Meta-analysis of Unmanned Aerial Vehicle (UAV) Imagery for Agro-environmental Monitoring Using Machine Learning and Statistical Models

Unmanned Aerial Vehicle (UAV) imaging systems have recently gained significant attention from researchers and practitioners as a cost-effective means for agro-environmental applications. In particular, machine learning algorithms have been applied to UAV-based remote sensing data for enhancing the U...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 21; p. 3511
Main Authors Eskandari, Roghieh, Mahdianpari, Masoud, Mohammadimanesh, Fariba, Salehi, Bahram, Brisco, Brian, Homayouni, Saeid
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 26.10.2020
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs12213511

Cover

Abstract Unmanned Aerial Vehicle (UAV) imaging systems have recently gained significant attention from researchers and practitioners as a cost-effective means for agro-environmental applications. In particular, machine learning algorithms have been applied to UAV-based remote sensing data for enhancing the UAV capabilities of various applications. This systematic review was performed on studies through a statistical meta-analysis of UAV applications along with machine learning algorithms in agro-environmental monitoring. For this purpose, a total number of 163 peer-reviewed articles published in 13 high-impact remote sensing journals over the past 20 years were reviewed focusing on several features, including study area, application, sensor type, platform type, and spatial resolution. The meta-analysis revealed that 62% and 38% of the studies applied regression and classification models, respectively. Visible sensor technology was the most frequently used sensor with the highest overall accuracy among classification articles. Regarding regression models, linear regression and random forest were the most frequently applied models in UAV remote sensing imagery processing. Finally, the results of this study confirm that applying machine learning approaches on UAV imagery produces fast and reliable results. Agriculture, forestry, and grassland mapping were found as the top three UAV applications in this review, in 42%, 22%, and 8% of the studies, respectively.
AbstractList Unmanned Aerial Vehicle (UAV) imaging systems have recently gained significant attention from researchers and practitioners as a cost-effective means for agro-environmental applications. In particular, machine learning algorithms have been applied to UAV-based remote sensing data for enhancing the UAV capabilities of various applications. This systematic review was performed on studies through a statistical meta-analysis of UAV applications along with machine learning algorithms in agro-environmental monitoring. For this purpose, a total number of 163 peer-reviewed articles published in 13 high-impact remote sensing journals over the past 20 years were reviewed focusing on several features, including study area, application, sensor type, platform type, and spatial resolution. The meta-analysis revealed that 62% and 38% of the studies applied regression and classification models, respectively. Visible sensor technology was the most frequently used sensor with the highest overall accuracy among classification articles. Regarding regression models, linear regression and random forest were the most frequently applied models in UAV remote sensing imagery processing. Finally, the results of this study confirm that applying machine learning approaches on UAV imagery produces fast and reliable results. Agriculture, forestry, and grassland mapping were found as the top three UAV applications in this review, in 42%, 22%, and 8% of the studies, respectively.
Author Brisco, Brian
Homayouni, Saeid
Mahdianpari, Masoud
Mohammadimanesh, Fariba
Salehi, Bahram
Eskandari, Roghieh
Author_xml – sequence: 1
  givenname: Roghieh
  surname: Eskandari
  fullname: Eskandari, Roghieh
– sequence: 2
  givenname: Masoud
  orcidid: 0000-0002-7234-959X
  surname: Mahdianpari
  fullname: Mahdianpari, Masoud
– sequence: 3
  givenname: Fariba
  surname: Mohammadimanesh
  fullname: Mohammadimanesh, Fariba
– sequence: 4
  givenname: Bahram
  orcidid: 0000-0002-7742-5475
  surname: Salehi
  fullname: Salehi, Bahram
– sequence: 5
  givenname: Brian
  orcidid: 0000-0001-8439-362X
  surname: Brisco
  fullname: Brisco, Brian
– sequence: 6
  givenname: Saeid
  orcidid: 0000-0002-0214-5356
  surname: Homayouni
  fullname: Homayouni, Saeid
BookMark eNp9kcuOEzEQRVtokBjCbPgCS2wGUINf_VpGIx6RErGAzNYqu8sZR912sB1QfoDvpnuCAI0QXpSt0qlb5bpPiwsfPBbFc0bfCNHRtzExzpmoGHtUXHLa8FLyjl_89X5SXKW0p9MRgnVUXhY_NpihBA_DKblEgiVbP4L32JMlRgcDucU7ZwYk19vl7UuyGmGH8URsiGS5i6FE_83F4Ef0eYI3wbscovM7sk1z3IC5cx7JGiH6OQG-J58zZJeyM_cVPQ7pWfHYwpDw6te9KLbv3325-ViuP31Y3SzXpZE1zaU0tqkaaHWt6wrAoNFWy1rTWltBJdfaNigqaQF5awwwbCrQupWs5pXVnVgUq7NuH2CvDtGNEE8qgFP3iRB3CmKe_6tEY1Ci4U0LIClAxwRaXiP2pmvbqc2ieH3WOvoDnL7DMPwWZFTNjqg_jkz09Zk-xPD1iCmr0SWDwwAewzEpPkGsZR2f0RcP0H04xsmimaqo4DWXYqLomTIxpBTRKuPmvQafI7jh3zO8elDyn4F_ArnXuZI
CitedBy_id crossref_primary_10_3390_w16243609
crossref_primary_10_1080_10106049_2024_2405123
crossref_primary_10_3390_electronics14030498
crossref_primary_10_1080_07038992_2021_1901562
crossref_primary_10_3390_drones7090581
crossref_primary_10_1371_journal_pone_0284184
crossref_primary_10_3390_rs14225633
crossref_primary_10_3389_ffgc_2024_1409667
crossref_primary_10_3390_su151411242
crossref_primary_10_3390_w15223941
crossref_primary_10_1016_j_agwat_2023_108521
crossref_primary_10_3390_app13010080
crossref_primary_10_1080_01431161_2023_2208709
crossref_primary_10_3389_fpls_2024_1409194
crossref_primary_10_1007_s11069_023_06145_0
crossref_primary_10_31548_forest2021_01_001
crossref_primary_10_7717_peerj_14219
crossref_primary_10_3390_drones9020097
crossref_primary_10_1093_comjnl_bxaf017
crossref_primary_10_3390_machines10121161
crossref_primary_10_3390_s24072357
crossref_primary_10_3390_rs17020255
crossref_primary_10_1080_10106049_2023_2231428
crossref_primary_10_1109_JSTARS_2023_3276427
crossref_primary_10_1142_S0219843623500123
crossref_primary_10_3390_s21237889
crossref_primary_10_3390_drones5040136
crossref_primary_10_3389_fpls_2023_1214931
crossref_primary_10_1155_2022_4162007
crossref_primary_10_3390_rs15020354
crossref_primary_10_3390_rs15030639
crossref_primary_10_3390_f13060911
crossref_primary_10_1016_j_ecoinf_2023_102305
crossref_primary_10_1109_ACCESS_2023_3262668
crossref_primary_10_1002_csc2_21028
crossref_primary_10_3390_s24072064
crossref_primary_10_3390_rs13214387
crossref_primary_10_14358_PERS_22_00101R2
crossref_primary_10_3389_fpls_2022_955340
crossref_primary_10_3390_s22239469
crossref_primary_10_1029_2021WR029925
crossref_primary_10_3390_agronomy12030661
crossref_primary_10_3390_f14030588
crossref_primary_10_3390_resources13080113
crossref_primary_10_1007_s11119_024_10168_3
crossref_primary_10_1016_j_compeleceng_2022_108197
crossref_primary_10_1155_2023_5384844
crossref_primary_10_3390_geomatics3010006
crossref_primary_10_1016_j_compag_2024_109501
crossref_primary_10_3390_rs14153814
crossref_primary_10_3390_rs14030620
crossref_primary_10_1016_j_rsase_2023_101068
Cites_doi 10.3390/rs10071119
10.1016/j.rse.2011.11.020
10.1016/j.compag.2012.12.002
10.3390/rs9040309
10.3390/rs70302971
10.1016/j.compag.2018.05.012
10.3389/fpls.2017.00887
10.1109/SIU.2015.7130015
10.3390/rs70302627
10.1016/j.rse.2018.02.008
10.3390/rs12061001
10.20944/preprints201809.0584.v1
10.3390/rs12010056
10.1109/TGRS.2016.2565471
10.3390/rs61111051
10.1016/j.biosystemseng.2012.08.009
10.3390/rs11070736
10.3390/rs9111110
10.7326/0003-4819-151-4-200908180-00135
10.1080/01431161.2016.1165884
10.1109/JSTARS.2015.2422716
10.1016/j.isprsjprs.2010.11.001
10.3390/rs11040410
10.3390/rs10111682
10.3390/rs71012793
10.1007/s10661-015-4996-2
10.1016/j.geomorph.2016.11.021
10.3390/s18113731
10.3390/rs10091365
10.3390/rs11101239
10.1016/j.isprsjprs.2015.02.009
10.1016/j.isprsjprs.2017.02.015
10.1007/s00300-018-2270-0
10.3390/rs10122026
10.1016/j.isprsjprs.2017.03.011
10.1080/01431161.2016.1277045
10.3390/s18010260
10.1016/j.geoderma.2018.08.006
10.3390/rs9070715
10.3390/s19081815
10.1016/j.isprsjprs.2017.05.010
10.1016/j.isprsjprs.2016.01.011
10.7717/peerj.6926
10.3390/rs2010290
10.1007/s11119-012-9274-5
10.3402/polar.v34.25651
10.3390/rs10121978
10.1371/journal.pone.0170478
10.3390/rs11020185
10.3390/rs11101252
10.3390/rs11030267
10.1016/S0034-4257(99)00067-X
10.3390/rs11101208
10.1139/cjfr-2014-0347
10.1080/01431161.2018.1500072
10.3390/rs11121443
10.1080/01431161.2016.1252477
10.1016/j.isprsjprs.2017.05.003
10.1016/j.isprsjprs.2014.02.013
10.1080/01431161.2017.1420941
10.20944/preprints201803.0097.v1
10.2747/1548-1603.44.1.24
10.1016/j.isprsjprs.2015.10.004
10.3732/apps.1600041
10.3390/rs70404213
10.1117/1.JRS.12.036015
10.1016/j.patrec.2005.08.011
10.1016/0034-4257(91)90048-B
10.3390/s19143071
10.3390/rs12010170
10.3390/rs8090706
10.3390/rs12071052
10.1016/j.rse.2015.12.029
10.1080/07038992.2018.1477680
10.3390/s19071485
10.1080/01431161.2017.1297548
10.3389/fpls.2017.01111
10.1016/j.geomorph.2017.12.039
10.1109/JSTARS.2018.2846178
10.3390/rs11121447
10.3390/rs12060948
10.3390/f8030068
10.1016/j.isprsjprs.2009.06.004
10.1016/j.isprsjprs.2017.11.002
10.1016/j.compag.2018.02.013
10.3390/rs4061671
10.3390/rs8020095
10.1016/j.compag.2019.02.011
10.3390/rs9030185
10.1007/978-3-319-19258-1_22
10.3390/rs10071091
10.3390/rs9080785
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/rs12213511
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
Forestry
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_37ce4ec278aa40aa913ef26eedc9887e
10.3390/rs12213511
10_3390_rs12213511
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c460t-4cf757a8b6b65aacecbfb46b06bf3042bbf7e354fae28cca1e75abb841625fb93
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Fri Oct 03 12:30:33 EDT 2025
Sun Oct 26 04:15:06 EDT 2025
Fri Sep 05 13:58:56 EDT 2025
Fri Jul 25 09:28:41 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
Thu Oct 16 04:35:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-4cf757a8b6b65aacecbfb46b06bf3042bbf7e354fae28cca1e75abb841625fb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7742-5475
0000-0001-8439-362X
0000-0002-7234-959X
0000-0002-0214-5356
OpenAccessLink https://doaj.org/article/37ce4ec278aa40aa913ef26eedc9887e
PQID 2550326243
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_37ce4ec278aa40aa913ef26eedc9887e
unpaywall_primary_10_3390_rs12213511
proquest_miscellaneous_2511181921
proquest_journals_2550326243
crossref_citationtrail_10_3390_rs12213511
crossref_primary_10_3390_rs12213511
PublicationCentury 2000
PublicationDate 20201026
PublicationDateYYYYMMDD 2020-10-26
PublicationDate_xml – month: 10
  year: 2020
  text: 20201026
  day: 26
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Thenkabail (ref_20) 2000; 71
Mahdianpari (ref_40) 2017; 130
ref_91
Elsner (ref_85) 2018; 208
ref_90
ref_14
ref_13
ref_12
Jing (ref_72) 2017; 134
ref_11
ref_10
ref_96
Rossini (ref_80) 2018; 304
Matwij (ref_99) 2017; 126
ref_16
ref_15
Collin (ref_97) 2018; 39
Guo (ref_109) 2007; 44
Yuan (ref_32) 2015; 45
Bhardwaj (ref_58) 2016; 175
Duro (ref_105) 2012; 118
Yang (ref_18) 2017; 8
Prosek (ref_101) 2018; 71
Honkavaara (ref_26) 2016; 54
James (ref_92) 2017; 280
Barrado (ref_47) 2014; 6
Su (ref_22) 2017; 58
Moher (ref_77) 2009; 151
ref_29
Ge (ref_27) 2019; 7
Chlingaryan (ref_37) 2018; 151
Rezaee (ref_104) 2018; 11
ref_70
Matese (ref_6) 2015; 7
Chen (ref_71) 2016; 37
ref_78
Mohammadimanesh (ref_21) 2018; 44
Lu (ref_38) 2017; 128
ref_75
Bendig (ref_42) 2015; 39
ref_73
(ref_110) 2015; Volume 9094
(ref_88) 2017; 19
Congalton (ref_74) 1991; 57
Congalton (ref_76) 1991; 37
Barnas (ref_79) 2018; 41
ref_83
Mountrakis (ref_106) 2011; 66
ref_89
Seier (ref_100) 2017; 38
Tian (ref_98) 2017; 61
ref_86
Zhou (ref_17) 2017; 130
ref_84
Singh (ref_53) 2018; 39
Rumbao (ref_87) 2016; 38
Mulla (ref_3) 2013; 114
Watts (ref_55) 2012; 4
Michez (ref_33) 2016; 188
Belgiu (ref_66) 2016; 114
Vanko (ref_9) 2017; 38
ref_50
Cruzan (ref_102) 2016; 4
Tao (ref_7) 2000; 2
Romero (ref_81) 2018; 147
Planas (ref_95) 2019; 75
Zhang (ref_52) 2012; 13
Jonassen (ref_23) 2015; 34
ref_54
ref_51
Colomina (ref_56) 2014; 92
Peng (ref_28) 2019; 337
(ref_5) 2017; 8
ref_59
Nex (ref_94) 2017; 42
ref_61
ref_69
ref_68
Gislason (ref_39) 2006; 27
ref_65
Mahdianpari (ref_25) 2018; 12
Torresan (ref_49) 2016; 38
Jensen (ref_67) 2015; 7
ref_63
ref_62
Sankaran (ref_35) 2013; 91
Jayathunga (ref_31) 2018; 73
(ref_64) 2015; 7
Toth (ref_57) 2016; 115
(ref_60) 2015; 7
Enciso (ref_19) 2019; 158
Aboutalebi (ref_82) 2019; Volume 11008
Henriques (ref_24) 2015; 104
Hunt (ref_8) 2010; 2
ref_36
ref_34
ref_30
Wang (ref_93) 2015; 8
ref_103
Blaschke (ref_108) 2010; 65
ref_46
Forkuor (ref_111) 2017; 12
ref_45
ref_44
ref_43
ref_41
ref_1
Li (ref_107) 2016; 49
ref_2
ref_48
ref_4
References_xml – ident: ref_103
  doi: 10.3390/rs10071119
– volume: 118
  start-page: 259
  year: 2012
  ident: ref_105
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.020
– volume: 91
  start-page: 106
  year: 2013
  ident: ref_35
  article-title: Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2012.12.002
– ident: ref_69
  doi: 10.3390/rs9040309
– volume: 2
  start-page: 1
  year: 2000
  ident: ref_7
  article-title: Mobile mapping technology for road network data acquisition
  publication-title: J. Geospat. Eng.
– volume: 7
  start-page: 2971
  year: 2015
  ident: ref_6
  article-title: Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture
  publication-title: Remote Sens.
  doi: 10.3390/rs70302971
– volume: 151
  start-page: 61
  year: 2018
  ident: ref_37
  article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.05.012
– volume: 8
  start-page: 887
  year: 2017
  ident: ref_5
  article-title: Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00887
– ident: ref_68
  doi: 10.1109/SIU.2015.7130015
– volume: 7
  start-page: 2627
  year: 2015
  ident: ref_67
  article-title: Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks
  publication-title: Remote Sens.
  doi: 10.3390/rs70302627
– volume: 208
  start-page: 15
  year: 2018
  ident: ref_85
  article-title: Coincident beach surveys using UAS, vehicle mounted and airborne laser scanner: Point cloud inter-comparison and effects of surface type heterogeneity on elevation accuracies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.008
– ident: ref_54
  doi: 10.3390/rs12061001
– ident: ref_4
– ident: ref_61
  doi: 10.20944/preprints201809.0584.v1
– ident: ref_65
  doi: 10.3390/rs12010056
– volume: 54
  start-page: 5440
  year: 2016
  ident: ref_26
  article-title: Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV)
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2565471
– volume: 49
  start-page: 87
  year: 2016
  ident: ref_107
  article-title: A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 6
  start-page: 11051
  year: 2014
  ident: ref_47
  article-title: UAV Flight Experiments Applied to the Remote Sensing of Vegetated Areas
  publication-title: Remote Sens.
  doi: 10.3390/rs61111051
– volume: 114
  start-page: 358
  year: 2013
  ident: ref_3
  article-title: Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2012.08.009
– ident: ref_46
  doi: 10.3390/rs11070736
– ident: ref_50
  doi: 10.3390/rs9111110
– volume: 151
  start-page: 264
  year: 2009
  ident: ref_77
  article-title: Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement
  publication-title: Ann. Int. Med.
  doi: 10.7326/0003-4819-151-4-200908180-00135
– volume: 37
  start-page: 1922
  year: 2016
  ident: ref_71
  article-title: Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1165884
– volume: 38
  start-page: 2161
  year: 2016
  ident: ref_87
  article-title: Accurate ortho-mosaicked six-band multispectral UAV images as affected by mission planning for precision agriculture proposes
  publication-title: Int. J. Remote Sens.
– volume: 8
  start-page: 1876
  year: 2015
  ident: ref_93
  article-title: A Simplified Empirical Line Method of Radiometric Calibration for Small Unmanned Aircraft Systems-Based Remote Sensing
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2422716
– volume: 66
  start-page: 247
  year: 2011
  ident: ref_106
  article-title: Support vector machines in remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: ref_16
  doi: 10.3390/rs11040410
– ident: ref_14
  doi: 10.3390/rs10111682
– volume: 7
  start-page: 12793
  year: 2015
  ident: ref_60
  article-title: Assessing Optimal Flight Parameters for Generating Accurate Multispectral Orthomosaicks by UAV to Support Site-Specific Crop Management
  publication-title: Remote Sens.
  doi: 10.3390/rs71012793
– volume: 73
  start-page: 767
  year: 2018
  ident: ref_31
  article-title: The use of fixed–wing UAV photogrammetry with LiDAR DTM to estimate merchantable volume and carbon stock in living biomass over a mixed conifer–broadleaf forest
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 188
  start-page: 1
  year: 2016
  ident: ref_33
  article-title: Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-4996-2
– volume: 280
  start-page: 51
  year: 2017
  ident: ref_92
  article-title: Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.11.021
– ident: ref_86
– ident: ref_73
  doi: 10.3390/s18113731
– ident: ref_36
  doi: 10.3390/rs10091365
– ident: ref_11
  doi: 10.3390/rs11101239
– volume: 104
  start-page: 101
  year: 2015
  ident: ref_24
  article-title: UAV photogrammetry for topographic monitoring of coastal areas
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.02.009
– volume: 126
  start-page: 168
  year: 2017
  ident: ref_99
  article-title: Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.02.015
– volume: 41
  start-page: 1055
  year: 2018
  ident: ref_79
  article-title: A pilot(less) study on the use of an unmanned aircraft system for studying polar bears (Ursus maritimus)
  publication-title: Polar Biol.
  doi: 10.1007/s00300-018-2270-0
– ident: ref_10
  doi: 10.3390/rs10122026
– volume: 128
  start-page: 73
  year: 2017
  ident: ref_38
  article-title: Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.03.011
– volume: 38
  start-page: 2903
  year: 2017
  ident: ref_100
  article-title: UAV and TLS for monitoring a creek in an alpine environment, Styria, Austria
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1277045
– volume: 71
  start-page: 9
  year: 2018
  ident: ref_101
  article-title: The potential of Unmanned Aerial Systems: A tool towards precision classification of hard-to-distinguish vegetation types?
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_45
  doi: 10.3390/s18010260
– volume: 337
  start-page: 1309
  year: 2019
  ident: ref_28
  article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.006
– ident: ref_43
  doi: 10.3390/rs9070715
– ident: ref_13
  doi: 10.3390/s19081815
– volume: 130
  start-page: 13
  year: 2017
  ident: ref_40
  article-title: Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.05.010
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_66
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 7
  start-page: e6926
  year: 2019
  ident: ref_27
  article-title: Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring
  publication-title: PeerJ
  doi: 10.7717/peerj.6926
– volume: 2
  start-page: 290
  year: 2010
  ident: ref_8
  article-title: Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring
  publication-title: Remote Sens.
  doi: 10.3390/rs2010290
– volume: 13
  start-page: 693
  year: 2012
  ident: ref_52
  article-title: The application of small unmanned aerial systems for precision agriculture: A review
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9274-5
– volume: 39
  start-page: 79
  year: 2015
  ident: ref_42
  article-title: Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 34
  start-page: 25651
  year: 2015
  ident: ref_23
  article-title: Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic sea ice in winter
  publication-title: Polar Res.
  doi: 10.3402/polar.v34.25651
– ident: ref_29
  doi: 10.3390/rs10121978
– volume: 12
  start-page: e0170478
  year: 2017
  ident: ref_111
  article-title: High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0170478
– ident: ref_75
  doi: 10.3390/rs11020185
– ident: ref_89
  doi: 10.3390/rs11101252
– ident: ref_44
  doi: 10.3390/rs11030267
– ident: ref_78
– volume: 71
  start-page: 158
  year: 2000
  ident: ref_20
  article-title: Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(99)00067-X
– ident: ref_96
  doi: 10.3390/rs11101208
– volume: 45
  start-page: 783
  year: 2015
  ident: ref_32
  article-title: A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques
  publication-title: Can. J. Res.
  doi: 10.1139/cjfr-2014-0347
– volume: 39
  start-page: 5676
  year: 2018
  ident: ref_97
  article-title: Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1500072
– ident: ref_51
  doi: 10.3390/rs11121443
– volume: 75
  start-page: 130
  year: 2019
  ident: ref_95
  article-title: Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 38
  start-page: 2427
  year: 2016
  ident: ref_49
  article-title: Forestry applications of UAVs in Europe: A review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1252477
– volume: 130
  start-page: 246
  year: 2017
  ident: ref_17
  article-title: Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.05.003
– ident: ref_90
– volume: 92
  start-page: 79
  year: 2014
  ident: ref_56
  article-title: Unmanned aerial systems for photogrammetry and remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.02.013
– volume: 39
  start-page: 5078
  year: 2018
  ident: ref_53
  article-title: A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1420941
– ident: ref_1
  doi: 10.20944/preprints201803.0097.v1
– volume: 44
  start-page: 24
  year: 2007
  ident: ref_109
  article-title: An Object-Based Classification Approach in Mapping Tree Mortality Using High Spatial Resolution Imagery
  publication-title: GiSci. Remote Sens.
  doi: 10.2747/1548-1603.44.1.24
– volume: 115
  start-page: 22
  year: 2016
  ident: ref_57
  article-title: Remote sensing platforms and sensors: A survey
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.10.004
– volume: 4
  start-page: 1600041
  year: 2016
  ident: ref_102
  article-title: Small Unmanned Aerial Vehicles (Micro-Uavs, Drones) in Plant Ecology
  publication-title: Appl. Plant Sci.
  doi: 10.3732/apps.1600041
– volume: 7
  start-page: 4213
  year: 2015
  ident: ref_64
  article-title: High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials
  publication-title: Remote Sens.
  doi: 10.3390/rs70404213
– volume: 12
  start-page: 1
  year: 2018
  ident: ref_25
  article-title: Mapping land-based oil spills using high spatial resolution unmanned aerial vehicle imagery and electromagnetic induction survey data
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.12.036015
– volume: 27
  start-page: 294
  year: 2006
  ident: ref_39
  article-title: Random Forests for land cover classification
  publication-title: Patt. Recognit. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– volume: 42
  start-page: 355
  year: 2017
  ident: ref_94
  article-title: Quality Assessment of Combined Imu/Gnss Data for Direct Georeferencing in the Context Of Uav-Based Mapping
  publication-title: ISPRS Int. Arch. Photogramm. Remote Sens.
– volume: 58
  start-page: 213
  year: 2017
  ident: ref_22
  article-title: A study of a matching pixel by pixel (MPP) algorithm to establish an empirical model of water quality mapping, as based on unmanned aerial vehicle (UAV) images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 37
  start-page: 35
  year: 1991
  ident: ref_76
  article-title: A review of assessing the accuracy of classifications of remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90048-B
– ident: ref_84
  doi: 10.3390/s19143071
– volume: Volume 11008
  start-page: 110080S
  year: 2019
  ident: ref_82
  article-title: Estimation of soil moisture at different soil levels using machine learning techniques and unmanned aerial vehicle (UAV) multispectral imagery
  publication-title: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV
– ident: ref_34
  doi: 10.3390/rs12010170
– ident: ref_15
  doi: 10.3390/rs8090706
– ident: ref_48
  doi: 10.3390/rs12071052
– volume: 175
  start-page: 196
  year: 2016
  ident: ref_58
  article-title: UAVs as remote sensing platform in glaciology: Present applications and future prospects
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.029
– volume: 44
  start-page: 247
  year: 2018
  ident: ref_21
  article-title: Wetland Water Level Monitoring Using Interferometric Synthetic Aperture Radar (InSAR): A Review
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2018.1477680
– ident: ref_12
  doi: 10.3390/s19071485
– volume: 38
  start-page: 2349
  year: 2017
  ident: ref_9
  article-title: UAS, sensors, and data processing in agroforestry: A review towards practical applications
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1297548
– volume: 8
  start-page: 1111
  year: 2017
  ident: ref_18
  article-title: Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01111
– volume: 304
  start-page: 159
  year: 2018
  ident: ref_80
  article-title: Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.12.039
– volume: 19
  start-page: 115
  year: 2017
  ident: ref_88
  article-title: Assessing UAV-collected image overlap influence on computation time and digital surface model accuracy in olive orchards
  publication-title: Precis. Agric.
– volume: 11
  start-page: 3030
  year: 2018
  ident: ref_104
  article-title: Deep Convolutional Neural Network for Complex Wetland Classification Using Optical Remote Sensing Imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2846178
– ident: ref_83
  doi: 10.3390/rs11121447
– ident: ref_59
  doi: 10.3390/rs12060948
– ident: ref_63
  doi: 10.3390/f8030068
– volume: 65
  start-page: 2
  year: 2010
  ident: ref_108
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.06.004
– volume: 134
  start-page: 122
  year: 2017
  ident: ref_72
  article-title: Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform—A case study in Wild Duck Lake Wetland, Beijing, China
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.002
– volume: 147
  start-page: 109
  year: 2018
  ident: ref_81
  article-title: Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.013
– volume: 61
  start-page: 22
  year: 2017
  ident: ref_98
  article-title: Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 4
  start-page: 1671
  year: 2012
  ident: ref_55
  article-title: Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use
  publication-title: Remote Sens.
  doi: 10.3390/rs4061671
– ident: ref_30
  doi: 10.3390/rs8020095
– ident: ref_2
– volume: 158
  start-page: 278
  year: 2019
  ident: ref_19
  article-title: Validation of agronomic UAV and field measurements for tomato varieties
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.02.011
– ident: ref_91
– ident: ref_41
  doi: 10.3390/rs9030185
– volume: 57
  start-page: 677
  year: 1991
  ident: ref_74
  article-title: Remote sensing and geographic information system data integration: Error sources and Research Issues
  publication-title: Photogramm. Eng. Remote Sens.
– volume: Volume 9094
  start-page: 252
  year: 2015
  ident: ref_110
  article-title: An Experimental Comparison for the Identification of Weeds in Sunflower Crops via Unmanned Aerial Vehicles and Object-Based Analysis
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-319-19258-1_22
– ident: ref_62
  doi: 10.3390/rs10071091
– ident: ref_70
  doi: 10.3390/rs9080785
SSID ssj0000331904
Score 2.5320194
SecondaryResourceType review_article
Snippet Unmanned Aerial Vehicle (UAV) imaging systems have recently gained significant attention from researchers and practitioners as a cost-effective means for...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3511
SubjectTerms Accuracy
Aerial photography
Agriculture
agro-environmental monitoring
Aircraft
Algorithms
area
artificial intelligence
Classification
cost effectiveness
Data collection
Data processing
decision support systems
Environmental monitoring
Environmental studies
Forestry
Grasslands
image analysis
Imagery
Learning algorithms
Machine learning
Mathematical models
Meta-analysis
Model accuracy
monitoring
Photogrammetry
regression
Regression analysis
Regression models
Remote sensing
researchers
Reviews
Sensors
Software
Spatial analysis
spatial data
Spatial discrimination
Spatial resolution
Statistical analysis
Statistical models
Systematic review
Unmanned Aerial Vehicle (UAV)
Unmanned aerial vehicles
Vegetation mapping
Wetlands
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6NTmLwgKAwURjIiD2wB2uJY-fHA0Id2jSQWiFEp71FtmN3D11Sulao_wB_N3ep020S2mtySaz4fPf5bH8fwCEmIUTJ3nDlVcqlEQVHFOK5zzUpwceV8nR2eDROzyfy-6W63IFxdxaGtlV2MbEN1FVjqUZ-jNA3QqghZPJl_puTahStrnYSGjpIK1SfW4qxR7AriBmrB7snp-MfP7dVlyhBl4vkhqc0wfn-8eImFoJk6uJ7makl8L-HOvdW9Vyv_-jZ7E4COnsOzwJyZMNNV7-AHVf34elwugjsGa4Pj0lok9Tb-rAX1M2v1i_h78gtNdeBfoQ1nk3qa00Blg1bB2QX7opeyj5NhhdH7Ns1EVusGeJZhu9v-J3TcGi8CQNUD2TthgM2ajdkOha4WqdM1xUjFNuSQLdPVJiCX8Hk7PTX13Me9Be4lWm05NL6TGU6N6lJldbWWeONTE2UGk9VEGN85hIlvXYiR0-IXaa0MbSQKZQ3RbIPvbqp3WtgOA-Oqii3ssqNVDYzkUfo5TKHKVrEUg_gqPv3pQ3k5KSRMStxkkL9VN720wA-bm3nG0qO_1qdUBduLYhGu73QLKZlGJVlklknnRVZrrWMtC7ixHmRYqNsgdHXDeCgc4AyjO2b8tYTB_BhextHJS216No1K7KJ6URvIbAdh1vHeaC5bx7-0lt4Imiij0lTpAfQWy5W7h2ioaV5H1z8H6jbC7I
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZQ9zBe-I0oG8iIPbCHLLFjO8kTCohpIHXigUzjKbIdu0N0SdWlQ-UP4O_mLklLhxBC4rU5S1f5fPedffcdIQcQhAAlexNIL1UgDM8CQCE-8KnGSfCskh57hyen6qQQH87l-VYXP5ZVQir-pXPSPEp4gPOUQsZDzkJ89ArnlX99PdwlMYXcMCzFdvIdJQGNj8hOcfox_4wz5dare1bSGLL7cHHFOMehdOxGHOro-m9gzN1lPderb3o22wo3x3eJXivaV5l8PVq25sh-_43D8X_-yT1yZ8CiNO-N5z655eoHZHcYi36xekh-TFyrAz3wltDG06K-1OiZad5ZLj1zF7iWvirys0P6_hIZMVYUgDDNp4sm2GqjA-Hef-BFIu0qFeikq-R0dCB5nVJdVxThb8ce3a2oIHY_IsXxu09vT4JhcENghYraQFifyESnRhkltbbOGm-EMpEyHq9PjPGJi6Xw2vEUTIi5RGpj8AWUS2-y-DEZ1U3tnhAKCXRURakVVWqEtImJPGA2lziI7ZwJPSaH620s7cBqjsM1ZiVkN7jl5a8tH5OXG9l5z-XxR6k3aA0bCeTf7n5oFtNyOM5lnFgnnOVJqrWItM5Y7DxXoJTNwG27Mdlf21I5OIWrErK3CNAyF_GYvNh8huOMbzS6ds0SZRi2Amcc9DjY2OBf1H36b2J75DbHmwKIulztk1G7WLpnAKda83w4MT8BZcIa8A
  priority: 102
  providerName: Unpaywall
Title Meta-analysis of Unmanned Aerial Vehicle (UAV) Imagery for Agro-environmental Monitoring Using Machine Learning and Statistical Models
URI https://www.proquest.com/docview/2550326243
https://www.proquest.com/docview/2511181921
https://www.mdpi.com/2072-4292/12/21/3511/pdf?version=1604311807
https://doaj.org/article/37ce4ec278aa40aa913ef26eedc9887e
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHMoFlZdYKCsjeqAHq45jO8kxhS4FsasKSFVOke3Y7WGbrba7QvsH-ruZcdJlKyG4cIqSjCXLM-P5xo9vCNmDIAQoOVimgtJMWlEwQCGBhdxgJfikUQHvDo8n-riSn8_U2UapLzwT1tEDdwN3kGbOS-9ElhsjuTFFkvogNEztrgAH8Tj78rzYSKbiHJyCaXHZ8ZGmkNcfzK8TIbAcXXInAkWi_jvocnvZXpnVTzOdbgSa0Q551CNEWnY9e0zu-fYJ2e6LlV-snpKbsV8YZno2EToLtGovDc6XtIz2RE_9Bbal76rydJ9-ukSeihUFeErL8_mMbVxuA-HOq3F5j8bzA3Qcz1d62lOvnlPTNhRBaeR0ji0aiKjPSDU6-v7-mPXlFJiTmi-YdCFTmcmttloZ47yzwUptubYBFzWsDZlPlQzGixwUm_hMGWtxX1KoYIv0OdlqZ61_QSiktbzhuZNNbqVymeUBkJTPPKhFJNIMyP7tENeu5xrHkhfTGnIOVEf9Wx0D8nYte9UxbPxR6hA1tZZAVuz4AWyl7m2l_petDMjurZ7r3lWva8ipOGBYIdMBebP-DU6GOyem9bMlyiR4QbcQ0I-9tX38pbsv_0d3X5GHArN7iJRC75KtxXzpXwMEWtghuZ-PPg7Jg_LD-Ms3eB4eTU6-DqMPwFs1OSl__AKFqQy5
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrUTggCCACBRYRJHowep6vX4dKpRCq4Q2EUJN1Zu7u95ND6kd8lCVP8DP4rcx46zdVkK99RpPnHVmPPPNPr6PkB0oQoCSrfJCG0aeUDz1AIVYzyYSleD9PLR4dngwjHoj8eM8PN8gf-uzMLitss6JVaLOS41z5HsAfRlADS6Cr9PfHqpG4epqLaEhnbRCvl9RjLmDHcdmdQ0t3Hy__x38_Znzo8PTbz3PqQx4WkRs4Qlt4zCWiYpUFEqpjVZWiUixSFns9ZWysQlCYaXhCTyvb-JQKoXLdTy0CsmYoARsiUCk0PxtHRwOf_5qZnlYACHOxJoXNQhStjeb-5yjLJ5_pxJWggF3UG5rWUzl6lpOJrcK3tEz8tQhVdpdh9ZzsmGKNnnSHc8cW4dpk0co7IlqcW3Scmrql6sX5M_ALKQnHd0JLS0dFVcSEzrtVgFPz8wl3pR-GXXPdmn_Cok0VhTwM4X7l96t03dgvE47OP9Iqw0OdFBtADXUccOOqSxyiqi5Ip2uvpFDyX9JRg_iiVdksygL85pQ6LtZzhIt8kSJUMeKWYB6JjYACbgvZIfs1v99ph0ZOmpyTDJoitBP2Y2fOuRTYztdU4D81-oAXdhYIG139UE5G2cuC2RBrI0wmseJlIJJmfqBsTyCQekUsr3pkO06ADKXS-bZTeR3yMfmMmQBXNqRhSmXaOPjCeKUwzh2msC5Z7hv7v-lD6TVOx2cZCf94fFb8pjjJAMUbB5tk83FbGneARJbqPcu3Cm5eOg37B-pG0tU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRWrhUEEAEVpgEUWiByv2etePA0KBEhpKKg6k6s3dXe-mh9QOeajKH-BH8euYsdduK6Heek0mziYzO_PtY76PkH0oQoCSrfKEFZHHFUs9QCHWs4lEJfggFxZ7h0cn0dGYfz8TZxvkb9MLg9cqm5xYJeq81LhH3gPo6wPUYDzsWXct4ufh4NPst4cKUnjS2shp1CFybNZXsHxbfBwegq_fMzb4-uvLkecUBjzNI3_pcW1jEctERSoSUmqjlVU8Un6kLK7zlbKxCQW30rAEfmtgYiGVwqM6JqxCIiZI_w9iZHHHLvXBt3Z_xw8huH1eM6KGYer35ouAMRTEC27VwEoq4Ba-3V4VM7m-ktPpjVI3eEx2HEal_TqonpANU3TIo_5k7ng6TIdsoaQn6sR1yLbTUb9YPyV_RmYpPemITmhp6bi4lJjKab8KdXpqLvCh9MO4f3pAh5dIobGmgJwpPL_0bvTdgXGdcHDnkVZXG-iouvppqGOFnVBZ5BTxckU3XX0ih2L_jIzvxQ_PyWZRFuYFobDi9nM_0TxPFBc6Vr4FkGdiA2CABVx2yUHz32fa0aCjGsc0g-UQ-im79lOXvGttZzX5x3-tPqMLWwsk7K5eKOeTzM3_LIy14UazOJGS-1KmQWgsi2BQOoU8b7pkrwmAzGWRRXYd813ytn0b5j8e6sjClCu0CbB3OGUwjv02cO4Y7su7v-kN2YJ5lf0YnhzvkocMdxegUrNoj2wu5yvzCiDYUr2uYp2S8_ueXP8AssFI7g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZQ9zBe-I0oG8iIPbCHLLFjO8kTCohpIHXigUzjKbIdu0N0SdWlQ-UP4O_mLklLhxBC4rU5S1f5fPedffcdIQcQhAAlexNIL1UgDM8CQCE-8KnGSfCskh57hyen6qQQH87l-VYXP5ZVQir-pXPSPEp4gPOUQsZDzkJ89ArnlX99PdwlMYXcMCzFdvIdJQGNj8hOcfox_4wz5dare1bSGLL7cHHFOMehdOxGHOro-m9gzN1lPderb3o22wo3x3eJXivaV5l8PVq25sh-_43D8X_-yT1yZ8CiNO-N5z655eoHZHcYi36xekh-TFyrAz3wltDG06K-1OiZad5ZLj1zF7iWvirys0P6_hIZMVYUgDDNp4sm2GqjA-Hef-BFIu0qFeikq-R0dCB5nVJdVxThb8ce3a2oIHY_IsXxu09vT4JhcENghYraQFifyESnRhkltbbOGm-EMpEyHq9PjPGJi6Xw2vEUTIi5RGpj8AWUS2-y-DEZ1U3tnhAKCXRURakVVWqEtImJPGA2lziI7ZwJPSaH620s7cBqjsM1ZiVkN7jl5a8tH5OXG9l5z-XxR6k3aA0bCeTf7n5oFtNyOM5lnFgnnOVJqrWItM5Y7DxXoJTNwG27Mdlf21I5OIWrErK3CNAyF_GYvNh8huOMbzS6ds0SZRi2Amcc9DjY2OBf1H36b2J75DbHmwKIulztk1G7WLpnAKda83w4MT8BZcIa8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-analysis+of+Unmanned+Aerial+Vehicle+%28UAV%29+Imagery+for+Agro-environmental+Monitoring+Using+Machine+Learning+and+Statistical+Models&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Eskandari%2C+Roghieh&rft.au=Mahdianpari%2C+Masoud&rft.au=Mohammadimanesh%2C+Fariba&rft.au=Salehi%2C+Bahram&rft.date=2020-10-26&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=21&rft.spage=3511&rft_id=info:doi/10.3390%2Frs12213511&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs12213511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon