ARC algorithm: A novel approach to forecast and manage daily electrical maximum demand

This paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in peak demand pattern for commercial or industrial customers would propose numerous direct and indirect benefits to the customers and utility pro...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 154; pp. 383 - 389
Main Authors Wu, Da-Chun, Amini, Amin, Razban, Ali, Chen, Jie
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.07.2018
Elsevier
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2018.04.117

Cover

Abstract This paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in peak demand pattern for commercial or industrial customers would propose numerous direct and indirect benefits to the customers and utility providers in terms of demand reduction, cost control, and system stability. Prior works in electrical maximum demand forecasting have been mainly focused on seasonal effects, which is not a feasible approach for industrial manufacturing facilities in short-term load forecasting. The proposed algorithm, denoted as the Adaptive Rate of Change (ARC), determines the logarithmic rate-of-change in load profile prior to a peak by postulating the demand curve as a stochastic, mean-reverting process. The rationale behind this analysis, is that the energy efficient program requires not only demand estimation but also to warn the user of imminent maximum peak occurrence. This paper analyzes demand trend data and incorporates stochastic model and mean reverting half-life to develop an electrical maximum demand forecasting algorithm, which is statistically evaluated by cross-table and F-score for three different manufacturing facilities. The aggregate results show an overall accuracy of 0.91 and a F-score of 0.43, which indicates that the algorithm is effective predicting peak demand in predicting peak demand. •Novel method to forecast the occurrence of daily maximum demand.•Electrical demand pattern can be regarded as a mean reversion process.•The algorithm requires only the historical demand data.•The algorithm works best on patterns with distinct peak occurrences.
AbstractList This paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in peak demand pattern for commercial or industrial customers would propose numerous direct and indirect benefits to the customers and utility providers in terms of demand reduction, cost control, and system stability. Prior works in electrical maximum demand forecasting have been mainly focused on seasonal effects, which is not a feasible approach for industrial manufacturing facilities in short-term load forecasting. The proposed algorithm, denoted as the Adaptive Rate of Change (ARC), determines the logarithmic rate-of-change in load profile prior to a peak by postulating the demand curve as a stochastic, mean-reverting process. The rationale behind this analysis, is that the energy efficient program requires not only demand estimation but also to warn the user of imminent maximum peak occurrence. This paper analyzes demand trend data and incorporates stochastic model and mean reverting half-life to develop an electrical maximum demand forecasting algorithm, which is statistically evaluated by cross-table and F-score for three different manufacturing facilities. The aggregate results show an overall accuracy of 0.91 and a F-score of 0.43, which indicates that the algorithm is effective predicting peak demand in predicting peak demand.
This paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in peak demand pattern for commercial or industrial customers would propose numerous direct and indirect benefits to the customers and utility providers in terms of demand reduction, cost control, and system stability. Prior works in electrical maximum demand forecasting have been mainly focused on seasonal effects, which is not a feasible approach for industrial manufacturing facilities in short-term load forecasting. The proposed algorithm, denoted as the Adaptive Rate of Change (ARC), determines the logarithmic rate-of-change in load profile prior to a peak by postulating the demand curve as a stochastic, mean-reverting process. The rationale behind this analysis, is that the energy efficient program requires not only demand estimation but also to warn the user of imminent maximum peak occurrence. This paper analyzes demand trend data and incorporates stochastic model and mean reverting half-life to develop an electrical maximum demand forecasting algorithm, which is statistically evaluated by cross-table and F-score for three different manufacturing facilities. Lastly, the aggregate results show an overall accuracy of 0.91 and a F-score of 0.43, which indicates that the algorithm is effective predicting peak demand in predicting peak demand.
This paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in peak demand pattern for commercial or industrial customers would propose numerous direct and indirect benefits to the customers and utility providers in terms of demand reduction, cost control, and system stability. Prior works in electrical maximum demand forecasting have been mainly focused on seasonal effects, which is not a feasible approach for industrial manufacturing facilities in short-term load forecasting. The proposed algorithm, denoted as the Adaptive Rate of Change (ARC), determines the logarithmic rate-of-change in load profile prior to a peak by postulating the demand curve as a stochastic, mean-reverting process. The rationale behind this analysis, is that the energy efficient program requires not only demand estimation but also to warn the user of imminent maximum peak occurrence. This paper analyzes demand trend data and incorporates stochastic model and mean reverting half-life to develop an electrical maximum demand forecasting algorithm, which is statistically evaluated by cross-table and F-score for three different manufacturing facilities. The aggregate results show an overall accuracy of 0.91 and a F-score of 0.43, which indicates that the algorithm is effective predicting peak demand in predicting peak demand. •Novel method to forecast the occurrence of daily maximum demand.•Electrical demand pattern can be regarded as a mean reversion process.•The algorithm requires only the historical demand data.•The algorithm works best on patterns with distinct peak occurrences.
Author Amini, Amin
Razban, Ali
Chen, Jie
Wu, Da-Chun
Author_xml – sequence: 1
  givenname: Da-Chun
  surname: Wu
  fullname: Wu, Da-Chun
– sequence: 2
  givenname: Amin
  surname: Amini
  fullname: Amini, Amin
– sequence: 3
  givenname: Ali
  surname: Razban
  fullname: Razban, Ali
  email: arazban@iupui.edu
– sequence: 4
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
BackLink https://www.osti.gov/servlets/purl/1866826$$D View this record in Osti.gov
BookMark eNqNkEtrGzEUhbVIIY_mH3QhuurGU0nWaDRZFIzpIxAolKRboZHu2DIayZXkNP731TBdddF2deFyzuGc7xpdhBgAoTeUNJRQ8f7QQIC0OzeMUNkQ3lDaXaArshZk1XLOLtF1zgdCSCv7_gp933zbYu13Mbmyn-7wBof4DB7r4zFFbfa4RDzGBEbngnWweNJB7wBb7fwZgwdTkjPa1_-Lm04TtlAV9jV6NWqf4fb3vUFPnz4-br-sHr5-vt9uHlaGC1JWtGVDrUG55IaPI2GsBysHMQq5brU2duhH0bNhkB3jzHai7zsrWKctiE6AXN-gdsk9haM-_9Teq2Nyk05nRYmagaiDWoCoGYgiXFUg1fd28cVcnMrGFTB7E0OoexSVQkgmqujdIqoofpwgFzW5bMB7HSCesmKMUbKu3ee8u0VqUsw5wahqpC4uhpIqqX-V4X-Y_3PDh8UGFfCzgzTvgGDAujTPsNH9PeAXzLuuVA
CitedBy_id crossref_primary_10_3390_en14237859
crossref_primary_10_1016_j_eswa_2020_114209
crossref_primary_10_1016_j_energy_2020_117525
crossref_primary_10_1016_j_procir_2020_01_078
crossref_primary_10_1109_ACCESS_2019_2922777
crossref_primary_10_1016_j_energy_2018_10_076
crossref_primary_10_1049_gtd2_12460
crossref_primary_10_3390_app9204237
crossref_primary_10_1016_j_ifacol_2023_10_1596
crossref_primary_10_1016_j_energy_2022_123550
crossref_primary_10_1007_s10973_023_12023_5
crossref_primary_10_1109_ACCESS_2021_3105654
crossref_primary_10_3233_JIFS_238850
Cites_doi 10.1093/rfs/4.4.727
10.1016/j.patrec.2005.10.010
10.1016/j.epsr.2016.08.031
10.1016/j.ijepes.2013.01.019
10.1016/j.jeconom.2008.11.001
10.1016/j.jclepro.2015.12.098
10.1016/B978-0-08-043877-1.50005-X
10.1016/j.aej.2011.01.015
10.5784/26-2-89
10.1109/59.910780
10.1016/j.enconman.2008.01.016
10.1016/j.rser.2011.08.014
10.1016/j.ijepes.2014.08.006
10.1016/j.ijepes.2005.11.006
10.1016/j.apenergy.2009.11.006
10.1109/TPWRS.2002.1007923
10.1109/59.962429
10.17159/2413-3051/2012/v23i3a3169
10.1109/59.852131
10.1109/TPWRS.2006.883666
10.1016/j.knosys.2012.08.015
10.1016/j.ijepes.2013.10.020
10.1016/j.apenergy.2014.04.016
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
CorporateAuthor Indiana Univ., Indianapolis, IN (United States)
CorporateAuthor_xml – name: Indiana Univ., Indianapolis, IN (United States)
DBID AAYXX
CITATION
7S9
L.6
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1016/j.energy.2018.04.117
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EndPage 389
ExternalDocumentID 10.1016/j.energy.2018.04.117
1866826
10_1016_j_energy_2018_04_117
S0360544218307333
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
AALMO
ABPIF
ABPTK
AJBFU
OIOZB
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c460t-152b8991484c4ff0229ed8b6f6835aacdb9f692bb87242d76997d627ade676e83
IEDL.DBID .~1
ISSN 0360-5442
1873-6785
IngestDate Sun Oct 26 04:04:06 EDT 2025
Fri May 19 00:40:21 EDT 2023
Mon Sep 29 03:36:30 EDT 2025
Wed Oct 01 01:34:52 EDT 2025
Thu Apr 24 23:06:11 EDT 2025
Fri Feb 23 02:49:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-152b8991484c4ff0229ed8b6f6835aacdb9f692bb87242d76997d627ade676e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
EE0007711
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Manufacturing Office
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S0360544218307333
PQID 2221034847
PQPubID 24069
PageCount 7
ParticipantIDs unpaywall_primary_10_1016_j_energy_2018_04_117
osti_scitechconnect_1866826
proquest_miscellaneous_2221034847
crossref_citationtrail_10_1016_j_energy_2018_04_117
crossref_primary_10_1016_j_energy_2018_04_117
elsevier_sciencedirect_doi_10_1016_j_energy_2018_04_117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Energy (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hyndman, Athanasopoulos (bib17) 2014
Laouafi, Mordjaoui, Dib (bib5) 2015
Feinberg, Genethliou (bib20) 2005
Fan, Xiao, Wang (bib24) 2014; 127
Widén, Wäckelgård (bib14) 2010; 87
Sigauke, Chikobvu (bib23) 2010; 26
Tang, Chen (bib33) 2009; 149
Zhang, Ye (bib10) 2011, November; vol. 3
Weron (bib32) 2006
Laouafi, Mordjaoui, Laouafi (bib9) 2015, May
Amin-Naseri, Soroush (bib29) 2008; 49
Gonzalez-Romera, Jaramillo-Moran, Carmona-Fernandez (bib6) 2006; 21
Chikobvu, Sigauke (bib21) 2012; 23
Laouafi, Mordjaoui, Dib (bib4) 2014, December
Sun, Li, Dababneh (bib30) 2016; 135
Almeshaiei, Soltan (bib31) 2011; 50
Fawcett (bib35) 2006; 27
Kalogirou (bib25) 2000
Abdel-Aal (bib28) 2006; 28
Balvers, Wu, Gilliland (bib34) 2000; 55
Li, Li, Xiong, Chai, Zhang (bib27) 2014; 55
Boroojeni, Amini, Bahrami, Iyengar, Sarwat, Karabasoglu (bib2) 2017; 142
Stein, Stein (bib13) 1991; 4
Islam (bib15) 2011; 8
Hippert, Pedreira, Souza (bib26) 2001; 16
Suganthi, Samuel (bib19) 2012; 16
IEA (bib1) 2015
Edward (bib12) 2014
Kandil, El-Debeiky, Hasanien (bib11) 2002; 17
Charytoniuk, Chen (bib3) 2000; 15
Jaramillo-Morán, González-Romera, Carmona-Fernández (bib7) 2013; 49
Lee, Hong (bib8) 2015; 64
Amjady (bib22) 2001; 16
Li, Guo, Li, Sun (bib16) 2013; 37
Alkhathami (bib18) 2015; 2
Hyndman (10.1016/j.energy.2018.04.117_bib17) 2014
Chikobvu (10.1016/j.energy.2018.04.117_bib21) 2012; 23
Fan (10.1016/j.energy.2018.04.117_bib24) 2014; 127
Sun (10.1016/j.energy.2018.04.117_bib30) 2016; 135
Amjady (10.1016/j.energy.2018.04.117_bib22) 2001; 16
Laouafi (10.1016/j.energy.2018.04.117_bib4) 2014
Feinberg (10.1016/j.energy.2018.04.117_bib20) 2005
Edward (10.1016/j.energy.2018.04.117_bib12) 2014
Almeshaiei (10.1016/j.energy.2018.04.117_bib31) 2011; 50
Jaramillo-Morán (10.1016/j.energy.2018.04.117_bib7) 2013; 49
Weron (10.1016/j.energy.2018.04.117_bib32) 2006
Li (10.1016/j.energy.2018.04.117_bib16) 2013; 37
Li (10.1016/j.energy.2018.04.117_bib27) 2014; 55
Balvers (10.1016/j.energy.2018.04.117_bib34) 2000; 55
Fawcett (10.1016/j.energy.2018.04.117_bib35) 2006; 27
Kandil (10.1016/j.energy.2018.04.117_bib11) 2002; 17
Lee (10.1016/j.energy.2018.04.117_bib8) 2015; 64
Tang (10.1016/j.energy.2018.04.117_bib33) 2009; 149
IEA (10.1016/j.energy.2018.04.117_bib1) 2015
Laouafi (10.1016/j.energy.2018.04.117_bib9) 2015
Islam (10.1016/j.energy.2018.04.117_bib15) 2011; 8
Zhang (10.1016/j.energy.2018.04.117_bib10) 2011; vol. 3
Laouafi (10.1016/j.energy.2018.04.117_bib5) 2015
Kalogirou (10.1016/j.energy.2018.04.117_bib25) 2000
Alkhathami (10.1016/j.energy.2018.04.117_bib18) 2015; 2
Gonzalez-Romera (10.1016/j.energy.2018.04.117_bib6) 2006; 21
Charytoniuk (10.1016/j.energy.2018.04.117_bib3) 2000; 15
Abdel-Aal (10.1016/j.energy.2018.04.117_bib28) 2006; 28
Sigauke (10.1016/j.energy.2018.04.117_bib23) 2010; 26
Hippert (10.1016/j.energy.2018.04.117_bib26) 2001; 16
Widén (10.1016/j.energy.2018.04.117_bib14) 2010; 87
Amin-Naseri (10.1016/j.energy.2018.04.117_bib29) 2008; 49
Stein (10.1016/j.energy.2018.04.117_bib13) 1991; 4
Suganthi (10.1016/j.energy.2018.04.117_bib19) 2012; 16
Boroojeni (10.1016/j.energy.2018.04.117_bib2) 2017; 142
References_xml – start-page: 1
  year: 2015, May
  end-page: 6
  ident: bib9
  article-title: An evaluation of conventional and computational intelligence methods for medium and long-term load forecasting in Algeria
  publication-title: Control, engineering & information technology (CEIT), 2015 3rd international conference on
– volume: 16
  start-page: 44
  year: 2001
  end-page: 55
  ident: bib26
  article-title: Neural networks for short-term load forecasting: a review and evaluation
  publication-title: IEEE Trans Power Syst
– volume: 21
  start-page: 1946
  year: 2006
  end-page: 1953
  ident: bib6
  article-title: Monthly electric energy demand forecasting based on trend extraction
  publication-title: IEEE Trans Power Syst
– start-page: 553
  year: 2014, December
  end-page: 557
  ident: bib4
  article-title: Very short-term electricity demand forecasting using adaptive exponential smoothing methods
  publication-title: Sciences and techniques of automatic control and computer engineering (STA), 2014 15th international conference on
– start-page: 95
  year: 2015
  end-page: 121
  ident: bib5
  article-title: One-hour ahead electric load forecasting using neuro-fuzzy system in a parallel approach
  publication-title: Computational intelligence applications in modeling and control
– volume: 23
  start-page: 23
  year: 2012
  end-page: 30
  ident: bib21
  article-title: Regression-SARIMA modelling of daily peak electricity demand in South Africa
  publication-title: J Energy South Afr
– volume: 135
  start-page: 1650
  year: 2016
  end-page: 1657
  ident: bib30
  article-title: Plant-level electricity demand response for combined manufacturing system and heating, venting, and air-conditioning (HVAC) system
  publication-title: J Clean Prod
– start-page: 67
  year: 2006
  end-page: 100
  ident: bib32
  article-title: Modeling and forecasting electricity loads
  publication-title: Modeling and forecasting electricity loads and prices: a statistical approach
– volume: 2
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib18
  article-title: Introduction to electric load forecasting methods
  publication-title: J Adv Electr Comput Eng
– volume: 87
  start-page: 1880
  year: 2010
  end-page: 1892
  ident: bib14
  article-title: A high-resolution stochastic model of domestic activity patterns and electricity demand
  publication-title: Appl Energy
– volume: 49
  start-page: 253
  year: 2013
  end-page: 263
  ident: bib7
  article-title: Monthly electric demand forecasting with neural filters
  publication-title: Int J Electr Power Energy Syst
– year: 2015
  ident: bib1
  article-title: World energy outlook 2015
– volume: 64
  start-page: 1057
  year: 2015
  end-page: 1062
  ident: bib8
  article-title: A hybrid dynamic and fuzzy time series model for mid-term power load forecasting
  publication-title: Int J Electr Power Energy Syst
– volume: 55
  start-page: 745
  year: 2000
  end-page: 772
  ident: bib34
  article-title: Mean reversion across national stock markets and parametric contrarian investment strategies
  publication-title: J Finance
– year: 2014
  ident: bib12
  article-title: Mean-reverting stochastic models for the electricity spot market
– volume: 17
  start-page: 491
  year: 2002
  end-page: 496
  ident: bib11
  article-title: Long-term load forecasting for fast developing utility using a knowledge-based expert system
  publication-title: IEEE Trans Power Syst
– volume: 15
  start-page: 263
  year: 2000
  end-page: 268
  ident: bib3
  article-title: Very short-term load forecasting using artificial neural networks
  publication-title: IEEE Trans Power Syst
– volume: 4
  start-page: 727
  year: 1991
  end-page: 752
  ident: bib13
  article-title: Stock price distributions with stochastic volatility: an analytic approach
  publication-title: Rev Financ Stud
– start-page: 17
  year: 2000
  end-page: 35
  ident: bib25
  article-title: Applications of artificial neural-networks for energy systems
  publication-title: Energy Syst
– volume: 55
  start-page: 749
  year: 2014
  end-page: 759
  ident: bib27
  article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting
  publication-title: Int J Electr Power Energy Syst
– start-page: 269
  year: 2005
  end-page: 285
  ident: bib20
  article-title: Load forecasting
  publication-title: Applied mathematics for restructured electric power systems
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib35
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn Lett
– start-page: 120
  year: 2014
  end-page: 125
  ident: bib17
  article-title: Forecasting: principles and practice
– volume: 50
  start-page: 137
  year: 2011
  end-page: 144
  ident: bib31
  article-title: A methodology for electric power load forecasting
  publication-title: Alexandria Eng J
– volume: 142
  start-page: 58
  year: 2017
  end-page: 73
  ident: bib2
  article-title: A novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-term horizon
  publication-title: Elec Power Syst Res
– volume: 8
  year: 2011
  ident: bib15
  article-title: Comparison of conventional and modern load forecasting techniques based on artificial intelligence and expert systems
  publication-title: Int J Comput Sci Iss
– volume: 37
  start-page: 378
  year: 2013
  end-page: 387
  ident: bib16
  article-title: A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm
  publication-title: Knowl Base Syst
– volume: vol. 3
  start-page: 597
  year: 2011, November
  end-page: 602
  ident: bib10
  article-title: Long term load forecasting and recommendations for China based on support vector regression
  publication-title: Information management, innovation management and industrial engineering (ICIII), 2011 international conference on
– volume: 26
  year: 2010
  ident: bib23
  article-title: Daily peak electricity load forecasting in South Africa using a multivariate non-parametric regression approach
  publication-title: Orion
– volume: 28
  start-page: 133
  year: 2006
  end-page: 141
  ident: bib28
  article-title: Modeling and forecasting electric daily peak loads using abductive networks
  publication-title: Int J Electr Power Energy Syst
– volume: 16
  start-page: 1223
  year: 2012
  end-page: 1240
  ident: bib19
  article-title: Energy models for demand forecasting—a review
  publication-title: Renew Sustain Energy Rev
– volume: 16
  start-page: 798
  year: 2001
  end-page: 805
  ident: bib22
  article-title: Short-term hourly load forecasting using time-series modeling with peak load estimation capability
  publication-title: IEEE Trans Power Syst
– volume: 49
  start-page: 1302
  year: 2008
  end-page: 1308
  ident: bib29
  article-title: Combined use of unsupervised and supervised learning for daily peak load forecasting
  publication-title: Energy Convers Manag
– volume: 127
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib24
  article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
  publication-title: Appl Energy
– volume: 149
  start-page: 65
  year: 2009
  end-page: 68
  ident: bib33
  article-title: Parameter estimation and bias correction for diffusion processes
  publication-title: J Econom
– volume: 4
  start-page: 727
  issue: 4
  year: 1991
  ident: 10.1016/j.energy.2018.04.117_bib13
  article-title: Stock price distributions with stochastic volatility: an analytic approach
  publication-title: Rev Financ Stud
  doi: 10.1093/rfs/4.4.727
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.energy.2018.04.117_bib35
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 142
  start-page: 58
  year: 2017
  ident: 10.1016/j.energy.2018.04.117_bib2
  article-title: A novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-term horizon
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2016.08.031
– start-page: 269
  year: 2005
  ident: 10.1016/j.energy.2018.04.117_bib20
  article-title: Load forecasting
– start-page: 67
  year: 2006
  ident: 10.1016/j.energy.2018.04.117_bib32
  article-title: Modeling and forecasting electricity loads
– volume: 49
  start-page: 253
  year: 2013
  ident: 10.1016/j.energy.2018.04.117_bib7
  article-title: Monthly electric demand forecasting with neural filters
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.01.019
– volume: 149
  start-page: 65
  issue: 1
  year: 2009
  ident: 10.1016/j.energy.2018.04.117_bib33
  article-title: Parameter estimation and bias correction for diffusion processes
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2008.11.001
– volume: 135
  start-page: 1650
  year: 2016
  ident: 10.1016/j.energy.2018.04.117_bib30
  article-title: Plant-level electricity demand response for combined manufacturing system and heating, venting, and air-conditioning (HVAC) system
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.12.098
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.energy.2018.04.117_bib18
  article-title: Introduction to electric load forecasting methods
  publication-title: J Adv Electr Comput Eng
– year: 2015
  ident: 10.1016/j.energy.2018.04.117_bib1
– start-page: 1
  year: 2015
  ident: 10.1016/j.energy.2018.04.117_bib9
  article-title: An evaluation of conventional and computational intelligence methods for medium and long-term load forecasting in Algeria
– volume: vol. 3
  start-page: 597
  year: 2011
  ident: 10.1016/j.energy.2018.04.117_bib10
  article-title: Long term load forecasting and recommendations for China based on support vector regression
– start-page: 120
  year: 2014
  ident: 10.1016/j.energy.2018.04.117_bib17
– start-page: 17
  year: 2000
  ident: 10.1016/j.energy.2018.04.117_bib25
  article-title: Applications of artificial neural-networks for energy systems
  publication-title: Energy Syst
  doi: 10.1016/B978-0-08-043877-1.50005-X
– volume: 50
  start-page: 137
  issue: 2
  year: 2011
  ident: 10.1016/j.energy.2018.04.117_bib31
  article-title: A methodology for electric power load forecasting
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2011.01.015
– year: 2014
  ident: 10.1016/j.energy.2018.04.117_bib12
– volume: 26
  issue: 2
  year: 2010
  ident: 10.1016/j.energy.2018.04.117_bib23
  article-title: Daily peak electricity load forecasting in South Africa using a multivariate non-parametric regression approach
  publication-title: Orion
  doi: 10.5784/26-2-89
– start-page: 553
  year: 2014
  ident: 10.1016/j.energy.2018.04.117_bib4
  article-title: Very short-term electricity demand forecasting using adaptive exponential smoothing methods
– start-page: 95
  year: 2015
  ident: 10.1016/j.energy.2018.04.117_bib5
  article-title: One-hour ahead electric load forecasting using neuro-fuzzy system in a parallel approach
– volume: 16
  start-page: 44
  issue: 1
  year: 2001
  ident: 10.1016/j.energy.2018.04.117_bib26
  article-title: Neural networks for short-term load forecasting: a review and evaluation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.910780
– volume: 49
  start-page: 1302
  issue: 6
  year: 2008
  ident: 10.1016/j.energy.2018.04.117_bib29
  article-title: Combined use of unsupervised and supervised learning for daily peak load forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2008.01.016
– volume: 16
  start-page: 1223
  issue: 2
  year: 2012
  ident: 10.1016/j.energy.2018.04.117_bib19
  article-title: Energy models for demand forecasting—a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.08.014
– volume: 64
  start-page: 1057
  year: 2015
  ident: 10.1016/j.energy.2018.04.117_bib8
  article-title: A hybrid dynamic and fuzzy time series model for mid-term power load forecasting
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.08.006
– volume: 28
  start-page: 133
  issue: 2
  year: 2006
  ident: 10.1016/j.energy.2018.04.117_bib28
  article-title: Modeling and forecasting electric daily peak loads using abductive networks
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2005.11.006
– volume: 87
  start-page: 1880
  issue: 6
  year: 2010
  ident: 10.1016/j.energy.2018.04.117_bib14
  article-title: A high-resolution stochastic model of domestic activity patterns and electricity demand
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.11.006
– volume: 17
  start-page: 491
  issue: 2
  year: 2002
  ident: 10.1016/j.energy.2018.04.117_bib11
  article-title: Long-term load forecasting for fast developing utility using a knowledge-based expert system
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2002.1007923
– volume: 16
  start-page: 798
  issue: 4
  year: 2001
  ident: 10.1016/j.energy.2018.04.117_bib22
  article-title: Short-term hourly load forecasting using time-series modeling with peak load estimation capability
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.962429
– volume: 23
  start-page: 23
  issue: 3
  year: 2012
  ident: 10.1016/j.energy.2018.04.117_bib21
  article-title: Regression-SARIMA modelling of daily peak electricity demand in South Africa
  publication-title: J Energy South Afr
  doi: 10.17159/2413-3051/2012/v23i3a3169
– volume: 8
  issue: 5
  year: 2011
  ident: 10.1016/j.energy.2018.04.117_bib15
  article-title: Comparison of conventional and modern load forecasting techniques based on artificial intelligence and expert systems
  publication-title: Int J Comput Sci Iss
– volume: 15
  start-page: 263
  issue: 1
  year: 2000
  ident: 10.1016/j.energy.2018.04.117_bib3
  article-title: Very short-term load forecasting using artificial neural networks
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.852131
– volume: 21
  start-page: 1946
  issue: 4
  year: 2006
  ident: 10.1016/j.energy.2018.04.117_bib6
  article-title: Monthly electric energy demand forecasting based on trend extraction
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2006.883666
– volume: 37
  start-page: 378
  year: 2013
  ident: 10.1016/j.energy.2018.04.117_bib16
  article-title: A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2012.08.015
– volume: 55
  start-page: 745
  issue: 2
  year: 2000
  ident: 10.1016/j.energy.2018.04.117_bib34
  article-title: Mean reversion across national stock markets and parametric contrarian investment strategies
  publication-title: J Finance
– volume: 55
  start-page: 749
  year: 2014
  ident: 10.1016/j.energy.2018.04.117_bib27
  article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.10.020
– volume: 127
  start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2018.04.117_bib24
  article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.04.016
SSID ssj0005899
Score 2.3336112
Snippet This paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in...
SourceID unpaywall
osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 383
SubjectTerms algorithms
consumers (people)
cost control
Electrical maximum demand
energy efficiency
half life
Load forecast
manufacturing
Peak shaving
POWER TRANSMISSION AND DISTRIBUTION
prediction
seasonal variation
Stochastic model
stochastic processes
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aFceBQqlkJlJK7ezcNxkt5Wq1ZVJSoELCqnyK9AIJusugm0_HpmNkmhCKkgjrFmrNgzHn8jzwPgJeVqSh0b7qOycKFNylNjHbdeooyJhecCSnB-dSZPFuL0PDrfgvmQC0Nhlb3t72z6xlr3I9N-N6eropi-RduLeEPQHU-dB8M7sC0jBOQj2F6cvZ596F4pPU405HYlccjRNEdDAt0mysttMuwoxCuhkqf-pnHZHy-oUY1n7gYO3Wmrlbr6psrylyvp-D7YYTFdJMqXSdvoifn-W53H_1ztA7jXQ1Y26-gewpardmFnyGhe78Le0c9sOSTszcX6EbyfvZkzVX6sL4rm0_KQzVhVf3UlGwqZs6ZmCJqdUeuGqcqyLpaWWVWUV6zr0ENKhOOXxbJdMuuQwj6GxfHRu_kJ7xs5cCOk13DECBr9OvS8hBF5jrAhdTbRMpeI_5QyVqe5TAOtkxgRg41lmsZWBrGyTsbSJeEejKq6ck-ACRdEIbpAkZcnIlACJwp0RKlY1jcm98cQDtLLTF_lnJptlNkQzvY562SekcwzT1C58zHwa65VV-XjFvp4UIzshvwyvIhu4dwnPSIuKtJrKJoJ2ajsIDp6Y3gxqFeGx5zeblTl6nadIYzzvRA3EGeYXOvdX_3s039l2Ie79NUFJT-DUXPRuucIvRp90B-tH054LAM
  priority: 102
  providerName: Unpaywall
Title ARC algorithm: A novel approach to forecast and manage daily electrical maximum demand
URI https://dx.doi.org/10.1016/j.energy.2018.04.117
https://www.proquest.com/docview/2221034847
https://www.osti.gov/servlets/purl/1866826
https://www.sciencedirect.com/science/article/pii/S0360544218307333
UnpaywallVersion publishedVersion
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_K-VBfRPuBZ7Ws4Ov2ktzebuJbOFpOpYeoV9qnZb-ikVxy9HJqX_zbnclHP6DQ4lNImFmWmdmZWTLzG0LeYa-mMNKyEIyFcWMTlljnmQtiba3kgY-wwfl0LmYL_vF8cr5Fpn0vDJZVdr6_9emNt-6-jDppjlZ5PvoKvhfyDY4xHicPIuIn5xKnGBz9vVXmETczJJGYIXXfPtfUePmmvw4LvGIEPA2bsWX3hqdBBSfuTha6vSlX-uq3LopbAenkOXnWZZI0bTf7gmz5cods943G6x2yf3zTxAaE3Sle75Kz9MuU6uJ7dZnXP5bvaUrL6pcvaI8vTuuKQi7rrV7XVJeOtiWu1Om8uKLt4BzULXz_ky83S-o8ULg9sjg5_jadsW6-ArNcBDWD0G1AOnAh4pZnGUTzxLvYiExAWqa1dSbJRBIZE0sI5E6KJJFORFI7L6Tw8XifDMqq9C8J5T6ajOFmMgmymEeaw0KRmWCHlAutzcIhGfdiVbYDH8cZGIXqq8x-qlYZCpWhAo4o5EPCrrlWLfjGA_Sy15i6Y0QK4sMDnAeoYORC7FyLRUbAhmiAcP8akre93hWcPvyloktfbdYKsqswGIMAYYWja4N41GZf_fdmD8hTfGuLhl-TQX258W8gNarNYWP7h-RJ-uHTbA7PxfxzevEP-R8O5w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKclguCAoVS3kYiau7eTh2wm21arVA2wO0qDfLr5SgbLLqZlt64bczk0dpJaQirs6MZXk8L-WbGULeY62mMNKyEB4L48ZmLLPOMxek2lrJAx9hgfPRsVic8k9nydkWmQ-1MAir7G1_Z9Nba92vTPvbnK6KYvoVbC_EGxx9PE4ejB-QhzyJJGZge79u4TzSdogkUjMkH-rnWpCXbwvsEOGVYsfTsJ1b9lf_NKpB5e6EoeNNtdLXV7osb3mkgyfkcR9K0ll32qdky1fbZDxUGq-3yc7-nyo2IOzVeP2MfJt9mVNdntcXRfN9-YHOaFVf-pIODcZpU1MIZr3V64bqytEO40qdLspr2k3OQeHC-s9iuVlS54HCPSenB_sn8wXrBywwy0XQMPDdBm4HMiJueZ6DO8-8S43IBcRlWltnslxkkTGpBE_upMgy6UQktfNCCp_GO2RU1ZV_QSj3URJDapIEecojzWGjyCRYIuVCa_NwQuLhWpXtu4_jEIxSDTCzH6oThkJhqIBjG_IJYTdcq677xj30cpCYuvOKFDiIezh3UcDIhc1zLaKMgA3bAUICNiHvBrkrUD_8p6IrX2_WCsKrMIjhAmGHvZsH8U-Hffnfh31LxouTo0N1-PH48y55hF86BPErMmouNv41xEmNedPqwW-mUQ7M
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aFceBQqlkJlJK7ezcNxkt5Wq1ZVJSoELCqnyK9AIJusugm0_HpmNkmhCKkgjrFmrNgzHn8jzwPgJeVqSh0b7qOycKFNylNjHbdeooyJhecCSnB-dSZPFuL0PDrfgvmQC0Nhlb3t72z6xlr3I9N-N6eropi-RduLeEPQHU-dB8M7sC0jBOQj2F6cvZ596F4pPU405HYlccjRNEdDAt0mysttMuwoxCuhkqf-pnHZHy-oUY1n7gYO3Wmrlbr6psrylyvp-D7YYTFdJMqXSdvoifn-W53H_1ztA7jXQ1Y26-gewpardmFnyGhe78Le0c9sOSTszcX6EbyfvZkzVX6sL4rm0_KQzVhVf3UlGwqZs6ZmCJqdUeuGqcqyLpaWWVWUV6zr0ENKhOOXxbJdMuuQwj6GxfHRu_kJ7xs5cCOk13DECBr9OvS8hBF5jrAhdTbRMpeI_5QyVqe5TAOtkxgRg41lmsZWBrGyTsbSJeEejKq6ck-ACRdEIbpAkZcnIlACJwp0RKlY1jcm98cQDtLLTF_lnJptlNkQzvY562SekcwzT1C58zHwa65VV-XjFvp4UIzshvwyvIhu4dwnPSIuKtJrKJoJ2ajsIDp6Y3gxqFeGx5zeblTl6nadIYzzvRA3EGeYXOvdX_3s039l2Ie79NUFJT-DUXPRuucIvRp90B-tH054LAM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARC+algorithm%3A+A+novel+approach+to+forecast+and+manage+daily+electrical+maximum+demand&rft.jtitle=Energy+%28Oxford%29&rft.au=Wu%2C+Da-Chun&rft.au=Amini%2C+Amin&rft.au=Razban%2C+Ali&rft.au=Chen%2C+Jie&rft.date=2018-07-01&rft.issn=0360-5442&rft.volume=154&rft.spage=383&rft.epage=389&rft_id=info:doi/10.1016%2Fj.energy.2018.04.117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2018_04_117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon