan (CR40) 1986; 1 Salem, Mohamed, Samad (CR14) 2010; 37 Chen, Zhang, Chen, Cai, Liao, Zhang (CR7) 2021; 589 Peretto, Artioli, Pasini, Sasdelli (CR11) 2006; 55 Liu, Wu, Wan, Pan, Qin, Gao (CR8) 2021; 104 Burges (CR37) 1998; 2 Shi, Yang, Xu, Zhang, Farahani (CR12) 2019; 7 Chandrasekar, Detection (CR15) 2010; 61 CR30 Havlíček, Córcoles, Temme, Harrow, Kandala, Chow (CR29) 2019; 567 Schuld, Killoran (CR36) 2019; 122 Valtierra-Rodriguez, de Jesus Romero-Troncoso, Osornio-Rios, Garcia-Perez (CR43) 2013; 61 Kumar, Kumar, Singh (CR27) 2023; 61 Song, Wu, Wu, Li, Wen, Qin (CR28) 2024; 67 Feynman (CR1) 1982; 21 Mozaffari, Doshi, Yilmaz (CR21) 2022; 22 Jurado, Saenz (CR16) 2002; 62 Rebentrost, Mohseni, Lloyd (CR38) 2014; 113 Liu, Yuan, Fan, Jin, Mohamed (CR23) 2023 Yalcin, Ozdemir (CR10) 2016 Faisal, Mohamed, Hussain, Nizam (CR32) 2009; 34 De Yong, Bhowmik, Magnago (CR17) 2015; 42 Stollenwerk, O’Gorman, Venturelli, Mandra, Rodionova, Ng (CR4) 2019; 21 Abdi, Williams (CR33) 2010; 2 Li, Cai, Sun, Liu, Wan, Qin (CR9) 2022; 65 Wang, Zhang, Zhou (CR20) 2022; 213 Uyar, Yildirim, Gencoglu (CR41) 2009; 36 LeCun, Bengio, Hinton (CR39) 2015; 521 CR26 Shi, Chen, Lu, Feng, Shi, Yang (CR6) 2020; 10 Mahela, Shaik, Khan, Mahla, Alhelou (CR42) 2020; 8 Shi, Li, Lai, Li, Shi, Feng (CR25) 2021; 35 Behera, Dash, Biswal (CR44) 2010; 10 Zhong, Zhang, Cai, Li, Yang, Chen (CR13) 2019; 7 Mishra, Bhende, Panigrahi (CR18) 2007; 23 Nielsen, Chuang (CR35) 2010 Kanirajan, Kumar (CR45) 2015; 35 Woerner, Egger (CR5) 2019; 5 Faisal, Mohamed (CR31) 2009; 9 A Kandala (283_CR2) 2017; 549 JD Wang (283_CR20) 2022; 213 P Khetarpal (283_CR22) 2023; 11 T Stollenwerk (283_CR4) 2019; 21 CJ Burges (283_CR37) 1998; 2 RP Feynman (283_CR1) 1982; 21 FZ Zhao (283_CR19) 2006 A Montanaro (283_CR24) 2016; 2 S Mishra (283_CR18) 2007; 23 P Chandrasekar (283_CR15) 2010; 61 M Faisal (283_CR32) 2009; 34 V Havlíček (283_CR29) 2019; 567 JR Quinlan (283_CR40) 1986; 1 M Mozaffari (283_CR21) 2022; 22 YA Chen (283_CR7) 2021; 589 T Yalcin (283_CR10) 2016 YQ Song (283_CR28) 2024; 67 M Uyar (283_CR41) 2009; 36 L Peretto (283_CR11) 2006; 55 M Faisal (283_CR31) 2009; 9 MA Nielsen (283_CR35) 2010 S Woerner (283_CR5) 2019; 5 ME Salem (283_CR14) 2010; 37 Y LeCun (283_CR39) 2015; 521 HL Liu (283_CR8) 2021; 104 283_CR30 M Valtierra-Rodriguez (283_CR43) 2013; 61 P Kanirajan (283_CR45) 2015; 35 D De Yong (283_CR17) 2015; 42 HS Behera (283_CR44) 2010; 10 T Zhong (283_CR13) 2019; 7 F Jurado (283_CR16) 2002; 62 P Rebentrost (283_CR38) 2014; 113 OP Mahela (283_CR42) 2020; 8 ZQ Li (283_CR9) 2022; 65 XY Shi (283_CR12) 2019; 7 F Arute (283_CR3) 2019; 574 YL Liu (283_CR23) 2023 MM Hossain (283_CR34) 2021 JJ Shi (283_CR6) 2020; 10 H Abdi (283_CR33) 2010; 2 JJ Shi (283_CR25) 2021; 35 M Schuld (283_CR36) 2019; 122 283_CR26 T Kumar (283_CR27) 2023; 61  | 
    
| References_xml | – volume: 36 start-page: 5962 issue: 3 year: 2009 end-page: 5975 ident: CR41 article-title: An expert system based on S-transform and neural network for automatic classification of power quality disturbances publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.07.030 – start-page: 903 year: 2016 end-page: 907 ident: CR10 article-title: Pattern recognition method for identifying smart grid power quality disturbance publication-title: 2016 17th International Conference on Harmonics and Quality of Power (ICHQP) doi: 10.1109/ICHQP.2016.7783388 – volume: 61 start-page: 355 issue: 5 year: 2023 end-page: 365 ident: CR27 article-title: Noise analysis of Grover’s quantum search algorithm publication-title: Indian J Pure Appl Phys – volume: 104 issue: 2 year: 2021 ident: CR8 article-title: Variational quantum algorithm for the Poisson equation publication-title: Phys Rev A doi: 10.1103/PhysRevA.104.022418 – volume: 2 start-page: 1 issue: 1 year: 2016 end-page: 8 ident: CR24 article-title: Quantum algorithms: an overview publication-title: npj Quantum Inf doi: 10.1038/npjqi.2015.23 – volume: 10 start-page: 945 issue: 3 year: 2010 end-page: 955 ident: CR44 article-title: Power quality time series data mining using S-transform and fuzzy expert system publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.10.013 – volume: 549 start-page: 242 issue: 7671 year: 2017 end-page: 246 ident: CR2 article-title: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets publication-title: Nature doi: 10.1038/nature23879 – volume: 65 issue: 9 year: 2022 ident: CR9 article-title: Novel quantum circuit implementation of advanced encryption standard with low costs publication-title: Sci China, Phys Mech Astron doi: 10.1007/s11433-022-1921-y – volume: 2 start-page: 121 issue: 2 year: 1998 end-page: 167 ident: CR37 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min Knowl Discov doi: 10.1023/A:1009715923555 – volume: 2 start-page: 433 issue: 4 year: 2010 end-page: 459 ident: CR33 article-title: Principal component analysis publication-title: Wiley Interdiscip Rev: Comput Stat doi: 10.1002/wics.101 – volume: 213 year: 2022 ident: CR20 article-title: Ensemble deep learning for automated classification of power quality disturbances signals publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2022.108695 – volume: 35 start-page: 4335 issue: 4 year: 2021 end-page: 4345 ident: CR25 article-title: Two end-to-end quantum-inspired deep neural networks for text classification publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2021.3130598 – volume: 10 issue: 1 year: 2020 ident: CR6 article-title: An approach to cryptography based on continuous-variable quantum neural network publication-title: Sci Rep doi: 10.1038/s41598-020-58928-1 – volume: 42 start-page: 6075 issue: 15–16 year: 2015 end-page: 6081 ident: CR17 article-title: An effective power quality classifier using wavelet transform and support vector machines publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.04.002 – ident: CR30 – volume: 22 issue: 20 year: 2022 ident: CR21 article-title: Real-time detection and classification of power quality disturbances publication-title: Sensors doi: 10.3390/s22207958 – volume: 55 start-page: 2244 issue: 6 year: 2006 end-page: 2252 ident: CR11 article-title: Performance analysis and optimization of a robust algorithm for voltage transients detection publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2006.884126 – volume: 34 start-page: 237 issue: 2 year: 2009 end-page: 251 ident: CR32 article-title: Support vector regression based S-transform for prediction of single and multiple power quality disturbances publication-title: Eur J Sci Res – year: 2010 ident: CR35 publication-title: Quantum computation and quantum information: 10th anniversary edition – volume: 11 start-page: 46026 year: 2023 end-page: 46038 ident: CR22 article-title: Power quality disturbances detection and classification based on deep convolution auto-encoder networks publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3274732 – volume: 567 start-page: 209 issue: 7747 year: 2019 end-page: 212 ident: CR29 article-title: Supervised learning with quantum-enhanced feature spaces publication-title: Nature doi: 10.1038/s41586-019-0980-2 – volume: 574 start-page: 505 issue: 7779 year: 2019 end-page: 510 ident: CR3 article-title: Quantum supremacy using a programmable superconducting processor publication-title: Nature doi: 10.1038/s41586-019-1666-5 – volume: 21 start-page: 285 issue: 1 year: 2019 end-page: 297 ident: CR4 article-title: Quantum annealing applied to de-conflicting optimal trajectories for air traffic management publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2891235 – volume: 113 issue: 13 year: 2014 ident: CR38 article-title: Quantum support vector machine for big data classification publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.113.130503 – year: 2023 ident: CR23 article-title: A multidimensional feature-driven ensemble model for accurate classification of complex power quality disturbance publication-title: IEEE transactions on instrumentation and measurement – volume: 61 start-page: 235 issue: 4 year: 2010 end-page: 240 ident: CR15 article-title: Classification of power quality disturbancewaveform using MRA based modified wavelet transfrom and neural networks publication-title: J Electr Eng – volume: 61 start-page: 2473 year: 2013 end-page: 2482 ident: CR43 article-title: Detection and classification of single and combined power quality disturbances using neural networks publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2013.2272276 – start-page: 7 year: 2006 ident: CR19 article-title: Power quality disturbance recognition using S-transform publication-title: 2006 IEEE power engineering society general meeting – volume: 589 start-page: 214 issue: 7841 year: 2021 end-page: 219 ident: CR7 article-title: An integrated space-to-ground quantum communication network over 4600 kilometres publication-title: Nature doi: 10.1038/s41586-020-03093-8 – volume: 37 start-page: 3229 issue: 4 year: 2010 end-page: 3235 ident: CR14 article-title: Rule based system for power quality disturbance classification incorporating S-transform features publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.09.057 – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: CR40 article-title: Induction of decision trees publication-title: Mach Learn doi: 10.1007/BF00116251 – volume: 7 start-page: 88380 year: 2019 end-page: 88392 ident: CR13 article-title: Power quality disturbance recognition based on multiresolution S-transform and decision tree publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2924918 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR39 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 21 start-page: 467 year: 1982 end-page: 488 ident: CR1 article-title: Simulating physics with computers publication-title: Int J Theor Phys doi: 10.1007/BF02650179 – start-page: 1 year: 2021 end-page: 5 ident: CR34 article-title: Analyzing the effect of feature mapping techniques along with the circuit depth in quantum supervised learning by utilizing quantum support vector machine publication-title: 2021 24th International Conference on Computer and Information Technology (ICCIT) – volume: 23 start-page: 280 issue: 1 year: 2007 end-page: 287 ident: CR18 article-title: Detection and classification of power quality disturbances using S-transform and probabilistic neural network publication-title: IEEE Trans Power Deliv doi: 10.1109/TPWRD.2007.911125 – volume: 67 issue: 5 year: 2024 ident: CR28 article-title: A quantum federated learning framework for classical clients publication-title: Sci China, Phys Mech Astron doi: 10.1007/s11433-023-2337-2 – volume: 5 start-page: 15 issue: 1 year: 2019 ident: CR5 article-title: Quantum risk analysis publication-title: npj Quantum Inf doi: 10.1038/s41534-019-0130-6 – volume: 122 issue: 4 year: 2019 ident: CR36 article-title: Quantum machine learning in feature Hilbert spaces publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.122.040504 – volume: 62 start-page: 183 year: 2002 end-page: 190 ident: CR16 article-title: Comparison between discrete STFT and wavelets for the analysis of power quality events publication-title: Electr Power Syst Res doi: 10.1016/S0378-7796(02)00035-4 – volume: 8 start-page: 173530 year: 2020 end-page: 173547 ident: CR42 article-title: Recognition of complex power quality disturbances using S-transform based ruled decision tree publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025190 – volume: 35 start-page: 470 year: 2015 end-page: 481 ident: CR45 article-title: Power quality disturbance detection and classification using wavelet and RBFNN publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.05.048 – ident: CR26 – volume: 9 start-page: 2688 issue: 15 year: 2009 end-page: 2700 ident: CR31 article-title: Identification of multiple power quality disturbances using S-transform and rule based classification technique publication-title: J Appl Sci doi: 10.3923/jas.2009.2688.2700 – volume: 7 start-page: 20961 year: 2019 end-page: 20966 ident: CR12 article-title: An independent component analysis classification for complex power quality disturbances with sparse auto encoder features publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2898211 – volume: 36 start-page: 5962 issue: 3 year: 2009 ident: 283_CR41 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.07.030 – volume: 65 issue: 9 year: 2022 ident: 283_CR9 publication-title: Sci China, Phys Mech Astron doi: 10.1007/s11433-022-1921-y – volume: 42 start-page: 6075 issue: 15–16 year: 2015 ident: 283_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.04.002 – volume: 67 issue: 5 year: 2024 ident: 283_CR28 publication-title: Sci China, Phys Mech Astron doi: 10.1007/s11433-023-2337-2 – volume: 62 start-page: 183 year: 2002 ident: 283_CR16 publication-title: Electr Power Syst Res doi: 10.1016/S0378-7796(02)00035-4 – volume: 23 start-page: 280 issue: 1 year: 2007 ident: 283_CR18 publication-title: IEEE Trans Power Deliv doi: 10.1109/TPWRD.2007.911125 – volume: 7 start-page: 88380 year: 2019 ident: 283_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2924918 – volume: 55 start-page: 2244 issue: 6 year: 2006 ident: 283_CR11 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2006.884126 – volume: 1 start-page: 81 year: 1986 ident: 283_CR40 publication-title: Mach Learn doi: 10.1007/BF00116251 – volume-title: Quantum computation and quantum information: 10th anniversary edition year: 2010 ident: 283_CR35 – volume: 37 start-page: 3229 issue: 4 year: 2010 ident: 283_CR14 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.09.057 – volume: 61 start-page: 2473 year: 2013 ident: 283_CR43 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2013.2272276 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 283_CR37 publication-title: Data Min Knowl Discov doi: 10.1023/A:1009715923555 – volume: 21 start-page: 467 year: 1982 ident: 283_CR1 publication-title: Int J Theor Phys doi: 10.1007/BF02650179 – volume: 21 start-page: 285 issue: 1 year: 2019 ident: 283_CR4 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2891235 – volume: 122 issue: 4 year: 2019 ident: 283_CR36 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.122.040504 – volume: 2 start-page: 1 issue: 1 year: 2016 ident: 283_CR24 publication-title: npj Quantum Inf doi: 10.1038/npjqi.2015.23 – volume: 574 start-page: 505 issue: 7779 year: 2019 ident: 283_CR3 publication-title: Nature doi: 10.1038/s41586-019-1666-5 – volume: 113 issue: 13 year: 2014 ident: 283_CR38 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.113.130503 – volume: 34 start-page: 237 issue: 2 year: 2009 ident: 283_CR32 publication-title: Eur J Sci Res – volume: 35 start-page: 470 year: 2015 ident: 283_CR45 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.05.048 – start-page: 903 volume-title: 2016 17th International Conference on Harmonics and Quality of Power (ICHQP) year: 2016 ident: 283_CR10 doi: 10.1109/ICHQP.2016.7783388 – volume: 22 issue: 20 year: 2022 ident: 283_CR21 publication-title: Sensors doi: 10.3390/s22207958 – volume: 61 start-page: 235 issue: 4 year: 2010 ident: 283_CR15 publication-title: J Electr Eng – volume: 589 start-page: 214 issue: 7841 year: 2021 ident: 283_CR7 publication-title: Nature doi: 10.1038/s41586-020-03093-8 – volume: 35 start-page: 4335 issue: 4 year: 2021 ident: 283_CR25 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2021.3130598 – volume: 5 start-page: 15 issue: 1 year: 2019 ident: 283_CR5 publication-title: npj Quantum Inf doi: 10.1038/s41534-019-0130-6 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 283_CR39 publication-title: Nature doi: 10.1038/nature14539 – start-page: 1 volume-title: 2021 24th International Conference on Computer and Information Technology (ICCIT) year: 2021 ident: 283_CR34 – start-page: 7 volume-title: 2006 IEEE power engineering society general meeting year: 2006 ident: 283_CR19 – ident: 283_CR26 doi: 10.1080/03772063.2023.2245350 – volume: 213 year: 2022 ident: 283_CR20 publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2022.108695 – volume: 9 start-page: 2688 issue: 15 year: 2009 ident: 283_CR31 publication-title: J Appl Sci doi: 10.3923/jas.2009.2688.2700 – volume: 549 start-page: 242 issue: 7671 year: 2017 ident: 283_CR2 publication-title: Nature doi: 10.1038/nature23879 – volume: 8 start-page: 173530 year: 2020 ident: 283_CR42 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025190 – volume: 10 issue: 1 year: 2020 ident: 283_CR6 publication-title: Sci Rep doi: 10.1038/s41598-020-58928-1 – volume: 7 start-page: 20961 year: 2019 ident: 283_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2898211 – volume: 104 issue: 2 year: 2021 ident: 283_CR8 publication-title: Phys Rev A doi: 10.1103/PhysRevA.104.022418 – volume: 10 start-page: 945 issue: 3 year: 2010 ident: 283_CR44 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.10.013 – volume: 11 start-page: 46026 year: 2023 ident: 283_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3274732 – volume: 61 start-page: 355 issue: 5 year: 2023 ident: 283_CR27 publication-title: Indian J Pure Appl Phys – volume: 2 start-page: 433 issue: 4 year: 2010 ident: 283_CR33 publication-title: Wiley Interdiscip Rev: Comput Stat doi: 10.1002/wics.101 – volume-title: IEEE transactions on instrumentation and measurement year: 2023 ident: 283_CR23 – ident: 283_CR30 doi: 10.1109/IEEESTD.2019.8796486 – volume: 567 start-page: 209 issue: 7747 year: 2019 ident: 283_CR29 publication-title: Nature doi: 10.1038/s41586-019-0980-2  | 
    
| SSID | ssj0001125817 ssib035840856  | 
    
| Score | 2.3294013 | 
    
| Snippet | Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 70 | 
    
| SubjectTerms | Accuracy Algorithms Computation Dimensional analysis Electric power systems Hilbert space Mapping Nanotechnology and Microengineering Noise levels Physics Physics and Astronomy Quantum Information Technology Quantum Physics Spintronics Support vector machines  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SDaHNobR5kE3TokOvYv2QtPKhlG1JWApdSmkgNyHrAQkbx5u1G_LvM5Lt3fbS5mwk5PnGM59H8wD4qItEmik3VGjJKUutoIVNEqrLVGrhEm1iK6XvCzG_ZN-u-NUOLIZamJBWOdjEaKjtnQkx8kmeItXIQyXm53pFw9SocLs6jNDQ_WgF-ym2GHsBu1nojDWC3S_nix8_t1EX9OcynQ4pPSyZuPpm1UzWyFtCzC5jNE7vofxvP7Uln5v70n142Va1fnzQy-UfLuniDbzuuSSZdeC_hR1XHcBezOk060Nws4oMV_xk1aII21uybuvAuMnvGK0ntzGX0hGkrqQOA9NIV2X5SCzi396XYTWxrokZW7hfZcm17TOMIqhHcHlx_uvrnPZTFahhImlCf0pvtcyYZmhhpNDaeC1MKnhZ5loafH835R6dmPN5njtjC1Z4KZxHY-ARu2MYVXeVO0EZCstLK33KtWDWldp6JOu-ZPiXJgvjxjAdZKhM33I8TL5Yqq4cOlFR-qqTvkLpqyh9xceQblbWXduNZ6w5G2BS_Ye4Vlu1GUM2QLd9_P89sw3Izz7I6b8P8g5eZUHRYk7MGYya-9a9R2bTlB96dX0CqvX4cw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ_gEWN8AD_jETB98LWwH22v-3ghEmIigcRL8KnpZ6Iey8LtavCvZ9rdPdAHRZ8307Qz085v29_MALzTVSbtjFsqtOSU5U7QymUZ1SaXWvhM21RK6eOJOF6wD-f8fAOyMRfm_vs9Yv8D33y9ag9WCCvilVrBaGquQ_kj2BQc0fcENhcnp_PPsYdcHvm0s9Q8DcNOQRn650je-cNQv0akO5i5fhl9Ck-6utE3P_RyeS_4HG3D2TjtnnPybb9rzb79-VtFx39Z1zPYGpAomfeu8xw2fP0CHidGqF29BD-vyUgQIFcdGqC7IKuuiXidfE93_eQiMTE9QeBLmthujfQ5mjfEofd01yZKE-fbxPfC8WpHvriBn5Rc4hUsjt5_OjymQ08GapnI2ljdMjgtC6YZnk9SaG2DFjYX3JhSS4vL8DMeMAT6UJalt65iVZDCBzxKAlr-NUzqy9q_QbsIx42TIedaMOeNdgGhfjAM__FkZf0UZqNdlB0Klse-GUvVJ1NnKilR9UpUqESVlKj4FPK1ZNMX7XiAzO5oejVs45Uqc8S3ZUz_nUIxusPd57-PWawd58ET2fkfoV2YtNed30OA1Jq3w564BZcHCX8 priority: 102 providerName: Unpaywall  | 
    
| Title | An advanced quantum support vector machine for power quality disturbance detection and identification | 
    
| URI | https://link.springer.com/article/10.1140/epjqt/s40507-024-00283-5 https://www.proquest.com/docview/3119332399 https://doi.org/10.1140/epjqt/s40507-024-00283-5  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125817 issn: 2196-0763 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125817 issn: 2196-0763 databaseCode: ADMLS dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125817 issn: 2196-0763 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125817 issn: 2196-0763 databaseCode: 8FG dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125817 issn: 2196-0763 databaseCode: AAJSJ dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Link customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125817 issn: 2196-0763 databaseCode: C6C dateStart: 20141201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125817 issn: 2196-0763 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7yoLQ9lD7ppumiQ68ifkha-egs2YSFLqHtQnoSsh7QsnGcrN2Qf5-xbO8mlzb0ZJCRbH8z9nzWvAC-6CySZsINFVpyymIraGajiOoillq4SJtQSunrQpwt2fyCX-xANOTCPPTfI_c_ctXv6_pojbSi3VJLGA3NdSjfhX00VSK4Z8V00KAUzSlyCLHdZUH7LUPbXTRECWWosUM4z18Wf2yjtsRz4yt9Cc-bstJ3t3q1emCOZq_hVc8jSd4J_g3suPItPAvxnGb9DlxeksG9T64bhK-5JOumatk2-RN26slliKN0BGkrqdpmaaTLsLwjFmXf3BTtbGJdHaK1cL3Skl-2jy4KAn0Py9nJj-kZ7TsqUMNEVLe1Kb3VMmEaYZJSaG28FiYWvChSLQ0-v5twjwbM-TRNnbEZy7wUzuOHwKPcPsBeeVW6j4ihsLyw0sdcC2Zdoa1Hou4Lhn9oMjNuBJMBQ2X6cuNt14uV6lKhIxXQVx36CtFXAX3FRxBvZlZdyY0nzDkcxKT6l3Ct0hjZadom744gGUS3Pf3vNZONkJ98Iwf_c6VP8CJp1S9EyRzCXn3TuM_IdepiDLtydjqG_Tyff5_j8fhkcf4NR6cJGwfVx7Hl4jz_eQ9WFvt5 | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqhwQDzFQgEf4BhtHrbXOVSoQKstbVcItVJvxvFDAm3TbJNQ7Z_jtzF2kl24QC89R7acefmz_c0MwFuVx0JPmI64EiyiieFRbuI4UkUiFLex0qGU0smMT8_o53N2vgG_hlwYT6scYmII1OZS-zvycZYg1Mh8Jub7ahH5rlH-dXVooaH61gpmN5QY6xM7juzyGo9w9e7hJ9T3uzQ92D_9OI36LgORpjxufL1GZ5RIqaLocYIrpZ3iOuGsKDIlNIYMO2EOg7p1WZZZbXKaO8GtQ-dw-C847x3YohnN8fC39WF_9uXr-pYH8YNIJgOFiMZjW_1YNOMacZK_I0xpFLoFRezvfXENdlfvs_dhuy0rtbxW8_kfW-DBQ3jQY1ey1xnbI9iw5WO4Gzikun4Cdq8kA6WALFpUWXtB6rbyCJ_8DK8D5CJwNy1BqEwq36CNdFmdS2LQ3tqrwo8mxjaBIYbzlYZ8Nz2jKRjRUzi7Ffk-g83ysrTPUYbcsMIIlzDFqbGFMg4PB66geCoUubYjmAwylLovce47bcxll34dyyB92UlfovRlkL5kI0hWI6uuzMcNxuwMapK949dybaYjSAfVrT__f850peQbL-TFvxfyBranpyfH8vhwdvQS7qXe6AIfZwc2m6vWvkJU1RSve9Ml8O22veU3tZM2gg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh49IJ5iaQEf4BhtHrbjHFBVtSwthYoDlXozjh8SaJtmm4Rq_xq_jrGT7MIFeuk5suXMy5_tb2YA3qgiFjpnOuJKsIgmhkeFieNIlYlQ3MZKh1JKn0_44Sn9eMbONuDXmAvjaZVjTAyB2lxof0c-zRKEGpnPxJy6gRbx5WC2Wy8i30HKv7SO7TR6Ezm2yys8vjXvjg5Q12_TdPb-6_5hNHQYiDTlcetrNTqjREoVRW8TXCntFNcJZ2WZKaExXNicOQzo1mVZZrUpaOEEtw4dw-F_4Ly34Hbuq7j7LPXZh_X9DiIHkeQjeYjGU1v_WLTTBhGSvx1MaRT6BEXs7x1xDXNXL7NbcK-rarW8UvP5H5vf7CE8GFAr2evN7BFs2Oox3AnsUd08AbtXkZFMQBYdKqs7J01Xe2xPfoZ3AXIeWJuWIEgmtW_NRvp8ziUxaGndZelHE2PbwA3D-SpDvpuByxTM5ymc3oh0n8FmdVHZ5yhDblhphEuY4tTYUhmHxwJXUjwPikLbCeSjDKUeipv7Hhtz2SdexzJIX_bSlyh9GaQv2QSS1ci6L_BxjTE7o5rk4PKNXBvoBNJRdevP_58zXSn52gt58e-FvIa76CPy09HJ8TbcT73NBSLODmy2l519iXCqLV8FuyXw7aYd5TdAfjQc | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ_gEWN8AD_jETB98LWwH22v-3ghEmIigcRL8KnpZ6Iey8LtavCvZ9rdPdAHRZ8307Qz085v29_MALzTVSbtjFsqtOSU5U7QymUZ1SaXWvhM21RK6eOJOF6wD-f8fAOyMRfm_vs9Yv8D33y9ag9WCCvilVrBaGquQ_kj2BQc0fcENhcnp_PPsYdcHvm0s9Q8DcNOQRn650je-cNQv0akO5i5fhl9Ck-6utE3P_RyeS_4HG3D2TjtnnPybb9rzb79-VtFx39Z1zPYGpAomfeu8xw2fP0CHidGqF29BD-vyUgQIFcdGqC7IKuuiXidfE93_eQiMTE9QeBLmthujfQ5mjfEofd01yZKE-fbxPfC8WpHvriBn5Rc4hUsjt5_OjymQ08GapnI2ljdMjgtC6YZnk9SaG2DFjYX3JhSS4vL8DMeMAT6UJalt65iVZDCBzxKAlr-NUzqy9q_QbsIx42TIedaMOeNdgGhfjAM__FkZf0UZqNdlB0Klse-GUvVJ1NnKilR9UpUqESVlKj4FPK1ZNMX7XiAzO5oejVs45Uqc8S3ZUz_nUIxusPd57-PWawd58ET2fkfoV2YtNed30OA1Jq3w564BZcHCX8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+advanced+quantum+support+vector+machine+for+power+quality+disturbance+detection+and+identification&rft.jtitle=EPJ+quantum+technology&rft.au=Wang%2C+Qing-Le&rft.au=Jin%2C+Yu&rft.au=Li%2C+Xin-Hao&rft.au=Li%2C+Yue&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2662-4400&rft.eissn=2196-0763&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1140%2Fepjqt%2Fs40507-024-00283-5&rft.externalDocID=10_1140_epjqt_s40507_024_00283_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4400&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4400&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4400&client=summon |