effect of spectral and spatial degradation of hyperspectral imagery for the Sclerophyll tree species classification

Hyperspectral imaging can be a useful remote-sensing technology for classifying tree species. Prior to the image classification stage, effective mapping endeavours must first identify the optimal spectral and spatial resolutions for discriminating the species of interest. Such a procedure may contri...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of remote sensing Vol. 34; no. 20; pp. 7113 - 7130
Main Authors Peña, Marco A, Cruz, Pablo, Roig, Miguel
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 20.10.2013
Subjects
Online AccessGet full text
ISSN1366-5901
0143-1161
1366-5901
DOI10.1080/01431161.2013.817712

Cover

Abstract Hyperspectral imaging can be a useful remote-sensing technology for classifying tree species. Prior to the image classification stage, effective mapping endeavours must first identify the optimal spectral and spatial resolutions for discriminating the species of interest. Such a procedure may contribute to improving the classification accuracy, as well as the image acquisition planning. In this work, we address the effect of degrading the original bandwidth and pixel size of a hyperspectral and hyperspatial image for the classification of Sclerophyll forest tree species. A HySpex-VNIR 1600 airborne-based hyperspectral image with submetric spatial resolution was acquired in December 2009 for a native forest located in the foothills of the Andes of central Chile. The main tree species of this forest were then sampled in the field between January and February 2010. The original image spectral and spatial resolutions (160 bands with a width of 3.7 nm and pixel sizes of 0.3 m) were systematically degraded by resampling using a Gaussian model and a nearest neighbour method, respectively (until reaching 39 bands with a width of 14.8 nm and pixel sizes of 2.4 m). As a result, 12 images with different spectral and spatial resolution combinations were created. Subsequently, these images were noise-reduced using the minimum noise fraction procedure and 12 additional images were created. Statistical class separabilities from the spectral divergence measure and an assessment of classification accuracy of two supervised hyperspectral classifiers (spectral angle mapper (SAM) and spectral information divergence (SID)) were applied for each of the 24 images. The best overall and per-class classification accuracies (>80%) were observed when the SAM classifier was applied on the noise-reduced reflectance image at its original spectral and spatial resolutions. This result indicates that pixels somewhat smaller than the tree canopy diameters were the most appropriate to represent the spatial variability of the tree species of interest. On the other hand, it suggests that noise-reduced bands derived from the full image spectral resolution rendered the best discrimination of the spectral properties of the tree species of interest. Meanwhile, the better performance of SAM over SID may result from the ability of the former to classify tree species regardless of the illumination differences in the image. This technical approach can be particularly useful in native forest environments, where the irregular surface of the uppermost canopy is subject to a differentiated illumination.
AbstractList Hyperspectral imaging can be a useful remote-sensing technology for classifying tree species. Prior to the image classification stage, effective mapping endeavours must first identify the optimal spectral and spatial resolutions for discriminating the species of interest. Such a procedure may contribute to improving the classification accuracy, as well as the image acquisition planning. In this work, we address the effect of degrading the original bandwidth and pixel size of a hyperspectral and hyperspatial image for the classification of Sclerophyll forest tree species. A HySpex-VNIR 1600 airborne-based hyperspectral image with submetric spatial resolution was acquired in December 2009 for a native forest located in the foothills of the Andes of central Chile. The main tree species of this forest were then sampled in the field between January and February 2010. The original image spectral and spatial resolutions (160 bands with a width of 3.7 nm and pixel sizes of 0.3 m) were systematically degraded by resampling using a Gaussian model and a nearest neighbour method, respectively (until reaching 39 bands with a width of 14.8 nm and pixel sizes of 2.4 m). As a result, 12 images with different spectral and spatial resolution combinations were created. Subsequently, these images were noise-reduced using the minimum noise fraction procedure and 12 additional images were created. Statistical class separabilities from the spectral divergence measure and an assessment of classification accuracy of two supervised hyperspectral classifiers (spectral angle mapper (SAM) and spectral information divergence (SID)) were applied for each of the 24 images. The best overall and per-class classification accuracies (>80%) were observed when the SAM classifier was applied on the noise-reduced reflectance image at its original spectral and spatial resolutions. This result indicates that pixels somewhat smaller than the tree canopy diameters were the most appropriate to represent the spatial variability of the tree species of interest. On the other hand, it suggests that noise-reduced bands derived from the full image spectral resolution rendered the best discrimination of the spectral properties of the tree species of interest. Meanwhile, the better performance of SAM over SID may result from the ability of the former to classify tree species regardless of the illumination differences in the image. This technical approach can be particularly useful in native forest environments, where the irregular surface of the uppermost canopy is subject to a differentiated illumination.
Hyperspectral imaging can be a useful remote-sensing technology for classifying tree species. Prior to the image classification stage, effective mapping endeavours must first identify the optimal spectral and spatial resolutions for discriminating the species of interest. Such a procedure may contribute to improving the classification accuracy, as well as the image acquisition planning. In this work, we address the effect of degrading the original bandwidth and pixel size of a hyperspectral and hyperspatial image for the classification of Sclerophyll forest tree species. A HySpex-VNIR 1600 airborne-based hyperspectral image with submetric spatial resolution was acquired in December 2009 for a native forest located in the foothills of the Andes of central Chile. The main tree species of this forest were then sampled in the field between January and February 2010. The original image spectral and spatial resolutions (160 bands with a width of 3.7 nm and pixel sizes of 0.3 m) were systematically degraded by resampling using a Gaussian model and a nearest neighbour method, respectively (until reaching 39 bands with a width of 14.8 nm and pixel sizes of 2.4 m). As a result, 12 images with different spectral and spatial resolution combinations were created. Subsequently, these images were noise-reduced using the minimum noise fraction procedure and 12 additional images were created. Statistical class separabilities from the spectral divergence measure and an assessment of classification accuracy of two supervised hyperspectral classifiers (spectral angle mapper (SAM) and spectral information divergence (SID)) were applied for each of the 24 images. The best overall and per-class classification accuracies (>80%) were observed when the SAM classifier was applied on the noise-reduced reflectance image at its original spectral and spatial resolutions. This result indicates that pixels somewhat smaller than the tree canopy diameters were the most appropriate to represent the spatial variability of the tree species of interest. On the other hand, it suggests that noise-reduced bands derived from the full image spectral resolution rendered the best discrimination of the spectral properties of the tree species of interest. Meanwhile, the better performance of SAM over SID may result from the ability of the former to classify tree species regardless of the illumination differences in the image. This technical approach can be particularly useful in native forest environments, where the irregular surface of the uppermost canopy is subject to a differentiated illumination.
Author Roig, Miguel
Peña, Marco A
Cruz, Pablo
Author_xml – sequence: 1
  fullname: Peña, Marco A
– sequence: 2
  fullname: Cruz, Pablo
– sequence: 3
  fullname: Roig, Miguel
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27712471$$DView record in Pascal Francis
BookMark eNqFkUuLFDEUhQsZwZnRfyBYG8FNt7l5txuRwRcMuBhnHW6nku5IulImNQz17011TYu46dU9ge8cwjlXzUWfetc0r4GsgWjyngBnABLWlABba1AK6LPmEpiUK7EhcPGPftFclfKLECKVUJdNcd47O7bJt2WoImNsse_qA8dQded2GbuqUz8z-2lw-S8YDrhzeWp9yu24d-2djS6nYT_F2I7ZuWNkcKW1EUsJPthj0MvmucdY3Kune93cf_n88-bb6vbH1-83n25XlksyrgC4RyWsFtTrLeuYYsx6arfCKqFh6wXnxCLtEB3hlKJC3VEnLNHcatux6-bdkjvk9PvBldEcQrEuRuxdeigGlJagqdqI86iUTFIl6zmLClLZDWVz6tsnFIvF6DP2NhQz5Fpcngydd-IKKvdh4WxOpWTnjQ3jsapac4gGiJl3NqedzbyzWXauZv6f-ZR_xvZxsYW-znfAx5RjZ0acYsqnj7IzCW-WBI_J4C5Xw_1dBTghIDdECfYH6R7KWg
CODEN IJSEDK
CitedBy_id crossref_primary_10_3389_frsen_2022_1085808
crossref_primary_10_3389_fpls_2016_01528
crossref_primary_10_1016_j_isprsjprs_2019_01_016
crossref_primary_10_3390_rs13142716
crossref_primary_10_1080_10106049_2021_1939441
crossref_primary_10_3390_rs12010146
crossref_primary_10_1109_JSTARS_2022_3204223
crossref_primary_10_1016_j_ecoinf_2018_12_006
crossref_primary_10_3390_drones7010061
crossref_primary_10_1080_02522667_2022_2133222
crossref_primary_10_1016_j_rse_2019_111232
crossref_primary_10_1016_j_rse_2024_114291
crossref_primary_10_1016_j_ecoleng_2016_12_004
crossref_primary_10_1016_j_rse_2016_08_013
crossref_primary_10_1016_j_rse_2019_111218
crossref_primary_10_1080_00934690_2019_1656321
crossref_primary_10_1109_JSTARS_2019_2938544
crossref_primary_10_1016_j_ufug_2020_126958
crossref_primary_10_1016_j_rse_2024_114337
crossref_primary_10_1080_14498596_2016_1212414
Cites_doi 10.1007/s00267-005-0228-9
10.1080/01431168508948285
10.1016/0034-4257(94)90047-7
10.1201/9781420048568
10.1093/jxb/erl123
10.1016/j.rse.2007.12.014
10.1016/j.rse.2010.08.006
10.1117/1.1766301
10.1016/0034-4257(86)90018-0
10.1016/0034-4257(93)90013-N
10.1016/j.rse.2009.06.013
10.1016/j.isprsjprs.2008.09.002
10.1109/36.3001
10.1016/1011-1344(93)06963-4
10.1016/S0034-4257(96)00248-9
10.1080/01431160310001654383
10.1016/0034-4257(87)90015-0
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2013
2014 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2013
– notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
8FD
FR3
H8D
KR7
L7M
7S9
L.6
DOI 10.1080/01431161.2013.817712
DatabaseName AGRIS
CrossRef
Pascal-Francis
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aerospace Database

AGRICOLA
Aerospace Database
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 7130
ExternalDocumentID 27712471
10_1080_01431161_2013_817712
817712
US201400169075
GeographicLocations South America
Chile
Andes
Andes region
GeographicLocations_xml – name: Chile
– name: Andes region
GroupedDBID -~X
.7F
.DC
.QJ
07I
0BK
0R~
1TA
29J
30N
4.4
4B5
5GY
5VS
6TJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDPE
ABFIM
ABFMO
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABTAH
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACTTO
ADCVX
ADGTB
ADXEU
ADXPE
ADYSH
AEHZU
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AEZBV
AFBWG
AFION
AFKVX
AFRVT
AGBLW
AGDLA
AGMYJ
AGVKY
AGWUF
AHDZW
AI.
AIDBO
AIJEM
AIYEW
AJWEG
AKBVH
AKHJE
AKMBP
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRRR
ALXIB
AQRUH
AVBZW
AWYRJ
BGSSV
BLEHA
BWMZZ
C0-
C5H
CAG
CCCUG
CE4
COF
CS3
CYRSC
DAOYK
DEXXA
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
FBQ
FETWF
H13
HF~
H~9
IFELN
IPNFZ
J.P
KYCEM
L8C
LJTGL
M4Z
OPCYK
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAJZE
TAP
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UAO
UB6
UPT
UT5
UU3
VH1
VOH
ZGOLN
ZY4
~02
~S~
AAGDL
AAHIA
AAYXX
AMPGV
CITATION
IQODW
TASJS
8FD
FR3
H8D
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-c460t-114fa75c852f8b3d3733cf2cb5c7581bf5440ca2daae0422a7a8d2e5c084c8cd3
ISSN 1366-5901
0143-1161
IngestDate Thu Sep 04 17:37:13 EDT 2025
Fri Sep 05 17:15:12 EDT 2025
Fri Sep 05 07:45:15 EDT 2025
Mon Jul 21 09:13:27 EDT 2025
Tue Jul 01 04:04:41 EDT 2025
Thu Apr 24 23:05:39 EDT 2025
Wed Dec 25 08:58:59 EST 2024
Thu Apr 03 09:46:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords detection
Hyperspectral imagery
Size
Forest tree
accuracy
remote sensing
degradation
cartography
classification
Acquisition
Optimum
planning
Hyperspectral characteristic
imagery
Procedure
spatial resolution
discrimination
Primary forest
Species
Pixel
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c460t-114fa75c852f8b3d3733cf2cb5c7581bf5440ca2daae0422a7a8d2e5c084c8cd3
Notes http://dx.doi.org/10.1080/01431161.2013.817712
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1506369235
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_1506369235
pascalfrancis_primary_27712471
proquest_miscellaneous_1786182795
informaworld_taylorfrancis_310_1080_01431161_2013_817712
crossref_citationtrail_10_1080_01431161_2013_817712
crossref_primary_10_1080_01431161_2013_817712
fao_agris_US201400169075
proquest_miscellaneous_1663627666
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-20
PublicationDateYYYYMMDD 2013-10-20
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-20
  day: 20
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of remote sensing
PublicationYear 2013
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0010
CIT0012
CIT0011
CIT0014
CIT0013
CIT0015
Clark M. L. (CIT0003) 2012
CIT0017
CIT0021
CIT0020
CIT0001
Pu R. (CIT0018) 2012
RSI (Research Systems Incorporation) (CIT0019) 2009
Thomas V. (CIT0023) 2012
Lillesand T. M. (CIT0016) 2004
CIT0025
CIT0002
Thenkabail P. S. (CIT0022) 2012
CIT0024
CIT0005
CIT0004
CIT0026
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0024
  doi: 10.1007/s00267-005-0228-9
– volume-title: Remote Sensing and Image Interpretation
  year: 2004
  ident: CIT0016
– ident: CIT0013
  doi: 10.1080/01431168508948285
– ident: CIT0017
  doi: 10.1016/0034-4257(94)90047-7
– ident: CIT0004
  doi: 10.1201/9781420048568
– ident: CIT0002
  doi: 10.1093/jxb/erl123
– start-page: 469
  volume-title: Hyperspectral Remote Sensing of Vegetation
  year: 2012
  ident: CIT0023
– ident: CIT0010
  doi: 10.1016/j.rse.2007.12.014
– ident: CIT0025
  doi: 10.1016/j.rse.2010.08.006
– ident: CIT0008
  doi: 10.1117/1.1766301
– ident: CIT0020
  doi: 10.1016/0034-4257(86)90018-0
– ident: CIT0015
  doi: 10.1016/0034-4257(93)90013-N
– ident: CIT0006
  doi: 10.1016/j.rse.2009.06.013
– ident: CIT0011
  doi: 10.1016/j.isprsjprs.2008.09.002
– ident: CIT0014
– ident: CIT0012
  doi: 10.1109/36.3001
– start-page: 447
  volume-title: Hyperspectral Remote Sensing of Vegetation
  year: 2012
  ident: CIT0018
– ident: CIT0009
  doi: 10.1016/1011-1344(93)06963-4
– ident: CIT0021
  doi: 10.1016/S0034-4257(96)00248-9
– start-page: 423
  volume-title: Hyperspectral Remote Sensing of Vegetation
  year: 2012
  ident: CIT0003
– ident: CIT0001
  doi: 10.1080/01431160310001654383
– ident: CIT0007
– volume-title: Hyperspectral Remote Sensing of Vegetation
  year: 2012
  ident: CIT0022
– ident: CIT0005
– ident: CIT0026
  doi: 10.1016/0034-4257(87)90015-0
– volume-title: ENVI (Environment for Visualizing Images) Help
  year: 2009
  ident: CIT0019
SSID ssj0006757
Score 2.208837
Snippet Hyperspectral imaging can be a useful remote-sensing technology for classifying tree species. Prior to the image classification stage, effective mapping...
SourceID proquest
pascalfrancis
crossref
informaworld
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7113
SubjectTerms Andes region
Animal, plant and microbial ecology
Applied geophysics
Biological and medical sciences
canopy
Chile
Classification
Degradation
Earth sciences
Earth, ocean, space
Exact sciences and technology
forest trees
Forests
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
hyperspectral imagery
Internal geophysics
lighting
Pixels
planning
reflectance
remote sensing
Spatial resolution
Spectra
Teledetection and vegetation maps
Trees
Title effect of spectral and spatial degradation of hyperspectral imagery for the Sclerophyll tree species classification
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2013.817712
https://www.proquest.com/docview/1506369235
https://www.proquest.com/docview/1663627666
https://www.proquest.com/docview/1786182795
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 1366-5901
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 1366-5901
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QNcEE9teayMxG2VKg_Hdo_lWSHBZVux4hI5jl0tKg1KWyH4JfxcZmI3D7ZaYC9VlbhO6vnimbG_-ULIC4GiUYWOgtSaNGAQsgfgFnQgeTGRk1jBA4jrkB8-8tmCvb9ILwaDXx3W0m6bj_XPg3UlN7EqHAO7YpXsf1i26RQOwHewL3yCheHzn23sCBkY89VFk5Wv_d8gUxo3YFAMomjjQkg7q6bh5VdUsPjRUA3Pof-qhIFf1Qx0U3cJqfSZxhgbSUWtHb-0FPh2RbGjQ1EZAAH0gAR57x3rGRh35l9GytcJ6fJsOm72QaqdW85W-apsd4Iul47fv9x5er9fpIhqulscNrCaX3lfSG9JE5pHTpJ9bNw0nHAeYFVsd572i54Oj75zN-uKyNWzeg8OeXd40Dt4OiVcEK-HvL5kLCMhPJG7r7vtThyR41hwHg_J8XT2-vOnxstDouVK8f3d78syUbf9wAV6Yc-RVeUf0rjIyVUbeCytG58roUEd78zvkjs-UaFTh7p7ZGDW98mtd8ZLnD8g3wF91KGPlpbuQUUBfdSjj3bQh2166KMefRRujwL6aAd9FNFHPfpoH30PyeLtm_mrWeBf4xFoxsMtjA6zSqRaprGVeVIkIkm0jXWeakhWo9ymjIVaxYVSBhXplFCyiE2qQ8m01EXyiAzX5dqcEMqszS0PRT6BKLhg4I5Uzixk4ZKpKOd8RJL9KGfaa9zjq1ZWWbSXwvW2ydA2mbPNiATNr745jZe_tD8BA2ZqCW44W5zHuEiBokYQfY-I7Fo129bA9zbNkut7Pe0hoLmVGM9CDDkiz_eQyMAH4MaeWptyt8lQJTThkKql17SB1IIjlPk1bYTkkYzFJH188__xhNxuZ4CnZLitduYZBO7b_NQ_Q78BnCHn7Q
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbG9jBegA3QOmDzJF5TEv_uI0KbCmx92SrxZtlOzBClQW0qtP313MVJtQ1tSPCWKLYTn8_n75zzd4S81UgaVYYik7GSmQDInsGyEDKjypEZMQcTEPchzyZqPBWfvsg-mnDZhVWiDx0TUURrq3Fy42Z0HxL3DjnpCoAqGJnFh6bQGvMMb0kkGsFTHPlkbYwBD6cT08jECVX603P3tHJrdXoUXX2HwRRDJ90SpBdT2os_LHi7LJ08Jb7vUIpG-T5cNX4Yru9wPf5Xj5-RJx1ope-Tlu2QjWq-S7a7_OmXV8_JL9A2mkJDaB1pe3xzATXghXADgw_XJdJSpAxOWOYSHODFuuC3H8ilcUVBBhQgKT2H9yxqaHs2o_jfvG0SnHoaEO1jeFPb0AsyPTm--DDOupQOWRAqb2AIRHRaBiNZNJ6XXHMeIgteBnBcCh-lEHlwrHSuQnYyp50pWSVDbkQwoeQvyea8nld7hIoYfVS59iNARKUA0-S8iOCRGeEKr9SA8H4obej4zjHtxswWPS1qJ1SLQrVJqAOSrWv9THwffym_B1pi3VcwyXZ6ztBhRYIbQGIDYm6qjm3aLZhOcSx_uNWDW2q2_hSGTwFPDMhRr3cW7AH-5HHzql4tLTJGcgWwXT5QBmCmYlqhkO4to40C31OP5P6_9-OQbI8vzk7t6cfJ51fkMT7BdZ_lr8lms1hVbwDQNf6gnbK_AQZxOs8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgSMAL32gdMIzEa0ri7z4ioBpfFdKotDfLHzFDlGbqUk3jr-cuTqptaEOCt1axnfh8Pv8uufsdIS81kkbFUBUy1bIQANkLOBZCYVScmAlzsAHxPeTnmdqbiw8H8uBMFj-GVaIPnTJRRGercXMfxTRExL1CSroKkAoGZvGxqbTGMsM3FKaZYhJHOdvYYoDDOWEaiTihy5A8d8ko5w6n68k1FwhMMXLSHYPwUq568YcB706l6V3ihvnkYJQf43Xrx-HXBarH_5nwPXKnh6z0ddax--RavXxAbvXV0w9PH5IT0DWaA0Nok2iXvLmCHnA_-ANLD78jklLk-k3Y5hDc39Wm4fefyKRxSkEEFAAp3Yf7rBoYe7Gg-NW8GxJcehoQ62NwUzfQIzKfvvv6Zq_oCzoUQaiyhRUQyWkZjGTJeB655jwkFrwM4LZUPkkhyuBYdK5GbjKnnYmslqE0IpgQ-WOytWyW9TahIiWfVKn9BPBQFGCYnBcJ_DEjXOWVGhE-rKQNPds5Ft1Y2GogRe2FalGoNgt1RIpNr6PM9vGX9tugJNZ9A4Ns5_sM3VWktwEcNiLmrObYtnsB0-uN5VePuntOyzaPwvAqoIkReTGonQVrgJ943LJu1scW-SK5AtAur2gDIFMxrVBIl7bRRoHnqSdy59_n8Zzc_PJ2aj-9n318Qm7jBTz0WfmUbLWrdf0M0Fzrd7sN-xsMXzl8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+spectral+and+spatial+degradation+of+hyperspectral+imagery+for+the+Sclerophyll+tree+species+classification&rft.jtitle=International+journal+of+remote+sensing&rft.au=Pe%C3%B1a%2C+Marco+A.&rft.au=Cruz%2C+Pablo&rft.au=Roig%2C+Miguel&rft.date=2013-10-20&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=34&rft.issue=20&rft.spage=7113&rft.epage=7130&rft_id=info:doi/10.1080%2F01431161.2013.817712&rft.externalDocID=817712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1366-5901&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1366-5901&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1366-5901&client=summon