effect of spectral and spatial degradation of hyperspectral imagery for the Sclerophyll tree species classification
Hyperspectral imaging can be a useful remote-sensing technology for classifying tree species. Prior to the image classification stage, effective mapping endeavours must first identify the optimal spectral and spatial resolutions for discriminating the species of interest. Such a procedure may contri...
Saved in:
Published in | International journal of remote sensing Vol. 34; no. 20; pp. 7113 - 7130 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
20.10.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1366-5901 0143-1161 1366-5901 |
DOI | 10.1080/01431161.2013.817712 |
Cover
Abstract | Hyperspectral imaging can be a useful remote-sensing technology for classifying tree species. Prior to the image classification stage, effective mapping endeavours must first identify the optimal spectral and spatial resolutions for discriminating the species of interest. Such a procedure may contribute to improving the classification accuracy, as well as the image acquisition planning. In this work, we address the effect of degrading the original bandwidth and pixel size of a hyperspectral and hyperspatial image for the classification of Sclerophyll forest tree species. A HySpex-VNIR 1600 airborne-based hyperspectral image with submetric spatial resolution was acquired in December 2009 for a native forest located in the foothills of the Andes of central Chile. The main tree species of this forest were then sampled in the field between January and February 2010. The original image spectral and spatial resolutions (160 bands with a width of 3.7 nm and pixel sizes of 0.3 m) were systematically degraded by resampling using a Gaussian model and a nearest neighbour method, respectively (until reaching 39 bands with a width of 14.8 nm and pixel sizes of 2.4 m). As a result, 12 images with different spectral and spatial resolution combinations were created. Subsequently, these images were noise-reduced using the minimum noise fraction procedure and 12 additional images were created. Statistical class separabilities from the spectral divergence measure and an assessment of classification accuracy of two supervised hyperspectral classifiers (spectral angle mapper (SAM) and spectral information divergence (SID)) were applied for each of the 24 images. The best overall and per-class classification accuracies (>80%) were observed when the SAM classifier was applied on the noise-reduced reflectance image at its original spectral and spatial resolutions. This result indicates that pixels somewhat smaller than the tree canopy diameters were the most appropriate to represent the spatial variability of the tree species of interest. On the other hand, it suggests that noise-reduced bands derived from the full image spectral resolution rendered the best discrimination of the spectral properties of the tree species of interest. Meanwhile, the better performance of SAM over SID may result from the ability of the former to classify tree species regardless of the illumination differences in the image. This technical approach can be particularly useful in native forest environments, where the irregular surface of the uppermost canopy is subject to a differentiated illumination. |
---|---|
AbstractList | Hyperspectral imaging can be a useful remote-sensing technology for classifying tree species. Prior to the image classification stage, effective mapping endeavours must first identify the optimal spectral and spatial resolutions for discriminating the species of interest. Such a procedure may contribute to improving the classification accuracy, as well as the image acquisition planning. In this work, we address the effect of degrading the original bandwidth and pixel size of a hyperspectral and hyperspatial image for the classification of Sclerophyll forest tree species. A HySpex-VNIR 1600 airborne-based hyperspectral image with submetric spatial resolution was acquired in December 2009 for a native forest located in the foothills of the Andes of central Chile. The main tree species of this forest were then sampled in the field between January and February 2010. The original image spectral and spatial resolutions (160 bands with a width of 3.7 nm and pixel sizes of 0.3 m) were systematically degraded by resampling using a Gaussian model and a nearest neighbour method, respectively (until reaching 39 bands with a width of 14.8 nm and pixel sizes of 2.4 m). As a result, 12 images with different spectral and spatial resolution combinations were created. Subsequently, these images were noise-reduced using the minimum noise fraction procedure and 12 additional images were created. Statistical class separabilities from the spectral divergence measure and an assessment of classification accuracy of two supervised hyperspectral classifiers (spectral angle mapper (SAM) and spectral information divergence (SID)) were applied for each of the 24 images. The best overall and per-class classification accuracies (>80%) were observed when the SAM classifier was applied on the noise-reduced reflectance image at its original spectral and spatial resolutions. This result indicates that pixels somewhat smaller than the tree canopy diameters were the most appropriate to represent the spatial variability of the tree species of interest. On the other hand, it suggests that noise-reduced bands derived from the full image spectral resolution rendered the best discrimination of the spectral properties of the tree species of interest. Meanwhile, the better performance of SAM over SID may result from the ability of the former to classify tree species regardless of the illumination differences in the image. This technical approach can be particularly useful in native forest environments, where the irregular surface of the uppermost canopy is subject to a differentiated illumination. Hyperspectral imaging can be a useful remote-sensing technology for classifying tree species. Prior to the image classification stage, effective mapping endeavours must first identify the optimal spectral and spatial resolutions for discriminating the species of interest. Such a procedure may contribute to improving the classification accuracy, as well as the image acquisition planning. In this work, we address the effect of degrading the original bandwidth and pixel size of a hyperspectral and hyperspatial image for the classification of Sclerophyll forest tree species. A HySpex-VNIR 1600 airborne-based hyperspectral image with submetric spatial resolution was acquired in December 2009 for a native forest located in the foothills of the Andes of central Chile. The main tree species of this forest were then sampled in the field between January and February 2010. The original image spectral and spatial resolutions (160 bands with a width of 3.7 nm and pixel sizes of 0.3 m) were systematically degraded by resampling using a Gaussian model and a nearest neighbour method, respectively (until reaching 39 bands with a width of 14.8 nm and pixel sizes of 2.4 m). As a result, 12 images with different spectral and spatial resolution combinations were created. Subsequently, these images were noise-reduced using the minimum noise fraction procedure and 12 additional images were created. Statistical class separabilities from the spectral divergence measure and an assessment of classification accuracy of two supervised hyperspectral classifiers (spectral angle mapper (SAM) and spectral information divergence (SID)) were applied for each of the 24 images. The best overall and per-class classification accuracies (>80%) were observed when the SAM classifier was applied on the noise-reduced reflectance image at its original spectral and spatial resolutions. This result indicates that pixels somewhat smaller than the tree canopy diameters were the most appropriate to represent the spatial variability of the tree species of interest. On the other hand, it suggests that noise-reduced bands derived from the full image spectral resolution rendered the best discrimination of the spectral properties of the tree species of interest. Meanwhile, the better performance of SAM over SID may result from the ability of the former to classify tree species regardless of the illumination differences in the image. This technical approach can be particularly useful in native forest environments, where the irregular surface of the uppermost canopy is subject to a differentiated illumination. |
Author | Roig, Miguel Peña, Marco A Cruz, Pablo |
Author_xml | – sequence: 1 fullname: Peña, Marco A – sequence: 2 fullname: Cruz, Pablo – sequence: 3 fullname: Roig, Miguel |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27712471$$DView record in Pascal Francis |
BookMark | eNqFkUuLFDEUhQsZwZnRfyBYG8FNt7l5txuRwRcMuBhnHW6nku5IulImNQz17011TYu46dU9ge8cwjlXzUWfetc0r4GsgWjyngBnABLWlABba1AK6LPmEpiUK7EhcPGPftFclfKLECKVUJdNcd47O7bJt2WoImNsse_qA8dQded2GbuqUz8z-2lw-S8YDrhzeWp9yu24d-2djS6nYT_F2I7ZuWNkcKW1EUsJPthj0MvmucdY3Kune93cf_n88-bb6vbH1-83n25XlksyrgC4RyWsFtTrLeuYYsx6arfCKqFh6wXnxCLtEB3hlKJC3VEnLNHcatux6-bdkjvk9PvBldEcQrEuRuxdeigGlJagqdqI86iUTFIl6zmLClLZDWVz6tsnFIvF6DP2NhQz5Fpcngydd-IKKvdh4WxOpWTnjQ3jsapac4gGiJl3NqedzbyzWXauZv6f-ZR_xvZxsYW-znfAx5RjZ0acYsqnj7IzCW-WBI_J4C5Xw_1dBTghIDdECfYH6R7KWg |
CODEN | IJSEDK |
CitedBy_id | crossref_primary_10_3389_frsen_2022_1085808 crossref_primary_10_3389_fpls_2016_01528 crossref_primary_10_1016_j_isprsjprs_2019_01_016 crossref_primary_10_3390_rs13142716 crossref_primary_10_1080_10106049_2021_1939441 crossref_primary_10_3390_rs12010146 crossref_primary_10_1109_JSTARS_2022_3204223 crossref_primary_10_1016_j_ecoinf_2018_12_006 crossref_primary_10_3390_drones7010061 crossref_primary_10_1080_02522667_2022_2133222 crossref_primary_10_1016_j_rse_2019_111232 crossref_primary_10_1016_j_rse_2024_114291 crossref_primary_10_1016_j_ecoleng_2016_12_004 crossref_primary_10_1016_j_rse_2016_08_013 crossref_primary_10_1016_j_rse_2019_111218 crossref_primary_10_1080_00934690_2019_1656321 crossref_primary_10_1109_JSTARS_2019_2938544 crossref_primary_10_1016_j_ufug_2020_126958 crossref_primary_10_1016_j_rse_2024_114337 crossref_primary_10_1080_14498596_2016_1212414 |
Cites_doi | 10.1007/s00267-005-0228-9 10.1080/01431168508948285 10.1016/0034-4257(94)90047-7 10.1201/9781420048568 10.1093/jxb/erl123 10.1016/j.rse.2007.12.014 10.1016/j.rse.2010.08.006 10.1117/1.1766301 10.1016/0034-4257(86)90018-0 10.1016/0034-4257(93)90013-N 10.1016/j.rse.2009.06.013 10.1016/j.isprsjprs.2008.09.002 10.1109/36.3001 10.1016/1011-1344(93)06963-4 10.1016/S0034-4257(96)00248-9 10.1080/01431160310001654383 10.1016/0034-4257(87)90015-0 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2013 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2013 – notice: 2014 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 8FD FR3 H8D KR7 L7M 7S9 L.6 |
DOI | 10.1080/01431161.2013.817712 |
DatabaseName | AGRIS CrossRef Pascal-Francis Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aerospace Database AGRICOLA Aerospace Database |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1366-5901 |
EndPage | 7130 |
ExternalDocumentID | 27712471 10_1080_01431161_2013_817712 817712 US201400169075 |
GeographicLocations | South America Chile Andes Andes region |
GeographicLocations_xml | – name: Chile – name: Andes region |
GroupedDBID | -~X .7F .DC .QJ 07I 0BK 0R~ 1TA 29J 30N 4.4 4B5 5GY 5VS 6TJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDPE ABFIM ABFMO ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABTAH ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACTTO ADCVX ADGTB ADXEU ADXPE ADYSH AEHZU AEISY AENEX AEOZL AEPSL AEXLP AEYOC AEZBV AFBWG AFION AFKVX AFRVT AGBLW AGDLA AGMYJ AGVKY AGWUF AHDZW AI. AIDBO AIJEM AIYEW AJWEG AKBVH AKHJE AKMBP AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRRR ALXIB AQRUH AVBZW AWYRJ BGSSV BLEHA BWMZZ C0- C5H CAG CCCUG CE4 COF CS3 CYRSC DAOYK DEXXA DGEBU DKSSO DU5 EBS EJD E~A E~B F5P FBQ FETWF H13 HF~ H~9 IFELN IPNFZ J.P KYCEM L8C LJTGL M4Z OPCYK P2P RIG RNANH ROSJB RTWRZ S-T SNACF TAJZE TAP TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UAO UB6 UPT UT5 UU3 VH1 VOH ZGOLN ZY4 ~02 ~S~ AAGDL AAHIA AAYXX AMPGV CITATION IQODW TASJS 8FD FR3 H8D KR7 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c460t-114fa75c852f8b3d3733cf2cb5c7581bf5440ca2daae0422a7a8d2e5c084c8cd3 |
ISSN | 1366-5901 0143-1161 |
IngestDate | Thu Sep 04 17:37:13 EDT 2025 Fri Sep 05 17:15:12 EDT 2025 Fri Sep 05 07:45:15 EDT 2025 Mon Jul 21 09:13:27 EDT 2025 Tue Jul 01 04:04:41 EDT 2025 Thu Apr 24 23:05:39 EDT 2025 Wed Dec 25 08:58:59 EST 2024 Thu Apr 03 09:46:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | detection Hyperspectral imagery Size Forest tree accuracy remote sensing degradation cartography classification Acquisition Optimum planning Hyperspectral characteristic imagery Procedure spatial resolution discrimination Primary forest Species Pixel |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c460t-114fa75c852f8b3d3733cf2cb5c7581bf5440ca2daae0422a7a8d2e5c084c8cd3 |
Notes | http://dx.doi.org/10.1080/01431161.2013.817712 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1506369235 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1506369235 pascalfrancis_primary_27712471 proquest_miscellaneous_1786182795 informaworld_taylorfrancis_310_1080_01431161_2013_817712 crossref_citationtrail_10_1080_01431161_2013_817712 crossref_primary_10_1080_01431161_2013_817712 fao_agris_US201400169075 proquest_miscellaneous_1663627666 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-20 |
PublicationDateYYYYMMDD | 2013-10-20 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International journal of remote sensing |
PublicationYear | 2013 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0010 CIT0012 CIT0011 CIT0014 CIT0013 CIT0015 Clark M. L. (CIT0003) 2012 CIT0017 CIT0021 CIT0020 CIT0001 Pu R. (CIT0018) 2012 RSI (Research Systems Incorporation) (CIT0019) 2009 Thomas V. (CIT0023) 2012 Lillesand T. M. (CIT0016) 2004 CIT0025 CIT0002 Thenkabail P. S. (CIT0022) 2012 CIT0024 CIT0005 CIT0004 CIT0026 CIT0007 CIT0006 CIT0009 CIT0008 |
References_xml | – ident: CIT0024 doi: 10.1007/s00267-005-0228-9 – volume-title: Remote Sensing and Image Interpretation year: 2004 ident: CIT0016 – ident: CIT0013 doi: 10.1080/01431168508948285 – ident: CIT0017 doi: 10.1016/0034-4257(94)90047-7 – ident: CIT0004 doi: 10.1201/9781420048568 – ident: CIT0002 doi: 10.1093/jxb/erl123 – start-page: 469 volume-title: Hyperspectral Remote Sensing of Vegetation year: 2012 ident: CIT0023 – ident: CIT0010 doi: 10.1016/j.rse.2007.12.014 – ident: CIT0025 doi: 10.1016/j.rse.2010.08.006 – ident: CIT0008 doi: 10.1117/1.1766301 – ident: CIT0020 doi: 10.1016/0034-4257(86)90018-0 – ident: CIT0015 doi: 10.1016/0034-4257(93)90013-N – ident: CIT0006 doi: 10.1016/j.rse.2009.06.013 – ident: CIT0011 doi: 10.1016/j.isprsjprs.2008.09.002 – ident: CIT0014 – ident: CIT0012 doi: 10.1109/36.3001 – start-page: 447 volume-title: Hyperspectral Remote Sensing of Vegetation year: 2012 ident: CIT0018 – ident: CIT0009 doi: 10.1016/1011-1344(93)06963-4 – ident: CIT0021 doi: 10.1016/S0034-4257(96)00248-9 – start-page: 423 volume-title: Hyperspectral Remote Sensing of Vegetation year: 2012 ident: CIT0003 – ident: CIT0001 doi: 10.1080/01431160310001654383 – ident: CIT0007 – volume-title: Hyperspectral Remote Sensing of Vegetation year: 2012 ident: CIT0022 – ident: CIT0005 – ident: CIT0026 doi: 10.1016/0034-4257(87)90015-0 – volume-title: ENVI (Environment for Visualizing Images) Help year: 2009 ident: CIT0019 |
SSID | ssj0006757 |
Score | 2.208837 |
Snippet | Hyperspectral imaging can be a useful remote-sensing technology for classifying tree species. Prior to the image classification stage, effective mapping... |
SourceID | proquest pascalfrancis crossref informaworld fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7113 |
SubjectTerms | Andes region Animal, plant and microbial ecology Applied geophysics Biological and medical sciences canopy Chile Classification Degradation Earth sciences Earth, ocean, space Exact sciences and technology forest trees Forests Fundamental and applied biological sciences. Psychology General aspects. Techniques hyperspectral imagery Internal geophysics lighting Pixels planning reflectance remote sensing Spatial resolution Spectra Teledetection and vegetation maps Trees |
Title | effect of spectral and spatial degradation of hyperspectral imagery for the Sclerophyll tree species classification |
URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2013.817712 https://www.proquest.com/docview/1506369235 https://www.proquest.com/docview/1663627666 https://www.proquest.com/docview/1786182795 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 1366-5901 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 1366-5901 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QNcEE9teayMxG2VKg_Hdo_lWSHBZVux4hI5jl0tKg1KWyH4JfxcZmI3D7ZaYC9VlbhO6vnimbG_-ULIC4GiUYWOgtSaNGAQsgfgFnQgeTGRk1jBA4jrkB8-8tmCvb9ILwaDXx3W0m6bj_XPg3UlN7EqHAO7YpXsf1i26RQOwHewL3yCheHzn23sCBkY89VFk5Wv_d8gUxo3YFAMomjjQkg7q6bh5VdUsPjRUA3Pof-qhIFf1Qx0U3cJqfSZxhgbSUWtHb-0FPh2RbGjQ1EZAAH0gAR57x3rGRh35l9GytcJ6fJsOm72QaqdW85W-apsd4Iul47fv9x5er9fpIhqulscNrCaX3lfSG9JE5pHTpJ9bNw0nHAeYFVsd572i54Oj75zN-uKyNWzeg8OeXd40Dt4OiVcEK-HvL5kLCMhPJG7r7vtThyR41hwHg_J8XT2-vOnxstDouVK8f3d78syUbf9wAV6Yc-RVeUf0rjIyVUbeCytG58roUEd78zvkjs-UaFTh7p7ZGDW98mtd8ZLnD8g3wF91KGPlpbuQUUBfdSjj3bQh2166KMefRRujwL6aAd9FNFHPfpoH30PyeLtm_mrWeBf4xFoxsMtjA6zSqRaprGVeVIkIkm0jXWeakhWo9ymjIVaxYVSBhXplFCyiE2qQ8m01EXyiAzX5dqcEMqszS0PRT6BKLhg4I5Uzixk4ZKpKOd8RJL9KGfaa9zjq1ZWWbSXwvW2ydA2mbPNiATNr745jZe_tD8BA2ZqCW44W5zHuEiBokYQfY-I7Fo129bA9zbNkut7Pe0hoLmVGM9CDDkiz_eQyMAH4MaeWptyt8lQJTThkKql17SB1IIjlPk1bYTkkYzFJH188__xhNxuZ4CnZLitduYZBO7b_NQ_Q78BnCHn7Q |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbG9jBegA3QOmDzJF5TEv_uI0KbCmx92SrxZtlOzBClQW0qtP313MVJtQ1tSPCWKLYTn8_n75zzd4S81UgaVYYik7GSmQDInsGyEDKjypEZMQcTEPchzyZqPBWfvsg-mnDZhVWiDx0TUURrq3Fy42Z0HxL3DjnpCoAqGJnFh6bQGvMMb0kkGsFTHPlkbYwBD6cT08jECVX603P3tHJrdXoUXX2HwRRDJ90SpBdT2os_LHi7LJ08Jb7vUIpG-T5cNX4Yru9wPf5Xj5-RJx1ope-Tlu2QjWq-S7a7_OmXV8_JL9A2mkJDaB1pe3xzATXghXADgw_XJdJSpAxOWOYSHODFuuC3H8ilcUVBBhQgKT2H9yxqaHs2o_jfvG0SnHoaEO1jeFPb0AsyPTm--DDOupQOWRAqb2AIRHRaBiNZNJ6XXHMeIgteBnBcCh-lEHlwrHSuQnYyp50pWSVDbkQwoeQvyea8nld7hIoYfVS59iNARKUA0-S8iOCRGeEKr9SA8H4obej4zjHtxswWPS1qJ1SLQrVJqAOSrWv9THwffym_B1pi3VcwyXZ6ztBhRYIbQGIDYm6qjm3aLZhOcSx_uNWDW2q2_hSGTwFPDMhRr3cW7AH-5HHzql4tLTJGcgWwXT5QBmCmYlqhkO4to40C31OP5P6_9-OQbI8vzk7t6cfJ51fkMT7BdZ_lr8lms1hVbwDQNf6gnbK_AQZxOs8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgSMAL32gdMIzEa0ri7z4ioBpfFdKotDfLHzFDlGbqUk3jr-cuTqptaEOCt1axnfh8Pv8uufsdIS81kkbFUBUy1bIQANkLOBZCYVScmAlzsAHxPeTnmdqbiw8H8uBMFj-GVaIPnTJRRGercXMfxTRExL1CSroKkAoGZvGxqbTGMsM3FKaZYhJHOdvYYoDDOWEaiTihy5A8d8ko5w6n68k1FwhMMXLSHYPwUq568YcB706l6V3ihvnkYJQf43Xrx-HXBarH_5nwPXKnh6z0ddax--RavXxAbvXV0w9PH5IT0DWaA0Nok2iXvLmCHnA_-ANLD78jklLk-k3Y5hDc39Wm4fefyKRxSkEEFAAp3Yf7rBoYe7Gg-NW8GxJcehoQ62NwUzfQIzKfvvv6Zq_oCzoUQaiyhRUQyWkZjGTJeB655jwkFrwM4LZUPkkhyuBYdK5GbjKnnYmslqE0IpgQ-WOytWyW9TahIiWfVKn9BPBQFGCYnBcJ_DEjXOWVGhE-rKQNPds5Ft1Y2GogRe2FalGoNgt1RIpNr6PM9vGX9tugJNZ9A4Ns5_sM3VWktwEcNiLmrObYtnsB0-uN5VePuntOyzaPwvAqoIkReTGonQVrgJ943LJu1scW-SK5AtAur2gDIFMxrVBIl7bRRoHnqSdy59_n8Zzc_PJ2aj-9n318Qm7jBTz0WfmUbLWrdf0M0Fzrd7sN-xsMXzl8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+spectral+and+spatial+degradation+of+hyperspectral+imagery+for+the+Sclerophyll+tree+species+classification&rft.jtitle=International+journal+of+remote+sensing&rft.au=Pe%C3%B1a%2C+Marco+A.&rft.au=Cruz%2C+Pablo&rft.au=Roig%2C+Miguel&rft.date=2013-10-20&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=34&rft.issue=20&rft.spage=7113&rft.epage=7130&rft_id=info:doi/10.1080%2F01431161.2013.817712&rft.externalDocID=817712 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1366-5901&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1366-5901&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1366-5901&client=summon |