Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship Detection in Large-Scene Sentinel-1 SAR Images

Synthetic aperture radar (SAR) satellites can provide microwave remote sensing images without weather and light constraints, so they are widely applied in the maritime monitoring field. Current SAR ship detection methods based on deep learning (DL) are difficult to deploy on satellites, because thes...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 4; p. 1018
Main Authors Xu, Xiaowo, Zhang, Xiaoling, Zhang, Tianwen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 20.02.2022
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs14041018

Cover

Abstract Synthetic aperture radar (SAR) satellites can provide microwave remote sensing images without weather and light constraints, so they are widely applied in the maritime monitoring field. Current SAR ship detection methods based on deep learning (DL) are difficult to deploy on satellites, because these methods usually have complex models and huge calculations. To solve this problem, based on the You Only Look Once version 5 (YOLOv5) algorithm, we propose a lightweight on-board SAR ship detector called Lite-YOLOv5, which (1) reduces the model volume; (2) decreases the floating-point operations (FLOPs); and (3) realizes the on-board ship detection without sacrificing accuracy. First, in order to obtain a lightweight network, we design a lightweight cross stage partial (L-CSP) module to reduce the amount of calculation and we apply network pruning for a more compact detector. Then, in order to ensure the excellent detection performance, we integrate a histogram-based pure backgrounds classification (HPBC) module, a shape distance clustering (SDC) module, a channel and spatial attention (CSA) module, and a hybrid spatial pyramid pooling (H-SPP) module to improve detection performance. To evaluate the on-board SAR ship detection ability of Lite-YOLOv5, we also transplant it to the embedded platform NVIDIA Jetson TX2. Experimental results on the Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) show that Lite-YOLOv5 can realize lightweight architecture with a 2.38 M model volume (14.18% of model size of YOLOv5), on-board ship detection with a low computation cost (26.59% of FLOPs of YOLOv5), and superior detection accuracy (1.51% F1 improvement compared with YOLOv5).
AbstractList Synthetic aperture radar (SAR) satellites can provide microwave remote sensing images without weather and light constraints, so they are widely applied in the maritime monitoring field. Current SAR ship detection methods based on deep learning (DL) are difficult to deploy on satellites, because these methods usually have complex models and huge calculations. To solve this problem, based on the You Only Look Once version 5 (YOLOv5) algorithm, we propose a lightweight on-board SAR ship detector called Lite-YOLOv5, which (1) reduces the model volume; (2) decreases the floating-point operations (FLOPs); and (3) realizes the on-board ship detection without sacrificing accuracy. First, in order to obtain a lightweight network, we design a lightweight cross stage partial (L-CSP) module to reduce the amount of calculation and we apply network pruning for a more compact detector. Then, in order to ensure the excellent detection performance, we integrate a histogram-based pure backgrounds classification (HPBC) module, a shape distance clustering (SDC) module, a channel and spatial attention (CSA) module, and a hybrid spatial pyramid pooling (H-SPP) module to improve detection performance. To evaluate the on-board SAR ship detection ability of Lite-YOLOv5, we also transplant it to the embedded platform NVIDIA Jetson TX2. Experimental results on the Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) show that Lite-YOLOv5 can realize lightweight architecture with a 2.38 M model volume (14.18% of model size of YOLOv5), on-board ship detection with a low computation cost (26.59% of FLOPs of YOLOv5), and superior detection accuracy (1.51% F1 improvement compared with YOLOv5).
Author Xu, Xiaowo
Zhang, Xiaoling
Zhang, Tianwen
Author_xml – sequence: 1
  givenname: Xiaowo
  orcidid: 0000-0001-9977-613X
  surname: Xu
  fullname: Xu, Xiaowo
– sequence: 2
  givenname: Xiaoling
  surname: Zhang
  fullname: Zhang, Xiaoling
– sequence: 3
  givenname: Tianwen
  surname: Zhang
  fullname: Zhang, Tianwen
BookMark eNp9kV1rFDEUhgepYK298RcEvBFlNJlkMhPv1lp1YWDB1QuvQpqcTLPMJmOStfTfN-MWlSIeyOd58p7Dm6fViQ8equo5wW8oFfhtTIRhRjDpH1WnDe6amjWiOflr_6Q6T2mHS1BKBGanVRxchvr7Ztj8bN-hFRrceJ1vYJnRB4AZDaCid34spww6h4hsGRtfvw8qGrS9dvN9ygWPnEeDiiPUWw0e0BZ8dh6mmqDt6gta79UI6Vn12Kopwfn9elZ9-3j59eJzPWw-rS9WQ60Zx7kmneGtMfoKc6Ets42gGDpCVccZhhY6Y9qW0k6pXouGihYXpDeswVRw3lp6Vq2PuiaonZyj26t4K4Ny8tdFiKNUMTs9gWwIZbY1nb5SlinW93QJZTm3nWGUFK3XR62Dn9XtjZqm34IEy8V9-cf9Qr880nMMPw6Qsty7pGGalIdwSLLhpQSjHV-EXzxAd-EQffGlUOWTSnEhCoWPlI4hpQhWapfV4niOyk3_7uHVgyf_afgOWaqtQg
CitedBy_id crossref_primary_10_3390_e25091280
crossref_primary_10_1016_j_jreng_2024_01_006
crossref_primary_10_1109_ACCESS_2023_3334973
crossref_primary_10_3390_rs16050913
crossref_primary_10_1007_s11227_024_06136_3
crossref_primary_10_3390_app14125322
crossref_primary_10_1007_s11760_024_03258_2
crossref_primary_10_1080_22797254_2024_2307613
crossref_primary_10_3390_rs14122832
crossref_primary_10_3390_rs15082138
crossref_primary_10_3390_agriculture13010124
crossref_primary_10_3390_s23156755
crossref_primary_10_3390_computers13120336
crossref_primary_10_1007_s11760_024_03420_w
crossref_primary_10_3390_rs16060952
crossref_primary_10_1080_22797254_2025_2469863
crossref_primary_10_1016_j_apor_2024_104194
crossref_primary_10_1109_ACCESS_2024_3481642
crossref_primary_10_3233_AIC_230121
crossref_primary_10_1038_s41598_024_78749_w
crossref_primary_10_1109_ACCESS_2023_3323575
crossref_primary_10_1080_17538947_2024_2405525
crossref_primary_10_3390_drones8040145
crossref_primary_10_1007_s13369_023_07985_5
crossref_primary_10_1016_j_isprsjprs_2024_01_003
crossref_primary_10_1007_s11760_023_02629_5
crossref_primary_10_1109_JSTARS_2023_3325376
crossref_primary_10_1109_JSTARS_2023_3241395
crossref_primary_10_3390_rs16112026
crossref_primary_10_3389_fmars_2022_1086140
crossref_primary_10_1109_JSTARS_2023_3296898
crossref_primary_10_3390_rs14236053
crossref_primary_10_1049_ipr2_12991
crossref_primary_10_3390_rs14174294
crossref_primary_10_1109_TGRS_2023_3346171
crossref_primary_10_1002_srin_202300421
crossref_primary_10_1109_TITS_2024_3404973
crossref_primary_10_1016_j_biosystemseng_2022_07_009
crossref_primary_10_1109_TGRS_2023_3349168
crossref_primary_10_1007_s11042_024_18288_8
crossref_primary_10_1109_TAES_2023_3344396
crossref_primary_10_1109_JIOT_2023_3287973
crossref_primary_10_3390_rs14112614
crossref_primary_10_3390_rs15112743
crossref_primary_10_1109_ACCESS_2024_3485490
crossref_primary_10_3390_rs16193741
crossref_primary_10_3390_drones7010020
crossref_primary_10_3390_rs15020303
crossref_primary_10_3390_jmse11030487
crossref_primary_10_1109_JSTARS_2024_3362954
crossref_primary_10_1109_JSTARS_2024_3399021
crossref_primary_10_32604_cmc_2023_038910
crossref_primary_10_3390_rs16122082
crossref_primary_10_1039_D3AN00615H
crossref_primary_10_3233_AIC_220277
crossref_primary_10_1117_1_JEI_33_1_013046
crossref_primary_10_3390_rs14081850
crossref_primary_10_3390_rs14143345
crossref_primary_10_3390_rs15163963
crossref_primary_10_1109_TGRS_2023_3235859
crossref_primary_10_3390_rs16111992
crossref_primary_10_1080_10095020_2024_2331552
crossref_primary_10_3390_rs15133258
crossref_primary_10_2478_ijanmc_2024_0030
crossref_primary_10_1016_j_rsma_2024_103975
crossref_primary_10_3390_rs14132956
crossref_primary_10_3389_fmars_2023_1333038
crossref_primary_10_3389_fcomp_2024_1480481
crossref_primary_10_3390_jmse10111699
crossref_primary_10_1016_j_jag_2024_104137
crossref_primary_10_1007_s11042_022_14142_x
crossref_primary_10_1109_JSTARS_2022_3187454
crossref_primary_10_3390_s22187088
crossref_primary_10_4236_ojapps_2023_134045
crossref_primary_10_1049_cit2_12310
crossref_primary_10_1038_s41598_023_43173_z
crossref_primary_10_3390_s22239328
crossref_primary_10_1109_JSEN_2024_3413025
crossref_primary_10_3389_fmars_2023_1151817
crossref_primary_10_3390_s24134290
crossref_primary_10_1109_JSTARS_2023_3317489
crossref_primary_10_1049_ipr2_13231
crossref_primary_10_1109_JSTARS_2024_3437187
crossref_primary_10_3390_s22093370
crossref_primary_10_3390_rs15030629
crossref_primary_10_1109_TGRS_2023_3327285
crossref_primary_10_1109_JSTARS_2024_3365807
crossref_primary_10_1016_j_jnca_2025_104139
crossref_primary_10_1007_s10462_023_10455_x
crossref_primary_10_3390_app122110978
crossref_primary_10_1109_JSTARS_2023_3244616
crossref_primary_10_3390_rs16071255
crossref_primary_10_3390_rs17020214
crossref_primary_10_1109_JSEN_2023_3317060
crossref_primary_10_1080_10106049_2022_2088862
crossref_primary_10_3390_rs16132459
crossref_primary_10_3389_fnbot_2024_1293992
crossref_primary_10_1109_ACCESS_2024_3394052
crossref_primary_10_1109_TGRS_2023_3264231
crossref_primary_10_1016_j_iswa_2025_200505
crossref_primary_10_1029_2023RG000821
crossref_primary_10_1007_s00500_022_07522_w
crossref_primary_10_1109_JSTARS_2024_3502172
crossref_primary_10_1109_JSTARS_2024_3524402
crossref_primary_10_1080_17538947_2023_2277796
crossref_primary_10_1080_17445302_2022_2142362
crossref_primary_10_1016_j_compag_2024_108780
crossref_primary_10_3390_s23031224
crossref_primary_10_1117_1_JRS_17_046504
crossref_primary_10_3390_rs15225309
crossref_primary_10_3390_rs15245759
crossref_primary_10_1007_s11760_024_03656_6
crossref_primary_10_3390_rs14205203
crossref_primary_10_3390_su14159277
crossref_primary_10_3390_rs14225813
crossref_primary_10_1109_ACCESS_2023_3310539
crossref_primary_10_1155_2022_1121971
crossref_primary_10_3390_s22176685
crossref_primary_10_1080_13682199_2023_2232182
crossref_primary_10_3390_rs14205276
crossref_primary_10_3390_rs16101760
crossref_primary_10_1108_RPJ_04_2023_0133
crossref_primary_10_3390_jmse12081422
crossref_primary_10_3390_rs16030483
crossref_primary_10_3390_rs16061082
crossref_primary_10_1115_1_4065355
crossref_primary_10_1109_ACCESS_2023_3330924
crossref_primary_10_1080_15481603_2023_2196159
crossref_primary_10_1080_17538947_2024_2302577
crossref_primary_10_1016_j_displa_2023_102448
crossref_primary_10_3390_rs14194801
crossref_primary_10_1007_s13042_024_02278_1
crossref_primary_10_1371_journal_pone_0316933
crossref_primary_10_3390_agriculture12122039
crossref_primary_10_1155_2022_4670523
crossref_primary_10_1177_30504554241297613
crossref_primary_10_3390_app142411604
crossref_primary_10_1109_MGRS_2023_3312347
crossref_primary_10_1142_S0218001423500027
Cites_doi 10.1109/IGARSS.1998.691633
10.1109/IGARSS47720.2021.9553116
10.3390/rs11050531
10.1145/3472634.3472654
10.1109/ICCV.2017.324
10.3390/rs13142771
10.3390/f12020217
10.1016/j.neucom.2020.01.085
10.1109/CVPR42600.2020.01079
10.1109/CVPR42600.2020.00165
10.1109/TIP.2020.3002345
10.3390/rs11050526
10.1080/07038992.2001.10854896
10.1007/978-1-4842-2766-4_12
10.1007/978-3-030-01234-2_1
10.1109/JSTARS.2020.3041783
10.1109/CVPR.2017.106
10.1109/CVPR.2019.00091
10.1109/ACCESS.2020.2985637
10.1109/TGRS.2019.2920534
10.1109/CVPR.2018.00913
10.1109/LGRS.2018.2882551
10.3390/rs11212483
10.1109/ACCESS.2018.2825376
10.1016/j.ins.2020.02.067
10.1007/978-981-13-9917-6_54
10.3390/rs9080860
10.1109/TSP.2017.2712124
10.1109/ICCV.2017.298
10.3390/rs11070786
10.1109/TNSM.2019.2899085
10.3390/s18092851
10.3390/rs13101995
10.3390/rs12182997
10.1109/CVPR.2018.00745
10.1007/978-3-319-46448-0_2
10.3390/jmse8020112
10.3390/rs12010167
10.1007/978-3-319-10578-9_23
10.1016/j.neucom.2017.02.029
10.3390/s100100775
10.3390/s20092547
10.1109/ACCESS.2019.2943241
10.1016/j.patcog.2019.106971
10.3390/rs13183690
10.1109/TPAMI.2016.2577031
10.1109/JSTARS.2021.3102989
10.3390/rs11070765
10.1109/TGRS.2019.2923988
10.1109/CVPRW50498.2020.00203
10.1007/978-3-319-10602-1_48
10.1109/TCCN.2017.2758370
10.1007/s10462-020-09825-6
10.1109/IGARSS47720.2021.9555096
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/rs14041018
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_2134f5d7cbaf4a48833333af66f7d431
10.3390/rs14041018
10_3390_rs14041018
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c460t-17d65ddcb069cf4f2930e713a7640e5e7dd55337aa8c923950f298d42039665f3
IEDL.DBID UNPAY
ISSN 2072-4292
IngestDate Fri Oct 03 12:50:48 EDT 2025
Sun Oct 26 03:58:31 EDT 2025
Sun Aug 24 03:52:05 EDT 2025
Fri Jul 25 09:30:31 EDT 2025
Thu Oct 16 04:33:20 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-17d65ddcb069cf4f2930e713a7640e5e7dd55337aa8c923950f298d42039665f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9977-613X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-4292/14/4/1018/pdf?version=1645428730
PQID 2633143199
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_2134f5d7cbaf4a48833333af66f7d431
unpaywall_primary_10_3390_rs14041018
proquest_miscellaneous_2648843761
proquest_journals_2633143199
crossref_citationtrail_10_3390_rs14041018
crossref_primary_10_3390_rs14041018
PublicationCentury 2000
PublicationDate 20220220
PublicationDateYYYYMMDD 2022-02-20
PublicationDate_xml – month: 02
  year: 2022
  text: 20220220
  day: 20
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wu (ref_48) 2020; 396
ref_50
Liu (ref_7) 2019; 96
ref_58
ref_13
Gao (ref_40) 2010; 10
Cui (ref_11) 2019; 57
ref_12
ref_56
Gao (ref_51) 2021; 19
ref_53
Mao (ref_20) 2020; 8
ref_52
Ren (ref_57) 2017; 39
Gagnon (ref_43) 1998; 3491
Aceto (ref_6) 2019; 16
ref_19
ref_18
ref_17
ref_16
An (ref_14) 2019; 57
ref_15
ref_59
Wackerman (ref_41) 2001; 27
Chen (ref_39) 2021; 14
ref_61
ref_60
Lin (ref_2) 2019; 16
ref_25
ref_24
ref_23
ref_22
ref_62
ref_29
ref_28
ref_27
ref_26
ref_36
Huang (ref_49) 2020; 522
ref_35
ref_34
ref_33
Scardapane (ref_38) 2017; 241
ref_32
ref_31
ref_30
Hoydis (ref_5) 2017; 3
Zhang (ref_21) 2019; 7
ref_37
Ciuonzo (ref_8) 2017; 65
ref_46
ref_45
ref_44
Jiao (ref_10) 2018; 6
ref_42
ref_1
ref_3
Khan (ref_47) 2020; 53
Zhang (ref_54) 2021; 14
ref_9
Sergios (ref_55) 2015; 5
ref_4
References_xml – ident: ref_42
  doi: 10.1109/IGARSS.1998.691633
– ident: ref_3
  doi: 10.1109/IGARSS47720.2021.9553116
– ident: ref_22
  doi: 10.3390/rs11050531
– ident: ref_53
  doi: 10.1145/3472634.3472654
– ident: ref_61
  doi: 10.1109/ICCV.2017.324
– volume: 5
  start-page: 161
  year: 2015
  ident: ref_55
  article-title: Stochastic gradient descent
  publication-title: Mach. Learn.
– ident: ref_4
  doi: 10.3390/rs13142771
– ident: ref_32
  doi: 10.3390/f12020217
– volume: 396
  start-page: 39
  year: 2020
  ident: ref_48
  article-title: Recent advances in deep learning for object detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.085
– ident: ref_58
  doi: 10.1109/CVPR42600.2020.01079
– ident: ref_26
  doi: 10.1109/CVPR42600.2020.00165
– ident: ref_60
  doi: 10.1109/TIP.2020.3002345
– ident: ref_12
  doi: 10.3390/rs11050526
– volume: 27
  start-page: 568
  year: 2001
  ident: ref_41
  article-title: Automatic detection of ships in RADARSAT-1 SAR imagery
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2001.10854896
– ident: ref_50
  doi: 10.1007/978-1-4842-2766-4_12
– ident: ref_29
  doi: 10.1007/978-3-030-01234-2_1
– volume: 14
  start-page: 1267
  year: 2021
  ident: ref_39
  article-title: Learning Slimming SAR Ship Object Detector Through Network Pruning and Knowledge Distillation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3041783
– ident: ref_36
  doi: 10.1109/CVPR.2017.106
– ident: ref_56
  doi: 10.1109/CVPR.2019.00091
– volume: 8
  start-page: 69742
  year: 2020
  ident: ref_20
  article-title: Efficient Low-Cost Ship Detection for SAR Imagery Based on Simplified U-Net
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2985637
– volume: 57
  start-page: 8333
  year: 2019
  ident: ref_14
  article-title: DRBox-v2: An Improved Detector With Rotatable Boxes for Target Detection in SAR Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2920534
– ident: ref_37
  doi: 10.1109/CVPR.2018.00913
– volume: 16
  start-page: 751
  year: 2019
  ident: ref_2
  article-title: Squeeze and Excitation Rank Faster R-CNN for Ship Detection in SAR Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2882551
– ident: ref_27
– ident: ref_19
  doi: 10.3390/rs11212483
– volume: 6
  start-page: 20881
  year: 2018
  ident: ref_10
  article-title: A Densely Connected End-to-End Neural Network for Multiscale and Multiscene SAR Ship Detection
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2018.2825376
– volume: 522
  start-page: 241
  year: 2020
  ident: ref_49
  article-title: DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.02.067
– ident: ref_15
  doi: 10.1007/978-981-13-9917-6_54
– ident: ref_9
  doi: 10.3390/rs9080860
– volume: 65
  start-page: 5078
  year: 2017
  ident: ref_8
  article-title: On Multiple Covariance Equality Testing with Application to SAR Change Detection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2712124
– ident: ref_28
  doi: 10.1109/ICCV.2017.298
– ident: ref_59
– ident: ref_18
  doi: 10.3390/rs11070786
– volume: 16
  start-page: 445
  year: 2019
  ident: ref_6
  article-title: Mobile Encrypted Traffic Classification Using Deep Learning: Experimental Evaluation, Lessons Learned, and Challenges
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2019.2899085
– ident: ref_13
  doi: 10.3390/s18092851
– ident: ref_34
– ident: ref_25
  doi: 10.3390/rs13101995
– ident: ref_24
  doi: 10.3390/rs12182997
– ident: ref_45
  doi: 10.1109/CVPR.2018.00745
– ident: ref_62
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_44
  doi: 10.3390/jmse8020112
– ident: ref_17
  doi: 10.3390/rs12010167
– ident: ref_30
  doi: 10.1007/978-3-319-10578-9_23
– volume: 241
  start-page: 81
  year: 2017
  ident: ref_38
  article-title: Group sparse regularization for deep neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.029
– volume: 10
  start-page: 775
  year: 2010
  ident: ref_40
  article-title: Statistical Modeling of SAR Images: A Survey
  publication-title: Sensors
  doi: 10.3390/s100100775
– ident: ref_16
  doi: 10.3390/s20092547
– volume: 7
  start-page: 141662
  year: 2019
  ident: ref_21
  article-title: A Lightweight Feature Optimizing Network for Ship Detection in SAR Image
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2943241
– volume: 19
  start-page: 1
  year: 2021
  ident: ref_51
  article-title: A High-Effective Implementation of Ship Detector for SAR Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: ref_33
– volume: 96
  start-page: 106971
  year: 2019
  ident: ref_7
  article-title: Stacked Fisher autoencoder for SAR change detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.106971
– ident: ref_46
– ident: ref_1
  doi: 10.3390/rs13183690
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_57
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 14
  start-page: 8048
  year: 2021
  ident: ref_54
  article-title: Multitask Learning for Ship Detection From Synthetic Aperture Radar Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3102989
– volume: 3491
  start-page: 998
  year: 1998
  ident: ref_43
  article-title: R&D activities in airborne SAR image processing/analysis at Lockheed Martin Canada
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– ident: ref_23
  doi: 10.3390/rs11070765
– volume: 57
  start-page: 8983
  year: 2019
  ident: ref_11
  article-title: Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2923988
– ident: ref_35
  doi: 10.1109/CVPRW50498.2020.00203
– ident: ref_31
  doi: 10.1007/978-3-319-10602-1_48
– volume: 3
  start-page: 563
  year: 2017
  ident: ref_5
  article-title: An Introduction to Deep Learning for the Physical Layer
  publication-title: IEEE Trans. Cogn. Commun. Netw.
  doi: 10.1109/TCCN.2017.2758370
– volume: 53
  start-page: 5455
  year: 2020
  ident: ref_47
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09825-6
– ident: ref_52
  doi: 10.1109/IGARSS47720.2021.9555096
SSID ssj0000331904
Score 2.6452477
Snippet Synthetic aperture radar (SAR) satellites can provide microwave remote sensing images without weather and light constraints, so they are widely applied in the...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1018
SubjectTerms Ablation
Accuracy
Algorithms
Clustering
Datasets
Deep learning
Design
False alarms
Floating point arithmetic
Ground stations
Histograms
lightweight detector
Machine learning
Modules
Neural networks
on-board
Onboard
Performance evaluation
Radar imaging
Remote sensing
Satellite imagery
Satellites
Sensors
ship detection
Synthetic aperture radar
synthetic aperture radar (SAR)
weather
YOLOv5
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQF7igvhBboHJVLj1YOMnYSXpb2iJaLazUBYmeIscPQFqyq32w2n_fmSRsFwnRS3OIlHgUjcbjeTiebxg7yo1JrCuVSHQGAmwJuKQgEipzLs7QX0UpFQqfX-izK_h5ra7XWn3RmbAGHrgR3DEhjgXlUluaAAaoNy5eJmgdUgd1BXUss3wtmaptcIKqJaHBI00wrz-eTAlIhvCpnnigGqj_SXS5Na_GZrkww-Gaozl9xXbaCJF3G85esw1fvWFbbbPy2-VbNiGgC_G73-s_qC-8y3uUXy_qLU7-zfsxbzFTb_BpVm_Kc4xMeb8SJyPUBz64vRu3Qzgp_K7iPToOLgYW7R4f0PGhyg9FxAfdX_zHPRqc6Tt2dfr98uuZaFsnCAtazkSUOq2cs6XUuQ0Q0KlLj_moSTVIr3zqnMJALzUmsxji5UoiSeYglgnmPyoku2yzGlV-j_EyREZmEBKfYBqdgskCbZiU4PCe67zDPj-Ks7Atrji1txgWmF-Q6Iu_ou-wTyvacYOm8SzVCc3KioIQsOsXqBdFqxfFv_Siww4e57Rol-W0iDXqBQ7myPXH1TAuKPpLYio_mhMNfgzQ7uInjla68AK77_8Hu_tsO6bCCiqWlwdsczaZ-0MMd2blh1qz_wCAWvg3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9lAuiKdYKMiIXjhYdTa2k1RCaBdaFbTsoi6Vyily_GgrLUm6D6r-e2ayTkol1BwiJR45kT2elz3fELKXaR0bW0gWq1QwYQoBS0pETKbWDlLQV1GCicLfJ-r4VHw7k2dbZNLmwuCxylYmNoLaVgZj5PsDFceg26Ms-1RfMawahburbQkNHUor2I8NxNgDsj1AZKwe2R4dTn6cdFEXDp1kXGxwSmPw9_cXSwSYQdyqO5qpAfC_Y3XurMta31zr-fwfBXT0mDwKliMdbqb6Cdly5VOyE4qYX9w8IwsEwGC_puPpH3lAh3SMfvd1E_qkX5yracBSPYenVROsp2Cx0mnJRhXwCZ1dXNahCSaLXpZ0jMfE2cyAPKQzPFZUujmL6Gx4Qr_-BkG0fE5Ojw5_fj5moaQCM0LxFYsSq6S1puAqM154UPbcgZ-qEyW4ky6xVoIBmGidGjD9MsmBJLViwGPwi6SPX5BeWZXuJaGFjzRPhY9dDO51InTqMZBSCAv3TGV98qEdztwEvHEsezHPwe_Aoc9vh75P3ne09QZl479UI5yVjgKRsZsX1eI8DwstR4Q6L21iCu2FFlhLGS7tlfKJBf7pk912TvOwXJf5LXP1ybuuGRYa7p7o0lVrpIHOBMhj6GKv44V7fvfV_V96TR4OMJUC0-P5LumtFmv3BgycVfE2cO1fMzj2gg
  priority: 102
  providerName: ProQuest
Title Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship Detection in Large-Scene Sentinel-1 SAR Images
URI https://www.proquest.com/docview/2633143199
https://www.proquest.com/docview/2648843761
https://www.mdpi.com/2072-4292/14/4/1018/pdf?version=1645428730
https://doaj.org/article/2134f5d7cbaf4a48833333af66f7d431
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegfRgvfCPKRmXEXnjwmg_bSXhBKVsZqGunlUrbU-bE9lbRpVU_No2_nrvULQwhhEQeEiW5OI7sO__uYv-OkN1EqbDQuWChjDnjRc5BpbjPRKx1EMN45Ue4UPioJw-H_MupOHV5TuduWiW44qPKSAdeFDDMp9TyeYu3kFyqNdX2w7ULJflIRwWQPwSfvS4FgPEaqQ97x-kZppRbP7wiJQ3BuW_N5sgmg-XcGYYqtv47EHNrWU7V7Y0aj38ZbTqPyPm6nqtJJt_2lot8r_j-G4Xjf3zIY_LQIVGarrrOE3LPlE_JlkuKfnn7jMyQUIOd9bv9a_GeprSLfvxNFUql-8ZMqeNmvYCzRRX8p4CAab9k7Qn0Ozq4HE3dLXg7HZW0i9PO2aAA-0oHOE2pNGPm00F6Qj9fgWGbPyfDzsHXj4fMpWhgBZfegvmRlkLrIvdkUlhuATx4BvxeFUnuGWEirQUAykipuAAomQgPRGLNAy8EP0vY8AWplZPSvCQ0t77yYm5DE4K7HnEVWwzM5FzDPpFJg7xbt1hWOP5yTKMxzsCPwdbNfrZug7zdyE5XrB1_lGpjw28kkGm7ujCZXWROcTNkvLNCR0WuLFccczPDpqyUNtKAvhpkZ91tMqf-8yyQYQhA1E-g1m82t0Fx8W-MKs1kiTJQGAf7DkXsbrrbX6r76t_EtsmDAJdo4LJ7b4fUFrOleQ3AaZE3yf2486lJ6un-UXcAx_ZB7_ikWYUhmk5xfgCIDRKd
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9lBeEJ-iMMCI8cCDNSd2vpAm1LJNLctatG7S9hSc2NkmlST0g6r_HH8bd6nTMQntbXmIlOTkWOfzfdi-3xGyEyklMp16TPihZDJLJUwp6TAv1NoNwV45ASYKHw_83pn8du6db5A_TS4MHqtsdGKtqHWZ4Rr5rusLAbbdiaIv1S-GVaNwd7UpoaFsaQW9V0OM2cSOI7NcQAg33evvw3h_dN3Dg9OvPWarDLBM-nzGnED7ntZZyv0oy2UO9o8bCN1U4EtuPBNo7YFPFCgVZuANRR4HklBLlwsIFbxcQLsPyJYUMoLgb6t7MPh-sl7l4dDpiMsVLqoQEd-dTBHQBnGyblnCumDALS-3NS8qtVyo8fgfg3f4mDyynirtrETrCdkwxVPSskXTr5bPyAQBN9jFMB7-9j7TDo0xzl_US61035iKWuzWS3ia1ZsDFDxkOixYtwS5pKOr68p-AuGg1wWN8Vg6G2Wgf-kIjzEVZswcOuqc0P5PUHzT5-TsXpj7gmwWZWFeEprmjuKhzIUREM4HUoU5LtykUsM98qM2-dSwM8ksvjmW2RgnEOcg65Mb1rfJhzVttUL1-C9VF0dlTYFI3PWLcnKZ2ImdICJe7ukgS1UulcTazXCp3PfzQIO8tsl2M6aJVQ_T5EaY2-T9-jNMbNytUYUp50gDjUnQ_9DEzloW7ujuq7v_9I60eqfHcRL3B0evyUMX0zgwNZ9vk83ZZG7egHM1S99aCabkx31Pmr_PsDH1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkNheEFfRMcCI8cCDVSexc0FCqKOUlZUVUSZtT8HxZZtUktALVf8av45z0qRjEtrb8hApyZFj2edq-3yHkL1EqUCbTLIgjAUTOhMgUsJjMjbGj8FeeREmCn85Cg-OxecTebJB_jS5MHisstGJlaI2hcY18rYfBgHYdi9J2q4-FvG123tf_mJYQQp3WptyGisWObTLBYRv03f9Lsz1a9_vffz-4YDVFQaYFiGfMS8yoTRGZzxMtBMObB-3ELapKBTcShsZI8EfipSKNXhCieRAEhvh8wDCBOkCaPcWuR0hijtmqfc-rdd3OHQ34WKFiBoECW9PpghlgwhZV2xgVSrgin-7Nc9LtVyo8fgfU9e7R-7WPirtrJjqPtmw-QOyVZdLP18-JBOE2mCnw8Hwt3xLO3SAEf6iWmSlXWtLWqO2nsHTrNoWoOAb02HO9gvgSDo6vyjrT8AW9CKnAzyQzkYaNC8d4QGm3I6ZR0edb7T_E1Te9BE5vpGhfUw28yK3TwjNnKd4LFxgAwjkI6Fih0s2mTBwT8KkRd40w5nqGtkcC2yMU4hwcOjTy6FvkVdr2nKF5_Ffqn2clTUFYnBXL4rJWVqLdIpYeE6aSGfKCSWwajNcyoWhiwxwaovsNnOa1ophml6ycYu8XH8GkcZ9GpXbYo400JgAzQ9N7K154Zru7lz_pxfkDohKOugfHT4l2z7mb2BOPt8lm7PJ3D4Dr2qWPa_Yl5IfNy0vfwFfii-P
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9zBe-EZ0DGTEXnjwmsQfSXhBHTANVFZEqbQ9BccfW0VJozbdNP567lK3MIQQEnmIlPjiOLo7-3eO_TtC9nKtubGlZFxlgglTCnApETOZWZtkMF7FKW4U_nCsjsbi_Yk8CXlOF2FZJYTik7aTTqI0YZhPqReLnughuVSvtv7VRZhKipGOCiA_h5h9S0kA4x2yNT7-2D_FlHLrh1ekpByC-958gWwyWM-1Yahl678GMbeXVa2vLvV0-stoc3ibfFm3c7XI5Ov-sin3zfffKBz_40PukFsBidL-ynTukhuuuke2Q1L086v7ZI6EGux0OBheyJe0TwcYx1-2U6n0jXM1DdysZ3DVtJP_FBAwHVbsYAZ2R0fnkzoUwdvppKIDXHbORgb6VzrCZUqVm7KYjvqf6Ltv0LEtHpDx4dvPr49YSNHAjFBRw-LUKmmtKSOVGy88gIfIQdyrUyUiJ11qrQRAmWqdGYCSuYxAJLMiiTjEWdLzh6RTzSr3iNDSxzrKhOeOQ7ieCp15nJgphYVzrvIuebHWWGECfzmm0ZgWEMegdouf2u2S5xvZesXa8UepA1T8RgKZttsbs_lZERy3QMY7L21qSu2FFpibGQ7tlfKpBfTVJbtrsymC-y-KRHEOQDTOodXPNsXguPg3RldutkQZqExA_w5V7G3M7S_N3fk3scfkZoJbNHDbfbRLOs186Z4AcGrKp8E5fgDQHA2U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lite-YOLOv5%3A+A+Lightweight+Deep+Learning+Detector+for+On-Board+Ship+Detection+in+Large-Scene+Sentinel-1+SAR+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Xiaowo&rft.au=Zhang%2C+Xiaoling&rft.au=Zhang%2C+Tianwen&rft.date=2022-02-20&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=4&rft.spage=1018&rft_id=info:doi/10.3390%2Frs14041018&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14041018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon