The one-dimensional Lyα forest power spectrum from BOSS

We have developed two independent methods for measuring the one-dimensional power spectrum of the transmitted flux in the Lyman-α forest. The first method is based on a Fourier transform and the second on a maximum-likelihood estimator. The two methods are independent and have different systematic u...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 559; pp. A85 - 19
Main Authors Palanque-Delabrouille, Nathalie, Yèche, Christophe, Borde, Arnaud, Le Goff, Jean-Marc, Rossi, Graziano, Viel, Matteo, Aubourg, Éric, Bailey, Stephen, Bautista, Julian, Blomqvist, Michael, Bolton, Adam, Bolton, James S., Busca, Nicolás G., Carithers, Bill, A. C. Croft, Rupert, Dawson, Kyle S., Delubac, Timothée, Font-Ribera, Andreu, Ho, Shirley, Kirkby, David, Lee, Khee-Gan, Margala, Daniel, Miralda-Escudé, Jordi, Muna, Demitri, Myers, Adam D., Noterdaeme, Pasquier, Pâris, Isabelle, Petitjean, Patrick, Pieri, Matthew M., Rich, James, Rollinde, Emmanuel, Ross, Nicholas P., Schlegel, David J., Schneider, Donald P., Slosar, Anže, Weinberg, David H.
Format Journal Article
LanguageEnglish
Published United States EDP Sciences 01.11.2013
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
DOI10.1051/0004-6361/201322130

Cover

Abstract We have developed two independent methods for measuring the one-dimensional power spectrum of the transmitted flux in the Lyman-α forest. The first method is based on a Fourier transform and the second on a maximum-likelihood estimator. The two methods are independent and have different systematic uncertainties. Determination of the noise level in the data spectra was subject to a new treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13 821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60 000 spectra on the basis of their high quality, high signal-to-noise ratio (S/N), and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from ⟨z⟩ = 2.2 to ⟨z⟩ = 4.4, and scales from 0.001 km s-1 to 0.02 km s-1. We determined the methodological andinstrumental systematic uncertainties of our measurements. We provide a preliminary cosmological interpretation of our measurements using available hydrodynamical simulations. The improvement in precision over previously published results from SDSS is a factor 2–3 for constraints on relevant cosmological parameters. For a ΛCDM model and using a constraint on H0 that encompasses measurements based on the local distance ladder and on CMB anisotropies, we infer σ8 = 0.83 ± 0.03 and ns = 0.97 ± 0.02 based on H i absorption in the range 2.1 < z < 3.7.
AbstractList We have developed two independent methods to measure the one-dimensional power spectrum of the transmitted flux in the Lyman-$\alpha$ forest. The first method is based on a Fourier transform, and the second on a maximum likelihood estimator. The two methods are independent and have different systematic uncertainties. The determination of the noise level in the data spectra was subject to a novel treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13,821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60,000 spectra on the basis of their high quality, large signal-to-noise ratio, and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from $ = 2.2$ to $ = 4.4$, and scales from 0.001 $\rm(km/s)^{-1}$ to $0.02 \rm(km/s)^{-1}$. We determine the methodological and instrumental systematic uncertainties of our measurements. We provide a preliminary cosmological interpretation of our measurements using available hydrodynamical simulations. The improvement in precision over previously published results from SDSS is a factor 2--3 for constraints on relevant cosmological parameters. For a $\Lambda$CDM model and using a constraint on $H_0$ that encompasses measurements based on the local distance ladder and on CMB anisotropies, we infer $\sigma_8 =0.83\pm0.03$ and $n_s= 0.97\pm0.02$ based on \ion{H}{i} absorption in the range $2.1
We have developed two independent methods for measuring the one-dimensional power spectrum of the transmitted flux in the Lyman- alpha forest. The first method is based on a Fourier transform and the second on a maximum-likelihood estimator. The two methods are independent and have different systematic uncertainties. Determination of the noise level in the data spectra was subject to a new treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60 000 spectra on the basis of their high quality, high signal-to-noise ratio (S/N), and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from [left angle bracket]z[right angle bracket] = 2.2 to [left angle bracket]z[right angle bracket] = 4.4, and scales from 0.001 km s super(-1) to 0.02 km s super(-1). We determined the methodological and instrumental systematic uncertainties of our measurements. We provide a preliminary cosmological interpretation of our measurements using available hydrodynamical simulations. The improvement in precision over previously published results from SDSS is a factor 2-3 for constraints on relevant cosmological parameters. For a ACDM model and using a constraint on H sub(0) that encompasses measurements based on the local distance ladder and on CMB anisotropies, we infer [sigma] sub(8) = 0.83 + or - 0.03 and n sub(s) = 0.97 + or - 0.02 based on H I absorption in the range 2.1 < z < 3.7.
We have developed two independent methods for measuring the one-dimensional power spectrum of the transmitted flux in the Lyman-α forest. The first method is based on a Fourier transform and the second on a maximum-likelihood estimator. The two methods are independent and have different systematic uncertainties. Determination of the noise level in the data spectra was subject to a new treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13 821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60 000 spectra on the basis of their high quality, high signal-to-noise ratio (S/N), and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from ⟨z⟩ = 2.2 to ⟨z⟩ = 4.4, and scales from 0.001 km s-1 to 0.02 km s-1. We determined the methodological andinstrumental systematic uncertainties of our measurements. We provide a preliminary cosmological interpretation of our measurements using available hydrodynamical simulations. The improvement in precision over previously published results from SDSS is a factor 2–3 for constraints on relevant cosmological parameters. For a ΛCDM model and using a constraint on H0 that encompasses measurements based on the local distance ladder and on CMB anisotropies, we infer σ8 = 0.83 ± 0.03 and ns = 0.97 ± 0.02 based on H i absorption in the range 2.1 < z < 3.7.
For this research, we have developed two independent methods for measuring the one-dimensional power spectrum of the transmitted flux in the Lyman-α forest. The first method is based on a Fourier transform and the second on a maximum-likelihood estimator. The two methods are independent and have different systematic uncertainties. Determination of the noise level in the data spectra was subject to a new treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13 821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60 000 spectra on the basis of their high quality, high signal-to-noise ratio (S/N), and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from = 2.2 to = 4.4, and scales from 0.001 km s-1 to 0.02 km s-1. We determined the methodological andinstrumental systematic uncertainties of our measurements. We provide a preliminary cosmological interpretation of our measurements using available hydrodynamical simulations. The improvement in precision over previously published results from SDSS is a factor 2–3 for constraints on relevant cosmological parameters. For a ΛCDM model and using a constraint on H0 that encompasses measurements based on the local distance ladder and on CMB anisotropies, we infer σ8 = 0.83 ± 0.03 and ns = 0.97 ± 0.02 based on Hi absorption in the range 2.1 < z < 3.7.
Author Ross, Nicholas P.
Bolton, James S.
Bailey, Stephen
Schlegel, David J.
Delubac, Timothée
Lee, Khee-Gan
Weinberg, David H.
Rich, James
Viel, Matteo
Bolton, Adam
Busca, Nicolás G.
Slosar, Anže
Yèche, Christophe
A. C. Croft, Rupert
Kirkby, David
Rollinde, Emmanuel
Borde, Arnaud
Dawson, Kyle S.
Palanque-Delabrouille, Nathalie
Noterdaeme, Pasquier
Rossi, Graziano
Blomqvist, Michael
Miralda-Escudé, Jordi
Petitjean, Patrick
Schneider, Donald P.
Ho, Shirley
Pieri, Matthew M.
Font-Ribera, Andreu
Bautista, Julian
Pâris, Isabelle
Muna, Demitri
Carithers, Bill
Myers, Adam D.
Le Goff, Jean-Marc
Margala, Daniel
Aubourg, Éric
Author_xml – sequence: 1
  givenname: Nathalie
  surname: Palanque-Delabrouille
  fullname: Palanque-Delabrouille, Nathalie
  organization: CEA, Centre de Saclay, Irfu/SPP, 91191 Gif-sur-Yvette, France
– sequence: 2
  givenname: Christophe
  surname: Yèche
  fullname: Yèche, Christophe
  organization: CEA, Centre de Saclay, Irfu/SPP, 91191 Gif-sur-Yvette, France
– sequence: 3
  givenname: Arnaud
  surname: Borde
  fullname: Borde, Arnaud
  organization: CEA, Centre de Saclay, Irfu/SPP, 91191 Gif-sur-Yvette, France
– sequence: 4
  givenname: Jean-Marc
  surname: Le Goff
  fullname: Le Goff, Jean-Marc
  organization: CEA, Centre de Saclay, Irfu/SPP, 91191 Gif-sur-Yvette, France
– sequence: 5
  givenname: Graziano
  surname: Rossi
  fullname: Rossi, Graziano
  organization: CEA, Centre de Saclay, Irfu/SPP, 91191 Gif-sur-Yvette, France
– sequence: 6
  givenname: Matteo
  surname: Viel
  fullname: Viel, Matteo
  organization: INAF, Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, 34131 Trieste, Italy
– sequence: 7
  givenname: Éric
  surname: Aubourg
  fullname: Aubourg, Éric
  organization: APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10 rue A. Domon & L. Duquet, 75205 Paris, France
– sequence: 8
  givenname: Stephen
  surname: Bailey
  fullname: Bailey, Stephen
  organization: Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
– sequence: 9
  givenname: Julian
  surname: Bautista
  fullname: Bautista, Julian
  organization: APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10 rue A. Domon & L. Duquet, 75205 Paris, France
– sequence: 10
  givenname: Michael
  surname: Blomqvist
  fullname: Blomqvist, Michael
  organization: Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
– sequence: 11
  givenname: Adam
  surname: Bolton
  fullname: Bolton, Adam
  organization: Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112, USA
– sequence: 12
  givenname: James S.
  surname: Bolton
  fullname: Bolton, James S.
  organization: School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
– sequence: 13
  givenname: Nicolás G.
  surname: Busca
  fullname: Busca, Nicolás G.
  organization: APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10 rue A. Domon & L. Duquet, 75205 Paris, France
– sequence: 14
  givenname: Bill
  surname: Carithers
  fullname: Carithers, Bill
  organization: Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
– sequence: 15
  givenname: Rupert
  surname: A. C. Croft
  fullname: A. C. Croft, Rupert
  organization: Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
– sequence: 16
  givenname: Kyle S.
  surname: Dawson
  fullname: Dawson, Kyle S.
  organization: Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112, USA
– sequence: 17
  givenname: Timothée
  surname: Delubac
  fullname: Delubac, Timothée
  organization: CEA, Centre de Saclay, Irfu/SPP, 91191 Gif-sur-Yvette, France
– sequence: 18
  givenname: Andreu
  surname: Font-Ribera
  fullname: Font-Ribera, Andreu
  organization: Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
– sequence: 19
  givenname: Shirley
  surname: Ho
  fullname: Ho, Shirley
  organization: Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
– sequence: 20
  givenname: David
  surname: Kirkby
  fullname: Kirkby, David
  organization: Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
– sequence: 21
  givenname: Khee-Gan
  surname: Lee
  fullname: Lee, Khee-Gan
  organization: Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
– sequence: 22
  givenname: Daniel
  surname: Margala
  fullname: Margala, Daniel
  organization: Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
– sequence: 23
  givenname: Jordi
  surname: Miralda-Escudé
  fullname: Miralda-Escudé, Jordi
  organization: Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia
– sequence: 24
  givenname: Demitri
  surname: Muna
  fullname: Muna, Demitri
  organization: Department of Astronomy, Ohio State University, Columbus, OH, 43210, USA
– sequence: 25
  givenname: Adam D.
  surname: Myers
  fullname: Myers, Adam D.
  organization: Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA
– sequence: 26
  givenname: Pasquier
  surname: Noterdaeme
  fullname: Noterdaeme, Pasquier
  organization: Université Paris 6 et CNRS, Institut d’Astrophysique de Paris, 98bis Bd. Arago, 75014 Paris, France
– sequence: 27
  givenname: Isabelle
  surname: Pâris
  fullname: Pâris, Isabelle
  organization: Université Paris 6 et CNRS, Institut d’Astrophysique de Paris, 98bis Bd. Arago, 75014 Paris, France
– sequence: 28
  givenname: Patrick
  surname: Petitjean
  fullname: Petitjean, Patrick
  organization: Université Paris 6 et CNRS, Institut d’Astrophysique de Paris, 98bis Bd. Arago, 75014 Paris, France
– sequence: 29
  givenname: Matthew M.
  surname: Pieri
  fullname: Pieri, Matthew M.
  organization: Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX, UK
– sequence: 30
  givenname: James
  surname: Rich
  fullname: Rich, James
  organization: CEA, Centre de Saclay, Irfu/SPP, 91191 Gif-sur-Yvette, France
– sequence: 31
  givenname: Emmanuel
  surname: Rollinde
  fullname: Rollinde, Emmanuel
  organization: Université Paris 6 et CNRS, Institut d’Astrophysique de Paris, 98bis Bd. Arago, 75014 Paris, France
– sequence: 32
  givenname: Nicholas P.
  surname: Ross
  fullname: Ross, Nicholas P.
  organization: Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
– sequence: 33
  givenname: David J.
  surname: Schlegel
  fullname: Schlegel, David J.
  organization: Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
– sequence: 34
  givenname: Donald P.
  surname: Schneider
  fullname: Schneider, Donald P.
  organization: Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 35
  givenname: Anže
  surname: Slosar
  fullname: Slosar, Anže
  organization: Brookhaven National Laboratory, Bldg 510, Upton, NY 11973, USA
– sequence: 36
  givenname: David H.
  surname: Weinberg
  fullname: Weinberg, David H.
  organization: Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA
BackLink https://cea.hal.science/cea-01135469$$DView record in HAL
https://www.osti.gov/servlets/purl/1336036$$D View this record in Osti.gov
BookMark eNqFkcFu1DAQhi1UJLaFJ-AScYJD6IztOMmxtLRFWqmHLSBxGbmOrTUk8WJngT5WX4Rnwqu0e-DQnkYjfd9oZv5DdjCG0TL2GuE9QoXHACBLJRQec0DBOQp4xhYoBS-hluqALfbEC3aY0vfccmzEgjXXa1vkYWXnBzsmH0bdF8vbv3eFC9GmqdiE3zYWaWPNFLdD4WIYig9Xq9VL9tzpPtlX9_WIfT7_eH16WS6vLj6dnixLI6t2Ki10la5VLaRpLdfSNarWrnOdAXmjjOKNcg3qVqIBozV2N7wzUmqbe-5QiSP2Zp4b0uQpGT9ZszZhHPNChEIoEDvo3QytdU-b6AcdbyloT5cnSzJWEyCKSqr2F2b27cxuYvi5zSfS4JOxfa9HG7aJUNWoAEGqp9Eqg7ytoM5oO6MmhpSidZQ31VP-5xS17wmBdknRLgfa5UD7pLIr_nMfTnjcKmfLp8n-2Ss6_qD87rqiBr4SfFlhJc6-0bn4BxmWo9U
CitedBy_id crossref_primary_10_1088_1475_7516_2018_04_026
crossref_primary_10_1093_mnras_stx2942
crossref_primary_10_1088_1475_7516_2014_12_024
crossref_primary_10_1103_PhysRevD_96_061301
crossref_primary_10_1038_s41598_022_24608_5
crossref_primary_10_3847_1538_4357_ac0a76
crossref_primary_10_1093_mnras_stac1825
crossref_primary_10_1103_PhysRevD_99_121302
crossref_primary_10_1088_1475_7516_2024_05_088
crossref_primary_10_1093_mnras_stz984
crossref_primary_10_3847_1538_4365_acf2f1
crossref_primary_10_1093_mnras_staa2225
crossref_primary_10_1093_mnras_stz344
crossref_primary_10_1186_s40668_016_0017_2
crossref_primary_10_3847_1538_4365_aa8992
crossref_primary_10_1093_mnras_stu577
crossref_primary_10_3847_1538_4357_aa6031
crossref_primary_10_1088_1475_7516_2015_05_060
crossref_primary_10_1051_0004_6361_201423507
crossref_primary_10_1088_1475_7516_2014_07_005
crossref_primary_10_1093_mnras_stae2653
crossref_primary_10_1093_mnras_stac553
crossref_primary_10_1088_1475_7516_2014_10_081
crossref_primary_10_1088_2041_8205_795_1_L12
crossref_primary_10_1088_1475_7516_2015_12_017
crossref_primary_10_1088_1475_7516_2021_03_101
crossref_primary_10_1093_mnras_stad1363
crossref_primary_10_1088_1475_7516_2017_12_013
crossref_primary_10_1088_1475_7516_2024_07_029
crossref_primary_10_1007_JHEP03_2023_149
crossref_primary_10_1088_1475_7516_2019_01_049
crossref_primary_10_3847_1538_4357_ab4efd
crossref_primary_10_1088_1475_7516_2024_05_077
crossref_primary_10_17721_2227_1481_6_34_40
crossref_primary_10_3847_1538_4357_aa9c81
crossref_primary_10_1093_mnras_stad1920
crossref_primary_10_1088_1475_7516_2018_05_051
crossref_primary_10_3847_1538_4357_aa7136
crossref_primary_10_5303_PKAS_2015_30_2_321
crossref_primary_10_1088_1475_7516_2021_04_059
crossref_primary_10_1093_mnrasl_slu142
crossref_primary_10_1103_PhysRevD_107_123520
crossref_primary_10_1103_PhysRevD_92_123535
crossref_primary_10_1103_PhysRevD_91_063504
crossref_primary_10_1088_1475_7516_2019_07_017
crossref_primary_10_1093_mnras_stad437
crossref_primary_10_1093_mnras_stad557
crossref_primary_10_1103_PhysRevD_103_043526
crossref_primary_10_1103_PhysRevD_110_063505
crossref_primary_10_3847_1538_4357_ab75ee
crossref_primary_10_1103_PhysRevD_95_043541
crossref_primary_10_1088_1475_7516_2015_03_036
crossref_primary_10_1103_PhysRevD_94_023523
crossref_primary_10_3847_0004_6256_151_2_44
crossref_primary_10_1103_PhysRevLett_123_071102
crossref_primary_10_3847_1538_4357_835_2_281
crossref_primary_10_1088_1475_7516_2020_04_025
crossref_primary_10_1088_0067_0049_221_2_27
crossref_primary_10_1093_mnras_stz3467
crossref_primary_10_1093_mnras_stz1276
crossref_primary_10_1103_PhysRevD_98_095031
crossref_primary_10_1093_mnras_stab2120
crossref_primary_10_1093_mnras_stae2035
crossref_primary_10_3847_1538_4357_aafee4
crossref_primary_10_1093_mnras_stae751
crossref_primary_10_1093_mnras_stu2624
crossref_primary_10_1103_PhysRevD_103_043014
crossref_primary_10_1016_j_physrep_2017_12_002
crossref_primary_10_1088_1475_7516_2018_01_008
crossref_primary_10_3847_2041_8213_ac7e49
crossref_primary_10_1088_1475_7516_2018_01_003
crossref_primary_10_1093_mnras_stw3265
crossref_primary_10_1088_1475_7516_2020_03_068
crossref_primary_10_1093_mnras_staa1242
crossref_primary_10_1093_mnras_staa2331
crossref_primary_10_3847_1538_4357_ab288c
crossref_primary_10_1088_1475_7516_2020_06_002
crossref_primary_10_1103_PhysRevLett_132_231002
crossref_primary_10_1103_PhysRevD_91_083508
crossref_primary_10_1093_mnras_stad2512
crossref_primary_10_1103_PhysRevD_88_123515
crossref_primary_10_1093_mnras_stw204
crossref_primary_10_1088_1475_7516_2022_09_070
crossref_primary_10_1093_mnras_stae1510
crossref_primary_10_1093_mnras_stae2684
crossref_primary_10_1093_mnras_stu2377
crossref_primary_10_1103_PhysRevD_92_123516
crossref_primary_10_3847_1538_4357_aafad1
crossref_primary_10_3847_1538_4365_aace58
crossref_primary_10_1093_mnras_stab3201
crossref_primary_10_1093_mnras_stac1344
crossref_primary_10_3847_1538_4365_ac366e
crossref_primary_10_1051_0004_6361_201628161
crossref_primary_10_1103_PhysRevD_94_103506
crossref_primary_10_1017_pasa_2023_22
crossref_primary_10_1088_1475_7516_2021_10_077
crossref_primary_10_1093_mnras_stab555
crossref_primary_10_1126_science_aaf9346
crossref_primary_10_1093_mnras_stz271
crossref_primary_10_1088_1475_7516_2019_10_055
crossref_primary_10_1103_PhysRevLett_127_111301
crossref_primary_10_1088_1475_7516_2023_01_034
crossref_primary_10_1093_mnras_sty2158
crossref_primary_10_1088_1475_7516_2015_11_011
crossref_primary_10_3847_1538_4357_aada86
crossref_primary_10_1103_PhysRevD_98_083540
crossref_primary_10_1088_1475_7516_2016_02_051
crossref_primary_10_1088_1475_7516_2014_05_023
crossref_primary_10_3847_1538_4357_aa81cf
crossref_primary_10_1093_mnras_stad184
crossref_primary_10_1088_0004_637X_814_2_146
crossref_primary_10_1093_mnras_stz1388
crossref_primary_10_1088_1475_7516_2025_01_141
crossref_primary_10_1088_1475_7516_2025_01_140
crossref_primary_10_1088_1475_7516_2015_02_045
crossref_primary_10_1093_mnras_stu2645
crossref_primary_10_1103_PhysRevD_109_043511
crossref_primary_10_1088_1475_7516_2019_12_058
crossref_primary_10_1093_mnras_stw2397
crossref_primary_10_3847_1538_4357_aacf3f
crossref_primary_10_1103_PhysRevD_111_063524
crossref_primary_10_1088_1475_7516_2015_03_004
crossref_primary_10_1088_1475_7516_2023_11_045
crossref_primary_10_3847_1538_4357_acfcb5
crossref_primary_10_1103_PhysRevD_103_083533
crossref_primary_10_1103_PhysRevLett_134_091001
crossref_primary_10_1016_j_ppnp_2018_07_004
crossref_primary_10_1093_mnras_stac2021
crossref_primary_10_1093_mnras_sty603
crossref_primary_10_1093_pasj_psz010
crossref_primary_10_1146_annurev_astro_120920_010024
crossref_primary_10_1093_mnras_stad598
crossref_primary_10_1093_mnras_stae2741
crossref_primary_10_1088_1475_7516_2024_04_066
crossref_primary_10_3847_1538_4357_abc8ed
crossref_primary_10_1103_PhysRevD_92_063505
crossref_primary_10_3847_1538_4357_aa898d
crossref_primary_10_1103_PhysRevLett_119_031302
crossref_primary_10_3847_1538_4357_abfa16
crossref_primary_10_1016_j_physletb_2017_08_022
crossref_primary_10_1093_mnras_stw2484
crossref_primary_10_1146_annurev_astro_082214_122355
crossref_primary_10_3847_1538_4365_ab2b9a
crossref_primary_10_1093_mnras_stad2549
crossref_primary_10_3389_fspas_2018_00036
crossref_primary_10_1103_PhysRevD_97_103531
crossref_primary_10_1088_1475_7516_2019_02_031
crossref_primary_10_1093_mnras_stu475
crossref_primary_10_1103_PhysRevD_91_055033
crossref_primary_10_1093_mnras_stab3308
crossref_primary_10_1093_mnras_stae171
crossref_primary_10_1093_mnras_stv2990
crossref_primary_10_1093_mnras_stx1870
crossref_primary_10_1093_mnras_stz2214
crossref_primary_10_3847_1538_4357_aa9185
crossref_primary_10_3847_1538_4357_ab76bd
crossref_primary_10_1088_1475_7516_2014_12_053
crossref_primary_10_1088_1475_7516_2017_06_047
crossref_primary_10_1093_mnras_stae2358
crossref_primary_10_1093_mnras_staa110
crossref_primary_10_1088_1475_7516_2021_05_033
crossref_primary_10_1103_PhysRevD_104_043514
crossref_primary_10_1088_1475_7516_2021_03_049
crossref_primary_10_1088_1475_7516_2016_08_012
crossref_primary_10_1103_PhysRevD_96_023522
crossref_primary_10_1088_1475_7516_2023_10_020
crossref_primary_10_1088_1475_7516_2023_01_002
crossref_primary_10_1093_mnras_stad3008
crossref_primary_10_3847_2041_8213_acb7f1
crossref_primary_10_1088_1361_6382_ab0587
crossref_primary_10_1103_PhysRevD_97_023537
crossref_primary_10_1155_2016_2162659
crossref_primary_10_1016_j_ultras_2024_107299
crossref_primary_10_1088_1475_7516_2018_09_011
crossref_primary_10_1093_mnras_stab3017
crossref_primary_10_1093_mnras_stu860
crossref_primary_10_1088_0004_637X_799_2_196
crossref_primary_10_1093_mnras_stab2569
crossref_primary_10_3847_1538_4357_aa6621
crossref_primary_10_1093_mnras_stz1632
crossref_primary_10_1103_PhysRevD_89_107301
crossref_primary_10_1093_mnras_stac3294
Cites_doi 10.1051/0004-6361/201016233
10.1051/0004-6361/200913508
10.1088/1475-7516/2011/09/001
10.1111/j.1365-2966.2004.08031.x
10.1088/0067-0049/199/1/3
10.1086/324741
10.1103/PhysRevD.57.2117
10.1111/j.1745-3933.2009.00720.x
10.1093/mnras/227.1.1
10.1086/307438
10.1051/0004-6361/201117736
10.1088/0004-6256/145/3/69
10.1093/mnras/sts465
10.1088/0004-6256/142/3/72
10.1086/309899
10.1093/mnras/292.1.27
10.1103/PhysRevD.76.063009
10.1088/0004-6256/144/5/144
10.1051/0004-6361/201016254
10.1088/0067-0049/182/2/543
10.1086/300645
10.1086/312136
10.1111/j.1365-2966.2004.08224.x
10.1088/1475-7516/2012/01/001
10.1088/0004-6256/145/1/10
10.1088/0067-0049/208/2/19
10.1088/1475-7516/2013/04/026
10.1088/0004-637X/730/2/119
10.1088/1475-7516/2010/06/015
10.1088/0067-0049/203/2/21
10.1038/281358a0
10.1103/RevModPhys.81.1405
10.1046/j.1365-8711.1998.01755.x
10.1086/301513
10.1086/307264
10.1086/444361
10.1086/309752
10.1086/304539
10.1088/0004-637X/729/2/141
10.1088/2041-8205/724/1/L69
10.1016/0010-4655(75)90039-9
10.1086/180695
10.1046/j.1365-8711.1999.02880.x
10.1086/320436
10.1088/0004-637X/743/2/125
10.1086/497563
10.1051/0004-6361/201220142
10.1086/344099
10.1051/0004-6361/201220724
10.1086/308874
10.1086/339311
10.1051/0004-6361:20053786
10.1111/j.1365-2966.2004.07221.x
10.1086/317079
10.1111/j.1365-2966.2005.09655.x
10.1046/j.1365-8711.1999.02272.x
10.1111/j.1365-2966.2005.09703.x
10.1086/305289
10.1111/j.1365-2966.2006.11134.x
10.1103/PhysRevD.71.103515
10.1093/mnras/260.3.617
10.1088/1475-7516/2013/03/024
10.1111/j.1365-2966.2005.09141.x
10.1086/305772
10.1086/117915
10.1086/311826
10.1086/187670
10.1088/0067-0049/193/2/29
10.1088/0004-6256/146/2/32
10.1086/345945
10.1088/0004-6256/139/4/1628
10.1086/500975
10.1086/306225
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
DBID BSCLL
AAYXX
CITATION
7TG
7TV
C1K
KL.
8FD
H8D
L7M
1XC
VOOES
OIOZB
OTOTI
DOI 10.1051/0004-6361/201322130
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
Meteorological & Geoastrophysical Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
EndPage 19
ExternalDocumentID 1336036
oai_HAL_cea_01135469v1
10_1051_0004_6361_201322130
ark_67375_80W_0VS153DZ_F
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOTM
ABDNZ
ABDPE
ABPPZ
ABTAH
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
AEILP
AENEX
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
BSCLL
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNP
RNS
RSV
SDH
SJN
SOJ
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
AAOGA
AAYXX
ABNSH
ACRPL
ADNMO
AGQPQ
CITATION
7TG
7TV
C1K
KL.
8FD
H8D
L7M
1XC
VOOES
ACBIF
ACZCS
OIOZB
OTOTI
XFK
ID FETCH-LOGICAL-c459t-e0d5a76734c9e2a4f867afdfdc04b6c6286f81a941c0caa1db2dc44ae1c02f163
ISSN 0004-6361
IngestDate Mon Jul 03 03:58:02 EDT 2023
Fri Sep 12 12:35:27 EDT 2025
Fri Sep 05 05:41:23 EDT 2025
Fri Sep 05 01:35:00 EDT 2025
Tue Jul 01 03:42:12 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Wed Oct 30 09:49:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords intergalactic medium
cosmology: observations
cosmological parameters
large-scale structure of Universe
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-e0d5a76734c9e2a4f867afdfdc04b6c6286f81a941c0caa1db2dc44ae1c02f163
Notes dkey:10.1051/0004-6361/201322130
publisher-ID:aa22130-13
bibcode:2013A%26A...559A..85P
istex:D74E2FEA628C8B3363276920B9D99010C443FA18
The measured values of the power spectrum and correlation matrices for all scales and all redshifts (full Tables 4 and 5) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A85
ark:/67375/80W-0VS153DZ-F
e-mail: nathalie.palanque-delabrouille@cea.fr
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
BNL-112189-2016-JA
USDOE Office of Science (SC), High Energy Physics (HEP)
SC00112704
ORCID 0000-0002-5777-1629
0000-0002-6167-5621
0000-0002-9885-3989
0000-0002-5592-023X
0000000223168370
OpenAccessLink https://cea.hal.science/cea-01135469
PQID 1560129507
PQPubID 23462
PageCount 19
ParticipantIDs osti_scitechconnect_1336036
hal_primary_oai_HAL_cea_01135469v1
proquest_miscellaneous_1671601046
proquest_miscellaneous_1560129507
crossref_citationtrail_10_1051_0004_6361_201322130
crossref_primary_10_1051_0004_6361_201322130
istex_primary_ark_67375_80W_0VS153DZ_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2013
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Gunn (R24) 1998; 116
York (R75) 2000; 120
Cen (R11) 1994; 437
Croft (R12) 1998; 495
Doi (R17) 2010; 139
Croft (R13) 1999; 520
Viel (R68) 2006; 365
Abazajian (R1) 2009; 182
Bolton (R7) 2012; 144
McDonald (R45) 2005; 360
Schlegel (R59) 1998; 500
Aihara (R4) 2011; 193
Pâris (R54) 2012; 548
Dawson (R15) 2013; 145
Lee (R39) 2013; 145
Feng (R19) 2000; 535
McDonald (R44) 2000; 543
Hui (R30) 1999; 511
Yèche (R74) 2010; 523
Font-Ribera (R20) 2012; 1
Slosar (R62) 2011; 9
Hui (R31) 2001; 552
Yèche (R73) 2006; 448
Zhang (R76) 1995; 453
Smee (R64) 2013; 146
Kaiser (R33) 1987; 227
Lynds (R40) 1971; 164
Ahn (R3) 2012; 203
Goff (R38) 2011; 534
Gnedin (R23) 1998; 299
James (R32) 1975; 10
Stoughton (R67) 2002; 123
Desjacques (R16) 2007; 374
Springel (R66) 2005; 364
Abel (R2) 1999; 520
Palanque-Delabrouille (R52) 2011; 530
Smith (R65) 2002; 123
Gaztañaga (R22) 1999; 309
Busca (R10) 2013; 552
Slosar (R63) 2013; 4
Bond (R8) 1998; 57
Eisenstein (R18) 2011; 142
Kirkby (R36) 2013; 3
Kim (R35) 2004; 347
Hui (R28) 1997; 292
Nusser (R51) 1999; 303
Fukugita (R21) 1996; 111
McDonald (R41) 2003; 585
Hernquist (R26) 1996; 457
Hinshaw (R27) 2013; 208
Gunn (R25) 2006; 131
Viel (R69) 2004; 354
Hui (R29) 1997; 486
Bi (R6) 1992; 266
Riess (R57) 2011; 730
Ross (R58) 2012; 199
Viel (R70) 2009; 399
Pâris (R53) 2011; 530
Viel (R72) 2013; 429
McDonald (R42) 2007; 76
Seljak (R61) 2005; 71
Alcock (R5) 1979; 281
Viel (R71) 2010; 6
McDonald (R46) 2005; 635
Bovy (R9) 2011; 729
Croft (R14) 2002; 581
R56
Pieri (R55) 2010; 724
McDonald (R43) 1999; 518
McDonald (R47) 2006; 163
Seljak (R60) 1998; 506
Neyman (R50) 1937; 236
Kirkpatrick (R37) 2011; 743
Kim (R34) 2004; 351
Miralda-Escudé (R49) 1993; 260
Meiksin (R48) 2009; 81
References_xml – volume: 530
  start-page: A50
  year: 2011
  ident: R53
  publication-title: A&A
  doi: 10.1051/0004-6361/201016233
– volume: 523
  start-page: A14
  year: 2010
  ident: R74
  publication-title: A&A
  doi: 10.1051/0004-6361/200913508
– volume: 9
  start-page: 1
  year: 2011
  ident: R62
  publication-title: JCAP
  doi: 10.1088/1475-7516/2011/09/001
– volume: 351
  start-page: 1471
  year: 2004
  ident: R34
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08031.x
– volume: 199
  start-page: 3
  year: 2012
  ident: R58
  publication-title: ApJS
  doi: 10.1088/0067-0049/199/1/3
– volume: 123
  start-page: 485
  year: 2002
  ident: R67
  publication-title: AJ
  doi: 10.1086/324741
– volume: 57
  start-page: 2117
  year: 1998
  ident: R8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.57.2117
– volume: 399
  start-page: L39
  year: 2009
  ident: R70
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2009.00720.x
– volume: 227
  start-page: 1
  year: 1987
  ident: R33
  publication-title: MNRAS
  doi: 10.1093/mnras/227.1.1
– volume: 520
  start-page: 1
  year: 1999
  ident: R13
  publication-title: ApJ
  doi: 10.1086/307438
– volume: 534
  start-page: A135
  year: 2011
  ident: R38
  publication-title: A&A
  doi: 10.1051/0004-6361/201117736
– volume: 145
  start-page: 69
  year: 2013
  ident: R39
  publication-title: AJ
  doi: 10.1088/0004-6256/145/3/69
– volume: 429
  start-page: 1734
  year: 2013
  ident: R72
  publication-title: MNRAS
  doi: 10.1093/mnras/sts465
– volume: 142
  start-page: 72
  year: 2011
  ident: R18
  publication-title: AJ
  doi: 10.1088/0004-6256/142/3/72
– volume: 457
  start-page: L51
  year: 1996
  ident: R26
  publication-title: ApJ
  doi: 10.1086/309899
– volume: 292
  start-page: 27
  year: 1997
  ident: R28
  publication-title: MNRAS
  doi: 10.1093/mnras/292.1.27
– volume: 236
  start-page: 333
  year: 1937
  ident: R50
  publication-title: Series A
– volume: 76
  start-page: 063009
  year: 2007
  ident: R42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.76.063009
– ident: R56
– volume: 144
  start-page: 144
  year: 2012
  ident: R7
  publication-title: AJ
  doi: 10.1088/0004-6256/144/5/144
– volume: 530
  start-page: A122
  year: 2011
  ident: R52
  publication-title: A&A
  doi: 10.1051/0004-6361/201016254
– volume: 182
  start-page: 543
  year: 2009
  ident: R1
  publication-title: ApJS
  doi: 10.1088/0067-0049/182/2/543
– volume: 116
  start-page: 3040
  year: 1998
  ident: R24
  publication-title: AJ
  doi: 10.1086/300645
– volume: 520
  start-page: L13
  year: 1999
  ident: R2
  publication-title: ApJ
  doi: 10.1086/312136
– volume: 354
  start-page: 684
  year: 2004
  ident: R69
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08224.x
– volume: 1
  start-page: 1
  year: 2012
  ident: R20
  publication-title: JCAP
  doi: 10.1088/1475-7516/2012/01/001
– volume: 145
  start-page: 10
  year: 2013
  ident: R15
  publication-title: AJ
  doi: 10.1088/0004-6256/145/1/10
– volume: 208
  start-page: 19
  year: 2013
  ident: R27
  publication-title: ApJS
  doi: 10.1088/0067-0049/208/2/19
– volume: 4
  start-page: 26
  year: 2013
  ident: R63
  publication-title: JCAP
  doi: 10.1088/1475-7516/2013/04/026
– volume: 730
  start-page: 119
  year: 2011
  ident: R57
  publication-title: ApJ
  doi: 10.1088/0004-637X/730/2/119
– volume: 6
  start-page: 15
  year: 2010
  ident: R71
  publication-title: JCAP
  doi: 10.1088/1475-7516/2010/06/015
– volume: 203
  start-page: 21
  year: 2012
  ident: R3
  publication-title: ApJS
  doi: 10.1088/0067-0049/203/2/21
– volume: 281
  start-page: 358
  year: 1979
  ident: R5
  publication-title: Nature
  doi: 10.1038/281358a0
– volume: 81
  start-page: 1405
  year: 2009
  ident: R48
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.1405
– volume: 299
  start-page: 392
  year: 1998
  ident: R23
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.01755.x
– volume: 120
  start-page: 1579
  year: 2000
  ident: R75
  publication-title: AJ
  doi: 10.1086/301513
– volume: 518
  start-page: 24
  year: 1999
  ident: R43
  publication-title: ApJ
  doi: 10.1086/307264
– volume: 163
  start-page: 80
  year: 2006
  ident: R47
  publication-title: ApJS
  doi: 10.1086/444361
– volume: 453
  start-page: L57
  year: 1995
  ident: R76
  publication-title: ApJ
  doi: 10.1086/309752
– volume: 486
  start-page: 599
  year: 1997
  ident: R29
  publication-title: ApJ
  doi: 10.1086/304539
– volume: 729
  start-page: 141
  year: 2011
  ident: R9
  publication-title: ApJ
  doi: 10.1088/0004-637X/729/2/141
– volume: 724
  start-page: L69
  year: 2010
  ident: R55
  publication-title: ApJ
  doi: 10.1088/2041-8205/724/1/L69
– volume: 10
  start-page: 343
  year: 1975
  ident: R32
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(75)90039-9
– volume: 164
  start-page: L73
  year: 1971
  ident: R40
  publication-title: ApJ
  doi: 10.1086/180695
– volume: 309
  start-page: 885
  year: 1999
  ident: R22
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02880.x
– volume: 552
  start-page: 15
  year: 2001
  ident: R31
  publication-title: ApJ
  doi: 10.1086/320436
– volume: 743
  start-page: 125
  year: 2011
  ident: R37
  publication-title: ApJ
  doi: 10.1088/0004-637X/743/2/125
– volume: 635
  start-page: 761
  year: 2005
  ident: R46
  publication-title: ApJ
  doi: 10.1086/497563
– volume: 548
  start-page: A66
  year: 2012
  ident: R54
  publication-title: A&A
  doi: 10.1051/0004-6361/201220142
– volume: 581
  start-page: 20
  year: 2002
  ident: R14
  publication-title: ApJ
  doi: 10.1086/344099
– volume: 552
  start-page: A96
  year: 2013
  ident: R10
  publication-title: A&A
  doi: 10.1051/0004-6361/201220724
– volume: 535
  start-page: 519
  year: 2000
  ident: R19
  publication-title: ApJ
  doi: 10.1086/308874
– volume: 123
  start-page: 2121
  year: 2002
  ident: R65
  publication-title: AJ
  doi: 10.1086/339311
– volume: 448
  start-page: 831
  year: 2006
  ident: R73
  publication-title: A&A
  doi: 10.1051/0004-6361:20053786
– volume: 347
  start-page: 355
  year: 2004
  ident: R35
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07221.x
– volume: 543
  start-page: 1
  year: 2000
  ident: R44
  publication-title: ApJ
  doi: 10.1086/317079
– volume: 364
  start-page: 1105
  year: 2005
  ident: R66
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09655.x
– volume: 303
  start-page: 179
  year: 1999
  ident: R51
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02272.x
– volume: 365
  start-page: 231
  year: 2006
  ident: R68
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09703.x
– volume: 266
  start-page: 1
  year: 1992
  ident: R6
  publication-title: A&A
– volume: 495
  start-page: 44
  year: 1998
  ident: R12
  publication-title: ApJ
  doi: 10.1086/305289
– volume: 374
  start-page: 206
  year: 2007
  ident: R16
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.11134.x
– volume: 71
  start-page: 103515
  year: 2005
  ident: R61
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.71.103515
– volume: 260
  start-page: 617
  year: 1993
  ident: R49
  publication-title: MNRAS
  doi: 10.1093/mnras/260.3.617
– volume: 3
  start-page: 24
  year: 2013
  ident: R36
  publication-title: JCAP
  doi: 10.1088/1475-7516/2013/03/024
– volume: 360
  start-page: 1471
  year: 2005
  ident: R45
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09141.x
– volume: 500
  start-page: 525
  year: 1998
  ident: R59
  publication-title: ApJ
  doi: 10.1086/305772
– volume: 111
  start-page: 1748
  year: 1996
  ident: R21
  publication-title: AJ
  doi: 10.1086/117915
– volume: 511
  start-page: L5
  year: 1999
  ident: R30
  publication-title: ApJ
  doi: 10.1086/311826
– volume: 437
  start-page: L9
  year: 1994
  ident: R11
  publication-title: ApJ
  doi: 10.1086/187670
– volume: 193
  start-page: 29
  year: 2011
  ident: R4
  publication-title: ApJS
  doi: 10.1088/0067-0049/193/2/29
– volume: 146
  start-page: 32
  year: 2013
  ident: R64
  publication-title: AJ
  doi: 10.1088/0004-6256/146/2/32
– volume: 585
  start-page: 34
  year: 2003
  ident: R41
  publication-title: ApJ
  doi: 10.1086/345945
– volume: 139
  start-page: 1628
  year: 2010
  ident: R17
  publication-title: AJ
  doi: 10.1088/0004-6256/139/4/1628
– volume: 131
  start-page: 2332
  year: 2006
  ident: R25
  publication-title: AJ
  doi: 10.1086/500975
– volume: 506
  start-page: 64
  year: 1998
  ident: R60
  publication-title: ApJ
  doi: 10.1086/306225
SSID ssj0002183
Score 2.542433
Snippet We have developed two independent methods for measuring the one-dimensional power spectrum of the transmitted flux in the Lyman-α forest. The first method is...
We have developed two independent methods for measuring the one-dimensional power spectrum of the transmitted flux in the Lyman- alpha forest. The first method...
We have developed two independent methods to measure the one-dimensional power spectrum of the transmitted flux in the Lyman-$\alpha$ forest. The first method...
For this research, we have developed two independent methods for measuring the one-dimensional power spectrum of the transmitted flux in the Lyman-α forest....
SourceID osti
hal
proquest
crossref
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage A85
SubjectTerms Anisotropy
ASTRONOMY AND ASTROPHYSICS
Astrophysics
Bosses
Brackets
cosmological parameters
cosmology
Cosmology and Extra-Galactic Astrophysics
cosmology: observations
Forests
intergalactic medium
large-scale structure of Universe
Mathematical models
observations
Physics
Quasars
Spectra
Uncertainty
Title The one-dimensional Lyα forest power spectrum from BOSS
URI https://api.istex.fr/ark:/67375/80W-0VS153DZ-F/fulltext.pdf
https://www.proquest.com/docview/1560129507
https://www.proquest.com/docview/1671601046
https://cea.hal.science/cea-01135469
https://www.osti.gov/servlets/purl/1336036
Volume 559
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe6TUi8IBiglQEKiO2lZIsTx0keu3VTmQpUYoPBi-XYjibBmql_EOOBL8Cn4YvwmbiLE9NuMA1eosRyE9f38_l8vvuZkGdSp0UWZ8oP8lD7jOnMlzwpfJkzJvMiRQ4-jLZ4xftH7OA4Pm61vs9FLc2m-Zb6-se8kv-RKpSBXDFL9h8k614KBXAP8oUrSBiu15ZxOTK-Rop-S6_RGZxv7O5t7FCMHwSN3znDY9A6VULleHZq00l2Xte93tDPTtAhXp5aLiaJT9bjUblkLSPWnMtgiOGQMJ_4PQMYGpczzCe0qnp6Ana9w8r7ahs-BVws8hg4HwASf1baCf7rTDfFA0BuadkiD4wc-S9hMM57J2hUp-k5l1lv2CipyYIaZj6PLAv7lrGal0UYBlv7I2vVHFu28EtqHjSJjYu0r8GslmrPiNZ7PAu02hemOxeEKMcfMaotiUUavBPB2zeg_HsfxP4SWQkTMMQwc_zFNzetoy1p11L2ow2FVUy3Xdm2a8aCmbN0gkG2Kzhuv8DUX4LyvjT1V_bM4W1yq16IeF2LqjukZUarZM0hwdv0unM4WCU3hvbuLkkBdt4F2HmD858_PAs5r4Kc10DOQ8h5CLl75Gh_73C379cHcPiKxdnUN4GOZQJ9xFRmQsmKlCey0IVWAcu5wqzmIqUyY1QFSkqqYbwrGOMGnsMCLP37ZHkE7VkjXqJVwoKEx1EYMW5krkPNsyI2BYsKHek2CZv-Eqpmp8dDUj6JKkoiphglwQR2snCd3CbP3Y_OLDnL1dWfgiBcTSRW73cHQhkpYJaLYsazz7RNNis5uWp_g0mbrKMgBViqSLesMC5NTQWNIg5WYZs8aeQrQGHjLpwcmXI2EUhdAEY2rMOuqMMTWnlK-IPrNmed3Pw9_h6SZRCweQT28jR_XOH4Fztst4A
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+one-dimensional+Ly%CE%B1+forest+power+spectrum+from+BOSS&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Palanque-Delabrouille%2C+Nathalie&rft.au=Y%C3%A8che%2C+Christophe&rft.au=Borde%2C+Arnaud&rft.au=Le+Goff%2C+Jean-Marc&rft.date=2013-11-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=559&rft_id=info:doi/10.1051%2F0004-6361%2F201322130&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_80W_0VS153DZ_F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon