Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship Detection in Large-Scene Sentinel-1 SAR Images
Synthetic aperture radar (SAR) satellites can provide microwave remote sensing images without weather and light constraints, so they are widely applied in the maritime monitoring field. Current SAR ship detection methods based on deep learning (DL) are difficult to deploy on satellites, because thes...
        Saved in:
      
    
          | Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 4; p. 1018 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        20.02.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2072-4292 2072-4292  | 
| DOI | 10.3390/rs14041018 | 
Cover
| Abstract | Synthetic aperture radar (SAR) satellites can provide microwave remote sensing images without weather and light constraints, so they are widely applied in the maritime monitoring field. Current SAR ship detection methods based on deep learning (DL) are difficult to deploy on satellites, because these methods usually have complex models and huge calculations. To solve this problem, based on the You Only Look Once version 5 (YOLOv5) algorithm, we propose a lightweight on-board SAR ship detector called Lite-YOLOv5, which (1) reduces the model volume; (2) decreases the floating-point operations (FLOPs); and (3) realizes the on-board ship detection without sacrificing accuracy. First, in order to obtain a lightweight network, we design a lightweight cross stage partial (L-CSP) module to reduce the amount of calculation and we apply network pruning for a more compact detector. Then, in order to ensure the excellent detection performance, we integrate a histogram-based pure backgrounds classification (HPBC) module, a shape distance clustering (SDC) module, a channel and spatial attention (CSA) module, and a hybrid spatial pyramid pooling (H-SPP) module to improve detection performance. To evaluate the on-board SAR ship detection ability of Lite-YOLOv5, we also transplant it to the embedded platform NVIDIA Jetson TX2. Experimental results on the Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) show that Lite-YOLOv5 can realize lightweight architecture with a 2.38 M model volume (14.18% of model size of YOLOv5), on-board ship detection with a low computation cost (26.59% of FLOPs of YOLOv5), and superior detection accuracy (1.51% F1 improvement compared with YOLOv5). | 
    
|---|---|
| AbstractList | Synthetic aperture radar (SAR) satellites can provide microwave remote sensing images without weather and light constraints, so they are widely applied in the maritime monitoring field. Current SAR ship detection methods based on deep learning (DL) are difficult to deploy on satellites, because these methods usually have complex models and huge calculations. To solve this problem, based on the You Only Look Once version 5 (YOLOv5) algorithm, we propose a lightweight on-board SAR ship detector called Lite-YOLOv5, which (1) reduces the model volume; (2) decreases the floating-point operations (FLOPs); and (3) realizes the on-board ship detection without sacrificing accuracy. First, in order to obtain a lightweight network, we design a lightweight cross stage partial (L-CSP) module to reduce the amount of calculation and we apply network pruning for a more compact detector. Then, in order to ensure the excellent detection performance, we integrate a histogram-based pure backgrounds classification (HPBC) module, a shape distance clustering (SDC) module, a channel and spatial attention (CSA) module, and a hybrid spatial pyramid pooling (H-SPP) module to improve detection performance. To evaluate the on-board SAR ship detection ability of Lite-YOLOv5, we also transplant it to the embedded platform NVIDIA Jetson TX2. Experimental results on the Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) show that Lite-YOLOv5 can realize lightweight architecture with a 2.38 M model volume (14.18% of model size of YOLOv5), on-board ship detection with a low computation cost (26.59% of FLOPs of YOLOv5), and superior detection accuracy (1.51% F1 improvement compared with YOLOv5). | 
    
| Author | Xu, Xiaowo Zhang, Xiaoling Zhang, Tianwen  | 
    
| Author_xml | – sequence: 1 givenname: Xiaowo orcidid: 0000-0001-9977-613X surname: Xu fullname: Xu, Xiaowo – sequence: 2 givenname: Xiaoling surname: Zhang fullname: Zhang, Xiaoling – sequence: 3 givenname: Tianwen surname: Zhang fullname: Zhang, Tianwen  | 
    
| BookMark | eNp9kV1rFDEUhgepYK298RcEvBFlNJlkMhPv1lp1YWDB1QuvQpqcTLPMJmOStfTfN-MWlSIeyOd58p7Dm6fViQ8equo5wW8oFfhtTIRhRjDpH1WnDe6amjWiOflr_6Q6T2mHS1BKBGanVRxchvr7Ztj8bN-hFRrceJ1vYJnRB4AZDaCid34spww6h4hsGRtfvw8qGrS9dvN9ygWPnEeDiiPUWw0e0BZ8dh6mmqDt6gta79UI6Vn12Kopwfn9elZ9-3j59eJzPWw-rS9WQ60Zx7kmneGtMfoKc6Ets42gGDpCVccZhhY6Y9qW0k6pXouGihYXpDeswVRw3lp6Vq2PuiaonZyj26t4K4Ny8tdFiKNUMTs9gWwIZbY1nb5SlinW93QJZTm3nWGUFK3XR62Dn9XtjZqm34IEy8V9-cf9Qr880nMMPw6Qsty7pGGalIdwSLLhpQSjHV-EXzxAd-EQffGlUOWTSnEhCoWPlI4hpQhWapfV4niOyk3_7uHVgyf_afgOWaqtQg | 
    
| CitedBy_id | crossref_primary_10_3390_e25091280 crossref_primary_10_1016_j_jreng_2024_01_006 crossref_primary_10_1109_ACCESS_2023_3334973 crossref_primary_10_3390_rs16050913 crossref_primary_10_1007_s11227_024_06136_3 crossref_primary_10_3390_app14125322 crossref_primary_10_1007_s11760_024_03258_2 crossref_primary_10_1080_22797254_2024_2307613 crossref_primary_10_3390_rs14122832 crossref_primary_10_3390_rs15082138 crossref_primary_10_3390_agriculture13010124 crossref_primary_10_3390_s23156755 crossref_primary_10_3390_computers13120336 crossref_primary_10_1007_s11760_024_03420_w crossref_primary_10_3390_rs16060952 crossref_primary_10_1080_22797254_2025_2469863 crossref_primary_10_1016_j_apor_2024_104194 crossref_primary_10_1109_ACCESS_2024_3481642 crossref_primary_10_3233_AIC_230121 crossref_primary_10_1038_s41598_024_78749_w crossref_primary_10_1109_ACCESS_2023_3323575 crossref_primary_10_1080_17538947_2024_2405525 crossref_primary_10_3390_drones8040145 crossref_primary_10_1007_s13369_023_07985_5 crossref_primary_10_1016_j_isprsjprs_2024_01_003 crossref_primary_10_1007_s11760_023_02629_5 crossref_primary_10_1109_JSTARS_2023_3325376 crossref_primary_10_1109_JSTARS_2023_3241395 crossref_primary_10_3390_rs16112026 crossref_primary_10_3389_fmars_2022_1086140 crossref_primary_10_1109_JSTARS_2023_3296898 crossref_primary_10_3390_rs14236053 crossref_primary_10_1049_ipr2_12991 crossref_primary_10_3390_rs14174294 crossref_primary_10_1109_TGRS_2023_3346171 crossref_primary_10_1002_srin_202300421 crossref_primary_10_1109_TITS_2024_3404973 crossref_primary_10_1016_j_biosystemseng_2022_07_009 crossref_primary_10_1109_TGRS_2023_3349168 crossref_primary_10_1007_s11042_024_18288_8 crossref_primary_10_1109_TAES_2023_3344396 crossref_primary_10_1109_JIOT_2023_3287973 crossref_primary_10_3390_rs14112614 crossref_primary_10_3390_rs15112743 crossref_primary_10_1109_ACCESS_2024_3485490 crossref_primary_10_3390_rs16193741 crossref_primary_10_3390_drones7010020 crossref_primary_10_3390_rs15020303 crossref_primary_10_3390_jmse11030487 crossref_primary_10_1109_JSTARS_2024_3362954 crossref_primary_10_1109_JSTARS_2024_3399021 crossref_primary_10_32604_cmc_2023_038910 crossref_primary_10_3390_rs16122082 crossref_primary_10_1039_D3AN00615H crossref_primary_10_3233_AIC_220277 crossref_primary_10_1117_1_JEI_33_1_013046 crossref_primary_10_3390_rs14081850 crossref_primary_10_3390_rs14143345 crossref_primary_10_3390_rs15163963 crossref_primary_10_1109_TGRS_2023_3235859 crossref_primary_10_3390_rs16111992 crossref_primary_10_1080_10095020_2024_2331552 crossref_primary_10_3390_rs15133258 crossref_primary_10_2478_ijanmc_2024_0030 crossref_primary_10_1016_j_rsma_2024_103975 crossref_primary_10_3390_rs14132956 crossref_primary_10_3389_fmars_2023_1333038 crossref_primary_10_3389_fcomp_2024_1480481 crossref_primary_10_3390_jmse10111699 crossref_primary_10_1016_j_jag_2024_104137 crossref_primary_10_1007_s11042_022_14142_x crossref_primary_10_1109_JSTARS_2022_3187454 crossref_primary_10_3390_s22187088 crossref_primary_10_4236_ojapps_2023_134045 crossref_primary_10_1049_cit2_12310 crossref_primary_10_1038_s41598_023_43173_z crossref_primary_10_3390_s22239328 crossref_primary_10_1109_JSEN_2024_3413025 crossref_primary_10_3389_fmars_2023_1151817 crossref_primary_10_3390_s24134290 crossref_primary_10_1109_JSTARS_2023_3317489 crossref_primary_10_1049_ipr2_13231 crossref_primary_10_1109_JSTARS_2024_3437187 crossref_primary_10_3390_s22093370 crossref_primary_10_3390_rs15030629 crossref_primary_10_1109_TGRS_2023_3327285 crossref_primary_10_1109_JSTARS_2024_3365807 crossref_primary_10_1016_j_jnca_2025_104139 crossref_primary_10_1007_s10462_023_10455_x crossref_primary_10_3390_app122110978 crossref_primary_10_1109_JSTARS_2023_3244616 crossref_primary_10_3390_rs16071255 crossref_primary_10_3390_rs17020214 crossref_primary_10_1109_JSEN_2023_3317060 crossref_primary_10_1080_10106049_2022_2088862 crossref_primary_10_3390_rs16132459 crossref_primary_10_3389_fnbot_2024_1293992 crossref_primary_10_1109_ACCESS_2024_3394052 crossref_primary_10_1109_TGRS_2023_3264231 crossref_primary_10_1016_j_iswa_2025_200505 crossref_primary_10_1029_2023RG000821 crossref_primary_10_1007_s00500_022_07522_w crossref_primary_10_1109_JSTARS_2024_3502172 crossref_primary_10_1109_JSTARS_2024_3524402 crossref_primary_10_1080_17538947_2023_2277796 crossref_primary_10_1080_17445302_2022_2142362 crossref_primary_10_1016_j_compag_2024_108780 crossref_primary_10_3390_s23031224 crossref_primary_10_1117_1_JRS_17_046504 crossref_primary_10_3390_rs15225309 crossref_primary_10_3390_rs15245759 crossref_primary_10_1007_s11760_024_03656_6 crossref_primary_10_3390_rs14205203 crossref_primary_10_3390_su14159277 crossref_primary_10_3390_rs14225813 crossref_primary_10_1109_ACCESS_2023_3310539 crossref_primary_10_1155_2022_1121971 crossref_primary_10_3390_s22176685 crossref_primary_10_1080_13682199_2023_2232182 crossref_primary_10_3390_rs14205276 crossref_primary_10_3390_rs16101760 crossref_primary_10_1108_RPJ_04_2023_0133 crossref_primary_10_3390_jmse12081422 crossref_primary_10_3390_rs16030483 crossref_primary_10_3390_rs16061082 crossref_primary_10_1115_1_4065355 crossref_primary_10_1109_ACCESS_2023_3330924 crossref_primary_10_1080_15481603_2023_2196159 crossref_primary_10_1080_17538947_2024_2302577 crossref_primary_10_1016_j_displa_2023_102448 crossref_primary_10_3390_rs14194801 crossref_primary_10_1007_s13042_024_02278_1 crossref_primary_10_1371_journal_pone_0316933 crossref_primary_10_3390_agriculture12122039 crossref_primary_10_1155_2022_4670523 crossref_primary_10_1177_30504554241297613 crossref_primary_10_3390_app142411604 crossref_primary_10_1109_MGRS_2023_3312347 crossref_primary_10_1142_S0218001423500027  | 
    
| Cites_doi | 10.1109/IGARSS.1998.691633 10.1109/IGARSS47720.2021.9553116 10.3390/rs11050531 10.1145/3472634.3472654 10.1109/ICCV.2017.324 10.3390/rs13142771 10.3390/f12020217 10.1016/j.neucom.2020.01.085 10.1109/CVPR42600.2020.01079 10.1109/CVPR42600.2020.00165 10.1109/TIP.2020.3002345 10.3390/rs11050526 10.1080/07038992.2001.10854896 10.1007/978-1-4842-2766-4_12 10.1007/978-3-030-01234-2_1 10.1109/JSTARS.2020.3041783 10.1109/CVPR.2017.106 10.1109/CVPR.2019.00091 10.1109/ACCESS.2020.2985637 10.1109/TGRS.2019.2920534 10.1109/CVPR.2018.00913 10.1109/LGRS.2018.2882551 10.3390/rs11212483 10.1109/ACCESS.2018.2825376 10.1016/j.ins.2020.02.067 10.1007/978-981-13-9917-6_54 10.3390/rs9080860 10.1109/TSP.2017.2712124 10.1109/ICCV.2017.298 10.3390/rs11070786 10.1109/TNSM.2019.2899085 10.3390/s18092851 10.3390/rs13101995 10.3390/rs12182997 10.1109/CVPR.2018.00745 10.1007/978-3-319-46448-0_2 10.3390/jmse8020112 10.3390/rs12010167 10.1007/978-3-319-10578-9_23 10.1016/j.neucom.2017.02.029 10.3390/s100100775 10.3390/s20092547 10.1109/ACCESS.2019.2943241 10.1016/j.patcog.2019.106971 10.3390/rs13183690 10.1109/TPAMI.2016.2577031 10.1109/JSTARS.2021.3102989 10.3390/rs11070765 10.1109/TGRS.2019.2923988 10.1109/CVPRW50498.2020.00203 10.1007/978-3-319-10602-1_48 10.1109/TCCN.2017.2758370 10.1007/s10462-020-09825-6 10.1109/IGARSS47720.2021.9555096  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/rs14041018 | 
    
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 2072-4292 | 
    
| ExternalDocumentID | oai_doaj_org_article_2134f5d7cbaf4a48833333af66f7d431 10.3390/rs14041018 10_3390_rs14041018  | 
    
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c460t-17d65ddcb069cf4f2930e713a7640e5e7dd55337aa8c923950f298d42039665f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2072-4292 | 
    
| IngestDate | Fri Oct 03 12:50:48 EDT 2025 Sun Oct 26 03:58:31 EDT 2025 Sun Aug 24 03:52:05 EDT 2025 Fri Jul 25 09:30:31 EDT 2025 Thu Oct 16 04:33:20 EDT 2025 Thu Apr 24 23:09:59 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c460t-17d65ddcb069cf4f2930e713a7640e5e7dd55337aa8c923950f298d42039665f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-9977-613X | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-4292/14/4/1018/pdf?version=1645428730 | 
    
| PQID | 2633143199 | 
    
| PQPubID | 2032338 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2134f5d7cbaf4a48833333af66f7d431 unpaywall_primary_10_3390_rs14041018 proquest_miscellaneous_2648843761 proquest_journals_2633143199 crossref_citationtrail_10_3390_rs14041018 crossref_primary_10_3390_rs14041018  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220220 | 
    
| PublicationDateYYYYMMDD | 2022-02-20 | 
    
| PublicationDate_xml | – month: 02 year: 2022 text: 20220220 day: 20  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Remote sensing (Basel, Switzerland) | 
    
| PublicationYear | 2022 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Wu (ref_48) 2020; 396 ref_50 Liu (ref_7) 2019; 96 ref_58 ref_13 Gao (ref_40) 2010; 10 Cui (ref_11) 2019; 57 ref_12 ref_56 Gao (ref_51) 2021; 19 ref_53 Mao (ref_20) 2020; 8 ref_52 Ren (ref_57) 2017; 39 Gagnon (ref_43) 1998; 3491 Aceto (ref_6) 2019; 16 ref_19 ref_18 ref_17 ref_16 An (ref_14) 2019; 57 ref_15 ref_59 Wackerman (ref_41) 2001; 27 Chen (ref_39) 2021; 14 ref_61 ref_60 Lin (ref_2) 2019; 16 ref_25 ref_24 ref_23 ref_22 ref_62 ref_29 ref_28 ref_27 ref_26 ref_36 Huang (ref_49) 2020; 522 ref_35 ref_34 ref_33 Scardapane (ref_38) 2017; 241 ref_32 ref_31 ref_30 Hoydis (ref_5) 2017; 3 Zhang (ref_21) 2019; 7 ref_37 Ciuonzo (ref_8) 2017; 65 ref_46 ref_45 ref_44 Jiao (ref_10) 2018; 6 ref_42 ref_1 ref_3 Khan (ref_47) 2020; 53 Zhang (ref_54) 2021; 14 ref_9 Sergios (ref_55) 2015; 5 ref_4  | 
    
| References_xml | – ident: ref_42 doi: 10.1109/IGARSS.1998.691633 – ident: ref_3 doi: 10.1109/IGARSS47720.2021.9553116 – ident: ref_22 doi: 10.3390/rs11050531 – ident: ref_53 doi: 10.1145/3472634.3472654 – ident: ref_61 doi: 10.1109/ICCV.2017.324 – volume: 5 start-page: 161 year: 2015 ident: ref_55 article-title: Stochastic gradient descent publication-title: Mach. Learn. – ident: ref_4 doi: 10.3390/rs13142771 – ident: ref_32 doi: 10.3390/f12020217 – volume: 396 start-page: 39 year: 2020 ident: ref_48 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.085 – ident: ref_58 doi: 10.1109/CVPR42600.2020.01079 – ident: ref_26 doi: 10.1109/CVPR42600.2020.00165 – ident: ref_60 doi: 10.1109/TIP.2020.3002345 – ident: ref_12 doi: 10.3390/rs11050526 – volume: 27 start-page: 568 year: 2001 ident: ref_41 article-title: Automatic detection of ships in RADARSAT-1 SAR imagery publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2001.10854896 – ident: ref_50 doi: 10.1007/978-1-4842-2766-4_12 – ident: ref_29 doi: 10.1007/978-3-030-01234-2_1 – volume: 14 start-page: 1267 year: 2021 ident: ref_39 article-title: Learning Slimming SAR Ship Object Detector Through Network Pruning and Knowledge Distillation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3041783 – ident: ref_36 doi: 10.1109/CVPR.2017.106 – ident: ref_56 doi: 10.1109/CVPR.2019.00091 – volume: 8 start-page: 69742 year: 2020 ident: ref_20 article-title: Efficient Low-Cost Ship Detection for SAR Imagery Based on Simplified U-Net publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.2985637 – volume: 57 start-page: 8333 year: 2019 ident: ref_14 article-title: DRBox-v2: An Improved Detector With Rotatable Boxes for Target Detection in SAR Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2920534 – ident: ref_37 doi: 10.1109/CVPR.2018.00913 – volume: 16 start-page: 751 year: 2019 ident: ref_2 article-title: Squeeze and Excitation Rank Faster R-CNN for Ship Detection in SAR Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2882551 – ident: ref_27 – ident: ref_19 doi: 10.3390/rs11212483 – volume: 6 start-page: 20881 year: 2018 ident: ref_10 article-title: A Densely Connected End-to-End Neural Network for Multiscale and Multiscene SAR Ship Detection publication-title: IEEE Access. doi: 10.1109/ACCESS.2018.2825376 – volume: 522 start-page: 241 year: 2020 ident: ref_49 article-title: DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.02.067 – ident: ref_15 doi: 10.1007/978-981-13-9917-6_54 – ident: ref_9 doi: 10.3390/rs9080860 – volume: 65 start-page: 5078 year: 2017 ident: ref_8 article-title: On Multiple Covariance Equality Testing with Application to SAR Change Detection publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2712124 – ident: ref_28 doi: 10.1109/ICCV.2017.298 – ident: ref_59 – ident: ref_18 doi: 10.3390/rs11070786 – volume: 16 start-page: 445 year: 2019 ident: ref_6 article-title: Mobile Encrypted Traffic Classification Using Deep Learning: Experimental Evaluation, Lessons Learned, and Challenges publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2019.2899085 – ident: ref_13 doi: 10.3390/s18092851 – ident: ref_34 – ident: ref_25 doi: 10.3390/rs13101995 – ident: ref_24 doi: 10.3390/rs12182997 – ident: ref_45 doi: 10.1109/CVPR.2018.00745 – ident: ref_62 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_44 doi: 10.3390/jmse8020112 – ident: ref_17 doi: 10.3390/rs12010167 – ident: ref_30 doi: 10.1007/978-3-319-10578-9_23 – volume: 241 start-page: 81 year: 2017 ident: ref_38 article-title: Group sparse regularization for deep neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.029 – volume: 10 start-page: 775 year: 2010 ident: ref_40 article-title: Statistical Modeling of SAR Images: A Survey publication-title: Sensors doi: 10.3390/s100100775 – ident: ref_16 doi: 10.3390/s20092547 – volume: 7 start-page: 141662 year: 2019 ident: ref_21 article-title: A Lightweight Feature Optimizing Network for Ship Detection in SAR Image publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2943241 – volume: 19 start-page: 1 year: 2021 ident: ref_51 article-title: A High-Effective Implementation of Ship Detector for SAR Images publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_33 – volume: 96 start-page: 106971 year: 2019 ident: ref_7 article-title: Stacked Fisher autoencoder for SAR change detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.106971 – ident: ref_46 – ident: ref_1 doi: 10.3390/rs13183690 – volume: 39 start-page: 1137 year: 2017 ident: ref_57 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 14 start-page: 8048 year: 2021 ident: ref_54 article-title: Multitask Learning for Ship Detection From Synthetic Aperture Radar Images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3102989 – volume: 3491 start-page: 998 year: 1998 ident: ref_43 article-title: R&D activities in airborne SAR image processing/analysis at Lockheed Martin Canada publication-title: Proc. SPIE Int. Soc. Opt. Eng. – ident: ref_23 doi: 10.3390/rs11070765 – volume: 57 start-page: 8983 year: 2019 ident: ref_11 article-title: Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2923988 – ident: ref_35 doi: 10.1109/CVPRW50498.2020.00203 – ident: ref_31 doi: 10.1007/978-3-319-10602-1_48 – volume: 3 start-page: 563 year: 2017 ident: ref_5 article-title: An Introduction to Deep Learning for the Physical Layer publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2017.2758370 – volume: 53 start-page: 5455 year: 2020 ident: ref_47 article-title: A survey of the recent architectures of deep convolutional neural networks publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09825-6 – ident: ref_52 doi: 10.1109/IGARSS47720.2021.9555096  | 
    
| SSID | ssj0000331904 | 
    
| Score | 2.6452477 | 
    
| Snippet | Synthetic aperture radar (SAR) satellites can provide microwave remote sensing images without weather and light constraints, so they are widely applied in the... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 1018 | 
    
| SubjectTerms | Ablation Accuracy Algorithms Clustering Datasets Deep learning Design False alarms Floating point arithmetic Ground stations Histograms lightweight detector Machine learning Modules Neural networks on-board Onboard Performance evaluation Radar imaging Remote sensing Satellite imagery Satellites Sensors ship detection Synthetic aperture radar synthetic aperture radar (SAR) weather YOLOv5  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQF7igvhBboHJVLj1YOMnYSXpb2iJaLazUBYmeIscPQFqyq32w2n_fmSRsFwnRS3OIlHgUjcbjeTiebxg7yo1JrCuVSHQGAmwJuKQgEipzLs7QX0UpFQqfX-izK_h5ra7XWn3RmbAGHrgR3DEhjgXlUluaAAaoNy5eJmgdUgd1BXUss3wtmaptcIKqJaHBI00wrz-eTAlIhvCpnnigGqj_SXS5Na_GZrkww-Gaozl9xXbaCJF3G85esw1fvWFbbbPy2-VbNiGgC_G73-s_qC-8y3uUXy_qLU7-zfsxbzFTb_BpVm_Kc4xMeb8SJyPUBz64vRu3Qzgp_K7iPToOLgYW7R4f0PGhyg9FxAfdX_zHPRqc6Tt2dfr98uuZaFsnCAtazkSUOq2cs6XUuQ0Q0KlLj_moSTVIr3zqnMJALzUmsxji5UoiSeYglgnmPyoku2yzGlV-j_EyREZmEBKfYBqdgskCbZiU4PCe67zDPj-Ks7Atrji1txgWmF-Q6Iu_ou-wTyvacYOm8SzVCc3KioIQsOsXqBdFqxfFv_Siww4e57Rol-W0iDXqBQ7myPXH1TAuKPpLYio_mhMNfgzQ7uInjla68AK77_8Hu_tsO6bCCiqWlwdsczaZ-0MMd2blh1qz_wCAWvg3 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9lAuiKdYKMiIXjhYdTa2k1RCaBdaFbTsoi6Vyily_GgrLUm6D6r-e2ayTkol1BwiJR45kT2elz3fELKXaR0bW0gWq1QwYQoBS0pETKbWDlLQV1GCicLfJ-r4VHw7k2dbZNLmwuCxylYmNoLaVgZj5PsDFceg26Ms-1RfMawahburbQkNHUor2I8NxNgDsj1AZKwe2R4dTn6cdFEXDp1kXGxwSmPw9_cXSwSYQdyqO5qpAfC_Y3XurMta31zr-fwfBXT0mDwKliMdbqb6Cdly5VOyE4qYX9w8IwsEwGC_puPpH3lAh3SMfvd1E_qkX5yracBSPYenVROsp2Cx0mnJRhXwCZ1dXNahCSaLXpZ0jMfE2cyAPKQzPFZUujmL6Gx4Qr_-BkG0fE5Ojw5_fj5moaQCM0LxFYsSq6S1puAqM154UPbcgZ-qEyW4ky6xVoIBmGidGjD9MsmBJLViwGPwi6SPX5BeWZXuJaGFjzRPhY9dDO51InTqMZBSCAv3TGV98qEdztwEvHEsezHPwe_Aoc9vh75P3ne09QZl479UI5yVjgKRsZsX1eI8DwstR4Q6L21iCu2FFlhLGS7tlfKJBf7pk912TvOwXJf5LXP1ybuuGRYa7p7o0lVrpIHOBMhj6GKv44V7fvfV_V96TR4OMJUC0-P5LumtFmv3BgycVfE2cO1fMzj2gg priority: 102 providerName: ProQuest  | 
    
| Title | Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship Detection in Large-Scene Sentinel-1 SAR Images | 
    
| URI | https://www.proquest.com/docview/2633143199 https://www.proquest.com/docview/2648843761 https://www.mdpi.com/2072-4292/14/4/1018/pdf?version=1645428730 https://doaj.org/article/2134f5d7cbaf4a48833333af66f7d431  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegfRgvfCPKRmXEXnjwmg_bSXhBKVsZqGunlUrbU-bE9lbRpVU_No2_nrvULQwhhEQeEiW5OI7sO__uYv-OkN1EqbDQuWChjDnjRc5BpbjPRKx1EMN45Ue4UPioJw-H_MupOHV5TuduWiW44qPKSAdeFDDMp9TyeYu3kFyqNdX2w7ULJflIRwWQPwSfvS4FgPEaqQ97x-kZppRbP7wiJQ3BuW_N5sgmg-XcGYYqtv47EHNrWU7V7Y0aj38ZbTqPyPm6nqtJJt_2lot8r_j-G4Xjf3zIY_LQIVGarrrOE3LPlE_JlkuKfnn7jMyQUIOd9bv9a_GeprSLfvxNFUql-8ZMqeNmvYCzRRX8p4CAab9k7Qn0Ozq4HE3dLXg7HZW0i9PO2aAA-0oHOE2pNGPm00F6Qj9fgWGbPyfDzsHXj4fMpWhgBZfegvmRlkLrIvdkUlhuATx4BvxeFUnuGWEirQUAykipuAAomQgPRGLNAy8EP0vY8AWplZPSvCQ0t77yYm5DE4K7HnEVWwzM5FzDPpFJg7xbt1hWOP5yTKMxzsCPwdbNfrZug7zdyE5XrB1_lGpjw28kkGm7ujCZXWROcTNkvLNCR0WuLFccczPDpqyUNtKAvhpkZ91tMqf-8yyQYQhA1E-g1m82t0Fx8W-MKs1kiTJQGAf7DkXsbrrbX6r76t_EtsmDAJdo4LJ7b4fUFrOleQ3AaZE3yf2486lJ6un-UXcAx_ZB7_ikWYUhmk5xfgCIDRKd | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9lBeEJ-iMMCI8cCDNSd2vpAm1LJNLctatG7S9hSc2NkmlST0g6r_HH8bd6nTMQntbXmIlOTkWOfzfdi-3xGyEyklMp16TPihZDJLJUwp6TAv1NoNwV45ASYKHw_83pn8du6db5A_TS4MHqtsdGKtqHWZ4Rr5rusLAbbdiaIv1S-GVaNwd7UpoaFsaQW9V0OM2cSOI7NcQAg33evvw3h_dN3Dg9OvPWarDLBM-nzGnED7ntZZyv0oy2UO9o8bCN1U4EtuPBNo7YFPFCgVZuANRR4HklBLlwsIFbxcQLsPyJYUMoLgb6t7MPh-sl7l4dDpiMsVLqoQEd-dTBHQBnGyblnCumDALS-3NS8qtVyo8fgfg3f4mDyynirtrETrCdkwxVPSskXTr5bPyAQBN9jFMB7-9j7TDo0xzl_US61035iKWuzWS3ia1ZsDFDxkOixYtwS5pKOr68p-AuGg1wWN8Vg6G2Wgf-kIjzEVZswcOuqc0P5PUHzT5-TsXpj7gmwWZWFeEprmjuKhzIUREM4HUoU5LtykUsM98qM2-dSwM8ksvjmW2RgnEOcg65Mb1rfJhzVttUL1-C9VF0dlTYFI3PWLcnKZ2ImdICJe7ukgS1UulcTazXCp3PfzQIO8tsl2M6aJVQ_T5EaY2-T9-jNMbNytUYUp50gDjUnQ_9DEzloW7ujuq7v_9I60eqfHcRL3B0evyUMX0zgwNZ9vk83ZZG7egHM1S99aCabkx31Pmr_PsDH1 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkNheEFfRMcCI8cCDVSexc0FCqKOUlZUVUSZtT8HxZZtUktALVf8av45z0qRjEtrb8hApyZFj2edq-3yHkL1EqUCbTLIgjAUTOhMgUsJjMjbGj8FeeREmCn85Cg-OxecTebJB_jS5MHisstGJlaI2hcY18rYfBgHYdi9J2q4-FvG123tf_mJYQQp3WptyGisWObTLBYRv03f9Lsz1a9_vffz-4YDVFQaYFiGfMS8yoTRGZzxMtBMObB-3ELapKBTcShsZI8EfipSKNXhCieRAEhvh8wDCBOkCaPcWuR0hijtmqfc-rdd3OHQ34WKFiBoECW9PpghlgwhZV2xgVSrgin-7Nc9LtVyo8fgfU9e7R-7WPirtrJjqPtmw-QOyVZdLP18-JBOE2mCnw8Hwt3xLO3SAEf6iWmSlXWtLWqO2nsHTrNoWoOAb02HO9gvgSDo6vyjrT8AW9CKnAzyQzkYaNC8d4QGm3I6ZR0edb7T_E1Te9BE5vpGhfUw28yK3TwjNnKd4LFxgAwjkI6Fih0s2mTBwT8KkRd40w5nqGtkcC2yMU4hwcOjTy6FvkVdr2nKF5_Ffqn2clTUFYnBXL4rJWVqLdIpYeE6aSGfKCSWwajNcyoWhiwxwaovsNnOa1ophml6ycYu8XH8GkcZ9GpXbYo400JgAzQ9N7K154Zru7lz_pxfkDohKOugfHT4l2z7mb2BOPt8lm7PJ3D4Dr2qWPa_Yl5IfNy0vfwFfii-P | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9zBe-EZ0DGTEXnjwmsQfSXhBHTANVFZEqbQ9BccfW0VJozbdNP567lK3MIQQEnmIlPjiOLo7-3eO_TtC9nKtubGlZFxlgglTCnApETOZWZtkMF7FKW4U_nCsjsbi_Yk8CXlOF2FZJYTik7aTTqI0YZhPqReLnughuVSvtv7VRZhKipGOCiA_h5h9S0kA4x2yNT7-2D_FlHLrh1ekpByC-958gWwyWM-1Yahl678GMbeXVa2vLvV0-stoc3ibfFm3c7XI5Ov-sin3zfffKBz_40PukFsBidL-ynTukhuuuke2Q1L086v7ZI6EGux0OBheyJe0TwcYx1-2U6n0jXM1DdysZ3DVtJP_FBAwHVbsYAZ2R0fnkzoUwdvppKIDXHbORgb6VzrCZUqVm7KYjvqf6Ltv0LEtHpDx4dvPr49YSNHAjFBRw-LUKmmtKSOVGy88gIfIQdyrUyUiJ11qrQRAmWqdGYCSuYxAJLMiiTjEWdLzh6RTzSr3iNDSxzrKhOeOQ7ieCp15nJgphYVzrvIuebHWWGECfzmm0ZgWEMegdouf2u2S5xvZesXa8UepA1T8RgKZttsbs_lZERy3QMY7L21qSu2FFpibGQ7tlfKpBfTVJbtrsymC-y-KRHEOQDTOodXPNsXguPg3RldutkQZqExA_w5V7G3M7S_N3fk3scfkZoJbNHDbfbRLOs186Z4AcGrKp8E5fgDQHA2U | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lite-YOLOv5%3A+A+Lightweight+Deep+Learning+Detector+for+On-Board+Ship+Detection+in+Large-Scene+Sentinel-1+SAR+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Xiaowo&rft.au=Zhang%2C+Xiaoling&rft.au=Zhang%2C+Tianwen&rft.date=2022-02-20&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=4&rft.spage=1018&rft_id=info:doi/10.3390%2Frs14041018&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14041018 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |