An advanced quantum support vector machine for power quality disturbance detection and identification

Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately dete...

Full description

Saved in:
Bibliographic Details
Published inEPJ quantum technology Vol. 11; no. 1; p. 70
Main Authors Wang, Qing-Le, Jin, Yu, Li, Xin-Hao, Li, Yue, Li, Yuan-Cheng, Zhang, Ke-Jia, Liu, Hao, Cheng, Long
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2662-4400
2196-0763
2196-0763
DOI10.1140/epjqt/s40507-024-00283-5

Cover

Abstract Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately detecting and identifying PQDs is crucial for ensuring reliable system operation. This paper explores the application of quantum algorithms in the field of power quality and proposes a novel method using Quantum Support Vector Machines (QSVM) to detect and identify PQDs, which marks the first application of QSVM in PQD analysis. The QSVM model employed involves three main stages: quantum feature mapping, quantum kernel computation, and model training. Quantum feature mapping uses quantum circuits to map classical data into a high-dimensional Hilbert space, enhancing feature separability. Quantum kernel computation calculates the inner products between features for model training. Rigorous theoretical and experimental analyses validate our approach. This method achieves a time complexity of O ( N 2 log ( N ) ) , superior to classical SVM algorithms. Simulation results show high accuracy in PQDs detection, achieving a 100% detection rate and a 96.25% accuracy rate in single PQD identification. Experimental outcomes demonstrate robustness, maintaining over 87% accuracy even with increased noise levels, confirming its effectiveness in PQDs detection and identification.
AbstractList Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately detecting and identifying PQDs is crucial for ensuring reliable system operation. This paper explores the application of quantum algorithms in the field of power quality and proposes a novel method using Quantum Support Vector Machines (QSVM) to detect and identify PQDs, which marks the first application of QSVM in PQD analysis. The QSVM model employed involves three main stages: quantum feature mapping, quantum kernel computation, and model training. Quantum feature mapping uses quantum circuits to map classical data into a high-dimensional Hilbert space, enhancing feature separability. Quantum kernel computation calculates the inner products between features for model training. Rigorous theoretical and experimental analyses validate our approach. This method achieves a time complexity of O(N2log(N)), superior to classical SVM algorithms. Simulation results show high accuracy in PQDs detection, achieving a 100% detection rate and a 96.25% accuracy rate in single PQD identification. Experimental outcomes demonstrate robustness, maintaining over 87% accuracy even with increased noise levels, confirming its effectiveness in PQDs detection and identification.
Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately detecting and identifying PQDs is crucial for ensuring reliable system operation. This paper explores the application of quantum algorithms in the field of power quality and proposes a novel method using Quantum Support Vector Machines (QSVM) to detect and identify PQDs, which marks the first application of QSVM in PQD analysis. The QSVM model employed involves three main stages: quantum feature mapping, quantum kernel computation, and model training. Quantum feature mapping uses quantum circuits to map classical data into a high-dimensional Hilbert space, enhancing feature separability. Quantum kernel computation calculates the inner products between features for model training. Rigorous theoretical and experimental analyses validate our approach. This method achieves a time complexity of O ( N 2 log ( N ) ) , superior to classical SVM algorithms. Simulation results show high accuracy in PQDs detection, achieving a 100% detection rate and a 96.25% accuracy rate in single PQD identification. Experimental outcomes demonstrate robustness, maintaining over 87% accuracy even with increased noise levels, confirming its effectiveness in PQDs detection and identification.
ArticleNumber 70
Author Liu, Hao
Jin, Yu
Li, Xin-Hao
Cheng, Long
Wang, Qing-Le
Li, Yue
Zhang, Ke-Jia
Li, Yuan-Cheng
Author_xml – sequence: 1
  givenname: Qing-Le
  surname: Wang
  fullname: Wang, Qing-Le
  organization: North China Electric Power University
– sequence: 2
  givenname: Yu
  surname: Jin
  fullname: Jin, Yu
  organization: North China Electric Power University
– sequence: 3
  givenname: Xin-Hao
  surname: Li
  fullname: Li, Xin-Hao
  organization: Electric Power Science Research Institute, Guizhou Power Grid Co., Ltd
– sequence: 4
  givenname: Yue
  surname: Li
  fullname: Li, Yue
  organization: Electric Power Science Research Institute, Guizhou Power Grid Co., Ltd
– sequence: 5
  givenname: Yuan-Cheng
  surname: Li
  fullname: Li, Yuan-Cheng
  email: ncepua@163.com
  organization: North China Electric Power University
– sequence: 6
  givenname: Ke-Jia
  surname: Zhang
  fullname: Zhang, Ke-Jia
  organization: North China Electric Power University
– sequence: 7
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
  organization: North China Electric Power University
– sequence: 8
  givenname: Long
  surname: Cheng
  fullname: Cheng, Long
  organization: North China Electric Power University
BookMark eNqVUF1r3DAQFCWFpmn-g6DPblaWLMsvhRD6BYG8tM9iT161OnyyT5IT7t9Xdxco9KXp0y7LzOzMvGUXcY7EGBfwQQgFN7Rs9-UmK-igb6BVDUBrZNO9YpetGHQDvZYXdde6bZQCeMOuc94CgBBtZ0R_yeg2chwfMToa-X7FWNYdz-uyzKnwR3JlTnyH7leIxH3dl_mJ0hE4hXLgY8hlTZsjm49UKjzMVS-OPIwUS_DB4fH0jr32OGW6fp5X7MfnT9_vvjb3D1--3d3eN05pKE0_CD-iaRUqMMZoROdRO6G7zUaicTUd9Z3XvSEvpSQ3DmrwRpPvJXh08ooNZ901Lnh4wmmySwo7TAcrwB4rs6fK7LkyWyuzp8psV7nvz9wlzfuVcrHbeU2x2rVSiEHKVg5DRX08o1yac07krQvllLEkDNNL3pi_BP7D4XO6XCnxJ6U_Dv_J_Q2ekKrr
CitedBy_id crossref_primary_10_3390_app15052721
Cites_doi 10.1016/j.eswa.2008.07.030
10.1109/ICHQP.2016.7783388
10.1103/PhysRevA.104.022418
10.1038/npjqi.2015.23
10.1016/j.asoc.2009.10.013
10.1038/nature23879
10.1007/s11433-022-1921-y
10.1023/A:1009715923555
10.1002/wics.101
10.1016/j.epsr.2022.108695
10.1109/TKDE.2021.3130598
10.1038/s41598-020-58928-1
10.1016/j.eswa.2015.04.002
10.3390/s22207958
10.1109/TIM.2006.884126
10.1109/ACCESS.2023.3274732
10.1038/s41586-019-0980-2
10.1038/s41586-019-1666-5
10.1109/TITS.2019.2891235
10.1103/PhysRevLett.113.130503
10.1109/TIE.2013.2272276
10.1038/s41586-020-03093-8
10.1016/j.eswa.2009.09.057
10.1007/BF00116251
10.1109/ACCESS.2019.2924918
10.1038/nature14539
10.1007/BF02650179
10.1109/TPWRD.2007.911125
10.1007/s11433-023-2337-2
10.1038/s41534-019-0130-6
10.1103/PhysRevLett.122.040504
10.1016/S0378-7796(02)00035-4
10.1109/ACCESS.2020.3025190
10.1016/j.asoc.2015.05.048
10.3923/jas.2009.2688.2700
10.1109/ACCESS.2019.2898211
10.1080/03772063.2023.2245350
10.1109/IEEESTD.2019.8796486
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.1140/epjqt/s40507-024-00283-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-0763
ExternalDocumentID 10.1140/epjqt/s40507-024-00283-5
10_1140_epjqt_s40507_024_00283_5
GrantInformation_xml – fundername: Guizhou Power Grid Co., Ltd., China
  grantid: GZKJXM20222149; GZKJXM20222149; GZKJXM20222149; GZKJXM20222149; GZKJXM20222149; GZKJXM20222149; GZKJXM20222149; GZKJXM20222149
GroupedDBID -A0
0R~
5VS
8FE
8FG
AAFWJ
AAJSJ
AAKKN
ABEEZ
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
ASPBG
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
KQ8
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
TUS
AASML
AAYXX
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c460t-791fda824a408886aacfa6c165bb3a8c002e75f678ef333ecd949f86ef730fac3
IEDL.DBID C6C
ISSN 2662-4400
2196-0763
IngestDate Sun Sep 07 11:09:05 EDT 2025
Sat Oct 11 06:12:12 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Wed Oct 01 03:06:05 EDT 2025
Fri Feb 21 02:37:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Quantum support vector machine
Power quality disturbance detection
Power quality disturbance
Quantum feature mapping
Power quality disturbance identification
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-791fda824a408886aacfa6c165bb3a8c002e75f678ef333ecd949f86ef730fac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1140/epjqt/s40507-024-00283-5
PQID 3119332399
PQPubID 2034768
ParticipantIDs unpaywall_primary_10_1140_epjqt_s40507_024_00283_5
proquest_journals_3119332399
crossref_citationtrail_10_1140_epjqt_s40507_024_00283_5
crossref_primary_10_1140_epjqt_s40507_024_00283_5
springer_journals_10_1140_epjqt_s40507_024_00283_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle EPJ quantum technology
PublicationTitleAbbrev EPJ Quantum Technol
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Khetarpal, Nagpal, Al-Numay, Siano, Arya, Kassarwani (CR22) 2023; 11
Hossain, Ali, Swarna, Hasan, Habib, Rahman (CR34) 2021
Arute, Arya, Babbush, Bacon, Bardin, Barends (CR3) 2019; 574
Zhao, Yang (CR19) 2006
Montanaro (CR24) 2016; 2
Kandala, Mezzacapo, Temme, Takita, Brink, Chow (CR2) 2017; 549
Quinlan (CR40) 1986; 1
Salem, Mohamed, Samad (CR14) 2010; 37
Chen, Zhang, Chen, Cai, Liao, Zhang (CR7) 2021; 589
Peretto, Artioli, Pasini, Sasdelli (CR11) 2006; 55
Liu, Wu, Wan, Pan, Qin, Gao (CR8) 2021; 104
Burges (CR37) 1998; 2
Shi, Yang, Xu, Zhang, Farahani (CR12) 2019; 7
Chandrasekar, Detection (CR15) 2010; 61
CR30
Havlíček, Córcoles, Temme, Harrow, Kandala, Chow (CR29) 2019; 567
Schuld, Killoran (CR36) 2019; 122
Valtierra-Rodriguez, de Jesus Romero-Troncoso, Osornio-Rios, Garcia-Perez (CR43) 2013; 61
Kumar, Kumar, Singh (CR27) 2023; 61
Song, Wu, Wu, Li, Wen, Qin (CR28) 2024; 67
Feynman (CR1) 1982; 21
Mozaffari, Doshi, Yilmaz (CR21) 2022; 22
Jurado, Saenz (CR16) 2002; 62
Rebentrost, Mohseni, Lloyd (CR38) 2014; 113
Liu, Yuan, Fan, Jin, Mohamed (CR23) 2023
Yalcin, Ozdemir (CR10) 2016
Faisal, Mohamed, Hussain, Nizam (CR32) 2009; 34
De Yong, Bhowmik, Magnago (CR17) 2015; 42
Stollenwerk, O’Gorman, Venturelli, Mandra, Rodionova, Ng (CR4) 2019; 21
Abdi, Williams (CR33) 2010; 2
Li, Cai, Sun, Liu, Wan, Qin (CR9) 2022; 65
Wang, Zhang, Zhou (CR20) 2022; 213
Uyar, Yildirim, Gencoglu (CR41) 2009; 36
LeCun, Bengio, Hinton (CR39) 2015; 521
CR26
Shi, Chen, Lu, Feng, Shi, Yang (CR6) 2020; 10
Mahela, Shaik, Khan, Mahla, Alhelou (CR42) 2020; 8
Shi, Li, Lai, Li, Shi, Feng (CR25) 2021; 35
Behera, Dash, Biswal (CR44) 2010; 10
Zhong, Zhang, Cai, Li, Yang, Chen (CR13) 2019; 7
Mishra, Bhende, Panigrahi (CR18) 2007; 23
Nielsen, Chuang (CR35) 2010
Kanirajan, Kumar (CR45) 2015; 35
Woerner, Egger (CR5) 2019; 5
Faisal, Mohamed (CR31) 2009; 9
A Kandala (283_CR2) 2017; 549
JD Wang (283_CR20) 2022; 213
P Khetarpal (283_CR22) 2023; 11
T Stollenwerk (283_CR4) 2019; 21
CJ Burges (283_CR37) 1998; 2
RP Feynman (283_CR1) 1982; 21
FZ Zhao (283_CR19) 2006
A Montanaro (283_CR24) 2016; 2
S Mishra (283_CR18) 2007; 23
P Chandrasekar (283_CR15) 2010; 61
M Faisal (283_CR32) 2009; 34
V Havlíček (283_CR29) 2019; 567
JR Quinlan (283_CR40) 1986; 1
M Mozaffari (283_CR21) 2022; 22
YA Chen (283_CR7) 2021; 589
T Yalcin (283_CR10) 2016
YQ Song (283_CR28) 2024; 67
M Uyar (283_CR41) 2009; 36
L Peretto (283_CR11) 2006; 55
M Faisal (283_CR31) 2009; 9
MA Nielsen (283_CR35) 2010
S Woerner (283_CR5) 2019; 5
ME Salem (283_CR14) 2010; 37
Y LeCun (283_CR39) 2015; 521
HL Liu (283_CR8) 2021; 104
283_CR30
M Valtierra-Rodriguez (283_CR43) 2013; 61
P Kanirajan (283_CR45) 2015; 35
D De Yong (283_CR17) 2015; 42
HS Behera (283_CR44) 2010; 10
T Zhong (283_CR13) 2019; 7
F Jurado (283_CR16) 2002; 62
P Rebentrost (283_CR38) 2014; 113
OP Mahela (283_CR42) 2020; 8
ZQ Li (283_CR9) 2022; 65
XY Shi (283_CR12) 2019; 7
F Arute (283_CR3) 2019; 574
YL Liu (283_CR23) 2023
MM Hossain (283_CR34) 2021
JJ Shi (283_CR6) 2020; 10
H Abdi (283_CR33) 2010; 2
JJ Shi (283_CR25) 2021; 35
M Schuld (283_CR36) 2019; 122
283_CR26
T Kumar (283_CR27) 2023; 61
References_xml – volume: 36
  start-page: 5962
  issue: 3
  year: 2009
  end-page: 5975
  ident: CR41
  article-title: An expert system based on S-transform and neural network for automatic classification of power quality disturbances
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.07.030
– start-page: 903
  year: 2016
  end-page: 907
  ident: CR10
  article-title: Pattern recognition method for identifying smart grid power quality disturbance
  publication-title: 2016 17th International Conference on Harmonics and Quality of Power (ICHQP)
  doi: 10.1109/ICHQP.2016.7783388
– volume: 61
  start-page: 355
  issue: 5
  year: 2023
  end-page: 365
  ident: CR27
  article-title: Noise analysis of Grover’s quantum search algorithm
  publication-title: Indian J Pure Appl Phys
– volume: 104
  issue: 2
  year: 2021
  ident: CR8
  article-title: Variational quantum algorithm for the Poisson equation
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.104.022418
– volume: 2
  start-page: 1
  issue: 1
  year: 2016
  end-page: 8
  ident: CR24
  article-title: Quantum algorithms: an overview
  publication-title: npj Quantum Inf
  doi: 10.1038/npjqi.2015.23
– volume: 10
  start-page: 945
  issue: 3
  year: 2010
  end-page: 955
  ident: CR44
  article-title: Power quality time series data mining using S-transform and fuzzy expert system
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.10.013
– volume: 549
  start-page: 242
  issue: 7671
  year: 2017
  end-page: 246
  ident: CR2
  article-title: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
  publication-title: Nature
  doi: 10.1038/nature23879
– volume: 65
  issue: 9
  year: 2022
  ident: CR9
  article-title: Novel quantum circuit implementation of advanced encryption standard with low costs
  publication-title: Sci China, Phys Mech Astron
  doi: 10.1007/s11433-022-1921-y
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  end-page: 167
  ident: CR37
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min Knowl Discov
  doi: 10.1023/A:1009715923555
– volume: 2
  start-page: 433
  issue: 4
  year: 2010
  end-page: 459
  ident: CR33
  article-title: Principal component analysis
  publication-title: Wiley Interdiscip Rev: Comput Stat
  doi: 10.1002/wics.101
– volume: 213
  year: 2022
  ident: CR20
  article-title: Ensemble deep learning for automated classification of power quality disturbances signals
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2022.108695
– volume: 35
  start-page: 4335
  issue: 4
  year: 2021
  end-page: 4345
  ident: CR25
  article-title: Two end-to-end quantum-inspired deep neural networks for text classification
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2021.3130598
– volume: 10
  issue: 1
  year: 2020
  ident: CR6
  article-title: An approach to cryptography based on continuous-variable quantum neural network
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-58928-1
– volume: 42
  start-page: 6075
  issue: 15–16
  year: 2015
  end-page: 6081
  ident: CR17
  article-title: An effective power quality classifier using wavelet transform and support vector machines
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.04.002
– ident: CR30
– volume: 22
  issue: 20
  year: 2022
  ident: CR21
  article-title: Real-time detection and classification of power quality disturbances
  publication-title: Sensors
  doi: 10.3390/s22207958
– volume: 55
  start-page: 2244
  issue: 6
  year: 2006
  end-page: 2252
  ident: CR11
  article-title: Performance analysis and optimization of a robust algorithm for voltage transients detection
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2006.884126
– volume: 34
  start-page: 237
  issue: 2
  year: 2009
  end-page: 251
  ident: CR32
  article-title: Support vector regression based S-transform for prediction of single and multiple power quality disturbances
  publication-title: Eur J Sci Res
– year: 2010
  ident: CR35
  publication-title: Quantum computation and quantum information: 10th anniversary edition
– volume: 11
  start-page: 46026
  year: 2023
  end-page: 46038
  ident: CR22
  article-title: Power quality disturbances detection and classification based on deep convolution auto-encoder networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3274732
– volume: 567
  start-page: 209
  issue: 7747
  year: 2019
  end-page: 212
  ident: CR29
  article-title: Supervised learning with quantum-enhanced feature spaces
  publication-title: Nature
  doi: 10.1038/s41586-019-0980-2
– volume: 574
  start-page: 505
  issue: 7779
  year: 2019
  end-page: 510
  ident: CR3
  article-title: Quantum supremacy using a programmable superconducting processor
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 21
  start-page: 285
  issue: 1
  year: 2019
  end-page: 297
  ident: CR4
  article-title: Quantum annealing applied to de-conflicting optimal trajectories for air traffic management
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2891235
– volume: 113
  issue: 13
  year: 2014
  ident: CR38
  article-title: Quantum support vector machine for big data classification
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.113.130503
– year: 2023
  ident: CR23
  article-title: A multidimensional feature-driven ensemble model for accurate classification of complex power quality disturbance
  publication-title: IEEE transactions on instrumentation and measurement
– volume: 61
  start-page: 235
  issue: 4
  year: 2010
  end-page: 240
  ident: CR15
  article-title: Classification of power quality disturbancewaveform using MRA based modified wavelet transfrom and neural networks
  publication-title: J Electr Eng
– volume: 61
  start-page: 2473
  year: 2013
  end-page: 2482
  ident: CR43
  article-title: Detection and classification of single and combined power quality disturbances using neural networks
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2013.2272276
– start-page: 7
  year: 2006
  ident: CR19
  article-title: Power quality disturbance recognition using S-transform
  publication-title: 2006 IEEE power engineering society general meeting
– volume: 589
  start-page: 214
  issue: 7841
  year: 2021
  end-page: 219
  ident: CR7
  article-title: An integrated space-to-ground quantum communication network over 4600 kilometres
  publication-title: Nature
  doi: 10.1038/s41586-020-03093-8
– volume: 37
  start-page: 3229
  issue: 4
  year: 2010
  end-page: 3235
  ident: CR14
  article-title: Rule based system for power quality disturbance classification incorporating S-transform features
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.09.057
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: CR40
  article-title: Induction of decision trees
  publication-title: Mach Learn
  doi: 10.1007/BF00116251
– volume: 7
  start-page: 88380
  year: 2019
  end-page: 88392
  ident: CR13
  article-title: Power quality disturbance recognition based on multiresolution S-transform and decision tree
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924918
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR39
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 21
  start-page: 467
  year: 1982
  end-page: 488
  ident: CR1
  article-title: Simulating physics with computers
  publication-title: Int J Theor Phys
  doi: 10.1007/BF02650179
– start-page: 1
  year: 2021
  end-page: 5
  ident: CR34
  article-title: Analyzing the effect of feature mapping techniques along with the circuit depth in quantum supervised learning by utilizing quantum support vector machine
  publication-title: 2021 24th International Conference on Computer and Information Technology (ICCIT)
– volume: 23
  start-page: 280
  issue: 1
  year: 2007
  end-page: 287
  ident: CR18
  article-title: Detection and classification of power quality disturbances using S-transform and probabilistic neural network
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/TPWRD.2007.911125
– volume: 67
  issue: 5
  year: 2024
  ident: CR28
  article-title: A quantum federated learning framework for classical clients
  publication-title: Sci China, Phys Mech Astron
  doi: 10.1007/s11433-023-2337-2
– volume: 5
  start-page: 15
  issue: 1
  year: 2019
  ident: CR5
  article-title: Quantum risk analysis
  publication-title: npj Quantum Inf
  doi: 10.1038/s41534-019-0130-6
– volume: 122
  issue: 4
  year: 2019
  ident: CR36
  article-title: Quantum machine learning in feature Hilbert spaces
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.122.040504
– volume: 62
  start-page: 183
  year: 2002
  end-page: 190
  ident: CR16
  article-title: Comparison between discrete STFT and wavelets for the analysis of power quality events
  publication-title: Electr Power Syst Res
  doi: 10.1016/S0378-7796(02)00035-4
– volume: 8
  start-page: 173530
  year: 2020
  end-page: 173547
  ident: CR42
  article-title: Recognition of complex power quality disturbances using S-transform based ruled decision tree
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025190
– volume: 35
  start-page: 470
  year: 2015
  end-page: 481
  ident: CR45
  article-title: Power quality disturbance detection and classification using wavelet and RBFNN
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.05.048
– ident: CR26
– volume: 9
  start-page: 2688
  issue: 15
  year: 2009
  end-page: 2700
  ident: CR31
  article-title: Identification of multiple power quality disturbances using S-transform and rule based classification technique
  publication-title: J Appl Sci
  doi: 10.3923/jas.2009.2688.2700
– volume: 7
  start-page: 20961
  year: 2019
  end-page: 20966
  ident: CR12
  article-title: An independent component analysis classification for complex power quality disturbances with sparse auto encoder features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2898211
– volume: 36
  start-page: 5962
  issue: 3
  year: 2009
  ident: 283_CR41
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.07.030
– volume: 65
  issue: 9
  year: 2022
  ident: 283_CR9
  publication-title: Sci China, Phys Mech Astron
  doi: 10.1007/s11433-022-1921-y
– volume: 42
  start-page: 6075
  issue: 15–16
  year: 2015
  ident: 283_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.04.002
– volume: 67
  issue: 5
  year: 2024
  ident: 283_CR28
  publication-title: Sci China, Phys Mech Astron
  doi: 10.1007/s11433-023-2337-2
– volume: 62
  start-page: 183
  year: 2002
  ident: 283_CR16
  publication-title: Electr Power Syst Res
  doi: 10.1016/S0378-7796(02)00035-4
– volume: 23
  start-page: 280
  issue: 1
  year: 2007
  ident: 283_CR18
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/TPWRD.2007.911125
– volume: 7
  start-page: 88380
  year: 2019
  ident: 283_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924918
– volume: 55
  start-page: 2244
  issue: 6
  year: 2006
  ident: 283_CR11
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2006.884126
– volume: 1
  start-page: 81
  year: 1986
  ident: 283_CR40
  publication-title: Mach Learn
  doi: 10.1007/BF00116251
– volume-title: Quantum computation and quantum information: 10th anniversary edition
  year: 2010
  ident: 283_CR35
– volume: 37
  start-page: 3229
  issue: 4
  year: 2010
  ident: 283_CR14
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.09.057
– volume: 61
  start-page: 2473
  year: 2013
  ident: 283_CR43
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2013.2272276
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 283_CR37
  publication-title: Data Min Knowl Discov
  doi: 10.1023/A:1009715923555
– volume: 21
  start-page: 467
  year: 1982
  ident: 283_CR1
  publication-title: Int J Theor Phys
  doi: 10.1007/BF02650179
– volume: 21
  start-page: 285
  issue: 1
  year: 2019
  ident: 283_CR4
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2891235
– volume: 122
  issue: 4
  year: 2019
  ident: 283_CR36
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.122.040504
– volume: 2
  start-page: 1
  issue: 1
  year: 2016
  ident: 283_CR24
  publication-title: npj Quantum Inf
  doi: 10.1038/npjqi.2015.23
– volume: 574
  start-page: 505
  issue: 7779
  year: 2019
  ident: 283_CR3
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 113
  issue: 13
  year: 2014
  ident: 283_CR38
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.113.130503
– volume: 34
  start-page: 237
  issue: 2
  year: 2009
  ident: 283_CR32
  publication-title: Eur J Sci Res
– volume: 35
  start-page: 470
  year: 2015
  ident: 283_CR45
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.05.048
– start-page: 903
  volume-title: 2016 17th International Conference on Harmonics and Quality of Power (ICHQP)
  year: 2016
  ident: 283_CR10
  doi: 10.1109/ICHQP.2016.7783388
– volume: 22
  issue: 20
  year: 2022
  ident: 283_CR21
  publication-title: Sensors
  doi: 10.3390/s22207958
– volume: 61
  start-page: 235
  issue: 4
  year: 2010
  ident: 283_CR15
  publication-title: J Electr Eng
– volume: 589
  start-page: 214
  issue: 7841
  year: 2021
  ident: 283_CR7
  publication-title: Nature
  doi: 10.1038/s41586-020-03093-8
– volume: 35
  start-page: 4335
  issue: 4
  year: 2021
  ident: 283_CR25
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2021.3130598
– volume: 5
  start-page: 15
  issue: 1
  year: 2019
  ident: 283_CR5
  publication-title: npj Quantum Inf
  doi: 10.1038/s41534-019-0130-6
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 283_CR39
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1
  volume-title: 2021 24th International Conference on Computer and Information Technology (ICCIT)
  year: 2021
  ident: 283_CR34
– start-page: 7
  volume-title: 2006 IEEE power engineering society general meeting
  year: 2006
  ident: 283_CR19
– ident: 283_CR26
  doi: 10.1080/03772063.2023.2245350
– volume: 213
  year: 2022
  ident: 283_CR20
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2022.108695
– volume: 9
  start-page: 2688
  issue: 15
  year: 2009
  ident: 283_CR31
  publication-title: J Appl Sci
  doi: 10.3923/jas.2009.2688.2700
– volume: 549
  start-page: 242
  issue: 7671
  year: 2017
  ident: 283_CR2
  publication-title: Nature
  doi: 10.1038/nature23879
– volume: 8
  start-page: 173530
  year: 2020
  ident: 283_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025190
– volume: 10
  issue: 1
  year: 2020
  ident: 283_CR6
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-58928-1
– volume: 7
  start-page: 20961
  year: 2019
  ident: 283_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2898211
– volume: 104
  issue: 2
  year: 2021
  ident: 283_CR8
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.104.022418
– volume: 10
  start-page: 945
  issue: 3
  year: 2010
  ident: 283_CR44
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.10.013
– volume: 11
  start-page: 46026
  year: 2023
  ident: 283_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3274732
– volume: 61
  start-page: 355
  issue: 5
  year: 2023
  ident: 283_CR27
  publication-title: Indian J Pure Appl Phys
– volume: 2
  start-page: 433
  issue: 4
  year: 2010
  ident: 283_CR33
  publication-title: Wiley Interdiscip Rev: Comput Stat
  doi: 10.1002/wics.101
– volume-title: IEEE transactions on instrumentation and measurement
  year: 2023
  ident: 283_CR23
– ident: 283_CR30
  doi: 10.1109/IEEESTD.2019.8796486
– volume: 567
  start-page: 209
  issue: 7747
  year: 2019
  ident: 283_CR29
  publication-title: Nature
  doi: 10.1038/s41586-019-0980-2
SSID ssj0001125817
ssib035840856
Score 2.3294013
Snippet Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 70
SubjectTerms Accuracy
Algorithms
Computation
Dimensional analysis
Electric power systems
Hilbert space
Mapping
Nanotechnology and Microengineering
Noise levels
Physics
Physics and Astronomy
Quantum Information Technology
Quantum Physics
Spintronics
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SDaHNobR5kE3TokOvYv2QtPKhlG1JWApdSmkgNyHrAQkbx5u1G_LvM5Lt3fbS5mwk5PnGM59H8wD4qItEmik3VGjJKUutoIVNEqrLVGrhEm1iK6XvCzG_ZN-u-NUOLIZamJBWOdjEaKjtnQkx8kmeItXIQyXm53pFw9SocLs6jNDQ_WgF-ym2GHsBu1nojDWC3S_nix8_t1EX9OcynQ4pPSyZuPpm1UzWyFtCzC5jNE7vofxvP7Uln5v70n142Va1fnzQy-UfLuniDbzuuSSZdeC_hR1XHcBezOk060Nws4oMV_xk1aII21uybuvAuMnvGK0ntzGX0hGkrqQOA9NIV2X5SCzi396XYTWxrokZW7hfZcm17TOMIqhHcHlx_uvrnPZTFahhImlCf0pvtcyYZmhhpNDaeC1MKnhZ5loafH835R6dmPN5njtjC1Z4KZxHY-ARu2MYVXeVO0EZCstLK33KtWDWldp6JOu-ZPiXJgvjxjAdZKhM33I8TL5Yqq4cOlFR-qqTvkLpqyh9xceQblbWXduNZ6w5G2BS_Ye4Vlu1GUM2QLd9_P89sw3Izz7I6b8P8g5eZUHRYk7MGYya-9a9R2bTlB96dX0CqvX4cw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ_gEWN8AD_jETB98LWwH22v-3ghEmIigcRL8KnpZ6Iey8LtavCvZ9rdPdAHRZ8307Qz085v29_MALzTVSbtjFsqtOSU5U7QymUZ1SaXWvhM21RK6eOJOF6wD-f8fAOyMRfm_vs9Yv8D33y9ag9WCCvilVrBaGquQ_kj2BQc0fcENhcnp_PPsYdcHvm0s9Q8DcNOQRn650je-cNQv0akO5i5fhl9Ck-6utE3P_RyeS_4HG3D2TjtnnPybb9rzb79-VtFx39Z1zPYGpAomfeu8xw2fP0CHidGqF29BD-vyUgQIFcdGqC7IKuuiXidfE93_eQiMTE9QeBLmthujfQ5mjfEofd01yZKE-fbxPfC8WpHvriBn5Rc4hUsjt5_OjymQ08GapnI2ljdMjgtC6YZnk9SaG2DFjYX3JhSS4vL8DMeMAT6UJalt65iVZDCBzxKAlr-NUzqy9q_QbsIx42TIedaMOeNdgGhfjAM__FkZf0UZqNdlB0Klse-GUvVJ1NnKilR9UpUqESVlKj4FPK1ZNMX7XiAzO5oejVs45Uqc8S3ZUz_nUIxusPd57-PWawd58ET2fkfoV2YtNed30OA1Jq3w564BZcHCX8
  priority: 102
  providerName: Unpaywall
Title An advanced quantum support vector machine for power quality disturbance detection and identification
URI https://link.springer.com/article/10.1140/epjqt/s40507-024-00283-5
https://www.proquest.com/docview/3119332399
https://doi.org/10.1140/epjqt/s40507-024-00283-5
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125817
  issn: 2196-0763
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125817
  issn: 2196-0763
  databaseCode: ADMLS
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125817
  issn: 2196-0763
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125817
  issn: 2196-0763
  databaseCode: 8FG
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125817
  issn: 2196-0763
  databaseCode: AAJSJ
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Link
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125817
  issn: 2196-0763
  databaseCode: C6C
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125817
  issn: 2196-0763
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7yoLQ9lD7ppumiQ68ifkha-egs2YSFLqHtQnoSsh7QsnGcrN2Qf5-xbO8mlzb0ZJCRbH8z9nzWvAC-6CySZsINFVpyymIraGajiOoillq4SJtQSunrQpwt2fyCX-xANOTCPPTfI_c_ctXv6_pojbSi3VJLGA3NdSjfhX00VSK4Z8V00KAUzSlyCLHdZUH7LUPbXTRECWWosUM4z18Wf2yjtsRz4yt9Cc-bstJ3t3q1emCOZq_hVc8jSd4J_g3suPItPAvxnGb9DlxeksG9T64bhK-5JOumatk2-RN26slliKN0BGkrqdpmaaTLsLwjFmXf3BTtbGJdHaK1cL3Skl-2jy4KAn0Py9nJj-kZ7TsqUMNEVLe1Kb3VMmEaYZJSaG28FiYWvChSLQ0-v5twjwbM-TRNnbEZy7wUzuOHwKPcPsBeeVW6j4ihsLyw0sdcC2Zdoa1Hou4Lhn9oMjNuBJMBQ2X6cuNt14uV6lKhIxXQVx36CtFXAX3FRxBvZlZdyY0nzDkcxKT6l3Ct0hjZadom744gGUS3Pf3vNZONkJ98Iwf_c6VP8CJp1S9EyRzCXn3TuM_IdepiDLtydjqG_Tyff5_j8fhkcf4NR6cJGwfVx7Hl4jz_eQ9WFvt5
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqhwQDzFQgEf4BhtHrbXOVSoQKstbVcItVJvxvFDAm3TbJNQ7Z_jtzF2kl24QC89R7acefmz_c0MwFuVx0JPmI64EiyiieFRbuI4UkUiFLex0qGU0smMT8_o53N2vgG_hlwYT6scYmII1OZS-zvycZYg1Mh8Jub7ahH5rlH-dXVooaH61gpmN5QY6xM7juzyGo9w9e7hJ9T3uzQ92D_9OI36LgORpjxufL1GZ5RIqaLocYIrpZ3iOuGsKDIlNIYMO2EOg7p1WZZZbXKaO8GtQ-dw-C847x3YohnN8fC39WF_9uXr-pYH8YNIJgOFiMZjW_1YNOMacZK_I0xpFLoFRezvfXENdlfvs_dhuy0rtbxW8_kfW-DBQ3jQY1ey1xnbI9iw5WO4Gzikun4Cdq8kA6WALFpUWXtB6rbyCJ_8DK8D5CJwNy1BqEwq36CNdFmdS2LQ3tqrwo8mxjaBIYbzlYZ8Nz2jKRjRUzi7Ffk-g83ysrTPUYbcsMIIlzDFqbGFMg4PB66geCoUubYjmAwylLovce47bcxll34dyyB92UlfovRlkL5kI0hWI6uuzMcNxuwMapK949dybaYjSAfVrT__f850peQbL-TFvxfyBranpyfH8vhwdvQS7qXe6AIfZwc2m6vWvkJU1RSve9Ml8O22veU3tZM2gg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh49IJ5iaQEf4BhtHrbjHFBVtSwthYoDlXozjh8SaJtmm4Rq_xq_jrGT7MIFeuk5suXMy5_tb2YA3qgiFjpnOuJKsIgmhkeFieNIlYlQ3MZKh1JKn0_44Sn9eMbONuDXmAvjaZVjTAyB2lxof0c-zRKEGpnPxJy6gRbx5WC2Wy8i30HKv7SO7TR6Ezm2yys8vjXvjg5Q12_TdPb-6_5hNHQYiDTlcetrNTqjREoVRW8TXCntFNcJZ2WZKaExXNicOQzo1mVZZrUpaOEEtw4dw-F_4Ly34Hbuq7j7LPXZh_X9DiIHkeQjeYjGU1v_WLTTBhGSvx1MaRT6BEXs7x1xDXNXL7NbcK-rarW8UvP5H5vf7CE8GFAr2evN7BFs2Oox3AnsUd08AbtXkZFMQBYdKqs7J01Xe2xPfoZ3AXIeWJuWIEgmtW_NRvp8ziUxaGndZelHE2PbwA3D-SpDvpuByxTM5ymc3oh0n8FmdVHZ5yhDblhphEuY4tTYUhmHxwJXUjwPikLbCeSjDKUeipv7Hhtz2SdexzJIX_bSlyh9GaQv2QSS1ci6L_BxjTE7o5rk4PKNXBvoBNJRdevP_58zXSn52gt58e-FvIa76CPy09HJ8TbcT73NBSLODmy2l519iXCqLV8FuyXw7aYd5TdAfjQc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ_gEWN8AD_jETB98LWwH22v-3ghEmIigcRL8KnpZ6Iey8LtavCvZ9rdPdAHRZ8307Qz085v29_MALzTVSbtjFsqtOSU5U7QymUZ1SaXWvhM21RK6eOJOF6wD-f8fAOyMRfm_vs9Yv8D33y9ag9WCCvilVrBaGquQ_kj2BQc0fcENhcnp_PPsYdcHvm0s9Q8DcNOQRn650je-cNQv0akO5i5fhl9Ck-6utE3P_RyeS_4HG3D2TjtnnPybb9rzb79-VtFx39Z1zPYGpAomfeu8xw2fP0CHidGqF29BD-vyUgQIFcdGqC7IKuuiXidfE93_eQiMTE9QeBLmthujfQ5mjfEofd01yZKE-fbxPfC8WpHvriBn5Rc4hUsjt5_OjymQ08GapnI2ljdMjgtC6YZnk9SaG2DFjYX3JhSS4vL8DMeMAT6UJalt65iVZDCBzxKAlr-NUzqy9q_QbsIx42TIedaMOeNdgGhfjAM__FkZf0UZqNdlB0Klse-GUvVJ1NnKilR9UpUqESVlKj4FPK1ZNMX7XiAzO5oejVs45Uqc8S3ZUz_nUIxusPd57-PWawd58ET2fkfoV2YtNed30OA1Jq3w564BZcHCX8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+advanced+quantum+support+vector+machine+for+power+quality+disturbance+detection+and+identification&rft.jtitle=EPJ+quantum+technology&rft.au=Wang%2C+Qing-Le&rft.au=Jin%2C+Yu&rft.au=Li%2C+Xin-Hao&rft.au=Li%2C+Yue&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2662-4400&rft.eissn=2196-0763&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1140%2Fepjqt%2Fs40507-024-00283-5&rft.externalDocID=10_1140_epjqt_s40507_024_00283_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4400&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4400&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4400&client=summon