Hydrogen-enhanced grain boundary vacancy stockpiling causes transgranular to intergranular fracture transition

The attention to hydrogen embrittlement (HE) has been intensified recently in the light of hydrogen as a carbon-free energy carrier. Despite worldwide research, the multifaceted HE mechanism remains a matter of debate. Here we report an atomistic study of the coupled effect of hydrogen and deformati...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 239; p. 118279
Main Authors Ding, Yu, Yu, Haiyang, Lin, Meichao, Zhao, Kai, Xiao, Senbo, Vinogradov, Alexey, Qiao, Lijie, Ortiz, Michael, He, Jianying, Zhang, Zhiliang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.10.2022
Subjects
Online AccessGet full text
ISSN1359-6454
1873-2453
1873-2453
DOI10.1016/j.actamat.2022.118279

Cover

Abstract The attention to hydrogen embrittlement (HE) has been intensified recently in the light of hydrogen as a carbon-free energy carrier. Despite worldwide research, the multifaceted HE mechanism remains a matter of debate. Here we report an atomistic study of the coupled effect of hydrogen and deformation temperature on the pathway to intergranular fracture of nickel. Uniaxial straining is applied to nickel Σ5(210)[001] and Σ9(1-10)[22-1] grain boundaries with or without pre-charged hydrogen at various temperatures. Without hydrogen, vacancy generation at grain boundary is limited and transgranular fracture mode dominates. When charged, hydrogen as a booster can enhance strain-induced vacancy generation by up to ten times. This leads to the superabundant vacancy stockpiling at the grain boundary, which agglomerates and nucleates intergranular nanovoids eventually causing intergranular fracture. While hydrogen tends to persistently enhance vacancy concentration, temperature plays an intriguing dual role as either an enhancer or an inhibitor for vacancy stockpiling. These results show good agreement with recent positron annihilation spectroscopy experiments. An S-shaped quantitative correlation between the proportion of intergranular fracture and vacancy concentration was for the first time derived, highlighting the existence of a critical vacancy concentration, beyond which fracture mode will be completely intergranular. [Display omitted]
AbstractList The attention to hydrogen embrittlement (HE) has been intensified recently in the light of hydrogen as a carbon-free energy carrier. Despite worldwide research, the multifaceted HE mechanism remains a mat-ter of debate. Here we report an atomistic study of the coupled effect of hydrogen and deformation temperature on the pathway to intergranular fracture of nickel. Uniaxial straining is applied to nickel E5(210)[001] and E9(1-10)[22-1] grain boundaries with or without pre-charged hydrogen at various temperatures. Without hydrogen, vacancy generation at grain boundary is limited and transgranular frac-ture mode dominates. When charged, hydrogen as a booster can enhance strain-induced vacancy genera-tion by up to ten times. This leads to the superabundant vacancy stockpiling at the grain boundary, which agglomerates and nucleates intergranular nanovoids eventually causing intergranular fracture. While hy-drogen tends to persistently enhance vacancy concentration, temperature plays an intriguing dual role as either an enhancer or an inhibitor for vacancy stockpiling. These results show good agreement with recent positron annihilation spectroscopy experiments. An S-shaped quantitative correlation between the proportion of intergranular fracture and vacancy concentration was for the first time derived, highlight-ing the existence of a critical vacancy concentration, beyond which fracture mode will be completely intergranular.
The attention to hydrogen embrittlement (HE) has been intensified recently in the light of hydrogen as a carbon-free energy carrier. Despite worldwide research, the multifaceted HE mechanism remains a matter of debate. Here we report an atomistic study of the coupled effect of hydrogen and deformation temperature on the pathway to intergranular fracture of nickel. Uniaxial straining is applied to nickel Σ5(210)[001] and Σ9(1-10)[22-1] grain boundaries with or without pre-charged hydrogen at various temperatures. Without hydrogen, vacancy generation at grain boundary is limited and transgranular fracture mode dominates. When charged, hydrogen as a booster can enhance strain-induced vacancy generation by up to ten times. This leads to the superabundant vacancy stockpiling at the grain boundary, which agglomerates and nucleates intergranular nanovoids eventually causing intergranular fracture. While hydrogen tends to persistently enhance vacancy concentration, temperature plays an intriguing dual role as either an enhancer or an inhibitor for vacancy stockpiling. These results show good agreement with recent positron annihilation spectroscopy experiments. An S-shaped quantitative correlation between the proportion of intergranular fracture and vacancy concentration was for the first time derived, highlighting the existence of a critical vacancy concentration, beyond which fracture mode will be completely intergranular. [Display omitted]
ArticleNumber 118279
Author Yu, Haiyang
Qiao, Lijie
He, Jianying
Zhao, Kai
Zhang, Zhiliang
Vinogradov, Alexey
Ding, Yu
Xiao, Senbo
Lin, Meichao
Ortiz, Michael
Author_xml – sequence: 1
  givenname: Yu
  surname: Ding
  fullname: Ding, Yu
  organization: Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
– sequence: 2
  givenname: Haiyang
  orcidid: 0000-0002-2419-6736
  surname: Yu
  fullname: Yu, Haiyang
  email: haiyang.yu@angstrom.uu.se
  organization: Division of Applied Mechanics, Department of Materials Science and Engineering, Uppsala University, Uppsala 75121, Sweden
– sequence: 3
  givenname: Meichao
  surname: Lin
  fullname: Lin, Meichao
  organization: Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
– sequence: 4
  givenname: Kai
  orcidid: 0000-0003-2645-7917
  surname: Zhao
  fullname: Zhao, Kai
  organization: Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
– sequence: 5
  givenname: Senbo
  surname: Xiao
  fullname: Xiao, Senbo
  organization: Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
– sequence: 6
  givenname: Alexey
  orcidid: 0000-0001-9585-2801
  surname: Vinogradov
  fullname: Vinogradov, Alexey
  organization: Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
– sequence: 7
  givenname: Lijie
  surname: Qiao
  fullname: Qiao, Lijie
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 8
  givenname: Michael
  orcidid: 0000-0001-5877-4824
  surname: Ortiz
  fullname: Ortiz, Michael
  organization: Graduate Aerospace Laboratories, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
– sequence: 9
  givenname: Jianying
  surname: He
  fullname: He, Jianying
  email: jianying.he@ntnu.no
  organization: Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
– sequence: 10
  givenname: Zhiliang
  surname: Zhang
  fullname: Zhang, Zhiliang
  email: zhiliang.zhang@ntnu.no
  organization: Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-486802$$DView record from Swedish Publication Index
BookMark eNqFkctOwzAQRS1UJMrjE5DyAaTYjuMkYoGq8pSQ2ABba-JMikuxK9sB9e9xFWDBhtVYo3tn7hwfkol1Fgk5ZXTGKJPnqxnoCO8QZ5xyPmOs5lWzR6asroqci7KYpHdRNrkUpTgghyGsKGW8EnRK7N22826JNkf7ClZjly09GJu1brAd-G32ATr1t1mITr9tzNrYZaZhCBiy6MGGJLfDGnwWXWZsRP_b6H3KNXgcdSYaZ4_Jfg_rgCff9Yg831w_Le7yh8fb-8X8IdeibGLeSc0pE4JBDaXo-kKgZJy3DW8q3euG1z2TVEvAhjJddBK0bKHCvk3Hl1VVHJGzcW74xM3Qqo037-kY5cCoK_MyV84v1TAoUcua8iS_GOXauxA89kqbCLvAKbpZK0bVjrRaqW_SakdajaSTu_zj_ln3n-9y9GEi8WHQq6AN7v7AeNRRdc78M-EL2hahZQ
CitedBy_id crossref_primary_10_1016_j_rser_2023_113353
crossref_primary_10_1021_acs_chemrev_3c00624
crossref_primary_10_1016_j_actamat_2023_119291
crossref_primary_10_3390_ma17051178
crossref_primary_10_1016_j_ijhydene_2024_01_181
crossref_primary_10_1016_j_ijhydene_2023_09_056
crossref_primary_10_1016_j_vacuum_2024_113243
crossref_primary_10_1016_j_jmst_2023_07_058
crossref_primary_10_1016_j_ijfatigue_2023_107995
crossref_primary_10_1016_j_msea_2024_146257
crossref_primary_10_1016_j_jallcom_2024_176059
crossref_primary_10_1016_j_mtcomm_2024_109587
crossref_primary_10_1016_j_ijhydene_2024_08_496
crossref_primary_10_1016_j_actamat_2023_119234
crossref_primary_10_1016_j_ijhydene_2024_10_244
crossref_primary_10_1016_j_msea_2024_147565
crossref_primary_10_1016_j_matt_2024_101944
crossref_primary_10_1016_j_msea_2023_144635
crossref_primary_10_1016_j_actamat_2024_119886
crossref_primary_10_1016_j_ijhydene_2024_08_136
crossref_primary_10_1063_5_0132488
crossref_primary_10_1016_j_engfracmech_2025_111008
crossref_primary_10_1080_14686996_2025_2459060
crossref_primary_10_1016_j_jnucmat_2024_155555
crossref_primary_10_1016_j_ijhydene_2023_06_033
crossref_primary_10_1016_j_ijhydene_2023_04_266
crossref_primary_10_1016_j_jmrt_2023_06_088
crossref_primary_10_1016_j_jmst_2023_07_027
crossref_primary_10_1016_j_commatsci_2023_112195
crossref_primary_10_1016_j_ijhydene_2025_01_136
crossref_primary_10_3724_j_GTER_20250010
Cites_doi 10.1016/S1359-6462(03)00469-X
10.1002/bbpc.19720760864
10.1016/j.actamat.2020.06.007
10.1016/j.actamat.2021.117264
10.1016/j.jallcom.2016.01.033
10.1126/sciadv.aaz1187
10.1016/j.ijhydene.2009.09.052
10.1016/j.scriptamat.2019.10.046
10.1016/j.actamat.2007.05.047
10.1016/j.actamat.2015.04.052
10.1016/j.actamat.2022.117789
10.1016/j.ijplas.2015.05.017
10.1038/s41586-021-04343-z
10.1016/j.actamat.2014.10.039
10.1088/0965-0393/18/1/015012
10.1016/j.actamat.2019.08.020
10.1016/j.commatsci.2016.05.014
10.1016/j.actamat.2019.12.033
10.1007/s11661-012-1430-z
10.1016/j.actamat.2007.09.012
10.1063/1.3245303
10.1016/j.ijplas.2018.08.013
10.1016/j.actamat.2008.04.011
10.1016/j.actamat.2019.11.062
10.1515/corrrev-2012-0502
10.1080/01418619408242248
10.1088/0965-0393/3/3/001
10.1016/j.scriptamat.2022.114707
10.1016/j.actamat.2016.01.067
10.1016/j.actamat.2014.01.008
10.1098/rspl.1874.0024
10.1016/j.actamat.2019.03.032
10.1126/science.aaz0122
10.1016/j.ijhydene.2015.02.047
10.1016/j.jmps.2017.01.020
10.1016/j.ijhydene.2015.05.017
10.1016/j.actamat.2018.07.043
10.1016/j.actamat.2011.01.037
10.1179/026708304225019687
10.1016/j.actamat.2017.02.016
10.1016/j.engfracmech.2019.106502
10.1016/S0925-8388(02)01269-0
10.1080/00268977500100221
10.1038/s41467-019-10035-0
10.1038/s41563-019-0422-4
10.1016/j.actamat.2015.07.031
10.1103/PhysRevB.58.11085
10.1038/ncomms13341
10.1016/j.ijplas.2017.03.003
10.1103/PhysRevB.54.9109
10.1038/nmat3479
10.1016/j.actamat.2014.06.021
10.1016/j.actamat.2018.12.014
10.1016/j.scriptamat.2021.114122
10.2355/isijinternational.ISIJINT-2021-238
10.1016/j.scriptamat.2017.03.006
10.1007/BF02647750
10.1006/jcph.1995.1039
10.1007/s11663-015-0325-y
10.1016/j.actamat.2018.12.013
10.1016/j.mechmat.2020.103586
10.1016/j.actamat.2012.09.004
10.1016/j.engfracmech.2019.106528
10.1016/0921-5093(94)90975-X
10.1016/j.actamat.2021.116663
10.1016/j.actamat.2012.01.040
10.1080/09500839.2020.1841915
10.1103/PhysRevB.69.134103
10.1016/j.jmps.2004.02.010
10.1016/j.actamat.2012.06.014
10.1038/35328
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1016/j.actamat.2022.118279
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2453
ExternalDocumentID oai_DiVA_org_uu_486802
10_1016_j_actamat_2022_118279
S1359645422006590
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
R2-
SEW
SSH
T9H
ZY4
ACNBI
ADTPV
AOWAS
D8T
DF2
EFKBS
ZZAVC
ID FETCH-LOGICAL-c459t-d6c201441a8a54df34e6122b9297cfc928f160c6ae901c3d6ac6ba7efb1185773
IEDL.DBID AIKHN
ISSN 1359-6454
1873-2453
IngestDate Tue Sep 09 22:58:05 EDT 2025
Tue Jul 01 01:30:18 EDT 2025
Thu Apr 24 22:54:50 EDT 2025
Fri Feb 23 02:39:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Intergranular failure
Grain boundaries
Molecular dynamics (MD)
Vacancies
Hydrogen embrittlement
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-d6c201441a8a54df34e6122b9297cfc928f160c6ae901c3d6ac6ba7efb1185773
ORCID 0000-0001-5877-4824
0000-0003-2645-7917
0000-0001-9585-2801
0000-0002-2419-6736
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1359645422006590
ParticipantIDs swepub_primary_oai_DiVA_org_uu_486802
crossref_citationtrail_10_1016_j_actamat_2022_118279
crossref_primary_10_1016_j_actamat_2022_118279
elsevier_sciencedirect_doi_10_1016_j_actamat_2022_118279
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Acta materialia
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kirchheim (bib0004) 2007; 55
Tehranchi, Curtin (bib0034) 2019; 216
Li, Ren, Zhang, Liu, Zhang (bib0062) 2015; 40
Chandler, Horstemeyer, Baskes, Gullett, Wagner, Jelinek (bib0050) 2008; 56
Kong, Wang, Wu, You, Liu, Fang, Chen, Luo (bib0036) 2015; 84
Kelchner, Plimpton, Hamilton (bib0055) 1998; 58
Nagumo (bib0024) 2004; 20
Koyama, Taheri-Mousavi, Yan, Kim, Cameron, Moeini-Ardakani, Li, Tasan (bib0051) 2020; 6
Serebrinsky, Carter, Ortiz (bib0008) 2004; 52
Young, Ouchi, Shen, Bendersky (bib0061) 2015; 40
Solanki, Tschopp, Bhatia, Rhodes (bib0043) 2013; 44a
Gutkin, Ovid'Ko (bib0065) 1994; 70
Oudriss, Creus, Bouhattate, Conforto, Berziou, Savall, Feaugas (bib0069) 2012; 60
Sun, Singh (bib0070) 2020; 178
Lawrence, Yagodzinskyy, Hanninen, Korhonen, Tuomisto, Harris, Somerday (bib0028) 2017; 128
Di Stefano, Mrovec, Elsasser (bib0058) 2015; 98
Martin, Somerday, Ritchie, Sofronis, Robertson (bib0022) 2012; 60
Yu, Cui, Zhu, Shen, Wen (bib0041) 2020; 185
Li, Li, Lo, Neeraj, Srinivasan, Ding, Sun, Qi, Gumbsch, Li (bib0026) 2015; 74
Von Pezold, Lymperakis, Neugebeauer (bib0040) 2011; 59
Djukic, Bakic, Zeravcic, Sedmak, Rajicic (bib0006) 2019; 216
Taketomi, Matsumoto, Miyazaki (bib0039) 2008; 56
Benedictus, Böttger, Mittemeijer (bib0064) 1996; 54
Tehranchi, Curtin (bib0047) 2017; 25
Lynch (bib0003) 2012; 30
Wang, Martin, Robertson, Sofronis (bib0020) 2016; 107
Neeraj, Srinivasan, Li (bib0063) 2012; 60
Nagumo, Takai (bib0025) 2019; 165
Zhao, Chakraborty, Ponge, Hickel, Sun, Wu, Gault, Raabe (bib0032) 2022; 602
Plimpton (bib0052) 1995; 117
Stukowski (bib0057) 2009; 18
Angelo, Moody, Baskes (bib0048) 1995; 3
Sugiyama, Takai (bib0072) 2021; 208
Chiari, Kojima, Endo, Teshigahara, Butterling, Liedke, Hirschmann, Attallah, Wagner, Fujinami (bib0071) 2021
Lin, Yu, Ding, Wang, Olden, Alvaro, He, Zhang (bib0011) 2022; 215
Li, Lu, Pei, Zhang, Wang (bib0044) 2020; 150
Song, Curtin (bib0046) 2014; 68
Song, Curtin (bib0009) 2013; 12
Kuhr, Farkas, Robertson (bib0042) 2016; 122
Lu, Wang, Wan, Zhang, Kheradmand, Barnoush (bib0018) 2019; 179
Ding, Yu, Zhao, Lin, Xiao, Ortiz, He, Zhang (bib0019) 2021; 204
Tanguy, Wang, Connetable (bib0067) 2014; 78
Symons, Thompson (bib0074) 1996; 27
Martin, Dadfarnia, Nagao, Wang, Sofronis (bib0015) 2019; 165
Matsumoto, Taketomi, Matsumoto, Miyazaki (bib0045) 2009; 34
Oriani (bib0007) 1972; 76
Ogawa, Noguchi, Takakuwa (bib0030) 2022
Gangloff, Somerday (bib0002) 2012
Tehranchi, Curtin (bib0021) 2017; 101
Chen, Lu, Liang, Rosenthal, Liu, Sneddon, McCarroll, Zhao, Li, Guo (bib0031) 2020; 367
Tehranchi, Zhou, Curtin (bib0010) 2020; 185
Birnbaum, Sofronis (bib0014) 1994; 176
Adams (bib0053) 1975; 29
Johnson (bib0001) 1875; 23
Geng, Wan, Du, Ishii, Ishikawa, Kimizuka, Ogata (bib0037) 2017; 134
Schiotz, Di Tolla, Jacobsen (bib0056) 1998; 391
Wan, Deng, Meling, Alvaro, Barnoush (bib0012) 2019; 170
Yin, Cheng, Chang, Richter, Zhu, Gao (bib0035) 2019; 10
Hou, Kong, Wu, Song, Liu (bib0038) 2019; 18
Nagumo, Ishikawa, Endoh, Inoue (bib0059) 2003; 49
Thompson, Plimpton, Mattson (bib0054) 2009; 131
Wan, Geng, Ishii, Du, Mei, Ishikawa, Kimizuka, Ogata (bib0033) 2019; 112
Jothi, Merzlikin, Croft, Andersson, Brown (bib0073) 2016; 664
Polfus, Løvvik, Bredesen, Peters (bib0066) 2020; 195
Song, Curtin (bib0016) 2014; 68
Robertson, Sofronis, Nagao, Martin, Wang, Gross, Nygren (bib0005) 2015; 46
Fernandez, Ferro, Kato (bib0068) 2015; 94
Homma, Chiba, Takai, Akiyama, Oshikawa, Nagumo (bib0075) 2022
Zhang, Yang, Lu, Harte, Morana, Preuss (bib0013) 2020; 11
Zhu, Li, Huang, Fan (bib0027) 2017; 92
Shinoda, Shiga, Mikami (bib0049) 2004; 69
Harada, Kusunoki, Moritani, Matsumoto, Hatano, Horibe (bib0060) 2021; 101
Harris, Lawrence, Medlin, Guetard, Burns, Somerday (bib0029) 2018; 158
Fukai (bib0023) 2003; 356
Xie, Li, Li, Wang, Gumbsch, Sun, Ma, Li, Shan (bib0017) 2016; 7
Gangloff (10.1016/j.actamat.2022.118279_bib0002) 2012
Fukai (10.1016/j.actamat.2022.118279_bib0023) 2003; 356
Xie (10.1016/j.actamat.2022.118279_bib0017) 2016; 7
Koyama (10.1016/j.actamat.2022.118279_bib0051) 2020; 6
Sugiyama (10.1016/j.actamat.2022.118279_bib0072) 2021; 208
Song (10.1016/j.actamat.2022.118279_bib0009) 2013; 12
Wang (10.1016/j.actamat.2022.118279_bib0020) 2016; 107
Young (10.1016/j.actamat.2022.118279_bib0061) 2015; 40
Kong (10.1016/j.actamat.2022.118279_bib0036) 2015; 84
Solanki (10.1016/j.actamat.2022.118279_bib0043) 2013; 44a
Schiotz (10.1016/j.actamat.2022.118279_bib0056) 1998; 391
Matsumoto (10.1016/j.actamat.2022.118279_bib0045) 2009; 34
Adams (10.1016/j.actamat.2022.118279_bib0053) 1975; 29
Geng (10.1016/j.actamat.2022.118279_bib0037) 2017; 134
Tehranchi (10.1016/j.actamat.2022.118279_bib0034) 2019; 216
Von Pezold (10.1016/j.actamat.2022.118279_bib0040) 2011; 59
Lin (10.1016/j.actamat.2022.118279_bib0011) 2022; 215
Wan (10.1016/j.actamat.2022.118279_bib0012) 2019; 170
Plimpton (10.1016/j.actamat.2022.118279_bib0052) 1995; 117
Johnson (10.1016/j.actamat.2022.118279_bib0001) 1875; 23
Song (10.1016/j.actamat.2022.118279_bib0046) 2014; 68
Nagumo (10.1016/j.actamat.2022.118279_bib0059) 2003; 49
Zhao (10.1016/j.actamat.2022.118279_bib0032) 2022; 602
Chandler (10.1016/j.actamat.2022.118279_bib0050) 2008; 56
Taketomi (10.1016/j.actamat.2022.118279_bib0039) 2008; 56
Sun (10.1016/j.actamat.2022.118279_bib0070) 2020; 178
Li (10.1016/j.actamat.2022.118279_bib0026) 2015; 74
Chiari (10.1016/j.actamat.2022.118279_bib0071) 2021
Angelo (10.1016/j.actamat.2022.118279_bib0048) 1995; 3
Tehranchi (10.1016/j.actamat.2022.118279_bib0010) 2020; 185
Nagumo (10.1016/j.actamat.2022.118279_bib0025) 2019; 165
Harris (10.1016/j.actamat.2022.118279_bib0029) 2018; 158
Benedictus (10.1016/j.actamat.2022.118279_bib0064) 1996; 54
Tehranchi (10.1016/j.actamat.2022.118279_bib0047) 2017; 25
Martin (10.1016/j.actamat.2022.118279_bib0022) 2012; 60
Homma (10.1016/j.actamat.2022.118279_bib0075) 2022
Thompson (10.1016/j.actamat.2022.118279_bib0054) 2009; 131
Fernandez (10.1016/j.actamat.2022.118279_bib0068) 2015; 94
Harada (10.1016/j.actamat.2022.118279_bib0060) 2021; 101
Stukowski (10.1016/j.actamat.2022.118279_bib0057) 2009; 18
Di Stefano (10.1016/j.actamat.2022.118279_bib0058) 2015; 98
Jothi (10.1016/j.actamat.2022.118279_bib0073) 2016; 664
Martin (10.1016/j.actamat.2022.118279_bib0015) 2019; 165
Djukic (10.1016/j.actamat.2022.118279_bib0006) 2019; 216
Kelchner (10.1016/j.actamat.2022.118279_bib0055) 1998; 58
Hou (10.1016/j.actamat.2022.118279_bib0038) 2019; 18
Birnbaum (10.1016/j.actamat.2022.118279_bib0014) 1994; 176
Lu (10.1016/j.actamat.2022.118279_bib0018) 2019; 179
Chen (10.1016/j.actamat.2022.118279_bib0031) 2020; 367
Polfus (10.1016/j.actamat.2022.118279_bib0066) 2020; 195
Neeraj (10.1016/j.actamat.2022.118279_bib0063) 2012; 60
Serebrinsky (10.1016/j.actamat.2022.118279_bib0008) 2004; 52
Oudriss (10.1016/j.actamat.2022.118279_bib0069) 2012; 60
Kirchheim (10.1016/j.actamat.2022.118279_bib0004) 2007; 55
Gutkin (10.1016/j.actamat.2022.118279_bib0065) 1994; 70
Song (10.1016/j.actamat.2022.118279_bib0016) 2014; 68
Robertson (10.1016/j.actamat.2022.118279_bib0005) 2015; 46
Wan (10.1016/j.actamat.2022.118279_bib0033) 2019; 112
Li (10.1016/j.actamat.2022.118279_bib0044) 2020; 150
Yu (10.1016/j.actamat.2022.118279_bib0041) 2020; 185
Ding (10.1016/j.actamat.2022.118279_bib0019) 2021; 204
Tehranchi (10.1016/j.actamat.2022.118279_bib0021) 2017; 101
Zhang (10.1016/j.actamat.2022.118279_bib0013) 2020; 11
Lawrence (10.1016/j.actamat.2022.118279_bib0028) 2017; 128
Nagumo (10.1016/j.actamat.2022.118279_bib0024) 2004; 20
Symons (10.1016/j.actamat.2022.118279_bib0074) 1996; 27
Lynch (10.1016/j.actamat.2022.118279_bib0003) 2012; 30
Zhu (10.1016/j.actamat.2022.118279_bib0027) 2017; 92
Tanguy (10.1016/j.actamat.2022.118279_bib0067) 2014; 78
Oriani (10.1016/j.actamat.2022.118279_bib0007) 1972; 76
Yin (10.1016/j.actamat.2022.118279_bib0035) 2019; 10
Ogawa (10.1016/j.actamat.2022.118279_bib0030) 2022
Li (10.1016/j.actamat.2022.118279_bib0062) 2015; 40
Kuhr (10.1016/j.actamat.2022.118279_bib0042) 2016; 122
Shinoda (10.1016/j.actamat.2022.118279_bib0049) 2004; 69
References_xml – volume: 56
  start-page: 95
  year: 2008
  end-page: 104
  ident: bib0050
  article-title: Hydrogen effects on nanovoid nucleation in face-centered cubic single-crystals
  publication-title: Acta Mater.
– volume: 70
  start-page: 561
  year: 1994
  end-page: 575
  ident: bib0065
  article-title: Disclinations, amorphization and microcrack generation at grain boundary junctions in polycrystalline solids
  publication-title: Philos. Mag. A
– volume: 78
  start-page: 135
  year: 2014
  end-page: 143
  ident: bib0067
  article-title: Stability of vacancy-hydrogen clusters in nickel from first-principles calculations
  publication-title: Acta Mater.
– volume: 27
  start-page: 101
  year: 1996
  end-page: 110
  ident: bib0074
  article-title: The effect of hydrogen on the fracture of alloy X-750
  publication-title: Metall. Mater. Trans. A
– volume: 101
  start-page: 150
  year: 2017
  end-page: 165
  ident: bib0021
  article-title: Atomistic study of hydrogen embrittlement of grain boundaries in nickel: I. Fracture
  publication-title: J. Mech. Phys. Solids
– volume: 6
  start-page: eaaz1187
  year: 2020
  ident: bib0051
  article-title: Origin of micrometer-scale dislocation motion during hydrogen desorption
  publication-title: Sci. Adv.
– volume: 30
  start-page: 105
  year: 2012
  end-page: 123
  ident: bib0003
  article-title: Hydrogen embrittlement phenomena and mechanisms
  publication-title: Corros. Rev.
– volume: 12
  start-page: 145
  year: 2013
  end-page: 151
  ident: bib0009
  article-title: Atomic mechanism and prediction of hydrogen embrittlement in iron
  publication-title: Nat. Mater.
– volume: 55
  start-page: 5129
  year: 2007
  end-page: 5138
  ident: bib0004
  article-title: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background
  publication-title: Acta Mater.
– volume: 216
  year: 2019
  ident: bib0034
  article-title: The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals
  publication-title: Eng. Fract. Mech.
– year: 2021
  ident: bib0071
  article-title: Formation and time dynamics of hydrogen-induced vacancies in nickel
  publication-title: Acta Mater.
– volume: 25
  year: 2017
  ident: bib0047
  article-title: Atomistic study of hydrogen embrittlement of grain boundaries in nickel: II. Decohesion, modelling and simulation in
  publication-title: Mater. Sci. Eng.
– volume: 101
  start-page: 40
  year: 2021
  end-page: 50
  ident: bib0060
  article-title: Amorphization under fracture surface in hydrogen-charged and low-temperature tensile-tested austenitic stainless steel
  publication-title: Philos. Mag. Lett.
– volume: 170
  start-page: 87
  year: 2019
  end-page: 99
  ident: bib0012
  article-title: Hydrogen-enhanced fatigue crack growth in a single-edge notched tensile specimen under
  publication-title: Acta Mater.
– volume: 176
  start-page: 191
  year: 1994
  end-page: 202
  ident: bib0014
  article-title: Hydrogen-enhanced localized plasticity - a mechanism for hydrogen-related fracture
  publication-title: Mat. Sci. Eng. A Struct.
– volume: 68
  start-page: 61
  year: 2014
  end-page: 69
  ident: bib0016
  article-title: Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using alpha-Fe as a model system
  publication-title: Acta Mater.
– volume: 49
  start-page: 837
  year: 2003
  end-page: 842
  ident: bib0059
  article-title: Amorphization associated with crack propagation in hydrogen-charged steel
  publication-title: Scr. Mater.
– volume: 356
  start-page: 263
  year: 2003
  end-page: 269
  ident: bib0023
  article-title: Formation of superabundant vacancies in M–H alloys and some of its consequences: a review
  publication-title: J. Alloys Compd.
– volume: 46
  start-page: 1085
  year: 2015
  end-page: 1103
  ident: bib0005
  article-title: Hydrogen embrittlement understood
  publication-title: Metall. Mater. Trans. B-Process Metall. Mater. Process. Sci.
– volume: 165
  start-page: 722
  year: 2019
  end-page: 733
  ident: bib0025
  article-title: The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: overview
  publication-title: Acta Mater.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib0013
  article-title: Strain localisation and failure at twin-boundary complexions in nickel-based superalloys
  publication-title: Nat. Commun.
– volume: 92
  start-page: 31
  year: 2017
  end-page: 44
  ident: bib0027
  article-title: Study on interactions of an edge dislocation with vacancy-H complex by atomistic modelling
  publication-title: Int. J. Plast.
– volume: 23
  start-page: 168
  year: 1875
  end-page: 179
  ident: bib0001
  article-title: On some remarkable changes produced in iron and steel by the action of hydrogen and acids
  publication-title: Proc. R. Soc. Lond.
– volume: 165
  start-page: 734
  year: 2019
  end-page: 750
  ident: bib0015
  article-title: Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials
  publication-title: Acta Mater.
– volume: 68
  start-page: 61
  year: 2014
  end-page: 69
  ident: bib0046
  article-title: Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system
  publication-title: Acta Mater.
– volume: 52
  start-page: 2403
  year: 2004
  end-page: 2430
  ident: bib0008
  article-title: A quantum-mechanically informed continuum model of hydrogen embrittlement
  publication-title: J. Mech. Phys. Solids
– volume: 10
  year: 2019
  ident: bib0035
  article-title: Hydrogen embrittlement in metallic nanowires
  publication-title: Nat. Commun.
– volume: 54
  start-page: 9109
  year: 1996
  ident: bib0064
  article-title: Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries
  publication-title: Phys. Rev. B
– volume: 208
  year: 2021
  ident: bib0072
  article-title: Quantities and distribution of strain-induced vacancies and dislocations enhanced by hydrogen in iron
  publication-title: Acta Mater.
– volume: 664
  start-page: 664
  year: 2016
  end-page: 681
  ident: bib0073
  article-title: An investigation of micro-mechanisms in hydrogen induced cracking in nickel-based superalloy 718
  publication-title: J. Alloys Compd.
– volume: 60
  start-page: 6814
  year: 2012
  end-page: 6828
  ident: bib0069
  article-title: Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel
  publication-title: Acta Mater.
– volume: 185
  start-page: 98
  year: 2020
  end-page: 109
  ident: bib0010
  article-title: A decohesion pathway for hydrogen embrittlement in nickel: mechanism and quantitative prediction
  publication-title: Acta Mater.
– volume: 107
  start-page: 279
  year: 2016
  end-page: 288
  ident: bib0020
  article-title: Effect of hydrogen environment on the separation of Fe grain boundaries
  publication-title: Acta Mater.
– volume: 69
  year: 2004
  ident: bib0049
  article-title: Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
  publication-title: Phys. Rev. B
– volume: 128
  start-page: 218
  year: 2017
  end-page: 226
  ident: bib0028
  article-title: Effects of grain size and deformation temperature on hydrogen-enhanced vacancy formation in Ni alloys
  publication-title: Acta Mater.
– volume: 58
  start-page: 11085
  year: 1998
  end-page: 11088
  ident: bib0055
  article-title: Dislocation nucleation and defect structure during surface indentation
  publication-title: Phys. Rev. B
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: bib0052
  article-title: Fast parallel algorithms for short-range molecular-dynamics
  publication-title: J. Comput. Phys.
– volume: 195
  start-page: 708
  year: 2020
  end-page: 719
  ident: bib0066
  article-title: Hydrogen induced vacancy clustering and void formation mechanisms at grain boundaries in palladium
  publication-title: Acta Mater.
– volume: 185
  start-page: 518
  year: 2020
  end-page: 527
  ident: bib0041
  article-title: The key role played by dislocation core radius and energy in hydrogen interaction with dislocations
  publication-title: Acta Mater.
– volume: 44a
  start-page: 1365
  year: 2013
  end-page: 1375
  ident: bib0043
  article-title: Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in alpha-Fe
  publication-title: Metall. Mater. Trans. A
– volume: 204
  year: 2021
  ident: bib0019
  article-title: Hydrogen-induced transgranular to intergranular fracture transition in bi-crystalline nickel
  publication-title: Scr. Mater.
– volume: 178
  start-page: 71
  year: 2020
  end-page: 76
  ident: bib0070
  article-title: Temperature dependence of grain boundary excess free volume
  publication-title: Scr. Mater.
– volume: 158
  start-page: 180
  year: 2018
  end-page: 192
  ident: bib0029
  article-title: Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel
  publication-title: Acta Mater.
– volume: 602
  start-page: 437
  year: 2022
  end-page: 441
  ident: bib0032
  article-title: Hydrogen trapping and embrittlement in high-strength Al alloys
  publication-title: Nature
– volume: 150
  year: 2020
  ident: bib0044
  article-title: Atomistic investigation of hydrogen induced decohesion of Ni grain boundaries
  publication-title: Mech. Mater.
– volume: 29
  start-page: 307
  year: 1975
  end-page: 311
  ident: bib0053
  article-title: Grand canonical ensemble monte-carlo for a lennard-jones fluid
  publication-title: Mol. Phys.
– volume: 60
  start-page: 5160
  year: 2012
  end-page: 5171
  ident: bib0063
  article-title: Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding
  publication-title: Acta Mater.
– volume: 94
  start-page: 307
  year: 2015
  end-page: 318
  ident: bib0068
  article-title: Hydrogen diffusion and vacancies formation in tungsten: density functional theory calculations and statistical models
  publication-title: Acta Mater.
– volume: 56
  start-page: 3761
  year: 2008
  end-page: 3769
  ident: bib0039
  article-title: Atomistic study of hydrogen distribution and diffusion around a {1 1 2}< 1 1 1>edge dislocation in alpha iron
  publication-title: Acta Mater.
– volume: 20
  start-page: 940
  year: 2004
  end-page: 950
  ident: bib0024
  article-title: Hydrogen related failure of steels - a new aspect
  publication-title: Mater. Sci. Technol. Lond.
– volume: 40
  start-page: 8941
  year: 2015
  end-page: 8947
  ident: bib0061
  article-title: Hydrogen induced amorphization of LaMgNi4 phase in metal hydride alloys
  publication-title: Int. J. Hydrog. Energy
– volume: 76
  start-page: 848
  year: 1972
  end-page: 857
  ident: bib0007
  article-title: A mechanistic theory of hydrogen embrittlement of steels
  publication-title: Ber. Bunsenges. Phys. Chem.
– volume: 40
  start-page: 7093
  year: 2015
  end-page: 7102
  ident: bib0062
  article-title: Hydrogen induced amorphization behaviors of multiphase La0. 8Mg0. 2Ni3. 5 alloy
  publication-title: Int. J. Hydrog. Energy
– volume: 60
  start-page: 2739
  year: 2012
  end-page: 2745
  ident: bib0022
  article-title: Hydrogen-induced intergranular failure in nickel revisited
  publication-title: Acta Mater.
– volume: 112
  start-page: 206
  year: 2019
  end-page: 219
  ident: bib0033
  article-title: Hydrogen embrittlement controlled by reaction of dislocation with grain boundary in alpha-iron
  publication-title: Int. J. Plast.
– volume: 7
  start-page: 13341
  year: 2016
  ident: bib0017
  article-title: Hydrogenated vacancies lock dislocations in aluminium
  publication-title: Nat. Commun.
– volume: 179
  start-page: 36
  year: 2019
  end-page: 48
  ident: bib0018
  article-title: Effect of electrochemical charging on the hydrogen embrittlement susceptibility of alloy 718
  publication-title: Acta Mater.
– volume: 367
  start-page: 171
  year: 2020
  end-page: 175
  ident: bib0031
  article-title: Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates
  publication-title: Science
– volume: 74
  start-page: 175
  year: 2015
  end-page: 191
  ident: bib0026
  article-title: The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in alpha-Fe
  publication-title: Int. J. Plast.
– year: 2012
  ident: bib0002
  article-title: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Mechanisms, Modelling and Future Developments
– volume: 131
  year: 2009
  ident: bib0054
  article-title: General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions
  publication-title: J. Chem. Phys.
– volume: 216
  year: 2019
  ident: bib0006
  article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion
  publication-title: Eng. Fract. Mech.
– volume: 391
  start-page: 561
  year: 1998
  end-page: 563
  ident: bib0056
  article-title: Softening of nanocrystalline metals at very small grain sizes
  publication-title: Nature
– volume: 84
  start-page: 426
  year: 2015
  end-page: 435
  ident: bib0036
  article-title: First-principles calculations of hydrogen solution and diffusion in tungsten: temperature and defect-trapping effects
  publication-title: Acta Mater.
– volume: 18
  start-page: 833
  year: 2019
  end-page: 839
  ident: bib0038
  article-title: Predictive model of hydrogen trapping and bubbling in nanovoids in bcc metals
  publication-title: Nat. Mater.
– year: 2022
  ident: bib0075
  article-title: Cracking process in delayed fracture of high-strength steel after long atmospheric exposure
  publication-title: ISIJ Int.
– year: 2022
  ident: bib0030
  article-title: Criteria for hydrogen-assisted crack initiation in Ni-based superalloy 718
  publication-title: Acta Mater.
– volume: 134
  start-page: 105
  year: 2017
  end-page: 109
  ident: bib0037
  article-title: Hydrogen bubble nucleation in α-iron
  publication-title: Scr. Mater.
– volume: 215
  year: 2022
  ident: bib0011
  article-title: A predictive model unifying hydrogen enhanced plasticity and decohesion
  publication-title: Scr. Mater.
– volume: 59
  start-page: 2969
  year: 2011
  end-page: 2980
  ident: bib0040
  article-title: Hydrogen-enhanced local plasticity at dilute bulk H concentrations: the role of H–H interactions and the formation of local hydrides
  publication-title: Acta Mater.
– volume: 98
  start-page: 306
  year: 2015
  end-page: 312
  ident: bib0058
  article-title: First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel
  publication-title: Acta Mater.
– volume: 122
  start-page: 92
  year: 2016
  end-page: 101
  ident: bib0042
  article-title: Atomistic studies of hydrogen effects on grain boundary structure and deformation response in FCC Ni
  publication-title: Comput. Mater. Sci.
– volume: 34
  start-page: 9576
  year: 2009
  end-page: 9584
  ident: bib0045
  article-title: Atomistic simulations of hydrogen embrittlement
  publication-title: Int. J. Hydrog. Energy
– volume: 3
  start-page: 289
  year: 1995
  end-page: 307
  ident: bib0048
  article-title: Trapping of hydrogen to lattice-defects in nickel
  publication-title: Model. Simul. Mater. Sci.
– volume: 18
  year: 2009
  ident: bib0057
  article-title: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 49
  start-page: 837
  issue: 9
  year: 2003
  ident: 10.1016/j.actamat.2022.118279_bib0059
  article-title: Amorphization associated with crack propagation in hydrogen-charged steel
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(03)00469-X
– volume: 76
  start-page: 848
  issue: 8
  year: 1972
  ident: 10.1016/j.actamat.2022.118279_bib0007
  article-title: A mechanistic theory of hydrogen embrittlement of steels
  publication-title: Ber. Bunsenges. Phys. Chem.
  doi: 10.1002/bbpc.19720760864
– volume: 195
  start-page: 708
  year: 2020
  ident: 10.1016/j.actamat.2022.118279_bib0066
  article-title: Hydrogen induced vacancy clustering and void formation mechanisms at grain boundaries in palladium
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.06.007
– year: 2021
  ident: 10.1016/j.actamat.2022.118279_bib0071
  article-title: Formation and time dynamics of hydrogen-induced vacancies in nickel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117264
– volume: 664
  start-page: 664
  year: 2016
  ident: 10.1016/j.actamat.2022.118279_bib0073
  article-title: An investigation of micro-mechanisms in hydrogen induced cracking in nickel-based superalloy 718
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.01.033
– volume: 6
  start-page: eaaz1187
  issue: 23
  year: 2020
  ident: 10.1016/j.actamat.2022.118279_bib0051
  article-title: Origin of micrometer-scale dislocation motion during hydrogen desorption
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz1187
– volume: 34
  start-page: 9576
  issue: 23
  year: 2009
  ident: 10.1016/j.actamat.2022.118279_bib0045
  article-title: Atomistic simulations of hydrogen embrittlement
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.09.052
– volume: 178
  start-page: 71
  year: 2020
  ident: 10.1016/j.actamat.2022.118279_bib0070
  article-title: Temperature dependence of grain boundary excess free volume
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2019.10.046
– volume: 55
  start-page: 5129
  issue: 15
  year: 2007
  ident: 10.1016/j.actamat.2022.118279_bib0004
  article-title: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.05.047
– volume: 94
  start-page: 307
  year: 2015
  ident: 10.1016/j.actamat.2022.118279_bib0068
  article-title: Hydrogen diffusion and vacancies formation in tungsten: density functional theory calculations and statistical models
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.04.052
– year: 2022
  ident: 10.1016/j.actamat.2022.118279_bib0030
  article-title: Criteria for hydrogen-assisted crack initiation in Ni-based superalloy 718
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.117789
– volume: 74
  start-page: 175
  year: 2015
  ident: 10.1016/j.actamat.2022.118279_bib0026
  article-title: The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in alpha-Fe
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2015.05.017
– volume: 602
  start-page: 437
  issue: 7897
  year: 2022
  ident: 10.1016/j.actamat.2022.118279_bib0032
  article-title: Hydrogen trapping and embrittlement in high-strength Al alloys
  publication-title: Nature
  doi: 10.1038/s41586-021-04343-z
– volume: 84
  start-page: 426
  year: 2015
  ident: 10.1016/j.actamat.2022.118279_bib0036
  article-title: First-principles calculations of hydrogen solution and diffusion in tungsten: temperature and defect-trapping effects
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.10.039
– volume: 18
  issue: 1
  year: 2009
  ident: 10.1016/j.actamat.2022.118279_bib0057
  article-title: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/1/015012
– volume: 179
  start-page: 36
  year: 2019
  ident: 10.1016/j.actamat.2022.118279_bib0018
  article-title: Effect of electrochemical charging on the hydrogen embrittlement susceptibility of alloy 718
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.08.020
– volume: 122
  start-page: 92
  year: 2016
  ident: 10.1016/j.actamat.2022.118279_bib0042
  article-title: Atomistic studies of hydrogen effects on grain boundary structure and deformation response in FCC Ni
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.05.014
– volume: 185
  start-page: 518
  year: 2020
  ident: 10.1016/j.actamat.2022.118279_bib0041
  article-title: The key role played by dislocation core radius and energy in hydrogen interaction with dislocations
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.12.033
– volume: 44a
  start-page: 1365
  issue: 3
  year: 2013
  ident: 10.1016/j.actamat.2022.118279_bib0043
  article-title: Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in alpha-Fe
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-012-1430-z
– volume: 56
  start-page: 95
  issue: 1
  year: 2008
  ident: 10.1016/j.actamat.2022.118279_bib0050
  article-title: Hydrogen effects on nanovoid nucleation in face-centered cubic single-crystals
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.09.012
– volume: 131
  issue: 15
  year: 2009
  ident: 10.1016/j.actamat.2022.118279_bib0054
  article-title: General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3245303
– volume: 112
  start-page: 206
  year: 2019
  ident: 10.1016/j.actamat.2022.118279_bib0033
  article-title: Hydrogen embrittlement controlled by reaction of dislocation with grain boundary in alpha-iron
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.08.013
– volume: 56
  start-page: 3761
  issue: 15
  year: 2008
  ident: 10.1016/j.actamat.2022.118279_bib0039
  article-title: Atomistic study of hydrogen distribution and diffusion around a {1 1 2}< 1 1 1>edge dislocation in alpha iron
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2008.04.011
– volume: 185
  start-page: 98
  year: 2020
  ident: 10.1016/j.actamat.2022.118279_bib0010
  article-title: A decohesion pathway for hydrogen embrittlement in nickel: mechanism and quantitative prediction
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.11.062
– volume: 30
  start-page: 105
  issue: 3-4
  year: 2012
  ident: 10.1016/j.actamat.2022.118279_bib0003
  article-title: Hydrogen embrittlement phenomena and mechanisms
  publication-title: Corros. Rev.
  doi: 10.1515/corrrev-2012-0502
– volume: 70
  start-page: 561
  issue: 4
  year: 1994
  ident: 10.1016/j.actamat.2022.118279_bib0065
  article-title: Disclinations, amorphization and microcrack generation at grain boundary junctions in polycrystalline solids
  publication-title: Philos. Mag. A
  doi: 10.1080/01418619408242248
– volume: 3
  start-page: 289
  issue: 3
  year: 1995
  ident: 10.1016/j.actamat.2022.118279_bib0048
  article-title: Trapping of hydrogen to lattice-defects in nickel
  publication-title: Model. Simul. Mater. Sci.
  doi: 10.1088/0965-0393/3/3/001
– volume: 215
  year: 2022
  ident: 10.1016/j.actamat.2022.118279_bib0011
  article-title: A predictive model unifying hydrogen enhanced plasticity and decohesion
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2022.114707
– volume: 107
  start-page: 279
  year: 2016
  ident: 10.1016/j.actamat.2022.118279_bib0020
  article-title: Effect of hydrogen environment on the separation of Fe grain boundaries
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.01.067
– volume: 68
  start-page: 61
  year: 2014
  ident: 10.1016/j.actamat.2022.118279_bib0016
  article-title: Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using alpha-Fe as a model system
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.01.008
– volume: 23
  start-page: 168
  issue: 156-163
  year: 1875
  ident: 10.1016/j.actamat.2022.118279_bib0001
  article-title: On some remarkable changes produced in iron and steel by the action of hydrogen and acids
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspl.1874.0024
– volume: 170
  start-page: 87
  year: 2019
  ident: 10.1016/j.actamat.2022.118279_bib0012
  article-title: Hydrogen-enhanced fatigue crack growth in a single-edge notched tensile specimen under in-situ hydrogen charging inside an environmental scanning electron microscope
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.03.032
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.actamat.2022.118279_bib0013
  article-title: Strain localisation and failure at twin-boundary complexions in nickel-based superalloys
  publication-title: Nat. Commun.
– volume: 367
  start-page: 171
  issue: 6474
  year: 2020
  ident: 10.1016/j.actamat.2022.118279_bib0031
  article-title: Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates
  publication-title: Science
  doi: 10.1126/science.aaz0122
– year: 2012
  ident: 10.1016/j.actamat.2022.118279_bib0002
– volume: 40
  start-page: 7093
  issue: 22
  year: 2015
  ident: 10.1016/j.actamat.2022.118279_bib0062
  article-title: Hydrogen induced amorphization behaviors of multiphase La0. 8Mg0. 2Ni3. 5 alloy
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.02.047
– volume: 101
  start-page: 150
  year: 2017
  ident: 10.1016/j.actamat.2022.118279_bib0021
  article-title: Atomistic study of hydrogen embrittlement of grain boundaries in nickel: I. Fracture
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.01.020
– volume: 25
  issue: 7
  year: 2017
  ident: 10.1016/j.actamat.2022.118279_bib0047
  article-title: Atomistic study of hydrogen embrittlement of grain boundaries in nickel: II. Decohesion, modelling and simulation in
  publication-title: Mater. Sci. Eng.
– volume: 40
  start-page: 8941
  issue: 29
  year: 2015
  ident: 10.1016/j.actamat.2022.118279_bib0061
  article-title: Hydrogen induced amorphization of LaMgNi4 phase in metal hydride alloys
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.05.017
– volume: 158
  start-page: 180
  year: 2018
  ident: 10.1016/j.actamat.2022.118279_bib0029
  article-title: Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.07.043
– volume: 59
  start-page: 2969
  issue: 8
  year: 2011
  ident: 10.1016/j.actamat.2022.118279_bib0040
  article-title: Hydrogen-enhanced local plasticity at dilute bulk H concentrations: the role of H–H interactions and the formation of local hydrides
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.01.037
– volume: 20
  start-page: 940
  issue: 8
  year: 2004
  ident: 10.1016/j.actamat.2022.118279_bib0024
  article-title: Hydrogen related failure of steels - a new aspect
  publication-title: Mater. Sci. Technol. Lond.
  doi: 10.1179/026708304225019687
– volume: 128
  start-page: 218
  year: 2017
  ident: 10.1016/j.actamat.2022.118279_bib0028
  article-title: Effects of grain size and deformation temperature on hydrogen-enhanced vacancy formation in Ni alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.016
– volume: 216
  year: 2019
  ident: 10.1016/j.actamat.2022.118279_bib0034
  article-title: The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2019.106502
– volume: 356
  start-page: 263
  year: 2003
  ident: 10.1016/j.actamat.2022.118279_bib0023
  article-title: Formation of superabundant vacancies in M–H alloys and some of its consequences: a review
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(02)01269-0
– volume: 29
  start-page: 307
  issue: 1
  year: 1975
  ident: 10.1016/j.actamat.2022.118279_bib0053
  article-title: Grand canonical ensemble monte-carlo for a lennard-jones fluid
  publication-title: Mol. Phys.
  doi: 10.1080/00268977500100221
– volume: 10
  year: 2019
  ident: 10.1016/j.actamat.2022.118279_bib0035
  article-title: Hydrogen embrittlement in metallic nanowires
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10035-0
– volume: 18
  start-page: 833
  issue: 8
  year: 2019
  ident: 10.1016/j.actamat.2022.118279_bib0038
  article-title: Predictive model of hydrogen trapping and bubbling in nanovoids in bcc metals
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0422-4
– volume: 98
  start-page: 306
  year: 2015
  ident: 10.1016/j.actamat.2022.118279_bib0058
  article-title: First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.07.031
– volume: 58
  start-page: 11085
  issue: 17
  year: 1998
  ident: 10.1016/j.actamat.2022.118279_bib0055
  article-title: Dislocation nucleation and defect structure during surface indentation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.11085
– volume: 7
  start-page: 13341
  issue: 1
  year: 2016
  ident: 10.1016/j.actamat.2022.118279_bib0017
  article-title: Hydrogenated vacancies lock dislocations in aluminium
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13341
– volume: 92
  start-page: 31
  year: 2017
  ident: 10.1016/j.actamat.2022.118279_bib0027
  article-title: Study on interactions of an edge dislocation with vacancy-H complex by atomistic modelling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2017.03.003
– volume: 54
  start-page: 9109
  issue: 13
  year: 1996
  ident: 10.1016/j.actamat.2022.118279_bib0064
  article-title: Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.9109
– volume: 12
  start-page: 145
  issue: 2
  year: 2013
  ident: 10.1016/j.actamat.2022.118279_bib0009
  article-title: Atomic mechanism and prediction of hydrogen embrittlement in iron
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3479
– volume: 78
  start-page: 135
  year: 2014
  ident: 10.1016/j.actamat.2022.118279_bib0067
  article-title: Stability of vacancy-hydrogen clusters in nickel from first-principles calculations
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.06.021
– volume: 165
  start-page: 734
  year: 2019
  ident: 10.1016/j.actamat.2022.118279_bib0015
  article-title: Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.12.014
– volume: 204
  year: 2021
  ident: 10.1016/j.actamat.2022.118279_bib0019
  article-title: Hydrogen-induced transgranular to intergranular fracture transition in bi-crystalline nickel
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.114122
– year: 2022
  ident: 10.1016/j.actamat.2022.118279_bib0075
  article-title: Cracking process in delayed fracture of high-strength steel after long atmospheric exposure
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.ISIJINT-2021-238
– volume: 134
  start-page: 105
  year: 2017
  ident: 10.1016/j.actamat.2022.118279_bib0037
  article-title: Hydrogen bubble nucleation in α-iron
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.03.006
– volume: 27
  start-page: 101
  issue: 1
  year: 1996
  ident: 10.1016/j.actamat.2022.118279_bib0074
  article-title: The effect of hydrogen on the fracture of alloy X-750
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02647750
– volume: 117
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.actamat.2022.118279_bib0052
  article-title: Fast parallel algorithms for short-range molecular-dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 68
  start-page: 61
  year: 2014
  ident: 10.1016/j.actamat.2022.118279_bib0046
  article-title: Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.01.008
– volume: 46
  start-page: 1085
  issue: 3
  year: 2015
  ident: 10.1016/j.actamat.2022.118279_bib0005
  article-title: Hydrogen embrittlement understood
  publication-title: Metall. Mater. Trans. B-Process Metall. Mater. Process. Sci.
  doi: 10.1007/s11663-015-0325-y
– volume: 165
  start-page: 722
  year: 2019
  ident: 10.1016/j.actamat.2022.118279_bib0025
  article-title: The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: overview
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.12.013
– volume: 150
  year: 2020
  ident: 10.1016/j.actamat.2022.118279_bib0044
  article-title: Atomistic investigation of hydrogen induced decohesion of Ni grain boundaries
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2020.103586
– volume: 60
  start-page: 6814
  issue: 19
  year: 2012
  ident: 10.1016/j.actamat.2022.118279_bib0069
  article-title: Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.09.004
– volume: 216
  year: 2019
  ident: 10.1016/j.actamat.2022.118279_bib0006
  article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2019.106528
– volume: 176
  start-page: 191
  issue: 1-2
  year: 1994
  ident: 10.1016/j.actamat.2022.118279_bib0014
  article-title: Hydrogen-enhanced localized plasticity - a mechanism for hydrogen-related fracture
  publication-title: Mat. Sci. Eng. A Struct.
  doi: 10.1016/0921-5093(94)90975-X
– volume: 208
  year: 2021
  ident: 10.1016/j.actamat.2022.118279_bib0072
  article-title: Quantities and distribution of strain-induced vacancies and dislocations enhanced by hydrogen in iron
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.116663
– volume: 60
  start-page: 2739
  issue: 6-7
  year: 2012
  ident: 10.1016/j.actamat.2022.118279_bib0022
  article-title: Hydrogen-induced intergranular failure in nickel revisited
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.01.040
– volume: 101
  start-page: 40
  issue: 1
  year: 2021
  ident: 10.1016/j.actamat.2022.118279_bib0060
  article-title: Amorphization under fracture surface in hydrogen-charged and low-temperature tensile-tested austenitic stainless steel
  publication-title: Philos. Mag. Lett.
  doi: 10.1080/09500839.2020.1841915
– volume: 69
  issue: 13
  year: 2004
  ident: 10.1016/j.actamat.2022.118279_bib0049
  article-title: Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.134103
– volume: 52
  start-page: 2403
  issue: 10
  year: 2004
  ident: 10.1016/j.actamat.2022.118279_bib0008
  article-title: A quantum-mechanically informed continuum model of hydrogen embrittlement
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2004.02.010
– volume: 60
  start-page: 5160
  issue: 13-14
  year: 2012
  ident: 10.1016/j.actamat.2022.118279_bib0063
  article-title: Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.06.014
– volume: 391
  start-page: 561
  issue: 6667
  year: 1998
  ident: 10.1016/j.actamat.2022.118279_bib0056
  article-title: Softening of nanocrystalline metals at very small grain sizes
  publication-title: Nature
  doi: 10.1038/35328
SSID ssj0012740
Score 2.5545275
Snippet The attention to hydrogen embrittlement (HE) has been intensified recently in the light of hydrogen as a carbon-free energy carrier. Despite worldwide...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 118279
SubjectTerms Grain boundaries
Hydrogen embrittlement
Intergranular failure
Molecular dynamics (MD)
Vacancies
Title Hydrogen-enhanced grain boundary vacancy stockpiling causes transgranular to intergranular fracture transition
URI https://dx.doi.org/10.1016/j.actamat.2022.118279
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-486802
Volume 239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELVKe1kOK_YDwQKVD3B02yR24hwrdlF3V_SysOJm2Y5dWlBahQSJC7-dmSQt7AFV2ltieWRrbM28kWfeEHKajeLMBMKwjAvLuPGaGRelTNtURhbwvhZYnHw5jSfX_NeNuOmQ83UtDKZVtra_sem1tW5Hhq02h6v5fPgniESKfFQhRsUihbi9F4K3l13SG__8PZluHhMg8GqKhUXKUOC1kGe4gF2XGrAhRIphOEC0jUld77iot1yitf-52CMfW-BIx83ePpGOyz-T3Td0gl9IPnnKiiXcCOby2_pln86wAwQ1de-k4ok-aovWlALis3erOZaiU6urB_dAS3RaMD3HvFRaLikSSRSbAY_VVFXhmnl1ntdXcn3x4-p8wtp-CsxykZYsi21YB1BaasEzH3EH-CY0gJAS6y2ozgfxyMbaAUiwURZrGxudOG8CZIxKon3SzZe5OyDUSe7TkfCphC-rvQaUI3SkkySRXGfhIeFrFSrbko1jz4t7tc4qW6hW8wo1rxrNH5LBRmzVsG1sE5Dr81H_XBsFHmGb6FlznpuVkGn7-_zvWC2LmaoqxWUsR-G3_1_iiHzAP3R1gTgm3bKo3AlgmNL0yc7gOei3N_UFi0L1Kg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgECZmPagH4zO-5aBH3G0LLRw3PlJfe_ERbwQo6Krpbmpr4r-XaburHoyJt4YygQxk5psw8w1CB1kvznTANMkoM4Rqp4i2kSDKCB4Zj_cVg-Lk60Gc3tGLB_Ywg44ntTCQVtna_sam19a6Hem22uyOh8PuTRAxAXxUIUTFTPi4fZZCU-sOmu2fX6aD6WOCD7yaYmEmCAh8FfJ0n_2uS-WxoY8Uw_AI0DYkdf3ior5zidb-52wJLbbAEfebvS2jGZuvoIVvdIKrKE8_smLkbwSx-VP9so8foQME1nXvpOIDvysD1hR7xGdexkMoRcdGVW_2DZfgtPz0HPJScTnCQCRRTAccVFNVhW3m1Xlea-ju7PT2OCVtPwViKBMlyWIT1gGU4orRzEXUenwTao-QEuOMCLkL4p6JlfUgwURZrEysVWKdDoAxKonWUScf5XYDYcupEz3mBPdfRjnlUQ5TkUqShFOVhZuITlQoTUs2Dj0vXuUkq-xZtpqXoHnZaH4THU3Fxg3bxl8CfHI-8se1kd4j_CV62JzndCVg2j4Z3vflqHiUVSUpj3kv3Pr_EvtoLr29vpJX54PLbTQPf8DtBWwHdcqisrsez5R6r72vn1M89xA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen-enhanced+grain+boundary+vacancy+stockpiling+causes+transgranular+to+intergranular+fracture+transition&rft.jtitle=Acta+materialia&rft.au=Ding%2C+Yu&rft.au=Yu%2C+Haiyang&rft.au=Lin%2C+Meichao&rft.au=Zhao%2C+Kai&rft.date=2022-10-15&rft.issn=1359-6454&rft.volume=239&rft.spage=118279&rft_id=info:doi/10.1016%2Fj.actamat.2022.118279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actamat_2022_118279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon