ARC algorithm: A novel approach to forecast and manage daily electrical maximum demand
This paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in peak demand pattern for commercial or industrial customers would propose numerous direct and indirect benefits to the customers and utility pro...
Saved in:
| Published in | Energy (Oxford) Vol. 154; pp. 383 - 389 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.07.2018
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 1873-6785 |
| DOI | 10.1016/j.energy.2018.04.117 |
Cover
| Abstract | This paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in peak demand pattern for commercial or industrial customers would propose numerous direct and indirect benefits to the customers and utility providers in terms of demand reduction, cost control, and system stability. Prior works in electrical maximum demand forecasting have been mainly focused on seasonal effects, which is not a feasible approach for industrial manufacturing facilities in short-term load forecasting. The proposed algorithm, denoted as the Adaptive Rate of Change (ARC), determines the logarithmic rate-of-change in load profile prior to a peak by postulating the demand curve as a stochastic, mean-reverting process. The rationale behind this analysis, is that the energy efficient program requires not only demand estimation but also to warn the user of imminent maximum peak occurrence. This paper analyzes demand trend data and incorporates stochastic model and mean reverting half-life to develop an electrical maximum demand forecasting algorithm, which is statistically evaluated by cross-table and F-score for three different manufacturing facilities. The aggregate results show an overall accuracy of 0.91 and a F-score of 0.43, which indicates that the algorithm is effective predicting peak demand in predicting peak demand.
•Novel method to forecast the occurrence of daily maximum demand.•Electrical demand pattern can be regarded as a mean reversion process.•The algorithm requires only the historical demand data.•The algorithm works best on patterns with distinct peak occurrences. |
|---|---|
| AbstractList | This paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in peak demand pattern for commercial or industrial customers would propose numerous direct and indirect benefits to the customers and utility providers in terms of demand reduction, cost control, and system stability. Prior works in electrical maximum demand forecasting have been mainly focused on seasonal effects, which is not a feasible approach for industrial manufacturing facilities in short-term load forecasting. The proposed algorithm, denoted as the Adaptive Rate of Change (ARC), determines the logarithmic rate-of-change in load profile prior to a peak by postulating the demand curve as a stochastic, mean-reverting process. The rationale behind this analysis, is that the energy efficient program requires not only demand estimation but also to warn the user of imminent maximum peak occurrence. This paper analyzes demand trend data and incorporates stochastic model and mean reverting half-life to develop an electrical maximum demand forecasting algorithm, which is statistically evaluated by cross-table and F-score for three different manufacturing facilities. The aggregate results show an overall accuracy of 0.91 and a F-score of 0.43, which indicates that the algorithm is effective predicting peak demand in predicting peak demand. This paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in peak demand pattern for commercial or industrial customers would propose numerous direct and indirect benefits to the customers and utility providers in terms of demand reduction, cost control, and system stability. Prior works in electrical maximum demand forecasting have been mainly focused on seasonal effects, which is not a feasible approach for industrial manufacturing facilities in short-term load forecasting. The proposed algorithm, denoted as the Adaptive Rate of Change (ARC), determines the logarithmic rate-of-change in load profile prior to a peak by postulating the demand curve as a stochastic, mean-reverting process. The rationale behind this analysis, is that the energy efficient program requires not only demand estimation but also to warn the user of imminent maximum peak occurrence. This paper analyzes demand trend data and incorporates stochastic model and mean reverting half-life to develop an electrical maximum demand forecasting algorithm, which is statistically evaluated by cross-table and F-score for three different manufacturing facilities. Lastly, the aggregate results show an overall accuracy of 0.91 and a F-score of 0.43, which indicates that the algorithm is effective predicting peak demand in predicting peak demand. This paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in peak demand pattern for commercial or industrial customers would propose numerous direct and indirect benefits to the customers and utility providers in terms of demand reduction, cost control, and system stability. Prior works in electrical maximum demand forecasting have been mainly focused on seasonal effects, which is not a feasible approach for industrial manufacturing facilities in short-term load forecasting. The proposed algorithm, denoted as the Adaptive Rate of Change (ARC), determines the logarithmic rate-of-change in load profile prior to a peak by postulating the demand curve as a stochastic, mean-reverting process. The rationale behind this analysis, is that the energy efficient program requires not only demand estimation but also to warn the user of imminent maximum peak occurrence. This paper analyzes demand trend data and incorporates stochastic model and mean reverting half-life to develop an electrical maximum demand forecasting algorithm, which is statistically evaluated by cross-table and F-score for three different manufacturing facilities. The aggregate results show an overall accuracy of 0.91 and a F-score of 0.43, which indicates that the algorithm is effective predicting peak demand in predicting peak demand. •Novel method to forecast the occurrence of daily maximum demand.•Electrical demand pattern can be regarded as a mean reversion process.•The algorithm requires only the historical demand data.•The algorithm works best on patterns with distinct peak occurrences. |
| Author | Amini, Amin Razban, Ali Chen, Jie Wu, Da-Chun |
| Author_xml | – sequence: 1 givenname: Da-Chun surname: Wu fullname: Wu, Da-Chun – sequence: 2 givenname: Amin surname: Amini fullname: Amini, Amin – sequence: 3 givenname: Ali surname: Razban fullname: Razban, Ali email: arazban@iupui.edu – sequence: 4 givenname: Jie surname: Chen fullname: Chen, Jie |
| BackLink | https://www.osti.gov/servlets/purl/1866826$$D View this record in Osti.gov |
| BookMark | eNqNkEtrGzEUhbVIIY_mH3QhuurGU0nWaDRZFIzpIxAolKRboZHu2DIayZXkNP731TBdddF2deFyzuGc7xpdhBgAoTeUNJRQ8f7QQIC0OzeMUNkQ3lDaXaArshZk1XLOLtF1zgdCSCv7_gp933zbYu13Mbmyn-7wBof4DB7r4zFFbfa4RDzGBEbngnWweNJB7wBb7fwZgwdTkjPa1_-Lm04TtlAV9jV6NWqf4fb3vUFPnz4-br-sHr5-vt9uHlaGC1JWtGVDrUG55IaPI2GsBysHMQq5brU2duhH0bNhkB3jzHai7zsrWKctiE6AXN-gdsk9haM-_9Teq2Nyk05nRYmagaiDWoCoGYgiXFUg1fd28cVcnMrGFTB7E0OoexSVQkgmqujdIqoofpwgFzW5bMB7HSCesmKMUbKu3ee8u0VqUsw5wahqpC4uhpIqqX-V4X-Y_3PDh8UGFfCzgzTvgGDAujTPsNH9PeAXzLuuVA |
| CitedBy_id | crossref_primary_10_3390_en14237859 crossref_primary_10_1016_j_eswa_2020_114209 crossref_primary_10_1016_j_energy_2020_117525 crossref_primary_10_1016_j_procir_2020_01_078 crossref_primary_10_1109_ACCESS_2019_2922777 crossref_primary_10_1016_j_energy_2018_10_076 crossref_primary_10_1049_gtd2_12460 crossref_primary_10_3390_app9204237 crossref_primary_10_1016_j_ifacol_2023_10_1596 crossref_primary_10_1016_j_energy_2022_123550 crossref_primary_10_1007_s10973_023_12023_5 crossref_primary_10_1109_ACCESS_2021_3105654 crossref_primary_10_3233_JIFS_238850 |
| Cites_doi | 10.1093/rfs/4.4.727 10.1016/j.patrec.2005.10.010 10.1016/j.epsr.2016.08.031 10.1016/j.ijepes.2013.01.019 10.1016/j.jeconom.2008.11.001 10.1016/j.jclepro.2015.12.098 10.1016/B978-0-08-043877-1.50005-X 10.1016/j.aej.2011.01.015 10.5784/26-2-89 10.1109/59.910780 10.1016/j.enconman.2008.01.016 10.1016/j.rser.2011.08.014 10.1016/j.ijepes.2014.08.006 10.1016/j.ijepes.2005.11.006 10.1016/j.apenergy.2009.11.006 10.1109/TPWRS.2002.1007923 10.1109/59.962429 10.17159/2413-3051/2012/v23i3a3169 10.1109/59.852131 10.1109/TPWRS.2006.883666 10.1016/j.knosys.2012.08.015 10.1016/j.ijepes.2013.10.020 10.1016/j.apenergy.2014.04.016 |
| ContentType | Journal Article |
| Copyright | 2018 |
| Copyright_xml | – notice: 2018 |
| CorporateAuthor | Indiana Univ., Indianapolis, IN (United States) |
| CorporateAuthor_xml | – name: Indiana Univ., Indianapolis, IN (United States) |
| DBID | AAYXX CITATION 7S9 L.6 OIOZB OTOTI ADTOC UNPAY |
| DOI | 10.1016/j.energy.2018.04.117 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EndPage | 389 |
| ExternalDocumentID | 10.1016/j.energy.2018.04.117 1866826 10_1016_j_energy_2018_04_117 S0360544218307333 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6 AALMO ABPIF ABPTK AJBFU OIOZB OTOTI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c460t-152b8991484c4ff0229ed8b6f6835aacdb9f692bb87242d76997d627ade676e83 |
| IEDL.DBID | .~1 |
| ISSN | 0360-5442 1873-6785 |
| IngestDate | Sun Oct 26 04:04:06 EDT 2025 Fri May 19 00:40:21 EDT 2023 Mon Sep 29 03:36:30 EDT 2025 Wed Oct 01 01:34:52 EDT 2025 Thu Apr 24 23:06:11 EDT 2025 Fri Feb 23 02:49:39 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-152b8991484c4ff0229ed8b6f6835aacdb9f692bb87242d76997d627ade676e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 EE0007711 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Manufacturing Office |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S0360544218307333 |
| PQID | 2221034847 |
| PQPubID | 24069 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1016_j_energy_2018_04_117 osti_scitechconnect_1866826 proquest_miscellaneous_2221034847 crossref_citationtrail_10_1016_j_energy_2018_04_117 crossref_primary_10_1016_j_energy_2018_04_117 elsevier_sciencedirect_doi_10_1016_j_energy_2018_04_117 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-01 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Hyndman, Athanasopoulos (bib17) 2014 Laouafi, Mordjaoui, Dib (bib5) 2015 Feinberg, Genethliou (bib20) 2005 Fan, Xiao, Wang (bib24) 2014; 127 Widén, Wäckelgård (bib14) 2010; 87 Sigauke, Chikobvu (bib23) 2010; 26 Tang, Chen (bib33) 2009; 149 Zhang, Ye (bib10) 2011, November; vol. 3 Weron (bib32) 2006 Laouafi, Mordjaoui, Laouafi (bib9) 2015, May Amin-Naseri, Soroush (bib29) 2008; 49 Gonzalez-Romera, Jaramillo-Moran, Carmona-Fernandez (bib6) 2006; 21 Chikobvu, Sigauke (bib21) 2012; 23 Laouafi, Mordjaoui, Dib (bib4) 2014, December Sun, Li, Dababneh (bib30) 2016; 135 Almeshaiei, Soltan (bib31) 2011; 50 Fawcett (bib35) 2006; 27 Kalogirou (bib25) 2000 Abdel-Aal (bib28) 2006; 28 Balvers, Wu, Gilliland (bib34) 2000; 55 Li, Li, Xiong, Chai, Zhang (bib27) 2014; 55 Boroojeni, Amini, Bahrami, Iyengar, Sarwat, Karabasoglu (bib2) 2017; 142 Stein, Stein (bib13) 1991; 4 Islam (bib15) 2011; 8 Hippert, Pedreira, Souza (bib26) 2001; 16 Suganthi, Samuel (bib19) 2012; 16 IEA (bib1) 2015 Edward (bib12) 2014 Kandil, El-Debeiky, Hasanien (bib11) 2002; 17 Charytoniuk, Chen (bib3) 2000; 15 Jaramillo-Morán, González-Romera, Carmona-Fernández (bib7) 2013; 49 Lee, Hong (bib8) 2015; 64 Amjady (bib22) 2001; 16 Li, Guo, Li, Sun (bib16) 2013; 37 Alkhathami (bib18) 2015; 2 Hyndman (10.1016/j.energy.2018.04.117_bib17) 2014 Chikobvu (10.1016/j.energy.2018.04.117_bib21) 2012; 23 Fan (10.1016/j.energy.2018.04.117_bib24) 2014; 127 Sun (10.1016/j.energy.2018.04.117_bib30) 2016; 135 Amjady (10.1016/j.energy.2018.04.117_bib22) 2001; 16 Laouafi (10.1016/j.energy.2018.04.117_bib4) 2014 Feinberg (10.1016/j.energy.2018.04.117_bib20) 2005 Edward (10.1016/j.energy.2018.04.117_bib12) 2014 Almeshaiei (10.1016/j.energy.2018.04.117_bib31) 2011; 50 Jaramillo-Morán (10.1016/j.energy.2018.04.117_bib7) 2013; 49 Weron (10.1016/j.energy.2018.04.117_bib32) 2006 Li (10.1016/j.energy.2018.04.117_bib16) 2013; 37 Li (10.1016/j.energy.2018.04.117_bib27) 2014; 55 Balvers (10.1016/j.energy.2018.04.117_bib34) 2000; 55 Fawcett (10.1016/j.energy.2018.04.117_bib35) 2006; 27 Kandil (10.1016/j.energy.2018.04.117_bib11) 2002; 17 Lee (10.1016/j.energy.2018.04.117_bib8) 2015; 64 Tang (10.1016/j.energy.2018.04.117_bib33) 2009; 149 IEA (10.1016/j.energy.2018.04.117_bib1) 2015 Laouafi (10.1016/j.energy.2018.04.117_bib9) 2015 Islam (10.1016/j.energy.2018.04.117_bib15) 2011; 8 Zhang (10.1016/j.energy.2018.04.117_bib10) 2011; vol. 3 Laouafi (10.1016/j.energy.2018.04.117_bib5) 2015 Kalogirou (10.1016/j.energy.2018.04.117_bib25) 2000 Alkhathami (10.1016/j.energy.2018.04.117_bib18) 2015; 2 Gonzalez-Romera (10.1016/j.energy.2018.04.117_bib6) 2006; 21 Charytoniuk (10.1016/j.energy.2018.04.117_bib3) 2000; 15 Abdel-Aal (10.1016/j.energy.2018.04.117_bib28) 2006; 28 Sigauke (10.1016/j.energy.2018.04.117_bib23) 2010; 26 Hippert (10.1016/j.energy.2018.04.117_bib26) 2001; 16 Widén (10.1016/j.energy.2018.04.117_bib14) 2010; 87 Amin-Naseri (10.1016/j.energy.2018.04.117_bib29) 2008; 49 Stein (10.1016/j.energy.2018.04.117_bib13) 1991; 4 Suganthi (10.1016/j.energy.2018.04.117_bib19) 2012; 16 Boroojeni (10.1016/j.energy.2018.04.117_bib2) 2017; 142 |
| References_xml | – start-page: 1 year: 2015, May end-page: 6 ident: bib9 article-title: An evaluation of conventional and computational intelligence methods for medium and long-term load forecasting in Algeria publication-title: Control, engineering & information technology (CEIT), 2015 3rd international conference on – volume: 16 start-page: 44 year: 2001 end-page: 55 ident: bib26 article-title: Neural networks for short-term load forecasting: a review and evaluation publication-title: IEEE Trans Power Syst – volume: 21 start-page: 1946 year: 2006 end-page: 1953 ident: bib6 article-title: Monthly electric energy demand forecasting based on trend extraction publication-title: IEEE Trans Power Syst – start-page: 553 year: 2014, December end-page: 557 ident: bib4 article-title: Very short-term electricity demand forecasting using adaptive exponential smoothing methods publication-title: Sciences and techniques of automatic control and computer engineering (STA), 2014 15th international conference on – start-page: 95 year: 2015 end-page: 121 ident: bib5 article-title: One-hour ahead electric load forecasting using neuro-fuzzy system in a parallel approach publication-title: Computational intelligence applications in modeling and control – volume: 23 start-page: 23 year: 2012 end-page: 30 ident: bib21 article-title: Regression-SARIMA modelling of daily peak electricity demand in South Africa publication-title: J Energy South Afr – volume: 135 start-page: 1650 year: 2016 end-page: 1657 ident: bib30 article-title: Plant-level electricity demand response for combined manufacturing system and heating, venting, and air-conditioning (HVAC) system publication-title: J Clean Prod – start-page: 67 year: 2006 end-page: 100 ident: bib32 article-title: Modeling and forecasting electricity loads publication-title: Modeling and forecasting electricity loads and prices: a statistical approach – volume: 2 start-page: 1 year: 2015 end-page: 12 ident: bib18 article-title: Introduction to electric load forecasting methods publication-title: J Adv Electr Comput Eng – volume: 87 start-page: 1880 year: 2010 end-page: 1892 ident: bib14 article-title: A high-resolution stochastic model of domestic activity patterns and electricity demand publication-title: Appl Energy – volume: 49 start-page: 253 year: 2013 end-page: 263 ident: bib7 article-title: Monthly electric demand forecasting with neural filters publication-title: Int J Electr Power Energy Syst – year: 2015 ident: bib1 article-title: World energy outlook 2015 – volume: 64 start-page: 1057 year: 2015 end-page: 1062 ident: bib8 article-title: A hybrid dynamic and fuzzy time series model for mid-term power load forecasting publication-title: Int J Electr Power Energy Syst – volume: 55 start-page: 745 year: 2000 end-page: 772 ident: bib34 article-title: Mean reversion across national stock markets and parametric contrarian investment strategies publication-title: J Finance – year: 2014 ident: bib12 article-title: Mean-reverting stochastic models for the electricity spot market – volume: 17 start-page: 491 year: 2002 end-page: 496 ident: bib11 article-title: Long-term load forecasting for fast developing utility using a knowledge-based expert system publication-title: IEEE Trans Power Syst – volume: 15 start-page: 263 year: 2000 end-page: 268 ident: bib3 article-title: Very short-term load forecasting using artificial neural networks publication-title: IEEE Trans Power Syst – volume: 4 start-page: 727 year: 1991 end-page: 752 ident: bib13 article-title: Stock price distributions with stochastic volatility: an analytic approach publication-title: Rev Financ Stud – start-page: 17 year: 2000 end-page: 35 ident: bib25 article-title: Applications of artificial neural-networks for energy systems publication-title: Energy Syst – volume: 55 start-page: 749 year: 2014 end-page: 759 ident: bib27 article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting publication-title: Int J Electr Power Energy Syst – start-page: 269 year: 2005 end-page: 285 ident: bib20 article-title: Load forecasting publication-title: Applied mathematics for restructured electric power systems – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: bib35 article-title: An introduction to ROC analysis publication-title: Pattern Recogn Lett – start-page: 120 year: 2014 end-page: 125 ident: bib17 article-title: Forecasting: principles and practice – volume: 50 start-page: 137 year: 2011 end-page: 144 ident: bib31 article-title: A methodology for electric power load forecasting publication-title: Alexandria Eng J – volume: 142 start-page: 58 year: 2017 end-page: 73 ident: bib2 article-title: A novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-term horizon publication-title: Elec Power Syst Res – volume: 8 year: 2011 ident: bib15 article-title: Comparison of conventional and modern load forecasting techniques based on artificial intelligence and expert systems publication-title: Int J Comput Sci Iss – volume: 37 start-page: 378 year: 2013 end-page: 387 ident: bib16 article-title: A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm publication-title: Knowl Base Syst – volume: vol. 3 start-page: 597 year: 2011, November end-page: 602 ident: bib10 article-title: Long term load forecasting and recommendations for China based on support vector regression publication-title: Information management, innovation management and industrial engineering (ICIII), 2011 international conference on – volume: 26 year: 2010 ident: bib23 article-title: Daily peak electricity load forecasting in South Africa using a multivariate non-parametric regression approach publication-title: Orion – volume: 28 start-page: 133 year: 2006 end-page: 141 ident: bib28 article-title: Modeling and forecasting electric daily peak loads using abductive networks publication-title: Int J Electr Power Energy Syst – volume: 16 start-page: 1223 year: 2012 end-page: 1240 ident: bib19 article-title: Energy models for demand forecasting—a review publication-title: Renew Sustain Energy Rev – volume: 16 start-page: 798 year: 2001 end-page: 805 ident: bib22 article-title: Short-term hourly load forecasting using time-series modeling with peak load estimation capability publication-title: IEEE Trans Power Syst – volume: 49 start-page: 1302 year: 2008 end-page: 1308 ident: bib29 article-title: Combined use of unsupervised and supervised learning for daily peak load forecasting publication-title: Energy Convers Manag – volume: 127 start-page: 1 year: 2014 end-page: 10 ident: bib24 article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques publication-title: Appl Energy – volume: 149 start-page: 65 year: 2009 end-page: 68 ident: bib33 article-title: Parameter estimation and bias correction for diffusion processes publication-title: J Econom – volume: 4 start-page: 727 issue: 4 year: 1991 ident: 10.1016/j.energy.2018.04.117_bib13 article-title: Stock price distributions with stochastic volatility: an analytic approach publication-title: Rev Financ Stud doi: 10.1093/rfs/4.4.727 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.energy.2018.04.117_bib35 article-title: An introduction to ROC analysis publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.10.010 – volume: 142 start-page: 58 year: 2017 ident: 10.1016/j.energy.2018.04.117_bib2 article-title: A novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-term horizon publication-title: Elec Power Syst Res doi: 10.1016/j.epsr.2016.08.031 – start-page: 269 year: 2005 ident: 10.1016/j.energy.2018.04.117_bib20 article-title: Load forecasting – start-page: 67 year: 2006 ident: 10.1016/j.energy.2018.04.117_bib32 article-title: Modeling and forecasting electricity loads – volume: 49 start-page: 253 year: 2013 ident: 10.1016/j.energy.2018.04.117_bib7 article-title: Monthly electric demand forecasting with neural filters publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.01.019 – volume: 149 start-page: 65 issue: 1 year: 2009 ident: 10.1016/j.energy.2018.04.117_bib33 article-title: Parameter estimation and bias correction for diffusion processes publication-title: J Econom doi: 10.1016/j.jeconom.2008.11.001 – volume: 135 start-page: 1650 year: 2016 ident: 10.1016/j.energy.2018.04.117_bib30 article-title: Plant-level electricity demand response for combined manufacturing system and heating, venting, and air-conditioning (HVAC) system publication-title: J Clean Prod doi: 10.1016/j.jclepro.2015.12.098 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.energy.2018.04.117_bib18 article-title: Introduction to electric load forecasting methods publication-title: J Adv Electr Comput Eng – year: 2015 ident: 10.1016/j.energy.2018.04.117_bib1 – start-page: 1 year: 2015 ident: 10.1016/j.energy.2018.04.117_bib9 article-title: An evaluation of conventional and computational intelligence methods for medium and long-term load forecasting in Algeria – volume: vol. 3 start-page: 597 year: 2011 ident: 10.1016/j.energy.2018.04.117_bib10 article-title: Long term load forecasting and recommendations for China based on support vector regression – start-page: 120 year: 2014 ident: 10.1016/j.energy.2018.04.117_bib17 – start-page: 17 year: 2000 ident: 10.1016/j.energy.2018.04.117_bib25 article-title: Applications of artificial neural-networks for energy systems publication-title: Energy Syst doi: 10.1016/B978-0-08-043877-1.50005-X – volume: 50 start-page: 137 issue: 2 year: 2011 ident: 10.1016/j.energy.2018.04.117_bib31 article-title: A methodology for electric power load forecasting publication-title: Alexandria Eng J doi: 10.1016/j.aej.2011.01.015 – year: 2014 ident: 10.1016/j.energy.2018.04.117_bib12 – volume: 26 issue: 2 year: 2010 ident: 10.1016/j.energy.2018.04.117_bib23 article-title: Daily peak electricity load forecasting in South Africa using a multivariate non-parametric regression approach publication-title: Orion doi: 10.5784/26-2-89 – start-page: 553 year: 2014 ident: 10.1016/j.energy.2018.04.117_bib4 article-title: Very short-term electricity demand forecasting using adaptive exponential smoothing methods – start-page: 95 year: 2015 ident: 10.1016/j.energy.2018.04.117_bib5 article-title: One-hour ahead electric load forecasting using neuro-fuzzy system in a parallel approach – volume: 16 start-page: 44 issue: 1 year: 2001 ident: 10.1016/j.energy.2018.04.117_bib26 article-title: Neural networks for short-term load forecasting: a review and evaluation publication-title: IEEE Trans Power Syst doi: 10.1109/59.910780 – volume: 49 start-page: 1302 issue: 6 year: 2008 ident: 10.1016/j.energy.2018.04.117_bib29 article-title: Combined use of unsupervised and supervised learning for daily peak load forecasting publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2008.01.016 – volume: 16 start-page: 1223 issue: 2 year: 2012 ident: 10.1016/j.energy.2018.04.117_bib19 article-title: Energy models for demand forecasting—a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.08.014 – volume: 64 start-page: 1057 year: 2015 ident: 10.1016/j.energy.2018.04.117_bib8 article-title: A hybrid dynamic and fuzzy time series model for mid-term power load forecasting publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.08.006 – volume: 28 start-page: 133 issue: 2 year: 2006 ident: 10.1016/j.energy.2018.04.117_bib28 article-title: Modeling and forecasting electric daily peak loads using abductive networks publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2005.11.006 – volume: 87 start-page: 1880 issue: 6 year: 2010 ident: 10.1016/j.energy.2018.04.117_bib14 article-title: A high-resolution stochastic model of domestic activity patterns and electricity demand publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.11.006 – volume: 17 start-page: 491 issue: 2 year: 2002 ident: 10.1016/j.energy.2018.04.117_bib11 article-title: Long-term load forecasting for fast developing utility using a knowledge-based expert system publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2002.1007923 – volume: 16 start-page: 798 issue: 4 year: 2001 ident: 10.1016/j.energy.2018.04.117_bib22 article-title: Short-term hourly load forecasting using time-series modeling with peak load estimation capability publication-title: IEEE Trans Power Syst doi: 10.1109/59.962429 – volume: 23 start-page: 23 issue: 3 year: 2012 ident: 10.1016/j.energy.2018.04.117_bib21 article-title: Regression-SARIMA modelling of daily peak electricity demand in South Africa publication-title: J Energy South Afr doi: 10.17159/2413-3051/2012/v23i3a3169 – volume: 8 issue: 5 year: 2011 ident: 10.1016/j.energy.2018.04.117_bib15 article-title: Comparison of conventional and modern load forecasting techniques based on artificial intelligence and expert systems publication-title: Int J Comput Sci Iss – volume: 15 start-page: 263 issue: 1 year: 2000 ident: 10.1016/j.energy.2018.04.117_bib3 article-title: Very short-term load forecasting using artificial neural networks publication-title: IEEE Trans Power Syst doi: 10.1109/59.852131 – volume: 21 start-page: 1946 issue: 4 year: 2006 ident: 10.1016/j.energy.2018.04.117_bib6 article-title: Monthly electric energy demand forecasting based on trend extraction publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2006.883666 – volume: 37 start-page: 378 year: 2013 ident: 10.1016/j.energy.2018.04.117_bib16 article-title: A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm publication-title: Knowl Base Syst doi: 10.1016/j.knosys.2012.08.015 – volume: 55 start-page: 745 issue: 2 year: 2000 ident: 10.1016/j.energy.2018.04.117_bib34 article-title: Mean reversion across national stock markets and parametric contrarian investment strategies publication-title: J Finance – volume: 55 start-page: 749 year: 2014 ident: 10.1016/j.energy.2018.04.117_bib27 article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.10.020 – volume: 127 start-page: 1 year: 2014 ident: 10.1016/j.energy.2018.04.117_bib24 article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.04.016 |
| SSID | ssj0005899 |
| Score | 2.3336112 |
| Snippet | This paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in... |
| SourceID | unpaywall osti proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 383 |
| SubjectTerms | algorithms consumers (people) cost control Electrical maximum demand energy efficiency half life Load forecast manufacturing Peak shaving POWER TRANSMISSION AND DISTRIBUTION prediction seasonal variation Stochastic model stochastic processes |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aFceBQqlkJlJK7ezcNxkt5Wq1ZVJSoELCqnyK9AIJusugm0_HpmNkmhCKkgjrFmrNgzHn8jzwPgJeVqSh0b7qOycKFNylNjHbdeooyJhecCSnB-dSZPFuL0PDrfgvmQC0Nhlb3t72z6xlr3I9N-N6eropi-RduLeEPQHU-dB8M7sC0jBOQj2F6cvZ596F4pPU405HYlccjRNEdDAt0mysttMuwoxCuhkqf-pnHZHy-oUY1n7gYO3Wmrlbr6psrylyvp-D7YYTFdJMqXSdvoifn-W53H_1ztA7jXQ1Y26-gewpardmFnyGhe78Le0c9sOSTszcX6EbyfvZkzVX6sL4rm0_KQzVhVf3UlGwqZs6ZmCJqdUeuGqcqyLpaWWVWUV6zr0ENKhOOXxbJdMuuQwj6GxfHRu_kJ7xs5cCOk13DECBr9OvS8hBF5jrAhdTbRMpeI_5QyVqe5TAOtkxgRg41lmsZWBrGyTsbSJeEejKq6ck-ACRdEIbpAkZcnIlACJwp0RKlY1jcm98cQDtLLTF_lnJptlNkQzvY562SekcwzT1C58zHwa65VV-XjFvp4UIzshvwyvIhu4dwnPSIuKtJrKJoJ2ajsIDp6Y3gxqFeGx5zeblTl6nadIYzzvRA3EGeYXOvdX_3s039l2Ie79NUFJT-DUXPRuucIvRp90B-tH054LAM priority: 102 providerName: Unpaywall |
| Title | ARC algorithm: A novel approach to forecast and manage daily electrical maximum demand |
| URI | https://dx.doi.org/10.1016/j.energy.2018.04.117 https://www.proquest.com/docview/2221034847 https://www.osti.gov/servlets/purl/1866826 https://www.sciencedirect.com/science/article/pii/S0360544218307333 |
| UnpaywallVersion | publishedVersion |
| Volume | 154 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_K-VBfRPuBZ7Ws4Ov2ktzebuJbOFpOpYeoV9qnZb-ikVxy9HJqX_zbnclHP6DQ4lNImFmWmdmZWTLzG0LeYa-mMNKyEIyFcWMTlljnmQtiba3kgY-wwfl0LmYL_vF8cr5Fpn0vDJZVdr6_9emNt-6-jDppjlZ5PvoKvhfyDY4xHicPIuIn5xKnGBz9vVXmETczJJGYIXXfPtfUePmmvw4LvGIEPA2bsWX3hqdBBSfuTha6vSlX-uq3LopbAenkOXnWZZI0bTf7gmz5cods943G6x2yf3zTxAaE3Sle75Kz9MuU6uJ7dZnXP5bvaUrL6pcvaI8vTuuKQi7rrV7XVJeOtiWu1Om8uKLt4BzULXz_ky83S-o8ULg9sjg5_jadsW6-ArNcBDWD0G1AOnAh4pZnGUTzxLvYiExAWqa1dSbJRBIZE0sI5E6KJJFORFI7L6Tw8XifDMqq9C8J5T6ajOFmMgmymEeaw0KRmWCHlAutzcIhGfdiVbYDH8cZGIXqq8x-qlYZCpWhAo4o5EPCrrlWLfjGA_Sy15i6Y0QK4sMDnAeoYORC7FyLRUbAhmiAcP8akre93hWcPvyloktfbdYKsqswGIMAYYWja4N41GZf_fdmD8hTfGuLhl-TQX258W8gNarNYWP7h-RJ-uHTbA7PxfxzevEP-R8O5w |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKclguCAoVS3kYiau7eTh2wm21arVA2wO0qDfLr5SgbLLqZlt64bczk0dpJaQirs6MZXk8L-WbGULeY62mMNKyEB4L48ZmLLPOMxek2lrJAx9hgfPRsVic8k9nydkWmQ-1MAir7G1_Z9Nba92vTPvbnK6KYvoVbC_EGxx9PE4ejB-QhzyJJGZge79u4TzSdogkUjMkH-rnWpCXbwvsEOGVYsfTsJ1b9lf_NKpB5e6EoeNNtdLXV7osb3mkgyfkcR9K0ll32qdky1fbZDxUGq-3yc7-nyo2IOzVeP2MfJt9mVNdntcXRfN9-YHOaFVf-pIODcZpU1MIZr3V64bqytEO40qdLspr2k3OQeHC-s9iuVlS54HCPSenB_sn8wXrBywwy0XQMPDdBm4HMiJueZ6DO8-8S43IBcRlWltnslxkkTGpBE_upMgy6UQktfNCCp_GO2RU1ZV_QSj3URJDapIEecojzWGjyCRYIuVCa_NwQuLhWpXtu4_jEIxSDTCzH6oThkJhqIBjG_IJYTdcq677xj30cpCYuvOKFDiIezh3UcDIhc1zLaKMgA3bAUICNiHvBrkrUD_8p6IrX2_WCsKrMIjhAmGHvZsH8U-Hffnfh31LxouTo0N1-PH48y55hF86BPErMmouNv41xEmNedPqwW-mUQ7M |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aFceBQqlkJlJK7ezcNxkt5Wq1ZVJSoELCqnyK9AIJusugm0_HpmNkmhCKkgjrFmrNgzHn8jzwPgJeVqSh0b7qOycKFNylNjHbdeooyJhecCSnB-dSZPFuL0PDrfgvmQC0Nhlb3t72z6xlr3I9N-N6eropi-RduLeEPQHU-dB8M7sC0jBOQj2F6cvZ596F4pPU405HYlccjRNEdDAt0mysttMuwoxCuhkqf-pnHZHy-oUY1n7gYO3Wmrlbr6psrylyvp-D7YYTFdJMqXSdvoifn-W53H_1ztA7jXQ1Y26-gewpardmFnyGhe78Le0c9sOSTszcX6EbyfvZkzVX6sL4rm0_KQzVhVf3UlGwqZs6ZmCJqdUeuGqcqyLpaWWVWUV6zr0ENKhOOXxbJdMuuQwj6GxfHRu_kJ7xs5cCOk13DECBr9OvS8hBF5jrAhdTbRMpeI_5QyVqe5TAOtkxgRg41lmsZWBrGyTsbSJeEejKq6ck-ACRdEIbpAkZcnIlACJwp0RKlY1jcm98cQDtLLTF_lnJptlNkQzvY562SekcwzT1C58zHwa65VV-XjFvp4UIzshvwyvIhu4dwnPSIuKtJrKJoJ2ajsIDp6Y3gxqFeGx5zeblTl6nadIYzzvRA3EGeYXOvdX_3s039l2Ie79NUFJT-DUXPRuucIvRp90B-tH054LAM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARC+algorithm%3A+A+novel+approach+to+forecast+and+manage+daily+electrical+maximum+demand&rft.jtitle=Energy+%28Oxford%29&rft.au=Wu%2C+Da-Chun&rft.au=Amini%2C+Amin&rft.au=Razban%2C+Ali&rft.au=Chen%2C+Jie&rft.date=2018-07-01&rft.issn=0360-5442&rft.volume=154&rft.spage=383&rft.epage=389&rft_id=info:doi/10.1016%2Fj.energy.2018.04.117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2018_04_117 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |