Meta-analysis of Unmanned Aerial Vehicle (UAV) Imagery for Agro-environmental Monitoring Using Machine Learning and Statistical Models
Unmanned Aerial Vehicle (UAV) imaging systems have recently gained significant attention from researchers and practitioners as a cost-effective means for agro-environmental applications. In particular, machine learning algorithms have been applied to UAV-based remote sensing data for enhancing the U...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 21; p. 3511 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
26.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs12213511 |
Cover
| Abstract | Unmanned Aerial Vehicle (UAV) imaging systems have recently gained significant attention from researchers and practitioners as a cost-effective means for agro-environmental applications. In particular, machine learning algorithms have been applied to UAV-based remote sensing data for enhancing the UAV capabilities of various applications. This systematic review was performed on studies through a statistical meta-analysis of UAV applications along with machine learning algorithms in agro-environmental monitoring. For this purpose, a total number of 163 peer-reviewed articles published in 13 high-impact remote sensing journals over the past 20 years were reviewed focusing on several features, including study area, application, sensor type, platform type, and spatial resolution. The meta-analysis revealed that 62% and 38% of the studies applied regression and classification models, respectively. Visible sensor technology was the most frequently used sensor with the highest overall accuracy among classification articles. Regarding regression models, linear regression and random forest were the most frequently applied models in UAV remote sensing imagery processing. Finally, the results of this study confirm that applying machine learning approaches on UAV imagery produces fast and reliable results. Agriculture, forestry, and grassland mapping were found as the top three UAV applications in this review, in 42%, 22%, and 8% of the studies, respectively. |
|---|---|
| AbstractList | Unmanned Aerial Vehicle (UAV) imaging systems have recently gained significant attention from researchers and practitioners as a cost-effective means for agro-environmental applications. In particular, machine learning algorithms have been applied to UAV-based remote sensing data for enhancing the UAV capabilities of various applications. This systematic review was performed on studies through a statistical meta-analysis of UAV applications along with machine learning algorithms in agro-environmental monitoring. For this purpose, a total number of 163 peer-reviewed articles published in 13 high-impact remote sensing journals over the past 20 years were reviewed focusing on several features, including study area, application, sensor type, platform type, and spatial resolution. The meta-analysis revealed that 62% and 38% of the studies applied regression and classification models, respectively. Visible sensor technology was the most frequently used sensor with the highest overall accuracy among classification articles. Regarding regression models, linear regression and random forest were the most frequently applied models in UAV remote sensing imagery processing. Finally, the results of this study confirm that applying machine learning approaches on UAV imagery produces fast and reliable results. Agriculture, forestry, and grassland mapping were found as the top three UAV applications in this review, in 42%, 22%, and 8% of the studies, respectively. |
| Author | Brisco, Brian Homayouni, Saeid Mahdianpari, Masoud Mohammadimanesh, Fariba Salehi, Bahram Eskandari, Roghieh |
| Author_xml | – sequence: 1 givenname: Roghieh surname: Eskandari fullname: Eskandari, Roghieh – sequence: 2 givenname: Masoud orcidid: 0000-0002-7234-959X surname: Mahdianpari fullname: Mahdianpari, Masoud – sequence: 3 givenname: Fariba surname: Mohammadimanesh fullname: Mohammadimanesh, Fariba – sequence: 4 givenname: Bahram orcidid: 0000-0002-7742-5475 surname: Salehi fullname: Salehi, Bahram – sequence: 5 givenname: Brian orcidid: 0000-0001-8439-362X surname: Brisco fullname: Brisco, Brian – sequence: 6 givenname: Saeid orcidid: 0000-0002-0214-5356 surname: Homayouni fullname: Homayouni, Saeid |
| BookMark | eNp9kcuOEzEQRVtokBjCbPgCS2wGUINf_VpGIx6RErGAzNYqu8sZR912sB1QfoDvpnuCAI0QXpSt0qlb5bpPiwsfPBbFc0bfCNHRtzExzpmoGHtUXHLa8FLyjl_89X5SXKW0p9MRgnVUXhY_NpihBA_DKblEgiVbP4L32JMlRgcDucU7ZwYk19vl7UuyGmGH8URsiGS5i6FE_83F4Ef0eYI3wbscovM7sk1z3IC5cx7JGiH6OQG-J58zZJeyM_cVPQ7pWfHYwpDw6te9KLbv3325-ViuP31Y3SzXpZE1zaU0tqkaaHWt6wrAoNFWy1rTWltBJdfaNigqaQF5awwwbCrQupWs5pXVnVgUq7NuH2CvDtGNEE8qgFP3iRB3CmKe_6tEY1Ci4U0LIClAxwRaXiP2pmvbqc2ieH3WOvoDnL7DMPwWZFTNjqg_jkz09Zk-xPD1iCmr0SWDwwAewzEpPkGsZR2f0RcP0H04xsmimaqo4DWXYqLomTIxpBTRKuPmvQafI7jh3zO8elDyn4F_ArnXuZI |
| CitedBy_id | crossref_primary_10_3390_w16243609 crossref_primary_10_1080_10106049_2024_2405123 crossref_primary_10_3390_electronics14030498 crossref_primary_10_1080_07038992_2021_1901562 crossref_primary_10_3390_drones7090581 crossref_primary_10_1371_journal_pone_0284184 crossref_primary_10_3390_rs14225633 crossref_primary_10_3389_ffgc_2024_1409667 crossref_primary_10_3390_su151411242 crossref_primary_10_3390_w15223941 crossref_primary_10_1016_j_agwat_2023_108521 crossref_primary_10_3390_app13010080 crossref_primary_10_1080_01431161_2023_2208709 crossref_primary_10_3389_fpls_2024_1409194 crossref_primary_10_1007_s11069_023_06145_0 crossref_primary_10_31548_forest2021_01_001 crossref_primary_10_7717_peerj_14219 crossref_primary_10_3390_drones9020097 crossref_primary_10_1093_comjnl_bxaf017 crossref_primary_10_3390_machines10121161 crossref_primary_10_3390_s24072357 crossref_primary_10_3390_rs17020255 crossref_primary_10_1080_10106049_2023_2231428 crossref_primary_10_1109_JSTARS_2023_3276427 crossref_primary_10_1142_S0219843623500123 crossref_primary_10_3390_s21237889 crossref_primary_10_3390_drones5040136 crossref_primary_10_3389_fpls_2023_1214931 crossref_primary_10_1155_2022_4162007 crossref_primary_10_3390_rs15020354 crossref_primary_10_3390_rs15030639 crossref_primary_10_3390_f13060911 crossref_primary_10_1016_j_ecoinf_2023_102305 crossref_primary_10_1109_ACCESS_2023_3262668 crossref_primary_10_1002_csc2_21028 crossref_primary_10_3390_s24072064 crossref_primary_10_3390_rs13214387 crossref_primary_10_14358_PERS_22_00101R2 crossref_primary_10_3389_fpls_2022_955340 crossref_primary_10_3390_s22239469 crossref_primary_10_1029_2021WR029925 crossref_primary_10_3390_agronomy12030661 crossref_primary_10_3390_f14030588 crossref_primary_10_3390_resources13080113 crossref_primary_10_1007_s11119_024_10168_3 crossref_primary_10_1016_j_compeleceng_2022_108197 crossref_primary_10_1155_2023_5384844 crossref_primary_10_3390_geomatics3010006 crossref_primary_10_1016_j_compag_2024_109501 crossref_primary_10_3390_rs14153814 crossref_primary_10_3390_rs14030620 crossref_primary_10_1016_j_rsase_2023_101068 |
| Cites_doi | 10.3390/rs10071119 10.1016/j.rse.2011.11.020 10.1016/j.compag.2012.12.002 10.3390/rs9040309 10.3390/rs70302971 10.1016/j.compag.2018.05.012 10.3389/fpls.2017.00887 10.1109/SIU.2015.7130015 10.3390/rs70302627 10.1016/j.rse.2018.02.008 10.3390/rs12061001 10.20944/preprints201809.0584.v1 10.3390/rs12010056 10.1109/TGRS.2016.2565471 10.3390/rs61111051 10.1016/j.biosystemseng.2012.08.009 10.3390/rs11070736 10.3390/rs9111110 10.7326/0003-4819-151-4-200908180-00135 10.1080/01431161.2016.1165884 10.1109/JSTARS.2015.2422716 10.1016/j.isprsjprs.2010.11.001 10.3390/rs11040410 10.3390/rs10111682 10.3390/rs71012793 10.1007/s10661-015-4996-2 10.1016/j.geomorph.2016.11.021 10.3390/s18113731 10.3390/rs10091365 10.3390/rs11101239 10.1016/j.isprsjprs.2015.02.009 10.1016/j.isprsjprs.2017.02.015 10.1007/s00300-018-2270-0 10.3390/rs10122026 10.1016/j.isprsjprs.2017.03.011 10.1080/01431161.2016.1277045 10.3390/s18010260 10.1016/j.geoderma.2018.08.006 10.3390/rs9070715 10.3390/s19081815 10.1016/j.isprsjprs.2017.05.010 10.1016/j.isprsjprs.2016.01.011 10.7717/peerj.6926 10.3390/rs2010290 10.1007/s11119-012-9274-5 10.3402/polar.v34.25651 10.3390/rs10121978 10.1371/journal.pone.0170478 10.3390/rs11020185 10.3390/rs11101252 10.3390/rs11030267 10.1016/S0034-4257(99)00067-X 10.3390/rs11101208 10.1139/cjfr-2014-0347 10.1080/01431161.2018.1500072 10.3390/rs11121443 10.1080/01431161.2016.1252477 10.1016/j.isprsjprs.2017.05.003 10.1016/j.isprsjprs.2014.02.013 10.1080/01431161.2017.1420941 10.20944/preprints201803.0097.v1 10.2747/1548-1603.44.1.24 10.1016/j.isprsjprs.2015.10.004 10.3732/apps.1600041 10.3390/rs70404213 10.1117/1.JRS.12.036015 10.1016/j.patrec.2005.08.011 10.1016/0034-4257(91)90048-B 10.3390/s19143071 10.3390/rs12010170 10.3390/rs8090706 10.3390/rs12071052 10.1016/j.rse.2015.12.029 10.1080/07038992.2018.1477680 10.3390/s19071485 10.1080/01431161.2017.1297548 10.3389/fpls.2017.01111 10.1016/j.geomorph.2017.12.039 10.1109/JSTARS.2018.2846178 10.3390/rs11121447 10.3390/rs12060948 10.3390/f8030068 10.1016/j.isprsjprs.2009.06.004 10.1016/j.isprsjprs.2017.11.002 10.1016/j.compag.2018.02.013 10.3390/rs4061671 10.3390/rs8020095 10.1016/j.compag.2019.02.011 10.3390/rs9030185 10.1007/978-3-319-19258-1_22 10.3390/rs10071091 10.3390/rs9080785 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/rs12213511 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Agriculture Forestry |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_37ce4ec278aa40aa913ef26eedc9887e 10.3390/rs12213511 10_3390_rs12213511 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c460t-4cf757a8b6b65aacecbfb46b06bf3042bbf7e354fae28cca1e75abb841625fb93 |
| IEDL.DBID | DOA |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:30:33 EDT 2025 Sun Oct 26 04:15:06 EDT 2025 Fri Sep 05 13:58:56 EDT 2025 Fri Jul 25 09:28:41 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Thu Oct 16 04:35:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-4cf757a8b6b65aacecbfb46b06bf3042bbf7e354fae28cca1e75abb841625fb93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7742-5475 0000-0001-8439-362X 0000-0002-7234-959X 0000-0002-0214-5356 |
| OpenAccessLink | https://doaj.org/article/37ce4ec278aa40aa913ef26eedc9887e |
| PQID | 2550326243 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_37ce4ec278aa40aa913ef26eedc9887e unpaywall_primary_10_3390_rs12213511 proquest_miscellaneous_2511181921 proquest_journals_2550326243 crossref_citationtrail_10_3390_rs12213511 crossref_primary_10_3390_rs12213511 |
| PublicationCentury | 2000 |
| PublicationDate | 20201026 |
| PublicationDateYYYYMMDD | 2020-10-26 |
| PublicationDate_xml | – month: 10 year: 2020 text: 20201026 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Thenkabail (ref_20) 2000; 71 Mahdianpari (ref_40) 2017; 130 ref_91 Elsner (ref_85) 2018; 208 ref_90 ref_14 ref_13 ref_12 Jing (ref_72) 2017; 134 ref_11 ref_10 ref_96 Rossini (ref_80) 2018; 304 Matwij (ref_99) 2017; 126 ref_16 ref_15 Collin (ref_97) 2018; 39 Guo (ref_109) 2007; 44 Yuan (ref_32) 2015; 45 Bhardwaj (ref_58) 2016; 175 Duro (ref_105) 2012; 118 Yang (ref_18) 2017; 8 Prosek (ref_101) 2018; 71 Honkavaara (ref_26) 2016; 54 James (ref_92) 2017; 280 Barrado (ref_47) 2014; 6 Su (ref_22) 2017; 58 Moher (ref_77) 2009; 151 ref_29 Ge (ref_27) 2019; 7 Chlingaryan (ref_37) 2018; 151 Rezaee (ref_104) 2018; 11 ref_70 Matese (ref_6) 2015; 7 Chen (ref_71) 2016; 37 ref_78 Mohammadimanesh (ref_21) 2018; 44 Lu (ref_38) 2017; 128 ref_75 Bendig (ref_42) 2015; 39 ref_73 (ref_110) 2015; Volume 9094 (ref_88) 2017; 19 Congalton (ref_74) 1991; 57 Congalton (ref_76) 1991; 37 Barnas (ref_79) 2018; 41 ref_83 Mountrakis (ref_106) 2011; 66 ref_89 Seier (ref_100) 2017; 38 Tian (ref_98) 2017; 61 ref_86 Zhou (ref_17) 2017; 130 ref_84 Singh (ref_53) 2018; 39 Rumbao (ref_87) 2016; 38 Mulla (ref_3) 2013; 114 Watts (ref_55) 2012; 4 Michez (ref_33) 2016; 188 Belgiu (ref_66) 2016; 114 Vanko (ref_9) 2017; 38 ref_50 Cruzan (ref_102) 2016; 4 Tao (ref_7) 2000; 2 Romero (ref_81) 2018; 147 Planas (ref_95) 2019; 75 Zhang (ref_52) 2012; 13 Jonassen (ref_23) 2015; 34 ref_54 ref_51 Colomina (ref_56) 2014; 92 Peng (ref_28) 2019; 337 (ref_5) 2017; 8 ref_59 Nex (ref_94) 2017; 42 ref_61 ref_69 ref_68 Gislason (ref_39) 2006; 27 ref_65 Mahdianpari (ref_25) 2018; 12 Torresan (ref_49) 2016; 38 Jensen (ref_67) 2015; 7 ref_63 ref_62 Sankaran (ref_35) 2013; 91 Jayathunga (ref_31) 2018; 73 (ref_64) 2015; 7 Toth (ref_57) 2016; 115 (ref_60) 2015; 7 Enciso (ref_19) 2019; 158 Aboutalebi (ref_82) 2019; Volume 11008 Henriques (ref_24) 2015; 104 Hunt (ref_8) 2010; 2 ref_36 ref_34 ref_30 Wang (ref_93) 2015; 8 ref_103 Blaschke (ref_108) 2010; 65 ref_46 Forkuor (ref_111) 2017; 12 ref_45 ref_44 ref_43 ref_41 ref_1 Li (ref_107) 2016; 49 ref_2 ref_48 ref_4 |
| References_xml | – ident: ref_103 doi: 10.3390/rs10071119 – volume: 118 start-page: 259 year: 2012 ident: ref_105 article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.020 – volume: 91 start-page: 106 year: 2013 ident: ref_35 article-title: Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2012.12.002 – ident: ref_69 doi: 10.3390/rs9040309 – volume: 2 start-page: 1 year: 2000 ident: ref_7 article-title: Mobile mapping technology for road network data acquisition publication-title: J. Geospat. Eng. – volume: 7 start-page: 2971 year: 2015 ident: ref_6 article-title: Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture publication-title: Remote Sens. doi: 10.3390/rs70302971 – volume: 151 start-page: 61 year: 2018 ident: ref_37 article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.05.012 – volume: 8 start-page: 887 year: 2017 ident: ref_5 article-title: Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00887 – ident: ref_68 doi: 10.1109/SIU.2015.7130015 – volume: 7 start-page: 2627 year: 2015 ident: ref_67 article-title: Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks publication-title: Remote Sens. doi: 10.3390/rs70302627 – volume: 208 start-page: 15 year: 2018 ident: ref_85 article-title: Coincident beach surveys using UAS, vehicle mounted and airborne laser scanner: Point cloud inter-comparison and effects of surface type heterogeneity on elevation accuracies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.008 – ident: ref_54 doi: 10.3390/rs12061001 – ident: ref_4 – ident: ref_61 doi: 10.20944/preprints201809.0584.v1 – ident: ref_65 doi: 10.3390/rs12010056 – volume: 54 start-page: 5440 year: 2016 ident: ref_26 article-title: Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV) publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2565471 – volume: 49 start-page: 87 year: 2016 ident: ref_107 article-title: A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 6 start-page: 11051 year: 2014 ident: ref_47 article-title: UAV Flight Experiments Applied to the Remote Sensing of Vegetated Areas publication-title: Remote Sens. doi: 10.3390/rs61111051 – volume: 114 start-page: 358 year: 2013 ident: ref_3 article-title: Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2012.08.009 – ident: ref_46 doi: 10.3390/rs11070736 – ident: ref_50 doi: 10.3390/rs9111110 – volume: 151 start-page: 264 year: 2009 ident: ref_77 article-title: Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement publication-title: Ann. Int. Med. doi: 10.7326/0003-4819-151-4-200908180-00135 – volume: 37 start-page: 1922 year: 2016 ident: ref_71 article-title: Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1165884 – volume: 38 start-page: 2161 year: 2016 ident: ref_87 article-title: Accurate ortho-mosaicked six-band multispectral UAV images as affected by mission planning for precision agriculture proposes publication-title: Int. J. Remote Sens. – volume: 8 start-page: 1876 year: 2015 ident: ref_93 article-title: A Simplified Empirical Line Method of Radiometric Calibration for Small Unmanned Aircraft Systems-Based Remote Sensing publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2422716 – volume: 66 start-page: 247 year: 2011 ident: ref_106 article-title: Support vector machines in remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.11.001 – ident: ref_16 doi: 10.3390/rs11040410 – ident: ref_14 doi: 10.3390/rs10111682 – volume: 7 start-page: 12793 year: 2015 ident: ref_60 article-title: Assessing Optimal Flight Parameters for Generating Accurate Multispectral Orthomosaicks by UAV to Support Site-Specific Crop Management publication-title: Remote Sens. doi: 10.3390/rs71012793 – volume: 73 start-page: 767 year: 2018 ident: ref_31 article-title: The use of fixed–wing UAV photogrammetry with LiDAR DTM to estimate merchantable volume and carbon stock in living biomass over a mixed conifer–broadleaf forest publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 188 start-page: 1 year: 2016 ident: ref_33 article-title: Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-4996-2 – volume: 280 start-page: 51 year: 2017 ident: ref_92 article-title: Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.11.021 – ident: ref_86 – ident: ref_73 doi: 10.3390/s18113731 – ident: ref_36 doi: 10.3390/rs10091365 – ident: ref_11 doi: 10.3390/rs11101239 – volume: 104 start-page: 101 year: 2015 ident: ref_24 article-title: UAV photogrammetry for topographic monitoring of coastal areas publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.02.009 – volume: 126 start-page: 168 year: 2017 ident: ref_99 article-title: Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.02.015 – volume: 41 start-page: 1055 year: 2018 ident: ref_79 article-title: A pilot(less) study on the use of an unmanned aircraft system for studying polar bears (Ursus maritimus) publication-title: Polar Biol. doi: 10.1007/s00300-018-2270-0 – ident: ref_10 doi: 10.3390/rs10122026 – volume: 128 start-page: 73 year: 2017 ident: ref_38 article-title: Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.03.011 – volume: 38 start-page: 2903 year: 2017 ident: ref_100 article-title: UAV and TLS for monitoring a creek in an alpine environment, Styria, Austria publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1277045 – volume: 71 start-page: 9 year: 2018 ident: ref_101 article-title: The potential of Unmanned Aerial Systems: A tool towards precision classification of hard-to-distinguish vegetation types? publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_45 doi: 10.3390/s18010260 – volume: 337 start-page: 1309 year: 2019 ident: ref_28 article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.006 – ident: ref_43 doi: 10.3390/rs9070715 – ident: ref_13 doi: 10.3390/s19081815 – volume: 130 start-page: 13 year: 2017 ident: ref_40 article-title: Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.05.010 – volume: 114 start-page: 24 year: 2016 ident: ref_66 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 7 start-page: e6926 year: 2019 ident: ref_27 article-title: Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring publication-title: PeerJ doi: 10.7717/peerj.6926 – volume: 2 start-page: 290 year: 2010 ident: ref_8 article-title: Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring publication-title: Remote Sens. doi: 10.3390/rs2010290 – volume: 13 start-page: 693 year: 2012 ident: ref_52 article-title: The application of small unmanned aerial systems for precision agriculture: A review publication-title: Precis. Agric. doi: 10.1007/s11119-012-9274-5 – volume: 39 start-page: 79 year: 2015 ident: ref_42 article-title: Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 34 start-page: 25651 year: 2015 ident: ref_23 article-title: Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic sea ice in winter publication-title: Polar Res. doi: 10.3402/polar.v34.25651 – ident: ref_29 doi: 10.3390/rs10121978 – volume: 12 start-page: e0170478 year: 2017 ident: ref_111 article-title: High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models publication-title: PLoS ONE doi: 10.1371/journal.pone.0170478 – ident: ref_75 doi: 10.3390/rs11020185 – ident: ref_89 doi: 10.3390/rs11101252 – ident: ref_44 doi: 10.3390/rs11030267 – ident: ref_78 – volume: 71 start-page: 158 year: 2000 ident: ref_20 article-title: Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00067-X – ident: ref_96 doi: 10.3390/rs11101208 – volume: 45 start-page: 783 year: 2015 ident: ref_32 article-title: A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques publication-title: Can. J. Res. doi: 10.1139/cjfr-2014-0347 – volume: 39 start-page: 5676 year: 2018 ident: ref_97 article-title: Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1500072 – ident: ref_51 doi: 10.3390/rs11121443 – volume: 75 start-page: 130 year: 2019 ident: ref_95 article-title: Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 38 start-page: 2427 year: 2016 ident: ref_49 article-title: Forestry applications of UAVs in Europe: A review publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1252477 – volume: 130 start-page: 246 year: 2017 ident: ref_17 article-title: Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.05.003 – ident: ref_90 – volume: 92 start-page: 79 year: 2014 ident: ref_56 article-title: Unmanned aerial systems for photogrammetry and remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.02.013 – volume: 39 start-page: 5078 year: 2018 ident: ref_53 article-title: A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1420941 – ident: ref_1 doi: 10.20944/preprints201803.0097.v1 – volume: 44 start-page: 24 year: 2007 ident: ref_109 article-title: An Object-Based Classification Approach in Mapping Tree Mortality Using High Spatial Resolution Imagery publication-title: GiSci. Remote Sens. doi: 10.2747/1548-1603.44.1.24 – volume: 115 start-page: 22 year: 2016 ident: ref_57 article-title: Remote sensing platforms and sensors: A survey publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.10.004 – volume: 4 start-page: 1600041 year: 2016 ident: ref_102 article-title: Small Unmanned Aerial Vehicles (Micro-Uavs, Drones) in Plant Ecology publication-title: Appl. Plant Sci. doi: 10.3732/apps.1600041 – volume: 7 start-page: 4213 year: 2015 ident: ref_64 article-title: High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials publication-title: Remote Sens. doi: 10.3390/rs70404213 – volume: 12 start-page: 1 year: 2018 ident: ref_25 article-title: Mapping land-based oil spills using high spatial resolution unmanned aerial vehicle imagery and electromagnetic induction survey data publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.12.036015 – volume: 27 start-page: 294 year: 2006 ident: ref_39 article-title: Random Forests for land cover classification publication-title: Patt. Recognit. Lett. doi: 10.1016/j.patrec.2005.08.011 – volume: 42 start-page: 355 year: 2017 ident: ref_94 article-title: Quality Assessment of Combined Imu/Gnss Data for Direct Georeferencing in the Context Of Uav-Based Mapping publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. – volume: 58 start-page: 213 year: 2017 ident: ref_22 article-title: A study of a matching pixel by pixel (MPP) algorithm to establish an empirical model of water quality mapping, as based on unmanned aerial vehicle (UAV) images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 37 start-page: 35 year: 1991 ident: ref_76 article-title: A review of assessing the accuracy of classifications of remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(91)90048-B – ident: ref_84 doi: 10.3390/s19143071 – volume: Volume 11008 start-page: 110080S year: 2019 ident: ref_82 article-title: Estimation of soil moisture at different soil levels using machine learning techniques and unmanned aerial vehicle (UAV) multispectral imagery publication-title: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV – ident: ref_34 doi: 10.3390/rs12010170 – ident: ref_15 doi: 10.3390/rs8090706 – ident: ref_48 doi: 10.3390/rs12071052 – volume: 175 start-page: 196 year: 2016 ident: ref_58 article-title: UAVs as remote sensing platform in glaciology: Present applications and future prospects publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.029 – volume: 44 start-page: 247 year: 2018 ident: ref_21 article-title: Wetland Water Level Monitoring Using Interferometric Synthetic Aperture Radar (InSAR): A Review publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2018.1477680 – ident: ref_12 doi: 10.3390/s19071485 – volume: 38 start-page: 2349 year: 2017 ident: ref_9 article-title: UAS, sensors, and data processing in agroforestry: A review towards practical applications publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1297548 – volume: 8 start-page: 1111 year: 2017 ident: ref_18 article-title: Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01111 – volume: 304 start-page: 159 year: 2018 ident: ref_80 article-title: Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.12.039 – volume: 19 start-page: 115 year: 2017 ident: ref_88 article-title: Assessing UAV-collected image overlap influence on computation time and digital surface model accuracy in olive orchards publication-title: Precis. Agric. – volume: 11 start-page: 3030 year: 2018 ident: ref_104 article-title: Deep Convolutional Neural Network for Complex Wetland Classification Using Optical Remote Sensing Imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2846178 – ident: ref_83 doi: 10.3390/rs11121447 – ident: ref_59 doi: 10.3390/rs12060948 – ident: ref_63 doi: 10.3390/f8030068 – volume: 65 start-page: 2 year: 2010 ident: ref_108 article-title: Object based image analysis for remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.06.004 – volume: 134 start-page: 122 year: 2017 ident: ref_72 article-title: Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform—A case study in Wild Duck Lake Wetland, Beijing, China publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.002 – volume: 147 start-page: 109 year: 2018 ident: ref_81 article-title: Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.013 – volume: 61 start-page: 22 year: 2017 ident: ref_98 article-title: Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 4 start-page: 1671 year: 2012 ident: ref_55 article-title: Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use publication-title: Remote Sens. doi: 10.3390/rs4061671 – ident: ref_30 doi: 10.3390/rs8020095 – ident: ref_2 – volume: 158 start-page: 278 year: 2019 ident: ref_19 article-title: Validation of agronomic UAV and field measurements for tomato varieties publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.02.011 – ident: ref_91 – ident: ref_41 doi: 10.3390/rs9030185 – volume: 57 start-page: 677 year: 1991 ident: ref_74 article-title: Remote sensing and geographic information system data integration: Error sources and Research Issues publication-title: Photogramm. Eng. Remote Sens. – volume: Volume 9094 start-page: 252 year: 2015 ident: ref_110 article-title: An Experimental Comparison for the Identification of Weeds in Sunflower Crops via Unmanned Aerial Vehicles and Object-Based Analysis publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-319-19258-1_22 – ident: ref_62 doi: 10.3390/rs10071091 – ident: ref_70 doi: 10.3390/rs9080785 |
| SSID | ssj0000331904 |
| Score | 2.5320194 |
| SecondaryResourceType | review_article |
| Snippet | Unmanned Aerial Vehicle (UAV) imaging systems have recently gained significant attention from researchers and practitioners as a cost-effective means for... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 3511 |
| SubjectTerms | Accuracy Aerial photography Agriculture agro-environmental monitoring Aircraft Algorithms area artificial intelligence Classification cost effectiveness Data collection Data processing decision support systems Environmental monitoring Environmental studies Forestry Grasslands image analysis Imagery Learning algorithms Machine learning Mathematical models Meta-analysis Model accuracy monitoring Photogrammetry regression Regression analysis Regression models Remote sensing researchers Reviews Sensors Software Spatial analysis spatial data Spatial discrimination Spatial resolution Statistical analysis Statistical models Systematic review Unmanned Aerial Vehicle (UAV) Unmanned aerial vehicles Vegetation mapping Wetlands |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6NTmLwgKAwURjIiD2wB2uJY-fHA0Id2jSQWiFEp71FtmN3D11Sulao_wB_N3ep020S2mtySaz4fPf5bH8fwCEmIUTJ3nDlVcqlEQVHFOK5zzUpwceV8nR2eDROzyfy-6W63IFxdxaGtlV2MbEN1FVjqUZ-jNA3QqghZPJl_puTahStrnYSGjpIK1SfW4qxR7AriBmrB7snp-MfP7dVlyhBl4vkhqc0wfn-8eImFoJk6uJ7makl8L-HOvdW9Vyv_-jZ7E4COnsOzwJyZMNNV7-AHVf34elwugjsGa4Pj0lok9Tb-rAX1M2v1i_h78gtNdeBfoQ1nk3qa00Blg1bB2QX7opeyj5NhhdH7Ns1EVusGeJZhu9v-J3TcGi8CQNUD2TthgM2ajdkOha4WqdM1xUjFNuSQLdPVJiCX8Hk7PTX13Me9Be4lWm05NL6TGU6N6lJldbWWeONTE2UGk9VEGN85hIlvXYiR0-IXaa0MbSQKZQ3RbIPvbqp3WtgOA-Oqii3ssqNVDYzkUfo5TKHKVrEUg_gqPv3pQ3k5KSRMStxkkL9VN720wA-bm3nG0qO_1qdUBduLYhGu73QLKZlGJVlklknnRVZrrWMtC7ixHmRYqNsgdHXDeCgc4AyjO2b8tYTB_BhextHJS216No1K7KJ6URvIbAdh1vHeaC5bx7-0lt4Imiij0lTpAfQWy5W7h2ioaV5H1z8H6jbC7I priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZQ9zBe-I0oG8iIPbCHLLFjO8kTCohpIHXigUzjKbIdu0N0SdWlQ-UP4O_mLklLhxBC4rU5S1f5fPedffcdIQcQhAAlexNIL1UgDM8CQCE-8KnGSfCskh57hyen6qQQH87l-VYXP5ZVQir-pXPSPEp4gPOUQsZDzkJ89ArnlX99PdwlMYXcMCzFdvIdJQGNj8hOcfox_4wz5dare1bSGLL7cHHFOMehdOxGHOro-m9gzN1lPderb3o22wo3x3eJXivaV5l8PVq25sh-_43D8X_-yT1yZ8CiNO-N5z655eoHZHcYi36xekh-TFyrAz3wltDG06K-1OiZad5ZLj1zF7iWvirys0P6_hIZMVYUgDDNp4sm2GqjA-Hef-BFIu0qFeikq-R0dCB5nVJdVxThb8ce3a2oIHY_IsXxu09vT4JhcENghYraQFifyESnRhkltbbOGm-EMpEyHq9PjPGJi6Xw2vEUTIi5RGpj8AWUS2-y-DEZ1U3tnhAKCXRURakVVWqEtImJPGA2lziI7ZwJPSaH620s7cBqjsM1ZiVkN7jl5a8tH5OXG9l5z-XxR6k3aA0bCeTf7n5oFtNyOM5lnFgnnOVJqrWItM5Y7DxXoJTNwG27Mdlf21I5OIWrErK3CNAyF_GYvNh8huOMbzS6ds0SZRi2Amcc9DjY2OBf1H36b2J75DbHmwKIulztk1G7WLpnAKda83w4MT8BZcIa8A priority: 102 providerName: Unpaywall |
| Title | Meta-analysis of Unmanned Aerial Vehicle (UAV) Imagery for Agro-environmental Monitoring Using Machine Learning and Statistical Models |
| URI | https://www.proquest.com/docview/2550326243 https://www.proquest.com/docview/2511181921 https://www.mdpi.com/2072-4292/12/21/3511/pdf?version=1604311807 https://doaj.org/article/37ce4ec278aa40aa913ef26eedc9887e |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHMoFlZdYKCsjeqAHq45jO8kxhS4FsasKSFVOke3Y7WGbrba7QvsH-ruZcdJlKyG4cIqSjCXLM-P5xo9vCNmDIAQoOVimgtJMWlEwQCGBhdxgJfikUQHvDo8n-riSn8_U2UapLzwT1tEDdwN3kGbOS-9ElhsjuTFFkvogNEztrgAH8Tj78rzYSKbiHJyCaXHZ8ZGmkNcfzK8TIbAcXXInAkWi_jvocnvZXpnVTzOdbgSa0Q551CNEWnY9e0zu-fYJ2e6LlV-snpKbsV8YZno2EToLtGovDc6XtIz2RE_9Bbal76rydJ9-ukSeihUFeErL8_mMbVxuA-HOq3F5j8bzA3Qcz1d62lOvnlPTNhRBaeR0ji0aiKjPSDU6-v7-mPXlFJiTmi-YdCFTmcmttloZ47yzwUptubYBFzWsDZlPlQzGixwUm_hMGWtxX1KoYIv0OdlqZ61_QSiktbzhuZNNbqVymeUBkJTPPKhFJNIMyP7tENeu5xrHkhfTGnIOVEf9Wx0D8nYte9UxbPxR6hA1tZZAVuz4AWyl7m2l_petDMjurZ7r3lWva8ipOGBYIdMBebP-DU6GOyem9bMlyiR4QbcQ0I-9tX38pbsv_0d3X5GHArN7iJRC75KtxXzpXwMEWtghuZ-PPg7Jg_LD-Ms3eB4eTU6-DqMPwFs1OSl__AKFqQy5 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrUTggCCACBRYRJHowep6vX4dKpRCq4Q2EUJN1Zu7u95ND6kd8lCVP8DP4rcx46zdVkK99RpPnHVmPPPNPr6PkB0oQoCSrfJCG0aeUDz1AIVYzyYSleD9PLR4dngwjHoj8eM8PN8gf-uzMLitss6JVaLOS41z5HsAfRlADS6Cr9PfHqpG4epqLaEhnbRCvl9RjLmDHcdmdQ0t3Hy__x38_Znzo8PTbz3PqQx4WkRs4Qlt4zCWiYpUFEqpjVZWiUixSFns9ZWysQlCYaXhCTyvb-JQKoXLdTy0CsmYoARsiUCk0PxtHRwOf_5qZnlYACHOxJoXNQhStjeb-5yjLJ5_pxJWggF3UG5rWUzl6lpOJrcK3tEz8tQhVdpdh9ZzsmGKNnnSHc8cW4dpk0co7IlqcW3Scmrql6sX5M_ALKQnHd0JLS0dFVcSEzrtVgFPz8wl3pR-GXXPdmn_Cok0VhTwM4X7l96t03dgvE47OP9Iqw0OdFBtADXUccOOqSxyiqi5Ip2uvpFDyX9JRg_iiVdksygL85pQ6LtZzhIt8kSJUMeKWYB6JjYACbgvZIfs1v99ph0ZOmpyTDJoitBP2Y2fOuRTYztdU4D81-oAXdhYIG139UE5G2cuC2RBrI0wmseJlIJJmfqBsTyCQekUsr3pkO06ADKXS-bZTeR3yMfmMmQBXNqRhSmXaOPjCeKUwzh2msC5Z7hv7v-lD6TVOx2cZCf94fFb8pjjJAMUbB5tk83FbGneARJbqPcu3Cm5eOg37B-pG0tU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRWrhUEEAEVpgEUWiByv2etePA0KBEhpKKg6k6s3dXe-mh9QOeajKH-BH8euYsdduK6Heek0mziYzO_PtY76PkH0oQoCSrfKEFZHHFUs9QCHWs4lEJfggFxZ7h0cn0dGYfz8TZxvkb9MLg9cqm5xYJeq81LhH3gPo6wPUYDzsWXct4ufh4NPst4cKUnjS2shp1CFybNZXsHxbfBwegq_fMzb4-uvLkecUBjzNI3_pcW1jEctERSoSUmqjlVU8Un6kLK7zlbKxCQW30rAEfmtgYiGVwqM6JqxCIiZI_w9iZHHHLvXBt3Z_xw8huH1eM6KGYer35ouAMRTEC27VwEoq4Ba-3V4VM7m-ktPpjVI3eEx2HEal_TqonpANU3TIo_5k7ng6TIdsoaQn6sR1yLbTUb9YPyV_RmYpPemITmhp6bi4lJjKab8KdXpqLvCh9MO4f3pAh5dIobGmgJwpPL_0bvTdgXGdcHDnkVZXG-iouvppqGOFnVBZ5BTxckU3XX0ih2L_jIzvxQ_PyWZRFuYFobDi9nM_0TxPFBc6Vr4FkGdiA2CABVx2yUHz32fa0aCjGsc0g-UQ-im79lOXvGttZzX5x3-tPqMLWwsk7K5eKOeTzM3_LIy14UazOJGS-1KmQWgsi2BQOoU8b7pkrwmAzGWRRXYd813ytn0b5j8e6sjClCu0CbB3OGUwjv02cO4Y7su7v-kN2YJ5lf0YnhzvkocMdxegUrNoj2wu5yvzCiDYUr2uYp2S8_ueXP8AssFI7g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZQ9zBe-I0oG8iIPbCHLLFjO8kTCohpIHXigUzjKbIdu0N0SdWlQ-UP4O_mLklLhxBC4rU5S1f5fPedffcdIQcQhAAlexNIL1UgDM8CQCE-8KnGSfCskh57hyen6qQQH87l-VYXP5ZVQir-pXPSPEp4gPOUQsZDzkJ89ArnlX99PdwlMYXcMCzFdvIdJQGNj8hOcfox_4wz5dare1bSGLL7cHHFOMehdOxGHOro-m9gzN1lPderb3o22wo3x3eJXivaV5l8PVq25sh-_43D8X_-yT1yZ8CiNO-N5z655eoHZHcYi36xekh-TFyrAz3wltDG06K-1OiZad5ZLj1zF7iWvirys0P6_hIZMVYUgDDNp4sm2GqjA-Hef-BFIu0qFeikq-R0dCB5nVJdVxThb8ce3a2oIHY_IsXxu09vT4JhcENghYraQFifyESnRhkltbbOGm-EMpEyHq9PjPGJi6Xw2vEUTIi5RGpj8AWUS2-y-DEZ1U3tnhAKCXRURakVVWqEtImJPGA2lziI7ZwJPSaH620s7cBqjsM1ZiVkN7jl5a8tH5OXG9l5z-XxR6k3aA0bCeTf7n5oFtNyOM5lnFgnnOVJqrWItM5Y7DxXoJTNwG27Mdlf21I5OIWrErK3CNAyF_GYvNh8huOMbzS6ds0SZRi2Amcc9DjY2OBf1H36b2J75DbHmwKIulztk1G7WLpnAKda83w4MT8BZcIa8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-analysis+of+Unmanned+Aerial+Vehicle+%28UAV%29+Imagery+for+Agro-environmental+Monitoring+Using+Machine+Learning+and+Statistical+Models&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Eskandari%2C+Roghieh&rft.au=Mahdianpari%2C+Masoud&rft.au=Mohammadimanesh%2C+Fariba&rft.au=Salehi%2C+Bahram&rft.date=2020-10-26&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=21&rft.spage=3511&rft_id=info:doi/10.3390%2Frs12213511&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs12213511 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |