Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters

In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280–400 °C), initial nitrogen pressure (0.4–7.5 MPa), reaction time (0–240 min), and...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 59; pp. 173 - 182
Main Authors Brand, Steffen, Susanti, Ratna Frida, Kim, Seok Ki, Lee, Hong-shik, Kim, Jaehoon, Sang, Byung-In
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.09.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0360-5442
DOI10.1016/j.energy.2013.06.049

Cover

Abstract In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280–400 °C), initial nitrogen pressure (0.4–7.5 MPa), reaction time (0–240 min), and biomass-to-solvent ratio (0.06–0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0–98.1% and biocrude yield in the range 15.8–59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 °C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feedstock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed. •Influence of physical parameters on biomass liquefaction in supercritical ethanol.•Benefits of supercritical ethanol as a solvent in biomass liquefaction.•High conversion (98%) and high biocrude yield (66 wt%) achieved.•Comparison with sub- and supercritical water liquefaction has been made.•New reaction mechanism of supercritical alcohol has been proposed.
AbstractList In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280–400 °C), initial nitrogen pressure (0.4–7.5 MPa), reaction time (0–240 min), and biomass-to-solvent ratio (0.06–0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0–98.1% and biocrude yield in the range 15.8–59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 °C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feedstock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed.
In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280a400 degree C), initial nitrogen pressure (0.4a7.5 MPa), reaction time (0a240 min), and biomass-to-solvent ratio (0.06a0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0a98.1% and biocrude yield in the range 15.8a59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 degree C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feedstock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed.
In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280–400 °C), initial nitrogen pressure (0.4–7.5 MPa), reaction time (0–240 min), and biomass-to-solvent ratio (0.06–0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0–98.1% and biocrude yield in the range 15.8–59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 °C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feedstock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed.
In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280-400 C), initial nitrogen pressure (0.4-7.5 MPa), reaction time (0-240 min), and biomass-to-solvent ratio (0.06-0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0-98.1% and biocrude yield in the range 15.8-59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feed-stock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed.
In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280–400 °C), initial nitrogen pressure (0.4–7.5 MPa), reaction time (0–240 min), and biomass-to-solvent ratio (0.06–0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0–98.1% and biocrude yield in the range 15.8–59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 °C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feedstock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed. •Influence of physical parameters on biomass liquefaction in supercritical ethanol.•Benefits of supercritical ethanol as a solvent in biomass liquefaction.•High conversion (98%) and high biocrude yield (66 wt%) achieved.•Comparison with sub- and supercritical water liquefaction has been made.•New reaction mechanism of supercritical alcohol has been proposed.
Author Brand, Steffen
Lee, Hong-shik
Kim, Jaehoon
Susanti, Ratna Frida
Sang, Byung-In
Kim, Seok Ki
Author_xml – sequence: 1
  givenname: Steffen
  surname: Brand
  fullname: Brand, Steffen
  organization: Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
– sequence: 2
  givenname: Ratna Frida
  surname: Susanti
  fullname: Susanti, Ratna Frida
  organization: Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
– sequence: 3
  givenname: Seok Ki
  surname: Kim
  fullname: Kim, Seok Ki
  organization: Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
– sequence: 4
  givenname: Hong-shik
  surname: Lee
  fullname: Lee, Hong-shik
  organization: Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
– sequence: 5
  givenname: Jaehoon
  surname: Kim
  fullname: Kim, Jaehoon
  email: jaehoonkim@skku.edu, kjh0508@gmail.com
  organization: School of Mechanical Engineering, Sungkyunkwan University, 2066, Sebu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 440-746, Republic of Korea
– sequence: 6
  givenname: Byung-In
  surname: Sang
  fullname: Sang, Byung-In
  email: biosang@hanyang.ac.kr
  organization: Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27712859$$DView record in Pascal Francis
BookMark eNqFkUtr3DAUhb1IoUnaf1CoNoVuxpVsvZxFoYQ-AoEu0qzFjXQ10WBbrmQXZpPfXrkOXXTRWQmJ71yde85FdTbGEavqDaM1o0x-ONQ4Ytof64aytqayprw7q85pK-lOcN68rC5yPlBKhe668-rpbpkw2RTmYKEnOD_CGHsCmcBIcCw3i44M6MIyEB8T6cN-jBb7fuljDpY8hDhAzuX954Ie7BzieEVuRt8vWLQkejI9HvOf6VMqysJOkGDAGVN-Vb3w0Gd8_XxeVvdfPv-4_ra7_f715vrT7c5y0c07J8Az6TgVAqhUTaMFOia6B904ra3DxjEKSnINClCpTijNhUKupWgd-vayer_NLRaKzzybIeR1CxgxLtk0JRDKpab0JMoEa3mjmlafRrnkQmhOu4K-e0Yhlyh8KsGGbKYUBkhH0yjFylIrxzfOpphzQv8XYdSsBZuD2Qo2a8GGSlMKLrKrf2Q2zLB2MScI_Snx203sIRrYp-Lr_q4AsmQiBWXroh83AktHvwImk21Y63UhoZ2Ni-H_X_wGLzbSmA
CODEN ENEYDS
CitedBy_id crossref_primary_10_1016_j_biotechadv_2018_11_004
crossref_primary_10_1016_j_jece_2025_115722
crossref_primary_10_1016_j_enconman_2014_12_089
crossref_primary_10_1016_j_cej_2020_127432
crossref_primary_10_1016_j_fuproc_2021_106782
crossref_primary_10_1016_j_jenvman_2024_120961
crossref_primary_10_1016_j_supflu_2015_04_008
crossref_primary_10_1007_s11244_017_0787_z
crossref_primary_10_1016_j_algal_2019_101421
crossref_primary_10_1016_j_biortech_2017_01_029
crossref_primary_10_1021_acs_energyfuels_0c00875
crossref_primary_10_1016_j_rser_2017_04_006
crossref_primary_10_1016_j_jaap_2016_03_004
crossref_primary_10_1021_acs_energyfuels_9b04533
crossref_primary_10_1039_D1SE01316E
crossref_primary_10_1016_j_fuel_2019_03_019
crossref_primary_10_1016_j_pecs_2015_01_003
crossref_primary_10_1039_D0RA08966D
crossref_primary_10_1007_s13203_015_0111_4
crossref_primary_10_1016_j_jece_2018_10_017
crossref_primary_10_1016_j_jclepro_2020_123709
crossref_primary_10_1016_j_rser_2016_08_020
crossref_primary_10_1021_acs_iecr_0c01649
crossref_primary_10_1016_j_ces_2022_117926
crossref_primary_10_1016_j_molliq_2023_121689
crossref_primary_10_1016_j_supflu_2013_10_004
crossref_primary_10_1002_ceat_201600343
crossref_primary_10_1016_j_biortech_2014_04_067
crossref_primary_10_3390_polym12102337
crossref_primary_10_3390_biomass2040017
crossref_primary_10_1007_s10570_018_1872_6
crossref_primary_10_1007_s10098_015_1021_y
crossref_primary_10_3390_polym13050739
crossref_primary_10_1007_s12155_022_10511_4
crossref_primary_10_2174_1385272823666190723141955
crossref_primary_10_1002_cssc_202200171
crossref_primary_10_1016_j_biombioe_2021_106204
crossref_primary_10_1016_j_jece_2022_108622
crossref_primary_10_1021_acs_energyfuels_4c03693
crossref_primary_10_1016_j_fuel_2022_125738
crossref_primary_10_1016_j_enconman_2017_08_092
crossref_primary_10_1016_j_jaap_2023_106209
crossref_primary_10_1016_j_proeng_2016_06_495
crossref_primary_10_1016_j_enconman_2014_04_094
crossref_primary_10_14235_bas_galenos_2020_5684
crossref_primary_10_3934_energy_2022030
crossref_primary_10_1016_j_energy_2018_04_103
crossref_primary_10_1016_j_catcom_2020_106268
crossref_primary_10_1021_ef5001375
crossref_primary_10_1016_j_cej_2014_02_094
crossref_primary_10_1016_j_carbon_2015_11_009
crossref_primary_10_1039_D2RA06085J
crossref_primary_10_1016_j_fuel_2018_03_043
crossref_primary_10_1016_j_ecmx_2022_100196
crossref_primary_10_1016_j_wasman_2023_10_013
crossref_primary_10_1016_j_apenergy_2018_03_008
crossref_primary_10_1007_s13399_023_04096_x
crossref_primary_10_1016_j_supflu_2016_10_013
crossref_primary_10_1016_j_cej_2015_05_052
crossref_primary_10_3390_en17215439
crossref_primary_10_1016_j_energy_2014_02_086
crossref_primary_10_1016_j_bcab_2014_07_008
crossref_primary_10_1016_j_sciaf_2025_e02654
crossref_primary_10_1016_j_energy_2018_08_170
crossref_primary_10_2174_2213346107666200129104358
crossref_primary_10_1002_cey2_260
crossref_primary_10_1016_j_jreng_2024_07_002
crossref_primary_10_1021_acscatal_5b01159
crossref_primary_10_1016_j_supflu_2015_11_021
crossref_primary_10_1016_j_scitotenv_2019_04_211
crossref_primary_10_1016_j_biombioe_2022_106444
crossref_primary_10_1016_j_renene_2020_11_033
crossref_primary_10_1109_ACCESS_2019_2962243
crossref_primary_10_3390_en14164916
crossref_primary_10_1016_j_enconman_2018_06_066
crossref_primary_10_1016_j_apenergy_2017_04_033
crossref_primary_10_1016_j_renene_2021_04_143
crossref_primary_10_1002_cssc_201801291
crossref_primary_10_1002_jctb_6606
crossref_primary_10_1016_j_carpta_2023_100396
crossref_primary_10_1016_j_energy_2016_12_016
crossref_primary_10_1016_j_joei_2020_03_001
crossref_primary_10_1016_j_supflu_2014_09_024
crossref_primary_10_1016_j_supflu_2020_105011
crossref_primary_10_1016_j_jcat_2015_10_013
crossref_primary_10_1016_j_mcat_2017_09_010
crossref_primary_10_15302_J_FASE_2015050
crossref_primary_10_3390_biomass4030048
crossref_primary_10_1016_j_biombioe_2025_107621
crossref_primary_10_1016_j_supflu_2017_09_023
crossref_primary_10_3390_catal12060664
crossref_primary_10_1016_j_enconman_2014_11_003
crossref_primary_10_1016_j_enconman_2024_118615
crossref_primary_10_1016_j_ijhydene_2020_02_146
crossref_primary_10_1016_j_energy_2015_01_032
crossref_primary_10_1016_j_fuel_2017_03_061
crossref_primary_10_1080_15567036_2014_958633
crossref_primary_10_1016_j_rser_2021_111814
crossref_primary_10_1016_j_cattod_2017_05_051
crossref_primary_10_1016_j_jclepro_2023_138957
crossref_primary_10_1002_bbb_1535
crossref_primary_10_1016_j_fuel_2019_116628
crossref_primary_10_1016_j_wasman_2023_11_027
crossref_primary_10_1016_j_joei_2017_05_009
crossref_primary_10_1016_j_indcrop_2019_111695
crossref_primary_10_1007_s10098_021_02064_5
crossref_primary_10_1016_j_jaap_2017_06_001
crossref_primary_10_1016_j_enconman_2015_03_075
crossref_primary_10_1016_j_jclepro_2023_137582
crossref_primary_10_1016_j_fuel_2015_09_076
crossref_primary_10_1016_j_jaap_2015_04_014
crossref_primary_10_1016_j_energy_2014_11_043
crossref_primary_10_1016_j_jwpe_2022_103037
crossref_primary_10_23939_chcht10_04_445
crossref_primary_10_1002_ceat_201700396
crossref_primary_10_1016_j_indcrop_2018_01_033
crossref_primary_10_1039_D0SE01634A
crossref_primary_10_1002_cssc_201802847
crossref_primary_10_1016_j_biortech_2015_12_022
crossref_primary_10_1016_j_cej_2017_06_078
crossref_primary_10_1016_j_energy_2014_07_044
crossref_primary_10_1016_j_enconman_2016_07_034
crossref_primary_10_1016_j_jece_2021_105059
crossref_primary_10_1016_j_supflu_2015_11_002
crossref_primary_10_1016_j_cej_2024_157845
crossref_primary_10_1016_j_supflu_2019_03_019
crossref_primary_10_1016_j_indcrop_2018_07_053
crossref_primary_10_1039_C4RA07790C
crossref_primary_10_1002_cssc_202402334
crossref_primary_10_1021_acs_iecr_2c02300
crossref_primary_10_1016_j_fuel_2017_07_010
crossref_primary_10_1016_j_fuel_2020_117712
crossref_primary_10_1016_j_fuel_2021_121930
crossref_primary_10_1016_j_renene_2022_12_110
crossref_primary_10_1016_j_ceramint_2023_11_153
crossref_primary_10_23939_chcht10_04si_571
crossref_primary_10_1080_17597269_2018_1461521
crossref_primary_10_1002_tcr_202100018
crossref_primary_10_4236_jsbs_2021_114015
crossref_primary_10_1016_j_biortech_2017_07_182
crossref_primary_10_1016_j_cej_2014_05_137
crossref_primary_10_1016_j_supflu_2014_08_009
crossref_primary_10_1039_C7SE00579B
crossref_primary_10_3390_en13010124
crossref_primary_10_3934_environsci_2017_3_417
crossref_primary_10_1016_j_biombioe_2016_02_008
crossref_primary_10_1016_j_fuproc_2016_02_011
crossref_primary_10_1016_j_apenergy_2016_03_093
crossref_primary_10_1016_j_cej_2016_10_011
crossref_primary_10_1080_10916466_2018_1493501
crossref_primary_10_3389_fenrg_2021_646057
crossref_primary_10_1021_acs_energyfuels_9b00954
crossref_primary_10_1002_er_3727
crossref_primary_10_1016_j_biortech_2017_09_205
crossref_primary_10_1007_s13399_021_01478_x
crossref_primary_10_1016_j_cjche_2018_09_018
crossref_primary_10_1016_j_jics_2021_100018
crossref_primary_10_1016_j_supflu_2017_09_013
crossref_primary_10_1016_j_fuel_2017_12_079
crossref_primary_10_1007_s10311_016_0593_z
crossref_primary_10_1016_j_cej_2017_02_045
crossref_primary_10_1016_j_jece_2018_07_050
crossref_primary_10_16984_saufenbilder_811684
crossref_primary_10_1016_j_renene_2023_06_018
crossref_primary_10_1021_acs_energyfuels_4c00240
crossref_primary_10_1002_ente_201402103
crossref_primary_10_1016_j_supflu_2016_11_001
crossref_primary_10_1007_s00253_018_9507_2
crossref_primary_10_1016_j_fuproc_2024_108102
crossref_primary_10_1016_j_apcata_2017_08_010
Cites_doi 10.1021/ef030133g
10.1016/j.biortech.2005.02.051
10.1016/j.biortech.2011.02.057
10.1016/S0196-8904(97)00047-2
10.1016/S0896-8446(02)00269-3
10.1002/ceat.200800077
10.1080/15567030600820070
10.1039/b810100k
10.1016/j.enconman.2008.08.009
10.1021/i200029a015
10.1016/j.ijhydene.2012.05.087
10.1016/S0360-5442(02)00178-0
10.1016/j.biortech.2009.10.084
10.1016/j.energy.2010.05.029
10.1016/j.energy.2011.09.031
10.1080/009083101300110904
10.1021/ef700631w
10.1016/j.energy.2004.03.096
10.1021/i300013a035
10.1016/j.fuproc.2010.09.018
10.1016/j.energy.2007.04.011
10.1002/aic.11701
10.1002/cjce.5450720612
10.1063/1.1724948
10.1016/j.biortech.2009.07.045
10.1016/j.biotechadv.2009.04.010
10.1021/ef700424k
10.1016/S0378-3820(97)00046-5
10.1016/S0196-8904(99)00130-2
10.1016/j.enconman.2003.12.010
10.1016/S0896-8446(03)00031-7
10.1016/j.watres.2007.11.007
10.1016/0016-2361(79)90084-X
10.1016/j.energy.2011.08.046
10.1016/j.fuel.2006.12.013
10.1016/j.energy.2010.07.005
10.1016/0016-2361(79)90085-1
10.1002/cssc.201100699
10.1021/ef901241e
ContentType Journal Article
Copyright 2013
2015 INIST-CNRS
Copyright_xml – notice: 2013
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7SP
7TB
8FD
F28
FR3
KR7
L7M
7S9
L.6
DOI 10.1016/j.energy.2013.06.049
DatabaseName AGRIS
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
Applied Sciences
EndPage 182
ExternalDocumentID 27712859
10_1016_j_energy_2013_06_049
US201600065018
S0360544213005483
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
ABFNM
ABPIF
ABPTK
ADMUD
AHHHB
ASPBG
AVWKF
AZFZN
FBQ
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
R2-
SAC
SEW
WUQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7SP
7TB
8FD
ACLOT
EFKBS
F28
FR3
KR7
L7M
~HD
7S9
L.6
ID FETCH-LOGICAL-c459t-d5af16d4055a0672285ed159b82d88cde2d10a7648a7ae779578457e48653def3
IEDL.DBID AIKHN
ISSN 0360-5442
IngestDate Sat Sep 27 22:03:05 EDT 2025
Fri Sep 05 10:06:59 EDT 2025
Sat Sep 27 21:34:23 EDT 2025
Wed Apr 02 07:15:13 EDT 2025
Tue Jul 01 00:52:37 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
Wed Dec 27 19:08:36 EST 2023
Fri Feb 23 02:16:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biocrude
Supercritical ethanol
Liquefaction
Lignocellulosic biomass
Hydrogen donor
Lignocellulosics
Biomass
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-d5af16d4055a0672285ed159b82d88cde2d10a7648a7ae779578457e48653def3
Notes http://dx.doi.org/10.1016/j.energy.2013.06.049
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1464558409
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_2000046800
proquest_miscellaneous_1513427238
proquest_miscellaneous_1464558409
pascalfrancis_primary_27712859
crossref_primary_10_1016_j_energy_2013_06_049
crossref_citationtrail_10_1016_j_energy_2013_06_049
fao_agris_US201600065018
elsevier_sciencedirect_doi_10_1016_j_energy_2013_06_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-15
PublicationDateYYYYMMDD 2013-09-15
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy (Oxford)
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Xu, Lad (bib44) 2007; 22
Karagöz, Bhaskar, Muto, Sakata (bib40) 2006; 97
Yusuke, Makoto (bib11) 2003; 119
Dannhauser, Bahe (bib10) 1964; 40
Karagöz, Bhaskar, Muto, Sakata, Uddin (bib12) 2003; 18
Wang, Li, Chen, Li (bib7) 2007; 29
Yamazaki, Minami, Saka (bib22) 2006; 52
Zhong, Wei (bib42) 2004; 29
Reed (bib38) 1971
Ross, Blessing (bib18) 1979; 58
Wang, Wang, Liu, Gu, Luo, Cen (bib41) 2009; 27
Chumpoo, Prasassarakich (bib26) 2010; 24
Labrecque, Kaliaguine, Grandmaison (bib20) 1984; 23
Susanti, Dianningrum, Yum, Kim, Lee, Kim (bib33) 2012; 37
Yuan, Li, Zeng, Tong, Xie (bib19) 2007; 32
Xu, Lancaster (bib23) 2008; 42
Qu, Wei, Zhong (bib34) 2003; 28
Sun P, Heng M, Sun S, Chen J. Direct liquefaction of paulownia in hot compressed water: Influence of catalysts. Energy 35:5421–9.
Yip, Chen, Szeto, Yan (bib6) 2009; 100
Liu, Zhang (bib5) 2008; 49
Kücük (bib8) 2001; 23
Zhang, Champagne, Xu (bib35) 2011; 36
Behrendt, Neubauer, Oevermann, Wilmes, Zobel (bib29) 2008; 31
Demirbas (bib2) 2000; 41
Heitz, Brown, Chornet (bib21) 1994; 72
Ross, Blessing (bib17) 1979; 58
Mondragon, Quintero, Jaramillo, Fernandez, Hall (bib15) 1998; 53
Zhang, Keitz, Valentas (bib32) 2008
Yilgin, Pehlivan (bib39) 2004; 45
Shui, Shan, Cai, Wang, Lei, Ren (bib1) 2011; 36
Demirbas (bib3) 1998; 39
Nakagawa, Ozaki, Kamitanaka, Takagi, Matsuda, Kitamura (bib16) 2003; 27
Peterson, Vogel, Lachance, Froling, Antal, Tester (bib4) 2008; 1
Vasilakos, Austgen (bib14) 1985; 24
Minami, Saka (bib31) 2003; 49
Jena U, Das KC, Kastner JR. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour Technol 102:6221–9.
Kritzer (bib13) 2004; 29
Zakzeski, Jongerius, Bruijnincx, Weckhuysen (bib36) 2012; 5
Xu, Gilbert, Yang (bib25) 2009; 55
Kleinert, Barth (bib28) 2008; 22
Yuan, Wang, Zeng, Huang, Pei, Li (bib9) 2011; 36
Huang, Yuan, Zeng, Wang, Li, Zhou (bib27) 2011; 92
Yang, Yan, Chen, Lee, Zheng (bib37) 2007; 86
Li, Yuan, Zeng, Huang, Huang, Tong (bib24) 2010; 101
Kritzer (10.1016/j.energy.2013.06.049_bib13) 2004; 29
Susanti (10.1016/j.energy.2013.06.049_bib33) 2012; 37
Mondragon (10.1016/j.energy.2013.06.049_bib15) 1998; 53
Kücük (10.1016/j.energy.2013.06.049_bib8) 2001; 23
Chumpoo (10.1016/j.energy.2013.06.049_bib26) 2010; 24
Wang (10.1016/j.energy.2013.06.049_bib41) 2009; 27
Karagöz (10.1016/j.energy.2013.06.049_bib12) 2003; 18
Wang (10.1016/j.energy.2013.06.049_bib7) 2007; 29
Demirbas (10.1016/j.energy.2013.06.049_bib3) 1998; 39
Zakzeski (10.1016/j.energy.2013.06.049_bib36) 2012; 5
Peterson (10.1016/j.energy.2013.06.049_bib4) 2008; 1
Kleinert (10.1016/j.energy.2013.06.049_bib28) 2008; 22
10.1016/j.energy.2013.06.049_bib43
Heitz (10.1016/j.energy.2013.06.049_bib21) 1994; 72
Reed (10.1016/j.energy.2013.06.049_bib38) 1971
Yamazaki (10.1016/j.energy.2013.06.049_bib22) 2006; 52
Huang (10.1016/j.energy.2013.06.049_bib27) 2011; 92
Yuan (10.1016/j.energy.2013.06.049_bib19) 2007; 32
Yilgin (10.1016/j.energy.2013.06.049_bib39) 2004; 45
Yuan (10.1016/j.energy.2013.06.049_bib9) 2011; 36
Liu (10.1016/j.energy.2013.06.049_bib5) 2008; 49
Karagöz (10.1016/j.energy.2013.06.049_bib40) 2006; 97
Nakagawa (10.1016/j.energy.2013.06.049_bib16) 2003; 27
Behrendt (10.1016/j.energy.2013.06.049_bib29) 2008; 31
Zhang (10.1016/j.energy.2013.06.049_bib35) 2011; 36
Zhang (10.1016/j.energy.2013.06.049_bib32) 2008
Qu (10.1016/j.energy.2013.06.049_bib34) 2003; 28
Xu (10.1016/j.energy.2013.06.049_bib44) 2007; 22
Minami (10.1016/j.energy.2013.06.049_bib31) 2003; 49
Ross (10.1016/j.energy.2013.06.049_bib18) 1979; 58
Vasilakos (10.1016/j.energy.2013.06.049_bib14) 1985; 24
Labrecque (10.1016/j.energy.2013.06.049_bib20) 1984; 23
Zhong (10.1016/j.energy.2013.06.049_bib42) 2004; 29
Xu (10.1016/j.energy.2013.06.049_bib23) 2008; 42
Xu (10.1016/j.energy.2013.06.049_bib25) 2009; 55
Yusuke (10.1016/j.energy.2013.06.049_bib11) 2003; 119
10.1016/j.energy.2013.06.049_bib30
Demirbas (10.1016/j.energy.2013.06.049_bib2) 2000; 41
Shui (10.1016/j.energy.2013.06.049_bib1) 2011; 36
Li (10.1016/j.energy.2013.06.049_bib24) 2010; 101
Yang (10.1016/j.energy.2013.06.049_bib37) 2007; 86
Ross (10.1016/j.energy.2013.06.049_bib17) 1979; 58
Yip (10.1016/j.energy.2013.06.049_bib6) 2009; 100
Dannhauser (10.1016/j.energy.2013.06.049_bib10) 1964; 40
References_xml – volume: 42
  start-page: 1571
  year: 2008
  end-page: 1582
  ident: bib23
  article-title: Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water
  publication-title: Water Res
– volume: 72
  start-page: 1021
  year: 1994
  end-page: 1027
  ident: bib21
  article-title: Solvent effects on liquefaction: solubilization profiles of a canadian prototype wood, populus deltoides, in the presence of different solvents
  publication-title: Can J Chem Eng
– volume: 23
  start-page: 177
  year: 1984
  end-page: 182
  ident: bib20
  article-title: Supercritical gas extraction of wood with methanol
  publication-title: Ind Eng Chem Prod Res Dev
– year: 1971
  ident: bib38
  article-title: Free energy of formation of binary compounds: an atlas of charts for high-temperature chemical calculations
– volume: 100
  start-page: 6674
  year: 2009
  end-page: 6678
  ident: bib6
  article-title: Comparative study of liquefaction process and liquefied products from bamboo using different organic solvents
  publication-title: Bioresour Technol
– volume: 58
  start-page: 438
  year: 1979
  end-page: 442
  ident: bib18
  article-title: Alcohols as H-donor media in coal conversion. 2. Base-promoted H-donation to coal by methyl alcohol
  publication-title: Fuel
– volume: 36
  start-page: 6645
  year: 2011
  end-page: 6650
  ident: bib1
  article-title: Co-liquefaction behavior of a sub-bituminous coal and sawdust
  publication-title: Energy
– volume: 27
  start-page: 255
  year: 2003
  end-page: 261
  ident: bib16
  article-title: Reactions of supercritical alcohols with unsaturated hydrocarbons
  publication-title: J Supercrit Fluids
– volume: 22
  start-page: 635
  year: 2007
  end-page: 642
  ident: bib44
  article-title: Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water
  publication-title: Energy Fuels
– volume: 1
  start-page: 32
  year: 2008
  end-page: 65
  ident: bib4
  article-title: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies
  publication-title: Energy Environ Sci
– volume: 28
  start-page: 597
  year: 2003
  end-page: 606
  ident: bib34
  article-title: Experimental study on the direct liquefaction of Cunninghamia lanceolata in water
  publication-title: Energy
– volume: 29
  start-page: 1221
  year: 2007
  end-page: 1231
  ident: bib7
  article-title: The direct liquefaction of sawdust in tetralin
  publication-title: Energy Source
– reference: Sun P, Heng M, Sun S, Chen J. Direct liquefaction of paulownia in hot compressed water: Influence of catalysts. Energy 35:5421–9.
– volume: 45
  start-page: 2687
  year: 2004
  end-page: 2696
  ident: bib39
  article-title: Poplar wood–water slurry liquefaction in the presence of formic acid catalyst
  publication-title: Energ Convers Manag
– volume: 53
  start-page: 171
  year: 1998
  end-page: 181
  ident: bib15
  article-title: The catalytic liquefaction of coal in the presence of ethanol
  publication-title: Fuel Proc Technol
– volume: 31
  start-page: 667
  year: 2008
  end-page: 677
  ident: bib29
  article-title: Direct liquefaction of biomass
  publication-title: Chem Eng Technol
– volume: 23
  start-page: 363
  year: 2001
  end-page: 368
  ident: bib8
  article-title: Liquefaction of biomass by supercritical gas extraction
  publication-title: Energy Source
– volume: 24
  start-page: 304
  year: 1985
  end-page: 311
  ident: bib14
  article-title: Hydrogen-donor solvents in biomass liquefaction
  publication-title: Ind Eng Chem Proc Des Dev
– volume: 39
  start-page: 685
  year: 1998
  end-page: 690
  ident: bib3
  article-title: Yields of oil products from thermochemical biomass conversion processes
  publication-title: Energy Convers Manag
– volume: 101
  start-page: 2860
  year: 2010
  end-page: 2866
  ident: bib24
  article-title: The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol
  publication-title: Bioresour Technol
– volume: 27
  start-page: 562
  year: 2009
  end-page: 567
  ident: bib41
  article-title: Comparison of the pyrolysis behavior of lignins from different tree species
  publication-title: Biotechnol Adv
– start-page: 511
  year: 2008
  end-page: 518
  ident: bib32
  article-title: Thermal effects on hydrothermal biomass liquefaction
  publication-title: Biotechnology for fuels and chemicals
– volume: 37
  start-page: 11677
  year: 2012
  end-page: 11690
  ident: bib33
  article-title: High-yield hydrogen production from glucose by supercritical water gasification without added catalyst
  publication-title: Int J Hydrogen Energy
– volume: 49
  start-page: 0073
  year: 2003
  end-page: 0078
  ident: bib31
  article-title: Comparison of the decomposition behaviors of hardwood and softwood in supercritical methanol
  publication-title: J Wood Sci
– volume: 40
  start-page: 3058
  year: 1964
  end-page: 3066
  ident: bib10
  article-title: Dielectric constant of hydrogen bonded liquids. III. Superheated alcohols
  publication-title: J Chem Phys
– volume: 119
  start-page: 7931
  year: 2003
  end-page: 7942
  ident: bib11
  article-title: Dielectric relaxation of lower alcohols in the whole fluid phase
  publication-title: J Chem Phys
– volume: 55
  start-page: 807
  year: 2009
  end-page: 819
  ident: bib25
  article-title: Production of bio-crude from forestry waste by hydro-liquefaction in sub-/super-critical methanol
  publication-title: AIChE J
– volume: 18
  start-page: 234
  year: 2003
  end-page: 241
  ident: bib12
  article-title: Low-temperature hydrothermal treatment of biomass: effect of reaction parameters on products and boiling point distributions
  publication-title: Energy Fuels
– volume: 36
  start-page: 2142
  year: 2011
  end-page: 2150
  ident: bib35
  article-title: Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water
  publication-title: Energy
– volume: 41
  start-page: 633
  year: 2000
  end-page: 646
  ident: bib2
  article-title: Mechanisms of liquefaction and pyrolysis reactions of biomass
  publication-title: Energy Convers Manag
– volume: 36
  start-page: 6406
  year: 2011
  end-page: 6412
  ident: bib9
  article-title: Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents
  publication-title: Energy
– volume: 22
  start-page: 1371
  year: 2008
  end-page: 1379
  ident: bib28
  article-title: Towards a lignincellulosic biorefinery: direct one-step conversion of lignin to hydrogen-enriched biofuel
  publication-title: Energy Fuels
– volume: 5
  start-page: 1602
  year: 2012
  end-page: 1609
  ident: bib36
  article-title: Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen
  publication-title: ChemSusChem
– volume: 29
  start-page: 1731
  year: 2004
  end-page: 1741
  ident: bib42
  article-title: A comparative experimental study on the liquefaction of wood
  publication-title: Energy
– volume: 29
  start-page: 1
  year: 2004
  end-page: 29
  ident: bib13
  article-title: Corrosion in high-temperature and supercritical water and aqueous solutions: a review
  publication-title: J Supercrit Fluids
– volume: 58
  start-page: 433
  year: 1979
  end-page: 437
  ident: bib17
  article-title: Alcohols as H-donor media in coal conversion. 1. Base-promoted H-donation to coal by isopropyl alcohol
  publication-title: Fuel
– volume: 49
  start-page: 3498
  year: 2008
  end-page: 3504
  ident: bib5
  article-title: Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks
  publication-title: Energy Convers Manag
– volume: 24
  start-page: 2071
  year: 2010
  end-page: 2077
  ident: bib26
  article-title: Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol
  publication-title: Energy Fuels
– reference: Jena U, Das KC, Kastner JR. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour Technol 102:6221–9.
– volume: 97
  start-page: 90
  year: 2006
  end-page: 98
  ident: bib40
  article-title: Hydrothermal upgrading of biomass: effect of K
  publication-title: Bioresour Technol
– volume: 92
  start-page: 147
  year: 2011
  end-page: 153
  ident: bib27
  article-title: Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol
  publication-title: Fuel Proc Technol
– volume: 86
  start-page: 1781
  year: 2007
  end-page: 1788
  ident: bib37
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
– volume: 52
  start-page: 527
  year: 2006
  end-page: 532
  ident: bib22
  article-title: Liquefaction of beech wood in various supercritical alcohols
  publication-title: J Wood Sci
– volume: 32
  start-page: 2081
  year: 2007
  end-page: 2088
  ident: bib19
  article-title: Sub- and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture
  publication-title: Energy
– volume: 18
  start-page: 234
  year: 2003
  ident: 10.1016/j.energy.2013.06.049_bib12
  article-title: Low-temperature hydrothermal treatment of biomass: effect of reaction parameters on products and boiling point distributions
  publication-title: Energy Fuels
  doi: 10.1021/ef030133g
– volume: 49
  start-page: 0073
  year: 2003
  ident: 10.1016/j.energy.2013.06.049_bib31
  article-title: Comparison of the decomposition behaviors of hardwood and softwood in supercritical methanol
  publication-title: J Wood Sci
– volume: 119
  start-page: 7931
  year: 2003
  ident: 10.1016/j.energy.2013.06.049_bib11
  article-title: Dielectric relaxation of lower alcohols in the whole fluid phase
  publication-title: J Chem Phys
– volume: 52
  start-page: 527
  year: 2006
  ident: 10.1016/j.energy.2013.06.049_bib22
  article-title: Liquefaction of beech wood in various supercritical alcohols
  publication-title: J Wood Sci
– volume: 97
  start-page: 90
  year: 2006
  ident: 10.1016/j.energy.2013.06.049_bib40
  article-title: Hydrothermal upgrading of biomass: effect of K2CO3 concentration and biomass/water ratio on products distribution
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2005.02.051
– ident: 10.1016/j.energy.2013.06.049_bib30
  doi: 10.1016/j.biortech.2011.02.057
– volume: 39
  start-page: 685
  year: 1998
  ident: 10.1016/j.energy.2013.06.049_bib3
  article-title: Yields of oil products from thermochemical biomass conversion processes
  publication-title: Energy Convers Manag
  doi: 10.1016/S0196-8904(97)00047-2
– volume: 27
  start-page: 255
  year: 2003
  ident: 10.1016/j.energy.2013.06.049_bib16
  article-title: Reactions of supercritical alcohols with unsaturated hydrocarbons
  publication-title: J Supercrit Fluids
  doi: 10.1016/S0896-8446(02)00269-3
– volume: 31
  start-page: 667
  year: 2008
  ident: 10.1016/j.energy.2013.06.049_bib29
  article-title: Direct liquefaction of biomass
  publication-title: Chem Eng Technol
  doi: 10.1002/ceat.200800077
– start-page: 511
  year: 2008
  ident: 10.1016/j.energy.2013.06.049_bib32
  article-title: Thermal effects on hydrothermal biomass liquefaction
– volume: 29
  start-page: 1221
  year: 2007
  ident: 10.1016/j.energy.2013.06.049_bib7
  article-title: The direct liquefaction of sawdust in tetralin
  publication-title: Energy Source
  doi: 10.1080/15567030600820070
– volume: 1
  start-page: 32
  year: 2008
  ident: 10.1016/j.energy.2013.06.049_bib4
  article-title: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies
  publication-title: Energy Environ Sci
  doi: 10.1039/b810100k
– volume: 49
  start-page: 3498
  year: 2008
  ident: 10.1016/j.energy.2013.06.049_bib5
  article-title: Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2008.08.009
– volume: 24
  start-page: 304
  year: 1985
  ident: 10.1016/j.energy.2013.06.049_bib14
  article-title: Hydrogen-donor solvents in biomass liquefaction
  publication-title: Ind Eng Chem Proc Des Dev
  doi: 10.1021/i200029a015
– volume: 37
  start-page: 11677
  year: 2012
  ident: 10.1016/j.energy.2013.06.049_bib33
  article-title: High-yield hydrogen production from glucose by supercritical water gasification without added catalyst
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.05.087
– volume: 28
  start-page: 597
  year: 2003
  ident: 10.1016/j.energy.2013.06.049_bib34
  article-title: Experimental study on the direct liquefaction of Cunninghamia lanceolata in water
  publication-title: Energy
  doi: 10.1016/S0360-5442(02)00178-0
– volume: 101
  start-page: 2860
  year: 2010
  ident: 10.1016/j.energy.2013.06.049_bib24
  article-title: The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2009.10.084
– volume: 36
  start-page: 2142
  year: 2011
  ident: 10.1016/j.energy.2013.06.049_bib35
  article-title: Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water
  publication-title: Energy
  doi: 10.1016/j.energy.2010.05.029
– volume: 36
  start-page: 6406
  year: 2011
  ident: 10.1016/j.energy.2013.06.049_bib9
  article-title: Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents
  publication-title: Energy
  doi: 10.1016/j.energy.2011.09.031
– volume: 23
  start-page: 363
  year: 2001
  ident: 10.1016/j.energy.2013.06.049_bib8
  article-title: Liquefaction of biomass by supercritical gas extraction
  publication-title: Energy Source
  doi: 10.1080/009083101300110904
– volume: 22
  start-page: 1371
  year: 2008
  ident: 10.1016/j.energy.2013.06.049_bib28
  article-title: Towards a lignincellulosic biorefinery: direct one-step conversion of lignin to hydrogen-enriched biofuel
  publication-title: Energy Fuels
  doi: 10.1021/ef700631w
– volume: 29
  start-page: 1731
  year: 2004
  ident: 10.1016/j.energy.2013.06.049_bib42
  article-title: A comparative experimental study on the liquefaction of wood
  publication-title: Energy
  doi: 10.1016/j.energy.2004.03.096
– volume: 23
  start-page: 177
  year: 1984
  ident: 10.1016/j.energy.2013.06.049_bib20
  article-title: Supercritical gas extraction of wood with methanol
  publication-title: Ind Eng Chem Prod Res Dev
  doi: 10.1021/i300013a035
– volume: 92
  start-page: 147
  year: 2011
  ident: 10.1016/j.energy.2013.06.049_bib27
  article-title: Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol
  publication-title: Fuel Proc Technol
  doi: 10.1016/j.fuproc.2010.09.018
– volume: 32
  start-page: 2081
  year: 2007
  ident: 10.1016/j.energy.2013.06.049_bib19
  article-title: Sub- and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture
  publication-title: Energy
  doi: 10.1016/j.energy.2007.04.011
– volume: 55
  start-page: 807
  year: 2009
  ident: 10.1016/j.energy.2013.06.049_bib25
  article-title: Production of bio-crude from forestry waste by hydro-liquefaction in sub-/super-critical methanol
  publication-title: AIChE J
  doi: 10.1002/aic.11701
– volume: 72
  start-page: 1021
  year: 1994
  ident: 10.1016/j.energy.2013.06.049_bib21
  article-title: Solvent effects on liquefaction: solubilization profiles of a canadian prototype wood, populus deltoides, in the presence of different solvents
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.5450720612
– volume: 40
  start-page: 3058
  year: 1964
  ident: 10.1016/j.energy.2013.06.049_bib10
  article-title: Dielectric constant of hydrogen bonded liquids. III. Superheated alcohols
  publication-title: J Chem Phys
  doi: 10.1063/1.1724948
– volume: 100
  start-page: 6674
  year: 2009
  ident: 10.1016/j.energy.2013.06.049_bib6
  article-title: Comparative study of liquefaction process and liquefied products from bamboo using different organic solvents
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2009.07.045
– volume: 27
  start-page: 562
  year: 2009
  ident: 10.1016/j.energy.2013.06.049_bib41
  article-title: Comparison of the pyrolysis behavior of lignins from different tree species
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2009.04.010
– volume: 22
  start-page: 635
  year: 2007
  ident: 10.1016/j.energy.2013.06.049_bib44
  article-title: Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water
  publication-title: Energy Fuels
  doi: 10.1021/ef700424k
– volume: 53
  start-page: 171
  year: 1998
  ident: 10.1016/j.energy.2013.06.049_bib15
  article-title: The catalytic liquefaction of coal in the presence of ethanol
  publication-title: Fuel Proc Technol
  doi: 10.1016/S0378-3820(97)00046-5
– volume: 41
  start-page: 633
  year: 2000
  ident: 10.1016/j.energy.2013.06.049_bib2
  article-title: Mechanisms of liquefaction and pyrolysis reactions of biomass
  publication-title: Energy Convers Manag
  doi: 10.1016/S0196-8904(99)00130-2
– year: 1971
  ident: 10.1016/j.energy.2013.06.049_bib38
– volume: 45
  start-page: 2687
  year: 2004
  ident: 10.1016/j.energy.2013.06.049_bib39
  article-title: Poplar wood–water slurry liquefaction in the presence of formic acid catalyst
  publication-title: Energ Convers Manag
  doi: 10.1016/j.enconman.2003.12.010
– volume: 29
  start-page: 1
  year: 2004
  ident: 10.1016/j.energy.2013.06.049_bib13
  article-title: Corrosion in high-temperature and supercritical water and aqueous solutions: a review
  publication-title: J Supercrit Fluids
  doi: 10.1016/S0896-8446(03)00031-7
– volume: 42
  start-page: 1571
  year: 2008
  ident: 10.1016/j.energy.2013.06.049_bib23
  article-title: Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water
  publication-title: Water Res
  doi: 10.1016/j.watres.2007.11.007
– volume: 58
  start-page: 433
  year: 1979
  ident: 10.1016/j.energy.2013.06.049_bib17
  article-title: Alcohols as H-donor media in coal conversion. 1. Base-promoted H-donation to coal by isopropyl alcohol
  publication-title: Fuel
  doi: 10.1016/0016-2361(79)90084-X
– volume: 36
  start-page: 6645
  year: 2011
  ident: 10.1016/j.energy.2013.06.049_bib1
  article-title: Co-liquefaction behavior of a sub-bituminous coal and sawdust
  publication-title: Energy
  doi: 10.1016/j.energy.2011.08.046
– volume: 86
  start-page: 1781
  year: 2007
  ident: 10.1016/j.energy.2013.06.049_bib37
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.12.013
– ident: 10.1016/j.energy.2013.06.049_bib43
  doi: 10.1016/j.energy.2010.07.005
– volume: 58
  start-page: 438
  year: 1979
  ident: 10.1016/j.energy.2013.06.049_bib18
  article-title: Alcohols as H-donor media in coal conversion. 2. Base-promoted H-donation to coal by methyl alcohol
  publication-title: Fuel
  doi: 10.1016/0016-2361(79)90085-1
– volume: 5
  start-page: 1602
  year: 2012
  ident: 10.1016/j.energy.2013.06.049_bib36
  article-title: Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100699
– volume: 24
  start-page: 2071
  year: 2010
  ident: 10.1016/j.energy.2013.06.049_bib26
  article-title: Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol
  publication-title: Energy Fuels
  doi: 10.1021/ef901241e
SSID ssj0005899
Score 2.4975061
Snippet In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 173
SubjectTerms Applied sciences
Biocrude
Biomass
carbon
catalysts
Conversion
Energy
Ethanol
Ethyl alcohol
Exact sciences and technology
feedstocks
heat
hydrogen
Hydrogen donor
Lignocellulose
Lignocellulosic biomass
Liquefaction
molecular weight
Natural energy
nitrogen
oxygen
Process parameters
Supercritical ethanol
temperature
Wood
Title Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters
URI https://dx.doi.org/10.1016/j.energy.2013.06.049
https://www.proquest.com/docview/1464558409
https://www.proquest.com/docview/1513427238
https://www.proquest.com/docview/2000046800
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbW7gFeEAymdUBlJF5NGyeOHd6maVMHYi-l0t4s13ZGUZdES_O6v507x9k08WMSr9ZZcnznu8_xd3eEfLQFwI61Eoxb6xjgf8eUMIbNjeOpVX4tw1PMt8t8scq-XImrPXI65MIgrTL6_t6nB28dR2ZxN2fNZjNbgu8FvJFxfJAB3J2OyD6HaK_GZP_k4uvi8oHpoUIbSZRnOGHIoAs0Lx9S7JDjlYZCnlhU888RalSaGqmTpoXdK_u2F7958BCWzl-SFxFP0pN-ya_Inq8OyLMh3bg9IIdnD6lsIBjPcvua3C27xt_a2OqAevyHXm-paampqK9-BGoAxbf37oYCtKXbzXVV44_-bluDbilm7gP0hnFYWUyQ-Ewvhq4ntC5pE62ANn0-AsVK4zfIwGnfkNX52ffTBYvdGJjNRLFjTpgyyR0APGHw_ZYr4R2AobXiTinrPHfJ3Mg8U0YaL2UBviAT0mcqF6nzZXpIxlVd-SNCy3lincyEcDYFffgiM3NeOF6mRuWJMxOSDhrQNpYqx44ZWz1w0n7qXm8a9aaRmpcVE8LuZzV9qY4n5OWgXP3I5DREkydmHoEtaHMNflivlhyr9AWsm6gJmT4ykPuVcCkTLBY4IR8Gi9FwklFrpvJ11-IlDLYEL9z_kBFJmnFsFPd3GR7ufTncBI7_-wvfkuc89P0oWCLekfHutvPvAX3t1lMy-nSXTOMZ-wU4wDAJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELegPLCXaWNDdB_Mk_ZqtXHs2NkbQqB2QF9KJd4sN3ZYp5JEpH3d3747xwGhfSDt1TpLju98_l38uztCvhQ5wI6llowXhWOA_x3T0lo2to6nhfZLFZ5irmbZZCG-3cibHXLa58IgrTL6_s6nB28dR0ZxN0fNajWag-8FvCE4PsgA7k53yZ7AptYDsncyvZjMHpkeOrSRRHmGE_oMukDz8iHFDjleaSjkiUU1_3xD7Za2RuqkbWH3yq7txW8ePFxL56_Iy4gn6Um35Ndkx1cHZL9PN24PyOHZYyobCMaz3L4hP-fbxt8XsdUB9fgPvV5T21JbUV99D9QAim_v2zsK0JauV7dVjT_6t-sadEsxcx-gN4zDymKCxFc67bue0LqkTbQC2nT5CBQrjd8hA6d9SxbnZ9enExa7MbBCyHzDnLRlkjkAeNLi-y3X0jsAQ0vNndaF89wlY6syoa2yXqkcfIGQygudydT5Mj0kg6qu_BGh5TgpnBJSuiIFffhc2DHPHS9Tq7PE2SFJew2YIpYqx44Za9Nz0n6YTm8G9WaQmifyIWEPs5quVMcz8qpXrnlicgZuk2dmHoEtGHsLftgs5hyr9AWsm-ghOX5iIA8r4UolWCxwSD73FmPgJKPWbOXrbYtBGGwJBtz_kJFJKjg2ivu7DA9xXwaRwLv__sJPZH9yfXVpLqezi_fkBQ89QHKWyA9ksLnf-o-AxDbL43jSfgFc7THv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supercritical+ethanol+as+an+enhanced+medium+for+lignocellulosic+biomass+liquefaction%3A+Influence+of+physical+process+parameters&rft.jtitle=Energy+%28Oxford%29&rft.au=Brand%2C+Steffen&rft.au=Susanti%2C+Ratna+Frida&rft.au=Kim%2C+Seok+Ki&rft.au=Lee%2C+Hong-shik&rft.date=2013-09-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=59&rft.spage=173&rft.epage=182&rft_id=info:doi/10.1016%2Fj.energy.2013.06.049&rft.externalDocID=S0360544213005483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon