Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning
We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence tomography (OCT) images, based on sparse coding and dictionary learning. The study aims to improve the classification performance of state-of-th...
Saved in:
| Published in | Journal of biomedical optics Vol. 22; no. 1; p. 016012 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Society of Photo-Optical Instrumentation Engineers
01.01.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1083-3668 1560-2281 1560-2281 |
| DOI | 10.1117/1.JBO.22.1.016012 |
Cover
| Abstract | We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence tomography (OCT) images, based on sparse coding and dictionary learning. The study aims to improve the classification performance of state-of-the-art methods. First, our method presents a general approach to automatically align and crop retina regions; then it obtains global representations of images by using sparse coding and a spatial pyramid; finally, a multiclass linear support vector machine classifier is employed for classification. We apply two datasets for validating our algorithm: Duke spectral domain OCT (SD-OCT) dataset, consisting of volumetric scans acquired from 45 subjects-15 normal subjects, 15 AMD patients, and 15 DME patients; and clinical SD-OCT dataset, consisting of 678 OCT retina scans acquired from clinics in Beijing-168, 297, and 213 OCT images for AMD, DME, and normal retinas, respectively. For the former dataset, our classifier correctly identifies 100%, 100%, and 93.33% of the volumes with DME, AMD, and normal subjects, respectively, and thus performs much better than the conventional method; for the latter dataset, our classifier leads to a correct classification rate of 99.67%, 99.67%, and 100.00% for DME, AMD, and normal images, respectively. |
|---|---|
| AbstractList | We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence tomography (OCT) images, based on sparse coding and dictionary learning. The study aims to improve the classification performance of state-of-the-art methods. First, our method presents a general approach to automatically align and crop retina regions; then it obtains global representations of images by using sparse coding and a spatial pyramid; finally, a multiclass linear support vector machine classifier is employed for classification. We apply two datasets for validating our algorithm: Duke spectral domain OCT (SD-OCT) dataset, consisting of volumetric scans acquired from 45 subjects—15 normal subjects, 15 AMD patients, and 15 DME patients; and clinical SD-OCT dataset, consisting of 678 OCT retina scans acquired from clinics in Beijing—168, 297, and 213 OCT images for AMD, DME, and normal retinas, respectively. For the former dataset, our classifier correctly identifies 100%, 100%, and 93.33% of the volumes with DME, AMD, and normal subjects, respectively, and thus performs much better than the conventional method; for the latter dataset, our classifier leads to a correct classification rate of 99.67%, 99.67%, and 100.00% for DME, AMD, and normal images, respectively. |
| Author | Li, Shan Sun, Zhongyang Sun, Yankui |
| Author_xml | – sequence: 1 givenname: Yankui surname: Sun fullname: Sun, Yankui email: syk@mail.tsinghua.edu.cn organization: aTsinghua University, Department of Computer Science and Technology, 30 Shuangqing Road, Haidian District, Beijing 100084, China – sequence: 2 givenname: Shan surname: Li fullname: Li, Shan organization: bBeihang University, School of Software, 37 Xueyuan Road, Haidian District, Beijing 100191, China – sequence: 3 givenname: Zhongyang surname: Sun fullname: Sun, Zhongyang organization: cSun Yat-Sen University, School of Data and Computer Science, 132 East Waihuan Road, Guangzhou Higher Education Mega Center (University Town), Guangzhou 510006, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28114453$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kUtv1DAUhSNURB_wA9ggL9kk2E7GzixLYQqoUlmUdXTj3Mx45LGD7agKe_53PU15aAZWvrbPd3R07nl2Yp3FLHvNaMEYk-9Y8eX9bcF5wQrKBGX8WXbGFoLmnNfsJM20LvNSiPo0Ow9hSymtxVK8yE7TN6uqRXmW_VyNxkwExuh2ELEjO1CjAU8GiBtn3HoiHUZUUTtLtCUeo7ZA3BC1AkOU26BHq5Ak3q09DJuJ6B2sMZAxaLsmYQAfMAm7_Q1sRzr96AZ-IgbB2_T-Mnvegwn46um8yL6tPt5dfcpvbq8_X13e5KoSNOYllT1wKUFKSTm0Sla9FJ1a8F62NS2RyQoqsURUXKFIatUq1daw7Pqet2V5kfHZd7QDTPdgTDP4FNdPDaPNvtOGNdvWNZynYe40QW9naPDu-4ghNjsdFBoDFt0YGlYLJtiC0r3_myfp2O6w-23-q-8kkLNAeReCx75ROsK-juhBm79SpM0epGAH5HHyY-ZuZsKgsdm60dvU7h_ZDz0cMo9vlz5t1-DXD6uj76Hrk23xL9v_53gA65zRcA |
| CitedBy_id | crossref_primary_10_1016_j_jvcir_2019_01_022 crossref_primary_10_1117_1_JBO_22_6_066014 crossref_primary_10_1080_17469899_2024_2328620 crossref_primary_10_1615_IntJMultCompEng_2022043544 crossref_primary_10_1117_1_JBO_23_3_035005 crossref_primary_10_3390_diagnostics13040729 crossref_primary_10_1097_IIO_0000000000000333 crossref_primary_10_1109_JBHI_2020_2983730 crossref_primary_10_1016_j_pdpdt_2023_103629 crossref_primary_10_1007_s00347_020_01110_9 crossref_primary_10_1016_j_cmpb_2021_106294 crossref_primary_10_3390_a12030051 crossref_primary_10_1167_tvst_11_12_3 crossref_primary_10_1080_17434440_2023_2294364 crossref_primary_10_1364_OE_25_025819 crossref_primary_10_1016_j_preteyeres_2018_07_004 crossref_primary_10_1109_JSEN_2021_3108642 crossref_primary_10_1016_j_cmpb_2020_105877 crossref_primary_10_1109_LSP_2019_2917779 crossref_primary_10_3390_bios12070542 crossref_primary_10_1109_TIM_2022_3185653 crossref_primary_10_1371_journal_pone_0304943 crossref_primary_10_3390_s24010150 crossref_primary_10_12677_CSA_2020_101012 crossref_primary_10_1117_1_JBO_24_5_056003 crossref_primary_10_1109_TMI_2023_3260990 crossref_primary_10_1186_s12938_018_0592_3 crossref_primary_10_1016_j_neucom_2020_04_044 crossref_primary_10_1080_08820538_2021_1896756 crossref_primary_10_1002_ima_22808 crossref_primary_10_1109_LSP_2019_2949388 crossref_primary_10_1016_j_ijleo_2023_171165 crossref_primary_10_1007_s42979_022_01024_0 crossref_primary_10_3390_s23156706 crossref_primary_10_1007_s11517_025_03286_1 crossref_primary_10_1038_s41433_020_1036_4 crossref_primary_10_1049_iet_ipr_2018_6186 crossref_primary_10_1016_j_bbe_2022_12_005 crossref_primary_10_1111_exsy_13232 crossref_primary_10_1002_jbio_202000276 crossref_primary_10_1016_j_bbe_2022_05_005 crossref_primary_10_1016_j_compbiomed_2022_105368 crossref_primary_10_1109_TMI_2019_2898414 crossref_primary_10_1016_j_media_2022_102673 crossref_primary_10_55525_tjst_1128395 crossref_primary_10_1007_s00417_018_4098_2 crossref_primary_10_3389_fninf_2022_876927 crossref_primary_10_1109_TMI_2017_2780115 crossref_primary_10_3390_diagnostics12020532 crossref_primary_10_3390_bioengineering10111249 crossref_primary_10_1016_j_compbiomed_2019_103327 crossref_primary_10_3390_healthcare11020212 crossref_primary_10_1007_s11042_024_19922_1 crossref_primary_10_1016_j_eswa_2023_120617 crossref_primary_10_1007_s00500_023_08690_z crossref_primary_10_1016_j_bspc_2021_102538 crossref_primary_10_1111_aos_14055 crossref_primary_10_3390_diagnostics13050834 crossref_primary_10_3390_a11060088 |
| Cites_doi | 10.1167/iovs.13-12757 10.1167/iovs.11-7640 10.1142/S1793545816500085 10.1109/TIP.2006.881969 10.1364/OE.18.019413 10.1167/iovs.03-0514 10.1364/OPEX.13.009480 10.1016/j.ajo.2005.01.012 10.1167/iovs.04-0335 10.1109/TSP.2016.2540599 10.1007/BF00994018 10.1364/BOE.2.002821 10.1117/1.2904987 10.1016/j.media.2011.06.005 10.1109/TSP.2009.2036477 10.1364/BOE.4.002712 10.1117/1.1577575 10.1109/TMI.2014.2374354 10.1167/iovs.12-9576 10.1364/BOE.5.001062 10.1364/OPEX.13.010200 10.1364/BOE.2.002493 10.1109/TMI.2013.2271904 10.1109/TIP.2007.901238 10.1364/BOE.1.001358 10.1109/TMI.2014.2387336 10.1117/1.3268773 10.1016/j.knosys.2011.07.002 10.1364/BOE.2.001743 10.1109/TMI.2016.2553401 10.1364/OE.17.023719 10.1117/1.3251059 10.1364/BOE.5.003568 10.1117/1.JBO.19.8.086022 10.1364/BOE.4.001133 10.1109/CVPR.2006.68 |
| ContentType | Journal Article |
| Copyright | 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) |
| Copyright_xml | – notice: 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1117/1.JBO.22.1.016012 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Biology Physics |
| EISSN | 1560-2281 |
| EndPage | 016012 |
| ExternalDocumentID | 10.1117/1.jbo.22.1.016012 28114453 10_1117_1_JBO_22_1_016012 |
| Genre | Validation Studies Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61671272 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | - 0R 29J 53G 5GY ABPTK ACGFS ADCOW AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F5P FQ0 GROUPED_DOAJ HYE HZ M4W M4X NU. O9- OK1 P2P RNS RPM SPBNH UPT UT2 W2D --- 0R~ 4.4 AAFWJ AAYXX ACBEA ACGFO AFPKN AKROS CITATION HZ~ PBYJJ YQT CGR CUY CVF ECM EIF NPM 7X8 ADBBV ADTOC AEUYN AFKRA BBNVY BCNDV BENPR BHPHI CCPQU EMOBN HCIFZ M7P PHGZM PHGZT PIMPY PQGLB UNPAY |
| ID | FETCH-LOGICAL-c460t-307fa277a77702abc74f76dc52f7b803e174a469eec2ce607fcbccb8a9dff2b33 |
| IEDL.DBID | UNPAY |
| ISSN | 1083-3668 1560-2281 |
| IngestDate | Tue Aug 19 16:06:53 EDT 2025 Thu Jul 10 23:37:15 EDT 2025 Wed Feb 19 02:43:40 EST 2025 Thu Apr 24 23:02:48 EDT 2025 Tue Jul 01 03:17:22 EDT 2025 Fri May 31 16:22:01 EDT 2019 Fri Jan 15 20:10:21 EST 2021 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | spatial pyramid matching max pooling optical coherence tomography age-related macular degeneration sparse coding diabetic macular edema |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-307fa277a77702abc74f76dc52f7b803e174a469eec2ce607fcbccb8a9dff2b33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-22/issue-1/016012/Fully-automated-macular-pathology-detection-in-retina-optical-coherence-tomography/10.1117/1.JBO.22.1.016012.pdf |
| PMID | 28114453 |
| PQID | 1861615003 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmed_primary_28114453 crossref_citationtrail_10_1117_1_JBO_22_1_016012 proquest_miscellaneous_1861615003 crossref_primary_10_1117_1_JBO_22_1_016012 unpaywall_primary_10_1117_1_jbo_22_1_016012 spie_journals_10_1117_1_JBO_22_1_016012 |
| ProviderPackageCode | FQ0 SPBNH UT2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-01 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of biomedical optics |
| PublicationTitleAlternate | J. Biomed. Opt |
| PublicationYear | 2017 |
| Publisher | Society of Photo-Optical Instrumentation Engineers |
| Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers |
| References | Paunescu, L. A. 2004; 45 Lang, A. 2013; 4 Cortes, C.; Vapnik, V. 1995; 20 Ishikawa, H. 2005; 46 Sun, Y.; Lei, M. 2009; 14 Mishra, A. 2009; 17 Hijazi, M. H. A.; Coenen, F.; Zheng, Y. 2012; 29 Mayer, M. A. 2010; 1 Dabov, K. 2007; 16 Chiu, S. J. 2012; 53 Rickman, C. B. 2013; 54 Chiu, S. J. 2010; 18 Sun, Y. 2016; 9 Antony, B. J. 2013; 4 Garcia-Allende, P. B. 2011; 2 Pande, P. 2014; 19 Fang, L. 2015; 34 Mujat, M. 2005; 13 Kafieh, R.; Rabbani, H.; Selesnick, I. 2015; 34 Liu, Y.-Y. 2011; 15 DeBuc, D. C. 2009; 14 Otsu, N. 1975; 11 Shahidi, M.; Wang, Z.; Zelkha, R. 2005; 139 Rubinstein, R.; Zibulevsky, M.; Elad, M. 2010; 58 Sulam, J. 2016; 64 Fernández, D. C.; Salinas, H. M.; Puliafito, C. A. 2005; 13 Gossage, K. W. 2003; 8 Lingley-Papadopoulos, C. A. 2008; 13 Elad, M.; Aharon, M. 2006; 15 Yang, Q. 2011; 2 Zheng, Y.; Hijazi, M. H. A.; Coenen, F. 2012; 53 Srinivasan, P. P. 2014; 5 Vermeer, K. 2011; 2 Fang, L. 2013; 32 Greenspan, H.; van Ginneken, B.; Summers, R. M. 2016; 35 Carass, A. 2014; 5 r2 r3 r4 r5 r6 r7 r8 r9 Yang (r38) r10 r32 r31 r12 r34 r11 r33 r14 r36 r13 r35 r16 r15 r18 r17 Albarrak (r28) 2012 r19 Yang (r30) 2009 Otsu (r39) 1975 Srinivasan (r37) r41 r40 r21 r20 r42 r23 r22 r25 r24 r27 r26 r29 Schuman (r1) 2004 |
| References_xml | – volume: 54 start-page: ORSF68 issn: 0146-0404 issue: 14 year: 2013 end-page: ORSF80 article-title: Dry age-related macular degeneration: mechanisms, therapeutic targets, and imagingdry AMD mechanisms, targets, and imaging publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.13-12757 – volume: 53 start-page: 53 issn: 0146-0404 issue: 1 year: 2012 end-page: 61 article-title: Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.11-7640 – volume: 9 start-page: 1650008 issue: 2 year: 2016 article-title: 3D automatic segmentation method for retinal optical coherence tomography volume data using boundary surface enhancement publication-title: J. Innovative Opt. Health Sci. doi: 10.1142/S1793545816500085 – volume: 15 start-page: 3736 issn: 1057-7149 issue: 12 year: 2006 end-page: 3745 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881969 – volume: 11 start-page: 23 issn: 0005-1098 issue: 285-296 year: 1975 end-page: 27 article-title: A threshold selection method from gray-level histograms publication-title: Automatica – volume: 18 start-page: 19413 issn: 1094-4087 issue: 18 year: 2010 end-page: 19428 article-title: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation publication-title: Opt. Express doi: 10.1364/OE.18.019413 – volume: 45 start-page: 1716 issn: 0146-0404 issue: 6 year: 2004 end-page: 1724 article-title: Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.03-0514 – volume: 13 start-page: 9480 issn: 1094-4087 issue: 23 year: 2005 end-page: 9491 article-title: Retinal nerve fiber layer thickness map determined from optical coherence tomography images publication-title: Opt. Express doi: 10.1364/OPEX.13.009480 – volume: 139 start-page: 1056 issn: 0002-9394 issue: 6 year: 2005 end-page: 1061 article-title: Quantitative thickness measurement of retinal layers imaged by optical coherence tomography publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2005.01.012 – volume: 46 start-page: 2012 issn: 0146-0404 issue: 6 year: 2005 end-page: 2017 article-title: Macular segmentation with optical coherence tomography publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.04-0335 – volume: 64 start-page: 3180 issn: 1053-587X issue: 12 year: 2016 end-page: 3193 article-title: Trainlets: dictionary learning in high dimensions publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2540599 – volume: 20 start-page: 273 issn: 0885-6125 issue: 3 year: 1995 end-page: 297 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 2 start-page: 2821 issn: 2156-7085 issue: 10 year: 2011 end-page: 2836 article-title: Morphological analysis of optical coherence tomography images for automated classification of gastrointestinal tissues publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.002821 – volume: 13 start-page: 024003 issn: 1083-3668 issue: 2 year: 2008 article-title: Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis publication-title: J. Biomed. Opt. doi: 10.1117/1.2904987 – volume: 15 start-page: 748 issue: 5 year: 2011 end-page: 759 article-title: Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding publication-title: Med. Image Anal. doi: 10.1016/j.media.2011.06.005 – volume: 58 start-page: 1553 issn: 1053-587X issue: 3 year: 2010 end-page: 1564 article-title: Double sparsity: learning sparse dictionaries for sparse signal approximation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2036477 – volume: 4 start-page: 2712 issn: 2156-7085 issue: 12 year: 2013 end-page: 2728 article-title: A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes publication-title: Biomed. Opt. Express doi: 10.1364/BOE.4.002712 – volume: 8 start-page: 570 issn: 1083-3668 issue: 3 year: 2003 end-page: 575 article-title: Texture analysis of optical coherence tomography images: feasibility for tissue classification publication-title: J. Biomed. Opt. doi: 10.1117/1.1577575 – volume: 34 start-page: 1042 issn: 0278-0062 issue: 5 year: 2015 end-page: 1062 article-title: Three dimensional data-driven multi scale atomic representation of optical coherence tomography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2374354 – volume: 53 start-page: 8310 issn: 0146-0404 issue: 13 year: 2012 end-page: 8318 article-title: Automated 'disease/no disease' grading of age-related macular degeneration by an image mining approach publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.12-9576 – volume: 5 start-page: 1062 issn: 2156-7085 issue: 4 year: 2014 end-page: 1074 article-title: Multiple-object geometric deformable model for segmentation of macular OCT publication-title: Biomed. Opt. Express doi: 10.1364/BOE.5.001062 – volume: 13 start-page: 10200 issn: 1094-4087 issue: 25 year: 2005 end-page: 10216 article-title: Automated detection of retinal layer structures on optical coherence tomography images publication-title: Opt. Express doi: 10.1364/OPEX.13.010200 – volume: 2 start-page: 2493 issn: 2156-7085 issue: 9 year: 2011 end-page: 2503 article-title: Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.002493 – volume: 32 start-page: 2034 issn: 0278-0062 issue: 11 year: 2013 end-page: 2049 article-title: Fast acquisition and reconstruction of optical coherence tomography images via sparse representation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2271904 – volume: 16 start-page: 2080 issn: 1057-7149 issue: 8 year: 2007 end-page: 2095 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – volume: 1 start-page: 1358 issn: 2156-7085 issue: 5 year: 2010 end-page: 1383 article-title: Retinal nerve fiber layer segmentation on FD-OCT scans of normal subjects and glaucoma patients publication-title: Biomed. Opt. Express doi: 10.1364/BOE.1.001358 – volume: 34 start-page: 1306 issn: 0278-0062 issue: 6 year: 2015 end-page: 1320 article-title: 3-D adaptive sparsity based image compression with applications to optical coherence tomography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2387336 – volume: 14 start-page: 064023 issn: 1083-3668 issue: 6 year: 2009 article-title: Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software publication-title: J. Biomed. Opt. doi: 10.1117/1.3268773 – volume: 29 start-page: 83 issn: 0950-7051 year: 2012 end-page: 92 article-title: Data mining techniques for the screening of age-related macular degeneration publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2011.07.002 – volume: 2 start-page: 1743 issn: 2156-7085 issue: 6 year: 2011 end-page: 1756 article-title: Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.001743 – volume: 35 start-page: 1153 issn: 0278-0062 issue: 5 year: 2016 end-page: 1159 article-title: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2553401 – volume: 17 start-page: 23719 issn: 1094-4087 issue: 26 year: 2009 end-page: 23728 article-title: Intra-retinal layer segmentation in optical coherence tomography images publication-title: Opt. Express doi: 10.1364/OE.17.023719 – volume: 14 start-page: 054037 issn: 1083-3668 issue: 5 year: 2009 article-title: Method for optical coherence tomography image classification using local features and earth mover's distance publication-title: J. Biomed. Opt. doi: 10.1117/1.3251059 – volume: 5 start-page: 3568 issn: 2156-7085 issue: 10 year: 2014 end-page: 3577 article-title: Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images publication-title: Biomed. Opt. Express doi: 10.1364/BOE.5.003568 – volume: 19 start-page: 086022 issn: 1083-3668 issue: 8 year: 2014 article-title: Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.19.8.086022 – volume: 4 start-page: 1133 issn: 2156-7085 issue: 7 year: 2013 end-page: 1152 article-title: Retinal layer segmentation of macular OCT images using boundary classification publication-title: Biomed. Opt. Express doi: 10.1364/BOE.4.001133 – ident: r31 doi: 10.1109/CVPR.2006.68 – ident: r34 doi: 10.1109/TMI.2014.2374354 – ident: r26 doi: 10.1016/j.knosys.2011.07.002 – ident: r2 doi: 10.1167/iovs.13-12757 – ident: r3 doi: 10.1364/BOE.4.002712 – ident: r20 doi: 10.1117/1.1577575 – ident: r24 doi: 10.1016/j.media.2011.06.005 – ident: r23 doi: 10.1117/1.3251059 – ident: r12 doi: 10.1364/OE.17.023719 – year: 2004 ident: r1 – ident: r9 doi: 10.1167/iovs.04-0335 – ident: r41 doi: 10.1109/TSP.2016.2540599 – ident: r4 doi: 10.1364/BOE.5.001062 – ident: r7 doi: 10.1117/1.3268773 – ident: r18 doi: 10.1364/BOE.2.002493 – ident: r25 doi: 10.1167/iovs.12-9576 – ident: r8 doi: 10.1364/OPEX.13.010200 – start-page: 1794 year: 2009 ident: r30 article-title: Linear spatial pyramid matching using sparse coding for image classification – ident: r37 article-title: Srinivasan_BOE_2014 – ident: r40 doi: 10.1109/TSP.2009.2036477 – start-page: 23 year: 1975 ident: r39 article-title: A threshold selection method from gray-level histograms – ident: r10 doi: 10.1364/BOE.4.001133 – ident: r5 doi: 10.1167/iovs.11-7640 – ident: r32 doi: 10.1109/TMI.2014.2387336 – ident: r27 doi: 10.1364/BOE.5.003568 – ident: r38 article-title: ScSPM – ident: r33 doi: 10.1109/TMI.2013.2271904 – ident: r6 doi: 10.1364/OE.18.019413 – ident: r35 doi: 10.1109/TIP.2006.881969 – ident: r42 doi: 10.1109/TMI.2016.2553401 – ident: r13 doi: 10.1364/OPEX.13.009480 – ident: r19 doi: 10.1364/BOE.2.002821 – ident: r36 doi: 10.1109/TIP.2007.901238 – ident: r16 doi: 10.1142/S1793545816500085 – ident: r15 doi: 10.1016/j.ajo.2005.01.012 – start-page: 263 year: 2012 ident: r28 article-title: Volumetric image mining based on decomposition and graph analysis: an application to retinal optical coherence tomography – ident: r22 doi: 10.1117/1.JBO.19.8.086022 – ident: r11 doi: 10.1364/BOE.1.001358 – ident: r14 doi: 10.1167/iovs.03-0514 – ident: r29 doi: 10.1007/BF00994018 – ident: r17 doi: 10.1364/BOE.2.001743 – ident: r21 doi: 10.1117/1.2904987 |
| SSID | ssj0008696 |
| Score | 2.4912627 |
| Snippet | We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence... |
| SourceID | unpaywall proquest pubmed crossref spie |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 016012 |
| SubjectTerms | Algorithms Diabetic Retinopathy - complications Diabetic Retinopathy - diagnostic imaging Humans Macular Degeneration - diagnostic imaging Macular Degeneration - etiology Macular Edema - diagnostic imaging Macular Edema - etiology Retina - diagnostic imaging Tomography, Optical Coherence - methods |
| Title | Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning |
| URI | http://www.dx.doi.org/10.1117/1.JBO.22.1.016012 https://www.ncbi.nlm.nih.gov/pubmed/28114453 https://www.proquest.com/docview/1861615003 https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-22/issue-1/016012/Fully-automated-macular-pathology-detection-in-retina-optical-coherence-tomography/10.1117/1.JBO.22.1.016012.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1560-2281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008696 issn: 1083-3668 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Jb9QwFLbKVAh6YCnbsFRGQkICOYuzODm2wKiq1OXASOUUOY4zBGgSTTJC0zt_kL_CH-B5mTBtUSWu3Eb2s_PlzXv2s_MWhF7lXpmGMU0JLeKAhEWSEg5_BmGplJRTWDeZCnA-PIr3p-HBaXS6gX6uYmGUW2XXgvVVzVTRjCHvw3zmWuZ2rjXVSFOSPR2jrl6HHLcqr7FrlJpQ6mrgxHdVDjWf6mS3S8IXfQOmoCzIGdeOnkRV_tU32KSQvXZ_qklVExVDWHPStPpKmYjmswm_IzDeJpO2Kw5zfedg79ih1PEd8zCnLcobaDOO4HwwQpvTo5PdT8bTPyBBbOLzwNQAlIlvP7Waeb7kzfo8FzfLKxaw8j4DXm2hW4u65cvvwK-1zXFyF_1asdX4xHx1Fn3uiPNLGSf_L77fQ3csULxrlO8-2pD1Nrppqnsut9HWWq5HaNe-tqJ7gH5orHjAii1WPGDFA1Zc1dhgxRYrHrDiP1hxdQb7QodVFMMMwyYx7yQQKrsE87rARaVnA15jWyZk9hBNJx8-vtsnthoGEWHs9eqSsOSUMc4Y8yjPBQtLFhcioiXLEy-QcLbkYQw6JqiQMVCLXIg84WlRljQPgkdoVDe1fIIwE0mZAMOoSu7nezyJJJNeAU1F5DMux8hbiV0mbKp4VbHkW2aOjCzzM-B8Rin8MJwfozfDkNbkSbmO-OVKljNYzdQnKl7LZtFlfhKrIwhsNWP02Aj5MB3oCpz-I-h5rSQ1W8nldc85vEg59J9X7WVi3WYl5uT95Eo3iNYYvR0U7S9vCcq7PuLpP1E_Q7epshj17d5zNOrnC_kC7N0-39FXkDt2GfkN86CuFA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Jb9QwFLbKVAh6YCkFhk1GQkICOYuzODm2wKiq1OXASOUUOY4zBGgSTTJC0zt_kL_CH-B5mTBtUSWu3Eb2s_PlzXv2s_MWhF7lXpmGMU0JLeKAhEWSEg5_BmGplJRTWDeZCnA-PIr3p-HBaXS6gX6uYmGUW2XXgvVVzVTRjCHvw3zmWuZ2rjXVSFOSPR2jrl6HHLcqr7FrlJpQ6mrgxHdVDjWf6mS3S8IXfQOmoCzIGdeOnkRV_tU32KSQvXZ_qklVExVDWHPStPpKmYjmswm_IzDeJpO2Kw5zfedg79ih1PEd8zCnLcobaDOO4HwwQpvTo5PdT8bTPyBBbOLzwNQAlIlvP7Waeb7kzfo8FzfLKxaw8j4DXm2hW4u65cvvwK-1zXFyF_1asdX4xHx1Fn3uiPNLGSf_L77fQ3csULxrlO8-2pD1Nrppqnsut9HWWq5HaNe-tqJ7gH5orHjAii1WPGDFA1Zc1dhgxRYrHrDiP1hxdQb7QodVFMMMwyYx7yQQKrsE87rARaVnA15jWyZktoOmkw8f3-0TWw2DiDD2enVJWHLKGGeMeZTngoUliwsR0ZLliRdIOFvyMAYdE1TIGKhFLkSe8LQoS5oHwUM0qptaPkaYiaRMgGFUJffzPZ5EkkmvgKYi8hmXY-StxC4TNlW8qljyLTNHRpb5GXA-oxR-GM6P0ZthSGvypFxH_HIlyxmsZuoTFa9ls-gyP4nVEQS2mjF6ZIR8mA50BU7_EfS8VpKareTyuuccXqQc-s-r9jKxbrMSc_J-cqUbRGuM3g6K9pe3BOVdH_Hkn6ifottUWYz6du8ZGvXzhXwO9m6fv7ALyG_kSa0E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+automated+macular+pathology+detection+in+retina+optical+coherence+tomography+images+using+sparse+coding+and+dictionary+learning&rft.jtitle=Journal+of+biomedical+optics&rft.au=Sun%2C+Yankui&rft.au=Li%2C+Shan&rft.au=Sun%2C+Zhongyang&rft.date=2017-01-01&rft.eissn=1560-2281&rft.volume=22&rft.issue=1&rft.spage=16012&rft.epage=16012&rft_id=info:doi/10.1117%2F1.JBO.22.1.016012&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-3668&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-3668&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-3668&client=summon |