Hydrogen-enhanced grain boundary vacancy stockpiling causes transgranular to intergranular fracture transition
The attention to hydrogen embrittlement (HE) has been intensified recently in the light of hydrogen as a carbon-free energy carrier. Despite worldwide research, the multifaceted HE mechanism remains a matter of debate. Here we report an atomistic study of the coupled effect of hydrogen and deformati...
Saved in:
Published in | Acta materialia Vol. 239; p. 118279 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-6454 1873-2453 1873-2453 |
DOI | 10.1016/j.actamat.2022.118279 |
Cover
Abstract | The attention to hydrogen embrittlement (HE) has been intensified recently in the light of hydrogen as a carbon-free energy carrier. Despite worldwide research, the multifaceted HE mechanism remains a matter of debate. Here we report an atomistic study of the coupled effect of hydrogen and deformation temperature on the pathway to intergranular fracture of nickel. Uniaxial straining is applied to nickel Σ5(210)[001] and Σ9(1-10)[22-1] grain boundaries with or without pre-charged hydrogen at various temperatures. Without hydrogen, vacancy generation at grain boundary is limited and transgranular fracture mode dominates. When charged, hydrogen as a booster can enhance strain-induced vacancy generation by up to ten times. This leads to the superabundant vacancy stockpiling at the grain boundary, which agglomerates and nucleates intergranular nanovoids eventually causing intergranular fracture. While hydrogen tends to persistently enhance vacancy concentration, temperature plays an intriguing dual role as either an enhancer or an inhibitor for vacancy stockpiling. These results show good agreement with recent positron annihilation spectroscopy experiments. An S-shaped quantitative correlation between the proportion of intergranular fracture and vacancy concentration was for the first time derived, highlighting the existence of a critical vacancy concentration, beyond which fracture mode will be completely intergranular.
[Display omitted] |
---|---|
AbstractList | The attention to hydrogen embrittlement (HE) has been intensified recently in the light of hydrogen as a carbon-free energy carrier. Despite worldwide research, the multifaceted HE mechanism remains a mat-ter of debate. Here we report an atomistic study of the coupled effect of hydrogen and deformation temperature on the pathway to intergranular fracture of nickel. Uniaxial straining is applied to nickel E5(210)[001] and E9(1-10)[22-1] grain boundaries with or without pre-charged hydrogen at various temperatures. Without hydrogen, vacancy generation at grain boundary is limited and transgranular frac-ture mode dominates. When charged, hydrogen as a booster can enhance strain-induced vacancy genera-tion by up to ten times. This leads to the superabundant vacancy stockpiling at the grain boundary, which agglomerates and nucleates intergranular nanovoids eventually causing intergranular fracture. While hy-drogen tends to persistently enhance vacancy concentration, temperature plays an intriguing dual role as either an enhancer or an inhibitor for vacancy stockpiling. These results show good agreement with recent positron annihilation spectroscopy experiments. An S-shaped quantitative correlation between the proportion of intergranular fracture and vacancy concentration was for the first time derived, highlight-ing the existence of a critical vacancy concentration, beyond which fracture mode will be completely intergranular. The attention to hydrogen embrittlement (HE) has been intensified recently in the light of hydrogen as a carbon-free energy carrier. Despite worldwide research, the multifaceted HE mechanism remains a matter of debate. Here we report an atomistic study of the coupled effect of hydrogen and deformation temperature on the pathway to intergranular fracture of nickel. Uniaxial straining is applied to nickel Σ5(210)[001] and Σ9(1-10)[22-1] grain boundaries with or without pre-charged hydrogen at various temperatures. Without hydrogen, vacancy generation at grain boundary is limited and transgranular fracture mode dominates. When charged, hydrogen as a booster can enhance strain-induced vacancy generation by up to ten times. This leads to the superabundant vacancy stockpiling at the grain boundary, which agglomerates and nucleates intergranular nanovoids eventually causing intergranular fracture. While hydrogen tends to persistently enhance vacancy concentration, temperature plays an intriguing dual role as either an enhancer or an inhibitor for vacancy stockpiling. These results show good agreement with recent positron annihilation spectroscopy experiments. An S-shaped quantitative correlation between the proportion of intergranular fracture and vacancy concentration was for the first time derived, highlighting the existence of a critical vacancy concentration, beyond which fracture mode will be completely intergranular. [Display omitted] |
ArticleNumber | 118279 |
Author | Yu, Haiyang Qiao, Lijie He, Jianying Zhao, Kai Zhang, Zhiliang Vinogradov, Alexey Ding, Yu Xiao, Senbo Lin, Meichao Ortiz, Michael |
Author_xml | – sequence: 1 givenname: Yu surname: Ding fullname: Ding, Yu organization: Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway – sequence: 2 givenname: Haiyang orcidid: 0000-0002-2419-6736 surname: Yu fullname: Yu, Haiyang email: haiyang.yu@angstrom.uu.se organization: Division of Applied Mechanics, Department of Materials Science and Engineering, Uppsala University, Uppsala 75121, Sweden – sequence: 3 givenname: Meichao surname: Lin fullname: Lin, Meichao organization: Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway – sequence: 4 givenname: Kai orcidid: 0000-0003-2645-7917 surname: Zhao fullname: Zhao, Kai organization: Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China – sequence: 5 givenname: Senbo surname: Xiao fullname: Xiao, Senbo organization: Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway – sequence: 6 givenname: Alexey orcidid: 0000-0001-9585-2801 surname: Vinogradov fullname: Vinogradov, Alexey organization: Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway – sequence: 7 givenname: Lijie surname: Qiao fullname: Qiao, Lijie organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China – sequence: 8 givenname: Michael orcidid: 0000-0001-5877-4824 surname: Ortiz fullname: Ortiz, Michael organization: Graduate Aerospace Laboratories, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA – sequence: 9 givenname: Jianying surname: He fullname: He, Jianying email: jianying.he@ntnu.no organization: Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway – sequence: 10 givenname: Zhiliang surname: Zhang fullname: Zhang, Zhiliang email: zhiliang.zhang@ntnu.no organization: Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-486802$$DView record from Swedish Publication Index |
BookMark | eNqFkctOwzAQRS1UJMrjE5DyAaTYjuMkYoGq8pSQ2ABba-JMikuxK9sB9e9xFWDBhtVYo3tn7hwfkol1Fgk5ZXTGKJPnqxnoCO8QZ5xyPmOs5lWzR6asroqci7KYpHdRNrkUpTgghyGsKGW8EnRK7N22826JNkf7ClZjly09GJu1brAd-G32ATr1t1mITr9tzNrYZaZhCBiy6MGGJLfDGnwWXWZsRP_b6H3KNXgcdSYaZ4_Jfg_rgCff9Yg831w_Le7yh8fb-8X8IdeibGLeSc0pE4JBDaXo-kKgZJy3DW8q3euG1z2TVEvAhjJddBK0bKHCvk3Hl1VVHJGzcW74xM3Qqo037-kY5cCoK_MyV84v1TAoUcua8iS_GOXauxA89kqbCLvAKbpZK0bVjrRaqW_SakdajaSTu_zj_ln3n-9y9GEi8WHQq6AN7v7AeNRRdc78M-EL2hahZQ |
CitedBy_id | crossref_primary_10_1016_j_rser_2023_113353 crossref_primary_10_1021_acs_chemrev_3c00624 crossref_primary_10_1016_j_actamat_2023_119291 crossref_primary_10_3390_ma17051178 crossref_primary_10_1016_j_ijhydene_2024_01_181 crossref_primary_10_1016_j_ijhydene_2023_09_056 crossref_primary_10_1016_j_vacuum_2024_113243 crossref_primary_10_1016_j_jmst_2023_07_058 crossref_primary_10_1016_j_ijfatigue_2023_107995 crossref_primary_10_1016_j_msea_2024_146257 crossref_primary_10_1016_j_jallcom_2024_176059 crossref_primary_10_1016_j_mtcomm_2024_109587 crossref_primary_10_1016_j_ijhydene_2024_08_496 crossref_primary_10_1016_j_actamat_2023_119234 crossref_primary_10_1016_j_ijhydene_2024_10_244 crossref_primary_10_1016_j_msea_2024_147565 crossref_primary_10_1016_j_matt_2024_101944 crossref_primary_10_1016_j_msea_2023_144635 crossref_primary_10_1016_j_actamat_2024_119886 crossref_primary_10_1016_j_ijhydene_2024_08_136 crossref_primary_10_1063_5_0132488 crossref_primary_10_1016_j_engfracmech_2025_111008 crossref_primary_10_1080_14686996_2025_2459060 crossref_primary_10_1016_j_jnucmat_2024_155555 crossref_primary_10_1016_j_ijhydene_2023_06_033 crossref_primary_10_1016_j_ijhydene_2023_04_266 crossref_primary_10_1016_j_jmrt_2023_06_088 crossref_primary_10_1016_j_jmst_2023_07_027 crossref_primary_10_1016_j_commatsci_2023_112195 crossref_primary_10_1016_j_ijhydene_2025_01_136 crossref_primary_10_3724_j_GTER_20250010 |
Cites_doi | 10.1016/S1359-6462(03)00469-X 10.1002/bbpc.19720760864 10.1016/j.actamat.2020.06.007 10.1016/j.actamat.2021.117264 10.1016/j.jallcom.2016.01.033 10.1126/sciadv.aaz1187 10.1016/j.ijhydene.2009.09.052 10.1016/j.scriptamat.2019.10.046 10.1016/j.actamat.2007.05.047 10.1016/j.actamat.2015.04.052 10.1016/j.actamat.2022.117789 10.1016/j.ijplas.2015.05.017 10.1038/s41586-021-04343-z 10.1016/j.actamat.2014.10.039 10.1088/0965-0393/18/1/015012 10.1016/j.actamat.2019.08.020 10.1016/j.commatsci.2016.05.014 10.1016/j.actamat.2019.12.033 10.1007/s11661-012-1430-z 10.1016/j.actamat.2007.09.012 10.1063/1.3245303 10.1016/j.ijplas.2018.08.013 10.1016/j.actamat.2008.04.011 10.1016/j.actamat.2019.11.062 10.1515/corrrev-2012-0502 10.1080/01418619408242248 10.1088/0965-0393/3/3/001 10.1016/j.scriptamat.2022.114707 10.1016/j.actamat.2016.01.067 10.1016/j.actamat.2014.01.008 10.1098/rspl.1874.0024 10.1016/j.actamat.2019.03.032 10.1126/science.aaz0122 10.1016/j.ijhydene.2015.02.047 10.1016/j.jmps.2017.01.020 10.1016/j.ijhydene.2015.05.017 10.1016/j.actamat.2018.07.043 10.1016/j.actamat.2011.01.037 10.1179/026708304225019687 10.1016/j.actamat.2017.02.016 10.1016/j.engfracmech.2019.106502 10.1016/S0925-8388(02)01269-0 10.1080/00268977500100221 10.1038/s41467-019-10035-0 10.1038/s41563-019-0422-4 10.1016/j.actamat.2015.07.031 10.1103/PhysRevB.58.11085 10.1038/ncomms13341 10.1016/j.ijplas.2017.03.003 10.1103/PhysRevB.54.9109 10.1038/nmat3479 10.1016/j.actamat.2014.06.021 10.1016/j.actamat.2018.12.014 10.1016/j.scriptamat.2021.114122 10.2355/isijinternational.ISIJINT-2021-238 10.1016/j.scriptamat.2017.03.006 10.1007/BF02647750 10.1006/jcph.1995.1039 10.1007/s11663-015-0325-y 10.1016/j.actamat.2018.12.013 10.1016/j.mechmat.2020.103586 10.1016/j.actamat.2012.09.004 10.1016/j.engfracmech.2019.106528 10.1016/0921-5093(94)90975-X 10.1016/j.actamat.2021.116663 10.1016/j.actamat.2012.01.040 10.1080/09500839.2020.1841915 10.1103/PhysRevB.69.134103 10.1016/j.jmps.2004.02.010 10.1016/j.actamat.2012.06.014 10.1038/35328 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1016/j.actamat.2022.118279 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
ExternalDocumentID | oai_DiVA_org_uu_486802 10_1016_j_actamat_2022_118279 S1359645422006590 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB R2- SEW SSH T9H ZY4 ACNBI ADTPV AOWAS D8T DF2 EFKBS ZZAVC |
ID | FETCH-LOGICAL-c459t-d6c201441a8a54df34e6122b9297cfc928f160c6ae901c3d6ac6ba7efb1185773 |
IEDL.DBID | AIKHN |
ISSN | 1359-6454 1873-2453 |
IngestDate | Tue Sep 09 22:58:05 EDT 2025 Tue Jul 01 01:30:18 EDT 2025 Thu Apr 24 22:54:50 EDT 2025 Fri Feb 23 02:39:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Intergranular failure Grain boundaries Molecular dynamics (MD) Vacancies Hydrogen embrittlement |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-d6c201441a8a54df34e6122b9297cfc928f160c6ae901c3d6ac6ba7efb1185773 |
ORCID | 0000-0001-5877-4824 0000-0003-2645-7917 0000-0001-9585-2801 0000-0002-2419-6736 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1359645422006590 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_486802 crossref_citationtrail_10_1016_j_actamat_2022_118279 crossref_primary_10_1016_j_actamat_2022_118279 elsevier_sciencedirect_doi_10_1016_j_actamat_2022_118279 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-15 |
PublicationDateYYYYMMDD | 2022-10-15 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Acta materialia |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kirchheim (bib0004) 2007; 55 Tehranchi, Curtin (bib0034) 2019; 216 Li, Ren, Zhang, Liu, Zhang (bib0062) 2015; 40 Chandler, Horstemeyer, Baskes, Gullett, Wagner, Jelinek (bib0050) 2008; 56 Kong, Wang, Wu, You, Liu, Fang, Chen, Luo (bib0036) 2015; 84 Kelchner, Plimpton, Hamilton (bib0055) 1998; 58 Nagumo (bib0024) 2004; 20 Koyama, Taheri-Mousavi, Yan, Kim, Cameron, Moeini-Ardakani, Li, Tasan (bib0051) 2020; 6 Serebrinsky, Carter, Ortiz (bib0008) 2004; 52 Young, Ouchi, Shen, Bendersky (bib0061) 2015; 40 Solanki, Tschopp, Bhatia, Rhodes (bib0043) 2013; 44a Gutkin, Ovid'Ko (bib0065) 1994; 70 Oudriss, Creus, Bouhattate, Conforto, Berziou, Savall, Feaugas (bib0069) 2012; 60 Sun, Singh (bib0070) 2020; 178 Lawrence, Yagodzinskyy, Hanninen, Korhonen, Tuomisto, Harris, Somerday (bib0028) 2017; 128 Di Stefano, Mrovec, Elsasser (bib0058) 2015; 98 Martin, Somerday, Ritchie, Sofronis, Robertson (bib0022) 2012; 60 Yu, Cui, Zhu, Shen, Wen (bib0041) 2020; 185 Li, Li, Lo, Neeraj, Srinivasan, Ding, Sun, Qi, Gumbsch, Li (bib0026) 2015; 74 Von Pezold, Lymperakis, Neugebeauer (bib0040) 2011; 59 Djukic, Bakic, Zeravcic, Sedmak, Rajicic (bib0006) 2019; 216 Taketomi, Matsumoto, Miyazaki (bib0039) 2008; 56 Benedictus, Böttger, Mittemeijer (bib0064) 1996; 54 Tehranchi, Curtin (bib0047) 2017; 25 Lynch (bib0003) 2012; 30 Wang, Martin, Robertson, Sofronis (bib0020) 2016; 107 Neeraj, Srinivasan, Li (bib0063) 2012; 60 Nagumo, Takai (bib0025) 2019; 165 Zhao, Chakraborty, Ponge, Hickel, Sun, Wu, Gault, Raabe (bib0032) 2022; 602 Plimpton (bib0052) 1995; 117 Stukowski (bib0057) 2009; 18 Angelo, Moody, Baskes (bib0048) 1995; 3 Sugiyama, Takai (bib0072) 2021; 208 Chiari, Kojima, Endo, Teshigahara, Butterling, Liedke, Hirschmann, Attallah, Wagner, Fujinami (bib0071) 2021 Lin, Yu, Ding, Wang, Olden, Alvaro, He, Zhang (bib0011) 2022; 215 Li, Lu, Pei, Zhang, Wang (bib0044) 2020; 150 Song, Curtin (bib0046) 2014; 68 Song, Curtin (bib0009) 2013; 12 Kuhr, Farkas, Robertson (bib0042) 2016; 122 Lu, Wang, Wan, Zhang, Kheradmand, Barnoush (bib0018) 2019; 179 Ding, Yu, Zhao, Lin, Xiao, Ortiz, He, Zhang (bib0019) 2021; 204 Tanguy, Wang, Connetable (bib0067) 2014; 78 Symons, Thompson (bib0074) 1996; 27 Martin, Dadfarnia, Nagao, Wang, Sofronis (bib0015) 2019; 165 Matsumoto, Taketomi, Matsumoto, Miyazaki (bib0045) 2009; 34 Oriani (bib0007) 1972; 76 Ogawa, Noguchi, Takakuwa (bib0030) 2022 Gangloff, Somerday (bib0002) 2012 Tehranchi, Curtin (bib0021) 2017; 101 Chen, Lu, Liang, Rosenthal, Liu, Sneddon, McCarroll, Zhao, Li, Guo (bib0031) 2020; 367 Tehranchi, Zhou, Curtin (bib0010) 2020; 185 Birnbaum, Sofronis (bib0014) 1994; 176 Adams (bib0053) 1975; 29 Johnson (bib0001) 1875; 23 Geng, Wan, Du, Ishii, Ishikawa, Kimizuka, Ogata (bib0037) 2017; 134 Schiotz, Di Tolla, Jacobsen (bib0056) 1998; 391 Wan, Deng, Meling, Alvaro, Barnoush (bib0012) 2019; 170 Yin, Cheng, Chang, Richter, Zhu, Gao (bib0035) 2019; 10 Hou, Kong, Wu, Song, Liu (bib0038) 2019; 18 Nagumo, Ishikawa, Endoh, Inoue (bib0059) 2003; 49 Thompson, Plimpton, Mattson (bib0054) 2009; 131 Wan, Geng, Ishii, Du, Mei, Ishikawa, Kimizuka, Ogata (bib0033) 2019; 112 Jothi, Merzlikin, Croft, Andersson, Brown (bib0073) 2016; 664 Polfus, Løvvik, Bredesen, Peters (bib0066) 2020; 195 Song, Curtin (bib0016) 2014; 68 Robertson, Sofronis, Nagao, Martin, Wang, Gross, Nygren (bib0005) 2015; 46 Fernandez, Ferro, Kato (bib0068) 2015; 94 Homma, Chiba, Takai, Akiyama, Oshikawa, Nagumo (bib0075) 2022 Zhang, Yang, Lu, Harte, Morana, Preuss (bib0013) 2020; 11 Zhu, Li, Huang, Fan (bib0027) 2017; 92 Shinoda, Shiga, Mikami (bib0049) 2004; 69 Harada, Kusunoki, Moritani, Matsumoto, Hatano, Horibe (bib0060) 2021; 101 Harris, Lawrence, Medlin, Guetard, Burns, Somerday (bib0029) 2018; 158 Fukai (bib0023) 2003; 356 Xie, Li, Li, Wang, Gumbsch, Sun, Ma, Li, Shan (bib0017) 2016; 7 Gangloff (10.1016/j.actamat.2022.118279_bib0002) 2012 Fukai (10.1016/j.actamat.2022.118279_bib0023) 2003; 356 Xie (10.1016/j.actamat.2022.118279_bib0017) 2016; 7 Koyama (10.1016/j.actamat.2022.118279_bib0051) 2020; 6 Sugiyama (10.1016/j.actamat.2022.118279_bib0072) 2021; 208 Song (10.1016/j.actamat.2022.118279_bib0009) 2013; 12 Wang (10.1016/j.actamat.2022.118279_bib0020) 2016; 107 Young (10.1016/j.actamat.2022.118279_bib0061) 2015; 40 Kong (10.1016/j.actamat.2022.118279_bib0036) 2015; 84 Solanki (10.1016/j.actamat.2022.118279_bib0043) 2013; 44a Schiotz (10.1016/j.actamat.2022.118279_bib0056) 1998; 391 Matsumoto (10.1016/j.actamat.2022.118279_bib0045) 2009; 34 Adams (10.1016/j.actamat.2022.118279_bib0053) 1975; 29 Geng (10.1016/j.actamat.2022.118279_bib0037) 2017; 134 Tehranchi (10.1016/j.actamat.2022.118279_bib0034) 2019; 216 Von Pezold (10.1016/j.actamat.2022.118279_bib0040) 2011; 59 Lin (10.1016/j.actamat.2022.118279_bib0011) 2022; 215 Wan (10.1016/j.actamat.2022.118279_bib0012) 2019; 170 Plimpton (10.1016/j.actamat.2022.118279_bib0052) 1995; 117 Johnson (10.1016/j.actamat.2022.118279_bib0001) 1875; 23 Song (10.1016/j.actamat.2022.118279_bib0046) 2014; 68 Nagumo (10.1016/j.actamat.2022.118279_bib0059) 2003; 49 Zhao (10.1016/j.actamat.2022.118279_bib0032) 2022; 602 Chandler (10.1016/j.actamat.2022.118279_bib0050) 2008; 56 Taketomi (10.1016/j.actamat.2022.118279_bib0039) 2008; 56 Sun (10.1016/j.actamat.2022.118279_bib0070) 2020; 178 Li (10.1016/j.actamat.2022.118279_bib0026) 2015; 74 Chiari (10.1016/j.actamat.2022.118279_bib0071) 2021 Angelo (10.1016/j.actamat.2022.118279_bib0048) 1995; 3 Tehranchi (10.1016/j.actamat.2022.118279_bib0010) 2020; 185 Nagumo (10.1016/j.actamat.2022.118279_bib0025) 2019; 165 Harris (10.1016/j.actamat.2022.118279_bib0029) 2018; 158 Benedictus (10.1016/j.actamat.2022.118279_bib0064) 1996; 54 Tehranchi (10.1016/j.actamat.2022.118279_bib0047) 2017; 25 Martin (10.1016/j.actamat.2022.118279_bib0022) 2012; 60 Homma (10.1016/j.actamat.2022.118279_bib0075) 2022 Thompson (10.1016/j.actamat.2022.118279_bib0054) 2009; 131 Fernandez (10.1016/j.actamat.2022.118279_bib0068) 2015; 94 Harada (10.1016/j.actamat.2022.118279_bib0060) 2021; 101 Stukowski (10.1016/j.actamat.2022.118279_bib0057) 2009; 18 Di Stefano (10.1016/j.actamat.2022.118279_bib0058) 2015; 98 Jothi (10.1016/j.actamat.2022.118279_bib0073) 2016; 664 Martin (10.1016/j.actamat.2022.118279_bib0015) 2019; 165 Djukic (10.1016/j.actamat.2022.118279_bib0006) 2019; 216 Kelchner (10.1016/j.actamat.2022.118279_bib0055) 1998; 58 Hou (10.1016/j.actamat.2022.118279_bib0038) 2019; 18 Birnbaum (10.1016/j.actamat.2022.118279_bib0014) 1994; 176 Lu (10.1016/j.actamat.2022.118279_bib0018) 2019; 179 Chen (10.1016/j.actamat.2022.118279_bib0031) 2020; 367 Polfus (10.1016/j.actamat.2022.118279_bib0066) 2020; 195 Neeraj (10.1016/j.actamat.2022.118279_bib0063) 2012; 60 Serebrinsky (10.1016/j.actamat.2022.118279_bib0008) 2004; 52 Oudriss (10.1016/j.actamat.2022.118279_bib0069) 2012; 60 Kirchheim (10.1016/j.actamat.2022.118279_bib0004) 2007; 55 Gutkin (10.1016/j.actamat.2022.118279_bib0065) 1994; 70 Song (10.1016/j.actamat.2022.118279_bib0016) 2014; 68 Robertson (10.1016/j.actamat.2022.118279_bib0005) 2015; 46 Wan (10.1016/j.actamat.2022.118279_bib0033) 2019; 112 Li (10.1016/j.actamat.2022.118279_bib0044) 2020; 150 Yu (10.1016/j.actamat.2022.118279_bib0041) 2020; 185 Ding (10.1016/j.actamat.2022.118279_bib0019) 2021; 204 Tehranchi (10.1016/j.actamat.2022.118279_bib0021) 2017; 101 Zhang (10.1016/j.actamat.2022.118279_bib0013) 2020; 11 Lawrence (10.1016/j.actamat.2022.118279_bib0028) 2017; 128 Nagumo (10.1016/j.actamat.2022.118279_bib0024) 2004; 20 Symons (10.1016/j.actamat.2022.118279_bib0074) 1996; 27 Lynch (10.1016/j.actamat.2022.118279_bib0003) 2012; 30 Zhu (10.1016/j.actamat.2022.118279_bib0027) 2017; 92 Tanguy (10.1016/j.actamat.2022.118279_bib0067) 2014; 78 Oriani (10.1016/j.actamat.2022.118279_bib0007) 1972; 76 Yin (10.1016/j.actamat.2022.118279_bib0035) 2019; 10 Ogawa (10.1016/j.actamat.2022.118279_bib0030) 2022 Li (10.1016/j.actamat.2022.118279_bib0062) 2015; 40 Kuhr (10.1016/j.actamat.2022.118279_bib0042) 2016; 122 Shinoda (10.1016/j.actamat.2022.118279_bib0049) 2004; 69 |
References_xml | – volume: 56 start-page: 95 year: 2008 end-page: 104 ident: bib0050 article-title: Hydrogen effects on nanovoid nucleation in face-centered cubic single-crystals publication-title: Acta Mater. – volume: 70 start-page: 561 year: 1994 end-page: 575 ident: bib0065 article-title: Disclinations, amorphization and microcrack generation at grain boundary junctions in polycrystalline solids publication-title: Philos. Mag. A – volume: 78 start-page: 135 year: 2014 end-page: 143 ident: bib0067 article-title: Stability of vacancy-hydrogen clusters in nickel from first-principles calculations publication-title: Acta Mater. – volume: 27 start-page: 101 year: 1996 end-page: 110 ident: bib0074 article-title: The effect of hydrogen on the fracture of alloy X-750 publication-title: Metall. Mater. Trans. A – volume: 101 start-page: 150 year: 2017 end-page: 165 ident: bib0021 article-title: Atomistic study of hydrogen embrittlement of grain boundaries in nickel: I. Fracture publication-title: J. Mech. Phys. Solids – volume: 6 start-page: eaaz1187 year: 2020 ident: bib0051 article-title: Origin of micrometer-scale dislocation motion during hydrogen desorption publication-title: Sci. Adv. – volume: 30 start-page: 105 year: 2012 end-page: 123 ident: bib0003 article-title: Hydrogen embrittlement phenomena and mechanisms publication-title: Corros. Rev. – volume: 12 start-page: 145 year: 2013 end-page: 151 ident: bib0009 article-title: Atomic mechanism and prediction of hydrogen embrittlement in iron publication-title: Nat. Mater. – volume: 55 start-page: 5129 year: 2007 end-page: 5138 ident: bib0004 article-title: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background publication-title: Acta Mater. – volume: 216 year: 2019 ident: bib0034 article-title: The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals publication-title: Eng. Fract. Mech. – year: 2021 ident: bib0071 article-title: Formation and time dynamics of hydrogen-induced vacancies in nickel publication-title: Acta Mater. – volume: 25 year: 2017 ident: bib0047 article-title: Atomistic study of hydrogen embrittlement of grain boundaries in nickel: II. Decohesion, modelling and simulation in publication-title: Mater. Sci. Eng. – volume: 101 start-page: 40 year: 2021 end-page: 50 ident: bib0060 article-title: Amorphization under fracture surface in hydrogen-charged and low-temperature tensile-tested austenitic stainless steel publication-title: Philos. Mag. Lett. – volume: 170 start-page: 87 year: 2019 end-page: 99 ident: bib0012 article-title: Hydrogen-enhanced fatigue crack growth in a single-edge notched tensile specimen under publication-title: Acta Mater. – volume: 176 start-page: 191 year: 1994 end-page: 202 ident: bib0014 article-title: Hydrogen-enhanced localized plasticity - a mechanism for hydrogen-related fracture publication-title: Mat. Sci. Eng. A Struct. – volume: 68 start-page: 61 year: 2014 end-page: 69 ident: bib0016 article-title: Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using alpha-Fe as a model system publication-title: Acta Mater. – volume: 49 start-page: 837 year: 2003 end-page: 842 ident: bib0059 article-title: Amorphization associated with crack propagation in hydrogen-charged steel publication-title: Scr. Mater. – volume: 356 start-page: 263 year: 2003 end-page: 269 ident: bib0023 article-title: Formation of superabundant vacancies in M–H alloys and some of its consequences: a review publication-title: J. Alloys Compd. – volume: 46 start-page: 1085 year: 2015 end-page: 1103 ident: bib0005 article-title: Hydrogen embrittlement understood publication-title: Metall. Mater. Trans. B-Process Metall. Mater. Process. Sci. – volume: 165 start-page: 722 year: 2019 end-page: 733 ident: bib0025 article-title: The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: overview publication-title: Acta Mater. – volume: 11 start-page: 1 year: 2020 end-page: 11 ident: bib0013 article-title: Strain localisation and failure at twin-boundary complexions in nickel-based superalloys publication-title: Nat. Commun. – volume: 92 start-page: 31 year: 2017 end-page: 44 ident: bib0027 article-title: Study on interactions of an edge dislocation with vacancy-H complex by atomistic modelling publication-title: Int. J. Plast. – volume: 23 start-page: 168 year: 1875 end-page: 179 ident: bib0001 article-title: On some remarkable changes produced in iron and steel by the action of hydrogen and acids publication-title: Proc. R. Soc. Lond. – volume: 165 start-page: 734 year: 2019 end-page: 750 ident: bib0015 article-title: Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials publication-title: Acta Mater. – volume: 68 start-page: 61 year: 2014 end-page: 69 ident: bib0046 article-title: Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system publication-title: Acta Mater. – volume: 52 start-page: 2403 year: 2004 end-page: 2430 ident: bib0008 article-title: A quantum-mechanically informed continuum model of hydrogen embrittlement publication-title: J. Mech. Phys. Solids – volume: 10 year: 2019 ident: bib0035 article-title: Hydrogen embrittlement in metallic nanowires publication-title: Nat. Commun. – volume: 54 start-page: 9109 year: 1996 ident: bib0064 article-title: Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries publication-title: Phys. Rev. B – volume: 208 year: 2021 ident: bib0072 article-title: Quantities and distribution of strain-induced vacancies and dislocations enhanced by hydrogen in iron publication-title: Acta Mater. – volume: 664 start-page: 664 year: 2016 end-page: 681 ident: bib0073 article-title: An investigation of micro-mechanisms in hydrogen induced cracking in nickel-based superalloy 718 publication-title: J. Alloys Compd. – volume: 60 start-page: 6814 year: 2012 end-page: 6828 ident: bib0069 article-title: Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel publication-title: Acta Mater. – volume: 185 start-page: 98 year: 2020 end-page: 109 ident: bib0010 article-title: A decohesion pathway for hydrogen embrittlement in nickel: mechanism and quantitative prediction publication-title: Acta Mater. – volume: 107 start-page: 279 year: 2016 end-page: 288 ident: bib0020 article-title: Effect of hydrogen environment on the separation of Fe grain boundaries publication-title: Acta Mater. – volume: 69 year: 2004 ident: bib0049 article-title: Rapid estimation of elastic constants by molecular dynamics simulation under constant stress publication-title: Phys. Rev. B – volume: 128 start-page: 218 year: 2017 end-page: 226 ident: bib0028 article-title: Effects of grain size and deformation temperature on hydrogen-enhanced vacancy formation in Ni alloys publication-title: Acta Mater. – volume: 58 start-page: 11085 year: 1998 end-page: 11088 ident: bib0055 article-title: Dislocation nucleation and defect structure during surface indentation publication-title: Phys. Rev. B – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: bib0052 article-title: Fast parallel algorithms for short-range molecular-dynamics publication-title: J. Comput. Phys. – volume: 195 start-page: 708 year: 2020 end-page: 719 ident: bib0066 article-title: Hydrogen induced vacancy clustering and void formation mechanisms at grain boundaries in palladium publication-title: Acta Mater. – volume: 185 start-page: 518 year: 2020 end-page: 527 ident: bib0041 article-title: The key role played by dislocation core radius and energy in hydrogen interaction with dislocations publication-title: Acta Mater. – volume: 44a start-page: 1365 year: 2013 end-page: 1375 ident: bib0043 article-title: Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in alpha-Fe publication-title: Metall. Mater. Trans. A – volume: 204 year: 2021 ident: bib0019 article-title: Hydrogen-induced transgranular to intergranular fracture transition in bi-crystalline nickel publication-title: Scr. Mater. – volume: 178 start-page: 71 year: 2020 end-page: 76 ident: bib0070 article-title: Temperature dependence of grain boundary excess free volume publication-title: Scr. Mater. – volume: 158 start-page: 180 year: 2018 end-page: 192 ident: bib0029 article-title: Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel publication-title: Acta Mater. – volume: 602 start-page: 437 year: 2022 end-page: 441 ident: bib0032 article-title: Hydrogen trapping and embrittlement in high-strength Al alloys publication-title: Nature – volume: 150 year: 2020 ident: bib0044 article-title: Atomistic investigation of hydrogen induced decohesion of Ni grain boundaries publication-title: Mech. Mater. – volume: 29 start-page: 307 year: 1975 end-page: 311 ident: bib0053 article-title: Grand canonical ensemble monte-carlo for a lennard-jones fluid publication-title: Mol. Phys. – volume: 60 start-page: 5160 year: 2012 end-page: 5171 ident: bib0063 article-title: Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding publication-title: Acta Mater. – volume: 94 start-page: 307 year: 2015 end-page: 318 ident: bib0068 article-title: Hydrogen diffusion and vacancies formation in tungsten: density functional theory calculations and statistical models publication-title: Acta Mater. – volume: 56 start-page: 3761 year: 2008 end-page: 3769 ident: bib0039 article-title: Atomistic study of hydrogen distribution and diffusion around a {1 1 2}< 1 1 1>edge dislocation in alpha iron publication-title: Acta Mater. – volume: 20 start-page: 940 year: 2004 end-page: 950 ident: bib0024 article-title: Hydrogen related failure of steels - a new aspect publication-title: Mater. Sci. Technol. Lond. – volume: 40 start-page: 8941 year: 2015 end-page: 8947 ident: bib0061 article-title: Hydrogen induced amorphization of LaMgNi4 phase in metal hydride alloys publication-title: Int. J. Hydrog. Energy – volume: 76 start-page: 848 year: 1972 end-page: 857 ident: bib0007 article-title: A mechanistic theory of hydrogen embrittlement of steels publication-title: Ber. Bunsenges. Phys. Chem. – volume: 40 start-page: 7093 year: 2015 end-page: 7102 ident: bib0062 article-title: Hydrogen induced amorphization behaviors of multiphase La0. 8Mg0. 2Ni3. 5 alloy publication-title: Int. J. Hydrog. Energy – volume: 60 start-page: 2739 year: 2012 end-page: 2745 ident: bib0022 article-title: Hydrogen-induced intergranular failure in nickel revisited publication-title: Acta Mater. – volume: 112 start-page: 206 year: 2019 end-page: 219 ident: bib0033 article-title: Hydrogen embrittlement controlled by reaction of dislocation with grain boundary in alpha-iron publication-title: Int. J. Plast. – volume: 7 start-page: 13341 year: 2016 ident: bib0017 article-title: Hydrogenated vacancies lock dislocations in aluminium publication-title: Nat. Commun. – volume: 179 start-page: 36 year: 2019 end-page: 48 ident: bib0018 article-title: Effect of electrochemical charging on the hydrogen embrittlement susceptibility of alloy 718 publication-title: Acta Mater. – volume: 367 start-page: 171 year: 2020 end-page: 175 ident: bib0031 article-title: Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates publication-title: Science – volume: 74 start-page: 175 year: 2015 end-page: 191 ident: bib0026 article-title: The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in alpha-Fe publication-title: Int. J. Plast. – year: 2012 ident: bib0002 article-title: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Mechanisms, Modelling and Future Developments – volume: 131 year: 2009 ident: bib0054 article-title: General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions publication-title: J. Chem. Phys. – volume: 216 year: 2019 ident: bib0006 article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion publication-title: Eng. Fract. Mech. – volume: 391 start-page: 561 year: 1998 end-page: 563 ident: bib0056 article-title: Softening of nanocrystalline metals at very small grain sizes publication-title: Nature – volume: 84 start-page: 426 year: 2015 end-page: 435 ident: bib0036 article-title: First-principles calculations of hydrogen solution and diffusion in tungsten: temperature and defect-trapping effects publication-title: Acta Mater. – volume: 18 start-page: 833 year: 2019 end-page: 839 ident: bib0038 article-title: Predictive model of hydrogen trapping and bubbling in nanovoids in bcc metals publication-title: Nat. Mater. – year: 2022 ident: bib0075 article-title: Cracking process in delayed fracture of high-strength steel after long atmospheric exposure publication-title: ISIJ Int. – year: 2022 ident: bib0030 article-title: Criteria for hydrogen-assisted crack initiation in Ni-based superalloy 718 publication-title: Acta Mater. – volume: 134 start-page: 105 year: 2017 end-page: 109 ident: bib0037 article-title: Hydrogen bubble nucleation in α-iron publication-title: Scr. Mater. – volume: 215 year: 2022 ident: bib0011 article-title: A predictive model unifying hydrogen enhanced plasticity and decohesion publication-title: Scr. Mater. – volume: 59 start-page: 2969 year: 2011 end-page: 2980 ident: bib0040 article-title: Hydrogen-enhanced local plasticity at dilute bulk H concentrations: the role of H–H interactions and the formation of local hydrides publication-title: Acta Mater. – volume: 98 start-page: 306 year: 2015 end-page: 312 ident: bib0058 article-title: First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel publication-title: Acta Mater. – volume: 122 start-page: 92 year: 2016 end-page: 101 ident: bib0042 article-title: Atomistic studies of hydrogen effects on grain boundary structure and deformation response in FCC Ni publication-title: Comput. Mater. Sci. – volume: 34 start-page: 9576 year: 2009 end-page: 9584 ident: bib0045 article-title: Atomistic simulations of hydrogen embrittlement publication-title: Int. J. Hydrog. Energy – volume: 3 start-page: 289 year: 1995 end-page: 307 ident: bib0048 article-title: Trapping of hydrogen to lattice-defects in nickel publication-title: Model. Simul. Mater. Sci. – volume: 18 year: 2009 ident: bib0057 article-title: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 49 start-page: 837 issue: 9 year: 2003 ident: 10.1016/j.actamat.2022.118279_bib0059 article-title: Amorphization associated with crack propagation in hydrogen-charged steel publication-title: Scr. Mater. doi: 10.1016/S1359-6462(03)00469-X – volume: 76 start-page: 848 issue: 8 year: 1972 ident: 10.1016/j.actamat.2022.118279_bib0007 article-title: A mechanistic theory of hydrogen embrittlement of steels publication-title: Ber. Bunsenges. Phys. Chem. doi: 10.1002/bbpc.19720760864 – volume: 195 start-page: 708 year: 2020 ident: 10.1016/j.actamat.2022.118279_bib0066 article-title: Hydrogen induced vacancy clustering and void formation mechanisms at grain boundaries in palladium publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.06.007 – year: 2021 ident: 10.1016/j.actamat.2022.118279_bib0071 article-title: Formation and time dynamics of hydrogen-induced vacancies in nickel publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117264 – volume: 664 start-page: 664 year: 2016 ident: 10.1016/j.actamat.2022.118279_bib0073 article-title: An investigation of micro-mechanisms in hydrogen induced cracking in nickel-based superalloy 718 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.01.033 – volume: 6 start-page: eaaz1187 issue: 23 year: 2020 ident: 10.1016/j.actamat.2022.118279_bib0051 article-title: Origin of micrometer-scale dislocation motion during hydrogen desorption publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz1187 – volume: 34 start-page: 9576 issue: 23 year: 2009 ident: 10.1016/j.actamat.2022.118279_bib0045 article-title: Atomistic simulations of hydrogen embrittlement publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2009.09.052 – volume: 178 start-page: 71 year: 2020 ident: 10.1016/j.actamat.2022.118279_bib0070 article-title: Temperature dependence of grain boundary excess free volume publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2019.10.046 – volume: 55 start-page: 5129 issue: 15 year: 2007 ident: 10.1016/j.actamat.2022.118279_bib0004 article-title: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.05.047 – volume: 94 start-page: 307 year: 2015 ident: 10.1016/j.actamat.2022.118279_bib0068 article-title: Hydrogen diffusion and vacancies formation in tungsten: density functional theory calculations and statistical models publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.04.052 – year: 2022 ident: 10.1016/j.actamat.2022.118279_bib0030 article-title: Criteria for hydrogen-assisted crack initiation in Ni-based superalloy 718 publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.117789 – volume: 74 start-page: 175 year: 2015 ident: 10.1016/j.actamat.2022.118279_bib0026 article-title: The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in alpha-Fe publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2015.05.017 – volume: 602 start-page: 437 issue: 7897 year: 2022 ident: 10.1016/j.actamat.2022.118279_bib0032 article-title: Hydrogen trapping and embrittlement in high-strength Al alloys publication-title: Nature doi: 10.1038/s41586-021-04343-z – volume: 84 start-page: 426 year: 2015 ident: 10.1016/j.actamat.2022.118279_bib0036 article-title: First-principles calculations of hydrogen solution and diffusion in tungsten: temperature and defect-trapping effects publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.10.039 – volume: 18 issue: 1 year: 2009 ident: 10.1016/j.actamat.2022.118279_bib0057 article-title: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool publication-title: Modell. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/1/015012 – volume: 179 start-page: 36 year: 2019 ident: 10.1016/j.actamat.2022.118279_bib0018 article-title: Effect of electrochemical charging on the hydrogen embrittlement susceptibility of alloy 718 publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.08.020 – volume: 122 start-page: 92 year: 2016 ident: 10.1016/j.actamat.2022.118279_bib0042 article-title: Atomistic studies of hydrogen effects on grain boundary structure and deformation response in FCC Ni publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.05.014 – volume: 185 start-page: 518 year: 2020 ident: 10.1016/j.actamat.2022.118279_bib0041 article-title: The key role played by dislocation core radius and energy in hydrogen interaction with dislocations publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.12.033 – volume: 44a start-page: 1365 issue: 3 year: 2013 ident: 10.1016/j.actamat.2022.118279_bib0043 article-title: Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in alpha-Fe publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-012-1430-z – volume: 56 start-page: 95 issue: 1 year: 2008 ident: 10.1016/j.actamat.2022.118279_bib0050 article-title: Hydrogen effects on nanovoid nucleation in face-centered cubic single-crystals publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.09.012 – volume: 131 issue: 15 year: 2009 ident: 10.1016/j.actamat.2022.118279_bib0054 article-title: General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions publication-title: J. Chem. Phys. doi: 10.1063/1.3245303 – volume: 112 start-page: 206 year: 2019 ident: 10.1016/j.actamat.2022.118279_bib0033 article-title: Hydrogen embrittlement controlled by reaction of dislocation with grain boundary in alpha-iron publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.08.013 – volume: 56 start-page: 3761 issue: 15 year: 2008 ident: 10.1016/j.actamat.2022.118279_bib0039 article-title: Atomistic study of hydrogen distribution and diffusion around a {1 1 2}< 1 1 1>edge dislocation in alpha iron publication-title: Acta Mater. doi: 10.1016/j.actamat.2008.04.011 – volume: 185 start-page: 98 year: 2020 ident: 10.1016/j.actamat.2022.118279_bib0010 article-title: A decohesion pathway for hydrogen embrittlement in nickel: mechanism and quantitative prediction publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.11.062 – volume: 30 start-page: 105 issue: 3-4 year: 2012 ident: 10.1016/j.actamat.2022.118279_bib0003 article-title: Hydrogen embrittlement phenomena and mechanisms publication-title: Corros. Rev. doi: 10.1515/corrrev-2012-0502 – volume: 70 start-page: 561 issue: 4 year: 1994 ident: 10.1016/j.actamat.2022.118279_bib0065 article-title: Disclinations, amorphization and microcrack generation at grain boundary junctions in polycrystalline solids publication-title: Philos. Mag. A doi: 10.1080/01418619408242248 – volume: 3 start-page: 289 issue: 3 year: 1995 ident: 10.1016/j.actamat.2022.118279_bib0048 article-title: Trapping of hydrogen to lattice-defects in nickel publication-title: Model. Simul. Mater. Sci. doi: 10.1088/0965-0393/3/3/001 – volume: 215 year: 2022 ident: 10.1016/j.actamat.2022.118279_bib0011 article-title: A predictive model unifying hydrogen enhanced plasticity and decohesion publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2022.114707 – volume: 107 start-page: 279 year: 2016 ident: 10.1016/j.actamat.2022.118279_bib0020 article-title: Effect of hydrogen environment on the separation of Fe grain boundaries publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.01.067 – volume: 68 start-page: 61 year: 2014 ident: 10.1016/j.actamat.2022.118279_bib0016 article-title: Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using alpha-Fe as a model system publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.01.008 – volume: 23 start-page: 168 issue: 156-163 year: 1875 ident: 10.1016/j.actamat.2022.118279_bib0001 article-title: On some remarkable changes produced in iron and steel by the action of hydrogen and acids publication-title: Proc. R. Soc. Lond. doi: 10.1098/rspl.1874.0024 – volume: 170 start-page: 87 year: 2019 ident: 10.1016/j.actamat.2022.118279_bib0012 article-title: Hydrogen-enhanced fatigue crack growth in a single-edge notched tensile specimen under in-situ hydrogen charging inside an environmental scanning electron microscope publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.03.032 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.actamat.2022.118279_bib0013 article-title: Strain localisation and failure at twin-boundary complexions in nickel-based superalloys publication-title: Nat. Commun. – volume: 367 start-page: 171 issue: 6474 year: 2020 ident: 10.1016/j.actamat.2022.118279_bib0031 article-title: Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates publication-title: Science doi: 10.1126/science.aaz0122 – year: 2012 ident: 10.1016/j.actamat.2022.118279_bib0002 – volume: 40 start-page: 7093 issue: 22 year: 2015 ident: 10.1016/j.actamat.2022.118279_bib0062 article-title: Hydrogen induced amorphization behaviors of multiphase La0. 8Mg0. 2Ni3. 5 alloy publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.02.047 – volume: 101 start-page: 150 year: 2017 ident: 10.1016/j.actamat.2022.118279_bib0021 article-title: Atomistic study of hydrogen embrittlement of grain boundaries in nickel: I. Fracture publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.01.020 – volume: 25 issue: 7 year: 2017 ident: 10.1016/j.actamat.2022.118279_bib0047 article-title: Atomistic study of hydrogen embrittlement of grain boundaries in nickel: II. Decohesion, modelling and simulation in publication-title: Mater. Sci. Eng. – volume: 40 start-page: 8941 issue: 29 year: 2015 ident: 10.1016/j.actamat.2022.118279_bib0061 article-title: Hydrogen induced amorphization of LaMgNi4 phase in metal hydride alloys publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.05.017 – volume: 158 start-page: 180 year: 2018 ident: 10.1016/j.actamat.2022.118279_bib0029 article-title: Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.07.043 – volume: 59 start-page: 2969 issue: 8 year: 2011 ident: 10.1016/j.actamat.2022.118279_bib0040 article-title: Hydrogen-enhanced local plasticity at dilute bulk H concentrations: the role of H–H interactions and the formation of local hydrides publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.01.037 – volume: 20 start-page: 940 issue: 8 year: 2004 ident: 10.1016/j.actamat.2022.118279_bib0024 article-title: Hydrogen related failure of steels - a new aspect publication-title: Mater. Sci. Technol. Lond. doi: 10.1179/026708304225019687 – volume: 128 start-page: 218 year: 2017 ident: 10.1016/j.actamat.2022.118279_bib0028 article-title: Effects of grain size and deformation temperature on hydrogen-enhanced vacancy formation in Ni alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.016 – volume: 216 year: 2019 ident: 10.1016/j.actamat.2022.118279_bib0034 article-title: The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.106502 – volume: 356 start-page: 263 year: 2003 ident: 10.1016/j.actamat.2022.118279_bib0023 article-title: Formation of superabundant vacancies in M–H alloys and some of its consequences: a review publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(02)01269-0 – volume: 29 start-page: 307 issue: 1 year: 1975 ident: 10.1016/j.actamat.2022.118279_bib0053 article-title: Grand canonical ensemble monte-carlo for a lennard-jones fluid publication-title: Mol. Phys. doi: 10.1080/00268977500100221 – volume: 10 year: 2019 ident: 10.1016/j.actamat.2022.118279_bib0035 article-title: Hydrogen embrittlement in metallic nanowires publication-title: Nat. Commun. doi: 10.1038/s41467-019-10035-0 – volume: 18 start-page: 833 issue: 8 year: 2019 ident: 10.1016/j.actamat.2022.118279_bib0038 article-title: Predictive model of hydrogen trapping and bubbling in nanovoids in bcc metals publication-title: Nat. Mater. doi: 10.1038/s41563-019-0422-4 – volume: 98 start-page: 306 year: 2015 ident: 10.1016/j.actamat.2022.118279_bib0058 article-title: First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.07.031 – volume: 58 start-page: 11085 issue: 17 year: 1998 ident: 10.1016/j.actamat.2022.118279_bib0055 article-title: Dislocation nucleation and defect structure during surface indentation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.11085 – volume: 7 start-page: 13341 issue: 1 year: 2016 ident: 10.1016/j.actamat.2022.118279_bib0017 article-title: Hydrogenated vacancies lock dislocations in aluminium publication-title: Nat. Commun. doi: 10.1038/ncomms13341 – volume: 92 start-page: 31 year: 2017 ident: 10.1016/j.actamat.2022.118279_bib0027 article-title: Study on interactions of an edge dislocation with vacancy-H complex by atomistic modelling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.03.003 – volume: 54 start-page: 9109 issue: 13 year: 1996 ident: 10.1016/j.actamat.2022.118279_bib0064 article-title: Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.9109 – volume: 12 start-page: 145 issue: 2 year: 2013 ident: 10.1016/j.actamat.2022.118279_bib0009 article-title: Atomic mechanism and prediction of hydrogen embrittlement in iron publication-title: Nat. Mater. doi: 10.1038/nmat3479 – volume: 78 start-page: 135 year: 2014 ident: 10.1016/j.actamat.2022.118279_bib0067 article-title: Stability of vacancy-hydrogen clusters in nickel from first-principles calculations publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.06.021 – volume: 165 start-page: 734 year: 2019 ident: 10.1016/j.actamat.2022.118279_bib0015 article-title: Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.12.014 – volume: 204 year: 2021 ident: 10.1016/j.actamat.2022.118279_bib0019 article-title: Hydrogen-induced transgranular to intergranular fracture transition in bi-crystalline nickel publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114122 – year: 2022 ident: 10.1016/j.actamat.2022.118279_bib0075 article-title: Cracking process in delayed fracture of high-strength steel after long atmospheric exposure publication-title: ISIJ Int. doi: 10.2355/isijinternational.ISIJINT-2021-238 – volume: 134 start-page: 105 year: 2017 ident: 10.1016/j.actamat.2022.118279_bib0037 article-title: Hydrogen bubble nucleation in α-iron publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.03.006 – volume: 27 start-page: 101 issue: 1 year: 1996 ident: 10.1016/j.actamat.2022.118279_bib0074 article-title: The effect of hydrogen on the fracture of alloy X-750 publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02647750 – volume: 117 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.actamat.2022.118279_bib0052 article-title: Fast parallel algorithms for short-range molecular-dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 68 start-page: 61 year: 2014 ident: 10.1016/j.actamat.2022.118279_bib0046 article-title: Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.01.008 – volume: 46 start-page: 1085 issue: 3 year: 2015 ident: 10.1016/j.actamat.2022.118279_bib0005 article-title: Hydrogen embrittlement understood publication-title: Metall. Mater. Trans. B-Process Metall. Mater. Process. Sci. doi: 10.1007/s11663-015-0325-y – volume: 165 start-page: 722 year: 2019 ident: 10.1016/j.actamat.2022.118279_bib0025 article-title: The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: overview publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.12.013 – volume: 150 year: 2020 ident: 10.1016/j.actamat.2022.118279_bib0044 article-title: Atomistic investigation of hydrogen induced decohesion of Ni grain boundaries publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2020.103586 – volume: 60 start-page: 6814 issue: 19 year: 2012 ident: 10.1016/j.actamat.2022.118279_bib0069 article-title: Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.09.004 – volume: 216 year: 2019 ident: 10.1016/j.actamat.2022.118279_bib0006 article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.106528 – volume: 176 start-page: 191 issue: 1-2 year: 1994 ident: 10.1016/j.actamat.2022.118279_bib0014 article-title: Hydrogen-enhanced localized plasticity - a mechanism for hydrogen-related fracture publication-title: Mat. Sci. Eng. A Struct. doi: 10.1016/0921-5093(94)90975-X – volume: 208 year: 2021 ident: 10.1016/j.actamat.2022.118279_bib0072 article-title: Quantities and distribution of strain-induced vacancies and dislocations enhanced by hydrogen in iron publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116663 – volume: 60 start-page: 2739 issue: 6-7 year: 2012 ident: 10.1016/j.actamat.2022.118279_bib0022 article-title: Hydrogen-induced intergranular failure in nickel revisited publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.01.040 – volume: 101 start-page: 40 issue: 1 year: 2021 ident: 10.1016/j.actamat.2022.118279_bib0060 article-title: Amorphization under fracture surface in hydrogen-charged and low-temperature tensile-tested austenitic stainless steel publication-title: Philos. Mag. Lett. doi: 10.1080/09500839.2020.1841915 – volume: 69 issue: 13 year: 2004 ident: 10.1016/j.actamat.2022.118279_bib0049 article-title: Rapid estimation of elastic constants by molecular dynamics simulation under constant stress publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.134103 – volume: 52 start-page: 2403 issue: 10 year: 2004 ident: 10.1016/j.actamat.2022.118279_bib0008 article-title: A quantum-mechanically informed continuum model of hydrogen embrittlement publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2004.02.010 – volume: 60 start-page: 5160 issue: 13-14 year: 2012 ident: 10.1016/j.actamat.2022.118279_bib0063 article-title: Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.06.014 – volume: 391 start-page: 561 issue: 6667 year: 1998 ident: 10.1016/j.actamat.2022.118279_bib0056 article-title: Softening of nanocrystalline metals at very small grain sizes publication-title: Nature doi: 10.1038/35328 |
SSID | ssj0012740 |
Score | 2.5545275 |
Snippet | The attention to hydrogen embrittlement (HE) has been intensified recently in the light of hydrogen as a carbon-free energy carrier. Despite worldwide... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 118279 |
SubjectTerms | Grain boundaries Hydrogen embrittlement Intergranular failure Molecular dynamics (MD) Vacancies |
Title | Hydrogen-enhanced grain boundary vacancy stockpiling causes transgranular to intergranular fracture transition |
URI | https://dx.doi.org/10.1016/j.actamat.2022.118279 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-486802 |
Volume | 239 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELVKe1kOK_YDwQKVD3B02yR24hwrdlF3V_SysOJm2Y5dWlBahQSJC7-dmSQt7AFV2ltieWRrbM28kWfeEHKajeLMBMKwjAvLuPGaGRelTNtURhbwvhZYnHw5jSfX_NeNuOmQ83UtDKZVtra_sem1tW5Hhq02h6v5fPgniESKfFQhRsUihbi9F4K3l13SG__8PZluHhMg8GqKhUXKUOC1kGe4gF2XGrAhRIphOEC0jUld77iot1yitf-52CMfW-BIx83ePpGOyz-T3Td0gl9IPnnKiiXcCOby2_pln86wAwQ1de-k4ok-aovWlALis3erOZaiU6urB_dAS3RaMD3HvFRaLikSSRSbAY_VVFXhmnl1ntdXcn3x4-p8wtp-CsxykZYsi21YB1BaasEzH3EH-CY0gJAS6y2ozgfxyMbaAUiwURZrGxudOG8CZIxKon3SzZe5OyDUSe7TkfCphC-rvQaUI3SkkySRXGfhIeFrFSrbko1jz4t7tc4qW6hW8wo1rxrNH5LBRmzVsG1sE5Dr81H_XBsFHmGb6FlznpuVkGn7-_zvWC2LmaoqxWUsR-G3_1_iiHzAP3R1gTgm3bKo3AlgmNL0yc7gOei3N_UFi0L1Kg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgECZmPagH4zO-5aBH3G0LLRw3PlJfe_ERbwQo6Krpbmpr4r-XaburHoyJt4YygQxk5psw8w1CB1kvznTANMkoM4Rqp4i2kSDKCB4Zj_cVg-Lk60Gc3tGLB_Ywg44ntTCQVtna_sam19a6Hem22uyOh8PuTRAxAXxUIUTFTPi4fZZCU-sOmu2fX6aD6WOCD7yaYmEmCAh8FfJ0n_2uS-WxoY8Uw_AI0DYkdf3ior5zidb-52wJLbbAEfebvS2jGZuvoIVvdIKrKE8_smLkbwSx-VP9so8foQME1nXvpOIDvysD1hR7xGdexkMoRcdGVW_2DZfgtPz0HPJScTnCQCRRTAccVFNVhW3m1Xlea-ju7PT2OCVtPwViKBMlyWIT1gGU4orRzEXUenwTao-QEuOMCLkL4p6JlfUgwURZrEysVWKdDoAxKonWUScf5XYDYcupEz3mBPdfRjnlUQ5TkUqShFOVhZuITlQoTUs2Dj0vXuUkq-xZtpqXoHnZaH4THU3Fxg3bxl8CfHI-8se1kd4j_CV62JzndCVg2j4Z3vflqHiUVSUpj3kv3Pr_EvtoLr29vpJX54PLbTQPf8DtBWwHdcqisrsez5R6r72vn1M89xA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen-enhanced+grain+boundary+vacancy+stockpiling+causes+transgranular+to+intergranular+fracture+transition&rft.jtitle=Acta+materialia&rft.au=Ding%2C+Yu&rft.au=Yu%2C+Haiyang&rft.au=Lin%2C+Meichao&rft.au=Zhao%2C+Kai&rft.date=2022-10-15&rft.issn=1359-6454&rft.volume=239&rft.spage=118279&rft_id=info:doi/10.1016%2Fj.actamat.2022.118279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actamat_2022_118279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |