Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters
In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280–400 °C), initial nitrogen pressure (0.4–7.5 MPa), reaction time (0–240 min), and...
Saved in:
Published in | Energy (Oxford) Vol. 59; pp. 173 - 182 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.09.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5442 |
DOI | 10.1016/j.energy.2013.06.049 |
Cover
Abstract | In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280–400 °C), initial nitrogen pressure (0.4–7.5 MPa), reaction time (0–240 min), and biomass-to-solvent ratio (0.06–0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0–98.1% and biocrude yield in the range 15.8–59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 °C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feedstock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed.
•Influence of physical parameters on biomass liquefaction in supercritical ethanol.•Benefits of supercritical ethanol as a solvent in biomass liquefaction.•High conversion (98%) and high biocrude yield (66 wt%) achieved.•Comparison with sub- and supercritical water liquefaction has been made.•New reaction mechanism of supercritical alcohol has been proposed. |
---|---|
AbstractList | In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280–400 °C), initial nitrogen pressure (0.4–7.5 MPa), reaction time (0–240 min), and biomass-to-solvent ratio (0.06–0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0–98.1% and biocrude yield in the range 15.8–59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 °C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feedstock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed. In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280a400 degree C), initial nitrogen pressure (0.4a7.5 MPa), reaction time (0a240 min), and biomass-to-solvent ratio (0.06a0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0a98.1% and biocrude yield in the range 15.8a59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 degree C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feedstock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed. In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280–400 °C), initial nitrogen pressure (0.4–7.5 MPa), reaction time (0–240 min), and biomass-to-solvent ratio (0.06–0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0–98.1% and biocrude yield in the range 15.8–59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 °C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feedstock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed. In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280-400 C), initial nitrogen pressure (0.4-7.5 MPa), reaction time (0-240 min), and biomass-to-solvent ratio (0.06-0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0-98.1% and biocrude yield in the range 15.8-59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feed-stock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed. In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280–400 °C), initial nitrogen pressure (0.4–7.5 MPa), reaction time (0–240 min), and biomass-to-solvent ratio (0.06–0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0–98.1% and biocrude yield in the range 15.8–59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 °C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feedstock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed. •Influence of physical parameters on biomass liquefaction in supercritical ethanol.•Benefits of supercritical ethanol as a solvent in biomass liquefaction.•High conversion (98%) and high biocrude yield (66 wt%) achieved.•Comparison with sub- and supercritical water liquefaction has been made.•New reaction mechanism of supercritical alcohol has been proposed. |
Author | Brand, Steffen Lee, Hong-shik Kim, Jaehoon Susanti, Ratna Frida Sang, Byung-In Kim, Seok Ki |
Author_xml | – sequence: 1 givenname: Steffen surname: Brand fullname: Brand, Steffen organization: Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea – sequence: 2 givenname: Ratna Frida surname: Susanti fullname: Susanti, Ratna Frida organization: Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea – sequence: 3 givenname: Seok Ki surname: Kim fullname: Kim, Seok Ki organization: Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea – sequence: 4 givenname: Hong-shik surname: Lee fullname: Lee, Hong-shik organization: Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea – sequence: 5 givenname: Jaehoon surname: Kim fullname: Kim, Jaehoon email: jaehoonkim@skku.edu, kjh0508@gmail.com organization: School of Mechanical Engineering, Sungkyunkwan University, 2066, Sebu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 440-746, Republic of Korea – sequence: 6 givenname: Byung-In surname: Sang fullname: Sang, Byung-In email: biosang@hanyang.ac.kr organization: Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27712859$$DView record in Pascal Francis |
BookMark | eNqFkUtr3DAUhb1IoUnaf1CoNoVuxpVsvZxFoYQ-AoEu0qzFjXQ10WBbrmQXZpPfXrkOXXTRWQmJ71yde85FdTbGEavqDaM1o0x-ONQ4Ytof64aytqayprw7q85pK-lOcN68rC5yPlBKhe668-rpbpkw2RTmYKEnOD_CGHsCmcBIcCw3i44M6MIyEB8T6cN-jBb7fuljDpY8hDhAzuX954Ie7BzieEVuRt8vWLQkejI9HvOf6VMqysJOkGDAGVN-Vb3w0Gd8_XxeVvdfPv-4_ra7_f715vrT7c5y0c07J8Az6TgVAqhUTaMFOia6B904ra3DxjEKSnINClCpTijNhUKupWgd-vayer_NLRaKzzybIeR1CxgxLtk0JRDKpab0JMoEa3mjmlafRrnkQmhOu4K-e0Yhlyh8KsGGbKYUBkhH0yjFylIrxzfOpphzQv8XYdSsBZuD2Qo2a8GGSlMKLrKrf2Q2zLB2MScI_Snx203sIRrYp-Lr_q4AsmQiBWXroh83AktHvwImk21Y63UhoZ2Ni-H_X_wGLzbSmA |
CODEN | ENEYDS |
CitedBy_id | crossref_primary_10_1016_j_biotechadv_2018_11_004 crossref_primary_10_1016_j_jece_2025_115722 crossref_primary_10_1016_j_enconman_2014_12_089 crossref_primary_10_1016_j_cej_2020_127432 crossref_primary_10_1016_j_fuproc_2021_106782 crossref_primary_10_1016_j_jenvman_2024_120961 crossref_primary_10_1016_j_supflu_2015_04_008 crossref_primary_10_1007_s11244_017_0787_z crossref_primary_10_1016_j_algal_2019_101421 crossref_primary_10_1016_j_biortech_2017_01_029 crossref_primary_10_1021_acs_energyfuels_0c00875 crossref_primary_10_1016_j_rser_2017_04_006 crossref_primary_10_1016_j_jaap_2016_03_004 crossref_primary_10_1021_acs_energyfuels_9b04533 crossref_primary_10_1039_D1SE01316E crossref_primary_10_1016_j_fuel_2019_03_019 crossref_primary_10_1016_j_pecs_2015_01_003 crossref_primary_10_1039_D0RA08966D crossref_primary_10_1007_s13203_015_0111_4 crossref_primary_10_1016_j_jece_2018_10_017 crossref_primary_10_1016_j_jclepro_2020_123709 crossref_primary_10_1016_j_rser_2016_08_020 crossref_primary_10_1021_acs_iecr_0c01649 crossref_primary_10_1016_j_ces_2022_117926 crossref_primary_10_1016_j_molliq_2023_121689 crossref_primary_10_1016_j_supflu_2013_10_004 crossref_primary_10_1002_ceat_201600343 crossref_primary_10_1016_j_biortech_2014_04_067 crossref_primary_10_3390_polym12102337 crossref_primary_10_3390_biomass2040017 crossref_primary_10_1007_s10570_018_1872_6 crossref_primary_10_1007_s10098_015_1021_y crossref_primary_10_3390_polym13050739 crossref_primary_10_1007_s12155_022_10511_4 crossref_primary_10_2174_1385272823666190723141955 crossref_primary_10_1002_cssc_202200171 crossref_primary_10_1016_j_biombioe_2021_106204 crossref_primary_10_1016_j_jece_2022_108622 crossref_primary_10_1021_acs_energyfuels_4c03693 crossref_primary_10_1016_j_fuel_2022_125738 crossref_primary_10_1016_j_enconman_2017_08_092 crossref_primary_10_1016_j_jaap_2023_106209 crossref_primary_10_1016_j_proeng_2016_06_495 crossref_primary_10_1016_j_enconman_2014_04_094 crossref_primary_10_14235_bas_galenos_2020_5684 crossref_primary_10_3934_energy_2022030 crossref_primary_10_1016_j_energy_2018_04_103 crossref_primary_10_1016_j_catcom_2020_106268 crossref_primary_10_1021_ef5001375 crossref_primary_10_1016_j_cej_2014_02_094 crossref_primary_10_1016_j_carbon_2015_11_009 crossref_primary_10_1039_D2RA06085J crossref_primary_10_1016_j_fuel_2018_03_043 crossref_primary_10_1016_j_ecmx_2022_100196 crossref_primary_10_1016_j_wasman_2023_10_013 crossref_primary_10_1016_j_apenergy_2018_03_008 crossref_primary_10_1007_s13399_023_04096_x crossref_primary_10_1016_j_supflu_2016_10_013 crossref_primary_10_1016_j_cej_2015_05_052 crossref_primary_10_3390_en17215439 crossref_primary_10_1016_j_energy_2014_02_086 crossref_primary_10_1016_j_bcab_2014_07_008 crossref_primary_10_1016_j_sciaf_2025_e02654 crossref_primary_10_1016_j_energy_2018_08_170 crossref_primary_10_2174_2213346107666200129104358 crossref_primary_10_1002_cey2_260 crossref_primary_10_1016_j_jreng_2024_07_002 crossref_primary_10_1021_acscatal_5b01159 crossref_primary_10_1016_j_supflu_2015_11_021 crossref_primary_10_1016_j_scitotenv_2019_04_211 crossref_primary_10_1016_j_biombioe_2022_106444 crossref_primary_10_1016_j_renene_2020_11_033 crossref_primary_10_1109_ACCESS_2019_2962243 crossref_primary_10_3390_en14164916 crossref_primary_10_1016_j_enconman_2018_06_066 crossref_primary_10_1016_j_apenergy_2017_04_033 crossref_primary_10_1016_j_renene_2021_04_143 crossref_primary_10_1002_cssc_201801291 crossref_primary_10_1002_jctb_6606 crossref_primary_10_1016_j_carpta_2023_100396 crossref_primary_10_1016_j_energy_2016_12_016 crossref_primary_10_1016_j_joei_2020_03_001 crossref_primary_10_1016_j_supflu_2014_09_024 crossref_primary_10_1016_j_supflu_2020_105011 crossref_primary_10_1016_j_jcat_2015_10_013 crossref_primary_10_1016_j_mcat_2017_09_010 crossref_primary_10_15302_J_FASE_2015050 crossref_primary_10_3390_biomass4030048 crossref_primary_10_1016_j_biombioe_2025_107621 crossref_primary_10_1016_j_supflu_2017_09_023 crossref_primary_10_3390_catal12060664 crossref_primary_10_1016_j_enconman_2014_11_003 crossref_primary_10_1016_j_enconman_2024_118615 crossref_primary_10_1016_j_ijhydene_2020_02_146 crossref_primary_10_1016_j_energy_2015_01_032 crossref_primary_10_1016_j_fuel_2017_03_061 crossref_primary_10_1080_15567036_2014_958633 crossref_primary_10_1016_j_rser_2021_111814 crossref_primary_10_1016_j_cattod_2017_05_051 crossref_primary_10_1016_j_jclepro_2023_138957 crossref_primary_10_1002_bbb_1535 crossref_primary_10_1016_j_fuel_2019_116628 crossref_primary_10_1016_j_wasman_2023_11_027 crossref_primary_10_1016_j_joei_2017_05_009 crossref_primary_10_1016_j_indcrop_2019_111695 crossref_primary_10_1007_s10098_021_02064_5 crossref_primary_10_1016_j_jaap_2017_06_001 crossref_primary_10_1016_j_enconman_2015_03_075 crossref_primary_10_1016_j_jclepro_2023_137582 crossref_primary_10_1016_j_fuel_2015_09_076 crossref_primary_10_1016_j_jaap_2015_04_014 crossref_primary_10_1016_j_energy_2014_11_043 crossref_primary_10_1016_j_jwpe_2022_103037 crossref_primary_10_23939_chcht10_04_445 crossref_primary_10_1002_ceat_201700396 crossref_primary_10_1016_j_indcrop_2018_01_033 crossref_primary_10_1039_D0SE01634A crossref_primary_10_1002_cssc_201802847 crossref_primary_10_1016_j_biortech_2015_12_022 crossref_primary_10_1016_j_cej_2017_06_078 crossref_primary_10_1016_j_energy_2014_07_044 crossref_primary_10_1016_j_enconman_2016_07_034 crossref_primary_10_1016_j_jece_2021_105059 crossref_primary_10_1016_j_supflu_2015_11_002 crossref_primary_10_1016_j_cej_2024_157845 crossref_primary_10_1016_j_supflu_2019_03_019 crossref_primary_10_1016_j_indcrop_2018_07_053 crossref_primary_10_1039_C4RA07790C crossref_primary_10_1002_cssc_202402334 crossref_primary_10_1021_acs_iecr_2c02300 crossref_primary_10_1016_j_fuel_2017_07_010 crossref_primary_10_1016_j_fuel_2020_117712 crossref_primary_10_1016_j_fuel_2021_121930 crossref_primary_10_1016_j_renene_2022_12_110 crossref_primary_10_1016_j_ceramint_2023_11_153 crossref_primary_10_23939_chcht10_04si_571 crossref_primary_10_1080_17597269_2018_1461521 crossref_primary_10_1002_tcr_202100018 crossref_primary_10_4236_jsbs_2021_114015 crossref_primary_10_1016_j_biortech_2017_07_182 crossref_primary_10_1016_j_cej_2014_05_137 crossref_primary_10_1016_j_supflu_2014_08_009 crossref_primary_10_1039_C7SE00579B crossref_primary_10_3390_en13010124 crossref_primary_10_3934_environsci_2017_3_417 crossref_primary_10_1016_j_biombioe_2016_02_008 crossref_primary_10_1016_j_fuproc_2016_02_011 crossref_primary_10_1016_j_apenergy_2016_03_093 crossref_primary_10_1016_j_cej_2016_10_011 crossref_primary_10_1080_10916466_2018_1493501 crossref_primary_10_3389_fenrg_2021_646057 crossref_primary_10_1021_acs_energyfuels_9b00954 crossref_primary_10_1002_er_3727 crossref_primary_10_1016_j_biortech_2017_09_205 crossref_primary_10_1007_s13399_021_01478_x crossref_primary_10_1016_j_cjche_2018_09_018 crossref_primary_10_1016_j_jics_2021_100018 crossref_primary_10_1016_j_supflu_2017_09_013 crossref_primary_10_1016_j_fuel_2017_12_079 crossref_primary_10_1007_s10311_016_0593_z crossref_primary_10_1016_j_cej_2017_02_045 crossref_primary_10_1016_j_jece_2018_07_050 crossref_primary_10_16984_saufenbilder_811684 crossref_primary_10_1016_j_renene_2023_06_018 crossref_primary_10_1021_acs_energyfuels_4c00240 crossref_primary_10_1002_ente_201402103 crossref_primary_10_1016_j_supflu_2016_11_001 crossref_primary_10_1007_s00253_018_9507_2 crossref_primary_10_1016_j_fuproc_2024_108102 crossref_primary_10_1016_j_apcata_2017_08_010 |
Cites_doi | 10.1021/ef030133g 10.1016/j.biortech.2005.02.051 10.1016/j.biortech.2011.02.057 10.1016/S0196-8904(97)00047-2 10.1016/S0896-8446(02)00269-3 10.1002/ceat.200800077 10.1080/15567030600820070 10.1039/b810100k 10.1016/j.enconman.2008.08.009 10.1021/i200029a015 10.1016/j.ijhydene.2012.05.087 10.1016/S0360-5442(02)00178-0 10.1016/j.biortech.2009.10.084 10.1016/j.energy.2010.05.029 10.1016/j.energy.2011.09.031 10.1080/009083101300110904 10.1021/ef700631w 10.1016/j.energy.2004.03.096 10.1021/i300013a035 10.1016/j.fuproc.2010.09.018 10.1016/j.energy.2007.04.011 10.1002/aic.11701 10.1002/cjce.5450720612 10.1063/1.1724948 10.1016/j.biortech.2009.07.045 10.1016/j.biotechadv.2009.04.010 10.1021/ef700424k 10.1016/S0378-3820(97)00046-5 10.1016/S0196-8904(99)00130-2 10.1016/j.enconman.2003.12.010 10.1016/S0896-8446(03)00031-7 10.1016/j.watres.2007.11.007 10.1016/0016-2361(79)90084-X 10.1016/j.energy.2011.08.046 10.1016/j.fuel.2006.12.013 10.1016/j.energy.2010.07.005 10.1016/0016-2361(79)90085-1 10.1002/cssc.201100699 10.1021/ef901241e |
ContentType | Journal Article |
Copyright | 2013 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7SP 7TB 8FD F28 FR3 KR7 L7M 7S9 L.6 |
DOI | 10.1016/j.energy.2013.06.049 |
DatabaseName | AGRIS CrossRef Pascal-Francis Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Civil Engineering Abstracts Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences Applied Sciences |
EndPage | 182 |
ExternalDocumentID | 27712859 10_1016_j_energy_2013_06_049 US201600065018 S0360544213005483 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK ABFNM ABPIF ABPTK ADMUD AHHHB ASPBG AVWKF AZFZN FBQ FEDTE FGOYB G-2 G8K HVGLF HZ~ R2- SAC SEW WUQ AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SP 7TB 8FD ACLOT EFKBS F28 FR3 KR7 L7M ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c459t-d5af16d4055a0672285ed159b82d88cde2d10a7648a7ae779578457e48653def3 |
IEDL.DBID | AIKHN |
ISSN | 0360-5442 |
IngestDate | Sat Sep 27 22:03:05 EDT 2025 Fri Sep 05 10:06:59 EDT 2025 Sat Sep 27 21:34:23 EDT 2025 Wed Apr 02 07:15:13 EDT 2025 Tue Jul 01 00:52:37 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 Wed Dec 27 19:08:36 EST 2023 Fri Feb 23 02:16:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biocrude Supercritical ethanol Liquefaction Lignocellulosic biomass Hydrogen donor Lignocellulosics Biomass |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-d5af16d4055a0672285ed159b82d88cde2d10a7648a7ae779578457e48653def3 |
Notes | http://dx.doi.org/10.1016/j.energy.2013.06.049 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1464558409 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000046800 proquest_miscellaneous_1513427238 proquest_miscellaneous_1464558409 pascalfrancis_primary_27712859 crossref_primary_10_1016_j_energy_2013_06_049 crossref_citationtrail_10_1016_j_energy_2013_06_049 fao_agris_US201600065018 elsevier_sciencedirect_doi_10_1016_j_energy_2013_06_049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-15 |
PublicationDateYYYYMMDD | 2013-09-15 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Xu, Lad (bib44) 2007; 22 Karagöz, Bhaskar, Muto, Sakata (bib40) 2006; 97 Yusuke, Makoto (bib11) 2003; 119 Dannhauser, Bahe (bib10) 1964; 40 Karagöz, Bhaskar, Muto, Sakata, Uddin (bib12) 2003; 18 Wang, Li, Chen, Li (bib7) 2007; 29 Yamazaki, Minami, Saka (bib22) 2006; 52 Zhong, Wei (bib42) 2004; 29 Reed (bib38) 1971 Ross, Blessing (bib18) 1979; 58 Wang, Wang, Liu, Gu, Luo, Cen (bib41) 2009; 27 Chumpoo, Prasassarakich (bib26) 2010; 24 Labrecque, Kaliaguine, Grandmaison (bib20) 1984; 23 Susanti, Dianningrum, Yum, Kim, Lee, Kim (bib33) 2012; 37 Yuan, Li, Zeng, Tong, Xie (bib19) 2007; 32 Xu, Lancaster (bib23) 2008; 42 Qu, Wei, Zhong (bib34) 2003; 28 Sun P, Heng M, Sun S, Chen J. Direct liquefaction of paulownia in hot compressed water: Influence of catalysts. Energy 35:5421–9. Yip, Chen, Szeto, Yan (bib6) 2009; 100 Liu, Zhang (bib5) 2008; 49 Kücük (bib8) 2001; 23 Zhang, Champagne, Xu (bib35) 2011; 36 Behrendt, Neubauer, Oevermann, Wilmes, Zobel (bib29) 2008; 31 Demirbas (bib2) 2000; 41 Heitz, Brown, Chornet (bib21) 1994; 72 Ross, Blessing (bib17) 1979; 58 Mondragon, Quintero, Jaramillo, Fernandez, Hall (bib15) 1998; 53 Zhang, Keitz, Valentas (bib32) 2008 Yilgin, Pehlivan (bib39) 2004; 45 Shui, Shan, Cai, Wang, Lei, Ren (bib1) 2011; 36 Demirbas (bib3) 1998; 39 Nakagawa, Ozaki, Kamitanaka, Takagi, Matsuda, Kitamura (bib16) 2003; 27 Peterson, Vogel, Lachance, Froling, Antal, Tester (bib4) 2008; 1 Vasilakos, Austgen (bib14) 1985; 24 Minami, Saka (bib31) 2003; 49 Jena U, Das KC, Kastner JR. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour Technol 102:6221–9. Kritzer (bib13) 2004; 29 Zakzeski, Jongerius, Bruijnincx, Weckhuysen (bib36) 2012; 5 Xu, Gilbert, Yang (bib25) 2009; 55 Kleinert, Barth (bib28) 2008; 22 Yuan, Wang, Zeng, Huang, Pei, Li (bib9) 2011; 36 Huang, Yuan, Zeng, Wang, Li, Zhou (bib27) 2011; 92 Yang, Yan, Chen, Lee, Zheng (bib37) 2007; 86 Li, Yuan, Zeng, Huang, Huang, Tong (bib24) 2010; 101 Kritzer (10.1016/j.energy.2013.06.049_bib13) 2004; 29 Susanti (10.1016/j.energy.2013.06.049_bib33) 2012; 37 Mondragon (10.1016/j.energy.2013.06.049_bib15) 1998; 53 Kücük (10.1016/j.energy.2013.06.049_bib8) 2001; 23 Chumpoo (10.1016/j.energy.2013.06.049_bib26) 2010; 24 Wang (10.1016/j.energy.2013.06.049_bib41) 2009; 27 Karagöz (10.1016/j.energy.2013.06.049_bib12) 2003; 18 Wang (10.1016/j.energy.2013.06.049_bib7) 2007; 29 Demirbas (10.1016/j.energy.2013.06.049_bib3) 1998; 39 Zakzeski (10.1016/j.energy.2013.06.049_bib36) 2012; 5 Peterson (10.1016/j.energy.2013.06.049_bib4) 2008; 1 Kleinert (10.1016/j.energy.2013.06.049_bib28) 2008; 22 10.1016/j.energy.2013.06.049_bib43 Heitz (10.1016/j.energy.2013.06.049_bib21) 1994; 72 Reed (10.1016/j.energy.2013.06.049_bib38) 1971 Yamazaki (10.1016/j.energy.2013.06.049_bib22) 2006; 52 Huang (10.1016/j.energy.2013.06.049_bib27) 2011; 92 Yuan (10.1016/j.energy.2013.06.049_bib19) 2007; 32 Yilgin (10.1016/j.energy.2013.06.049_bib39) 2004; 45 Yuan (10.1016/j.energy.2013.06.049_bib9) 2011; 36 Liu (10.1016/j.energy.2013.06.049_bib5) 2008; 49 Karagöz (10.1016/j.energy.2013.06.049_bib40) 2006; 97 Nakagawa (10.1016/j.energy.2013.06.049_bib16) 2003; 27 Behrendt (10.1016/j.energy.2013.06.049_bib29) 2008; 31 Zhang (10.1016/j.energy.2013.06.049_bib35) 2011; 36 Zhang (10.1016/j.energy.2013.06.049_bib32) 2008 Qu (10.1016/j.energy.2013.06.049_bib34) 2003; 28 Xu (10.1016/j.energy.2013.06.049_bib44) 2007; 22 Minami (10.1016/j.energy.2013.06.049_bib31) 2003; 49 Ross (10.1016/j.energy.2013.06.049_bib18) 1979; 58 Vasilakos (10.1016/j.energy.2013.06.049_bib14) 1985; 24 Labrecque (10.1016/j.energy.2013.06.049_bib20) 1984; 23 Zhong (10.1016/j.energy.2013.06.049_bib42) 2004; 29 Xu (10.1016/j.energy.2013.06.049_bib23) 2008; 42 Xu (10.1016/j.energy.2013.06.049_bib25) 2009; 55 Yusuke (10.1016/j.energy.2013.06.049_bib11) 2003; 119 10.1016/j.energy.2013.06.049_bib30 Demirbas (10.1016/j.energy.2013.06.049_bib2) 2000; 41 Shui (10.1016/j.energy.2013.06.049_bib1) 2011; 36 Li (10.1016/j.energy.2013.06.049_bib24) 2010; 101 Yang (10.1016/j.energy.2013.06.049_bib37) 2007; 86 Ross (10.1016/j.energy.2013.06.049_bib17) 1979; 58 Yip (10.1016/j.energy.2013.06.049_bib6) 2009; 100 Dannhauser (10.1016/j.energy.2013.06.049_bib10) 1964; 40 |
References_xml | – volume: 42 start-page: 1571 year: 2008 end-page: 1582 ident: bib23 article-title: Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water publication-title: Water Res – volume: 72 start-page: 1021 year: 1994 end-page: 1027 ident: bib21 article-title: Solvent effects on liquefaction: solubilization profiles of a canadian prototype wood, populus deltoides, in the presence of different solvents publication-title: Can J Chem Eng – volume: 23 start-page: 177 year: 1984 end-page: 182 ident: bib20 article-title: Supercritical gas extraction of wood with methanol publication-title: Ind Eng Chem Prod Res Dev – year: 1971 ident: bib38 article-title: Free energy of formation of binary compounds: an atlas of charts for high-temperature chemical calculations – volume: 100 start-page: 6674 year: 2009 end-page: 6678 ident: bib6 article-title: Comparative study of liquefaction process and liquefied products from bamboo using different organic solvents publication-title: Bioresour Technol – volume: 58 start-page: 438 year: 1979 end-page: 442 ident: bib18 article-title: Alcohols as H-donor media in coal conversion. 2. Base-promoted H-donation to coal by methyl alcohol publication-title: Fuel – volume: 36 start-page: 6645 year: 2011 end-page: 6650 ident: bib1 article-title: Co-liquefaction behavior of a sub-bituminous coal and sawdust publication-title: Energy – volume: 27 start-page: 255 year: 2003 end-page: 261 ident: bib16 article-title: Reactions of supercritical alcohols with unsaturated hydrocarbons publication-title: J Supercrit Fluids – volume: 22 start-page: 635 year: 2007 end-page: 642 ident: bib44 article-title: Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water publication-title: Energy Fuels – volume: 1 start-page: 32 year: 2008 end-page: 65 ident: bib4 article-title: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies publication-title: Energy Environ Sci – volume: 28 start-page: 597 year: 2003 end-page: 606 ident: bib34 article-title: Experimental study on the direct liquefaction of Cunninghamia lanceolata in water publication-title: Energy – volume: 29 start-page: 1221 year: 2007 end-page: 1231 ident: bib7 article-title: The direct liquefaction of sawdust in tetralin publication-title: Energy Source – reference: Sun P, Heng M, Sun S, Chen J. Direct liquefaction of paulownia in hot compressed water: Influence of catalysts. Energy 35:5421–9. – volume: 45 start-page: 2687 year: 2004 end-page: 2696 ident: bib39 article-title: Poplar wood–water slurry liquefaction in the presence of formic acid catalyst publication-title: Energ Convers Manag – volume: 53 start-page: 171 year: 1998 end-page: 181 ident: bib15 article-title: The catalytic liquefaction of coal in the presence of ethanol publication-title: Fuel Proc Technol – volume: 31 start-page: 667 year: 2008 end-page: 677 ident: bib29 article-title: Direct liquefaction of biomass publication-title: Chem Eng Technol – volume: 23 start-page: 363 year: 2001 end-page: 368 ident: bib8 article-title: Liquefaction of biomass by supercritical gas extraction publication-title: Energy Source – volume: 24 start-page: 304 year: 1985 end-page: 311 ident: bib14 article-title: Hydrogen-donor solvents in biomass liquefaction publication-title: Ind Eng Chem Proc Des Dev – volume: 39 start-page: 685 year: 1998 end-page: 690 ident: bib3 article-title: Yields of oil products from thermochemical biomass conversion processes publication-title: Energy Convers Manag – volume: 101 start-page: 2860 year: 2010 end-page: 2866 ident: bib24 article-title: The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol publication-title: Bioresour Technol – volume: 27 start-page: 562 year: 2009 end-page: 567 ident: bib41 article-title: Comparison of the pyrolysis behavior of lignins from different tree species publication-title: Biotechnol Adv – start-page: 511 year: 2008 end-page: 518 ident: bib32 article-title: Thermal effects on hydrothermal biomass liquefaction publication-title: Biotechnology for fuels and chemicals – volume: 37 start-page: 11677 year: 2012 end-page: 11690 ident: bib33 article-title: High-yield hydrogen production from glucose by supercritical water gasification without added catalyst publication-title: Int J Hydrogen Energy – volume: 49 start-page: 0073 year: 2003 end-page: 0078 ident: bib31 article-title: Comparison of the decomposition behaviors of hardwood and softwood in supercritical methanol publication-title: J Wood Sci – volume: 40 start-page: 3058 year: 1964 end-page: 3066 ident: bib10 article-title: Dielectric constant of hydrogen bonded liquids. III. Superheated alcohols publication-title: J Chem Phys – volume: 119 start-page: 7931 year: 2003 end-page: 7942 ident: bib11 article-title: Dielectric relaxation of lower alcohols in the whole fluid phase publication-title: J Chem Phys – volume: 55 start-page: 807 year: 2009 end-page: 819 ident: bib25 article-title: Production of bio-crude from forestry waste by hydro-liquefaction in sub-/super-critical methanol publication-title: AIChE J – volume: 18 start-page: 234 year: 2003 end-page: 241 ident: bib12 article-title: Low-temperature hydrothermal treatment of biomass: effect of reaction parameters on products and boiling point distributions publication-title: Energy Fuels – volume: 36 start-page: 2142 year: 2011 end-page: 2150 ident: bib35 article-title: Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water publication-title: Energy – volume: 41 start-page: 633 year: 2000 end-page: 646 ident: bib2 article-title: Mechanisms of liquefaction and pyrolysis reactions of biomass publication-title: Energy Convers Manag – volume: 36 start-page: 6406 year: 2011 end-page: 6412 ident: bib9 article-title: Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents publication-title: Energy – volume: 22 start-page: 1371 year: 2008 end-page: 1379 ident: bib28 article-title: Towards a lignincellulosic biorefinery: direct one-step conversion of lignin to hydrogen-enriched biofuel publication-title: Energy Fuels – volume: 5 start-page: 1602 year: 2012 end-page: 1609 ident: bib36 article-title: Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen publication-title: ChemSusChem – volume: 29 start-page: 1731 year: 2004 end-page: 1741 ident: bib42 article-title: A comparative experimental study on the liquefaction of wood publication-title: Energy – volume: 29 start-page: 1 year: 2004 end-page: 29 ident: bib13 article-title: Corrosion in high-temperature and supercritical water and aqueous solutions: a review publication-title: J Supercrit Fluids – volume: 58 start-page: 433 year: 1979 end-page: 437 ident: bib17 article-title: Alcohols as H-donor media in coal conversion. 1. Base-promoted H-donation to coal by isopropyl alcohol publication-title: Fuel – volume: 49 start-page: 3498 year: 2008 end-page: 3504 ident: bib5 article-title: Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks publication-title: Energy Convers Manag – volume: 24 start-page: 2071 year: 2010 end-page: 2077 ident: bib26 article-title: Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol publication-title: Energy Fuels – reference: Jena U, Das KC, Kastner JR. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour Technol 102:6221–9. – volume: 97 start-page: 90 year: 2006 end-page: 98 ident: bib40 article-title: Hydrothermal upgrading of biomass: effect of K publication-title: Bioresour Technol – volume: 92 start-page: 147 year: 2011 end-page: 153 ident: bib27 article-title: Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol publication-title: Fuel Proc Technol – volume: 86 start-page: 1781 year: 2007 end-page: 1788 ident: bib37 article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis publication-title: Fuel – volume: 52 start-page: 527 year: 2006 end-page: 532 ident: bib22 article-title: Liquefaction of beech wood in various supercritical alcohols publication-title: J Wood Sci – volume: 32 start-page: 2081 year: 2007 end-page: 2088 ident: bib19 article-title: Sub- and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture publication-title: Energy – volume: 18 start-page: 234 year: 2003 ident: 10.1016/j.energy.2013.06.049_bib12 article-title: Low-temperature hydrothermal treatment of biomass: effect of reaction parameters on products and boiling point distributions publication-title: Energy Fuels doi: 10.1021/ef030133g – volume: 49 start-page: 0073 year: 2003 ident: 10.1016/j.energy.2013.06.049_bib31 article-title: Comparison of the decomposition behaviors of hardwood and softwood in supercritical methanol publication-title: J Wood Sci – volume: 119 start-page: 7931 year: 2003 ident: 10.1016/j.energy.2013.06.049_bib11 article-title: Dielectric relaxation of lower alcohols in the whole fluid phase publication-title: J Chem Phys – volume: 52 start-page: 527 year: 2006 ident: 10.1016/j.energy.2013.06.049_bib22 article-title: Liquefaction of beech wood in various supercritical alcohols publication-title: J Wood Sci – volume: 97 start-page: 90 year: 2006 ident: 10.1016/j.energy.2013.06.049_bib40 article-title: Hydrothermal upgrading of biomass: effect of K2CO3 concentration and biomass/water ratio on products distribution publication-title: Bioresour Technol doi: 10.1016/j.biortech.2005.02.051 – ident: 10.1016/j.energy.2013.06.049_bib30 doi: 10.1016/j.biortech.2011.02.057 – volume: 39 start-page: 685 year: 1998 ident: 10.1016/j.energy.2013.06.049_bib3 article-title: Yields of oil products from thermochemical biomass conversion processes publication-title: Energy Convers Manag doi: 10.1016/S0196-8904(97)00047-2 – volume: 27 start-page: 255 year: 2003 ident: 10.1016/j.energy.2013.06.049_bib16 article-title: Reactions of supercritical alcohols with unsaturated hydrocarbons publication-title: J Supercrit Fluids doi: 10.1016/S0896-8446(02)00269-3 – volume: 31 start-page: 667 year: 2008 ident: 10.1016/j.energy.2013.06.049_bib29 article-title: Direct liquefaction of biomass publication-title: Chem Eng Technol doi: 10.1002/ceat.200800077 – start-page: 511 year: 2008 ident: 10.1016/j.energy.2013.06.049_bib32 article-title: Thermal effects on hydrothermal biomass liquefaction – volume: 29 start-page: 1221 year: 2007 ident: 10.1016/j.energy.2013.06.049_bib7 article-title: The direct liquefaction of sawdust in tetralin publication-title: Energy Source doi: 10.1080/15567030600820070 – volume: 1 start-page: 32 year: 2008 ident: 10.1016/j.energy.2013.06.049_bib4 article-title: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies publication-title: Energy Environ Sci doi: 10.1039/b810100k – volume: 49 start-page: 3498 year: 2008 ident: 10.1016/j.energy.2013.06.049_bib5 article-title: Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2008.08.009 – volume: 24 start-page: 304 year: 1985 ident: 10.1016/j.energy.2013.06.049_bib14 article-title: Hydrogen-donor solvents in biomass liquefaction publication-title: Ind Eng Chem Proc Des Dev doi: 10.1021/i200029a015 – volume: 37 start-page: 11677 year: 2012 ident: 10.1016/j.energy.2013.06.049_bib33 article-title: High-yield hydrogen production from glucose by supercritical water gasification without added catalyst publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.05.087 – volume: 28 start-page: 597 year: 2003 ident: 10.1016/j.energy.2013.06.049_bib34 article-title: Experimental study on the direct liquefaction of Cunninghamia lanceolata in water publication-title: Energy doi: 10.1016/S0360-5442(02)00178-0 – volume: 101 start-page: 2860 year: 2010 ident: 10.1016/j.energy.2013.06.049_bib24 article-title: The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol publication-title: Bioresour Technol doi: 10.1016/j.biortech.2009.10.084 – volume: 36 start-page: 2142 year: 2011 ident: 10.1016/j.energy.2013.06.049_bib35 article-title: Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water publication-title: Energy doi: 10.1016/j.energy.2010.05.029 – volume: 36 start-page: 6406 year: 2011 ident: 10.1016/j.energy.2013.06.049_bib9 article-title: Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents publication-title: Energy doi: 10.1016/j.energy.2011.09.031 – volume: 23 start-page: 363 year: 2001 ident: 10.1016/j.energy.2013.06.049_bib8 article-title: Liquefaction of biomass by supercritical gas extraction publication-title: Energy Source doi: 10.1080/009083101300110904 – volume: 22 start-page: 1371 year: 2008 ident: 10.1016/j.energy.2013.06.049_bib28 article-title: Towards a lignincellulosic biorefinery: direct one-step conversion of lignin to hydrogen-enriched biofuel publication-title: Energy Fuels doi: 10.1021/ef700631w – volume: 29 start-page: 1731 year: 2004 ident: 10.1016/j.energy.2013.06.049_bib42 article-title: A comparative experimental study on the liquefaction of wood publication-title: Energy doi: 10.1016/j.energy.2004.03.096 – volume: 23 start-page: 177 year: 1984 ident: 10.1016/j.energy.2013.06.049_bib20 article-title: Supercritical gas extraction of wood with methanol publication-title: Ind Eng Chem Prod Res Dev doi: 10.1021/i300013a035 – volume: 92 start-page: 147 year: 2011 ident: 10.1016/j.energy.2013.06.049_bib27 article-title: Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol publication-title: Fuel Proc Technol doi: 10.1016/j.fuproc.2010.09.018 – volume: 32 start-page: 2081 year: 2007 ident: 10.1016/j.energy.2013.06.049_bib19 article-title: Sub- and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture publication-title: Energy doi: 10.1016/j.energy.2007.04.011 – volume: 55 start-page: 807 year: 2009 ident: 10.1016/j.energy.2013.06.049_bib25 article-title: Production of bio-crude from forestry waste by hydro-liquefaction in sub-/super-critical methanol publication-title: AIChE J doi: 10.1002/aic.11701 – volume: 72 start-page: 1021 year: 1994 ident: 10.1016/j.energy.2013.06.049_bib21 article-title: Solvent effects on liquefaction: solubilization profiles of a canadian prototype wood, populus deltoides, in the presence of different solvents publication-title: Can J Chem Eng doi: 10.1002/cjce.5450720612 – volume: 40 start-page: 3058 year: 1964 ident: 10.1016/j.energy.2013.06.049_bib10 article-title: Dielectric constant of hydrogen bonded liquids. III. Superheated alcohols publication-title: J Chem Phys doi: 10.1063/1.1724948 – volume: 100 start-page: 6674 year: 2009 ident: 10.1016/j.energy.2013.06.049_bib6 article-title: Comparative study of liquefaction process and liquefied products from bamboo using different organic solvents publication-title: Bioresour Technol doi: 10.1016/j.biortech.2009.07.045 – volume: 27 start-page: 562 year: 2009 ident: 10.1016/j.energy.2013.06.049_bib41 article-title: Comparison of the pyrolysis behavior of lignins from different tree species publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2009.04.010 – volume: 22 start-page: 635 year: 2007 ident: 10.1016/j.energy.2013.06.049_bib44 article-title: Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water publication-title: Energy Fuels doi: 10.1021/ef700424k – volume: 53 start-page: 171 year: 1998 ident: 10.1016/j.energy.2013.06.049_bib15 article-title: The catalytic liquefaction of coal in the presence of ethanol publication-title: Fuel Proc Technol doi: 10.1016/S0378-3820(97)00046-5 – volume: 41 start-page: 633 year: 2000 ident: 10.1016/j.energy.2013.06.049_bib2 article-title: Mechanisms of liquefaction and pyrolysis reactions of biomass publication-title: Energy Convers Manag doi: 10.1016/S0196-8904(99)00130-2 – year: 1971 ident: 10.1016/j.energy.2013.06.049_bib38 – volume: 45 start-page: 2687 year: 2004 ident: 10.1016/j.energy.2013.06.049_bib39 article-title: Poplar wood–water slurry liquefaction in the presence of formic acid catalyst publication-title: Energ Convers Manag doi: 10.1016/j.enconman.2003.12.010 – volume: 29 start-page: 1 year: 2004 ident: 10.1016/j.energy.2013.06.049_bib13 article-title: Corrosion in high-temperature and supercritical water and aqueous solutions: a review publication-title: J Supercrit Fluids doi: 10.1016/S0896-8446(03)00031-7 – volume: 42 start-page: 1571 year: 2008 ident: 10.1016/j.energy.2013.06.049_bib23 article-title: Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water publication-title: Water Res doi: 10.1016/j.watres.2007.11.007 – volume: 58 start-page: 433 year: 1979 ident: 10.1016/j.energy.2013.06.049_bib17 article-title: Alcohols as H-donor media in coal conversion. 1. Base-promoted H-donation to coal by isopropyl alcohol publication-title: Fuel doi: 10.1016/0016-2361(79)90084-X – volume: 36 start-page: 6645 year: 2011 ident: 10.1016/j.energy.2013.06.049_bib1 article-title: Co-liquefaction behavior of a sub-bituminous coal and sawdust publication-title: Energy doi: 10.1016/j.energy.2011.08.046 – volume: 86 start-page: 1781 year: 2007 ident: 10.1016/j.energy.2013.06.049_bib37 article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis publication-title: Fuel doi: 10.1016/j.fuel.2006.12.013 – ident: 10.1016/j.energy.2013.06.049_bib43 doi: 10.1016/j.energy.2010.07.005 – volume: 58 start-page: 438 year: 1979 ident: 10.1016/j.energy.2013.06.049_bib18 article-title: Alcohols as H-donor media in coal conversion. 2. Base-promoted H-donation to coal by methyl alcohol publication-title: Fuel doi: 10.1016/0016-2361(79)90085-1 – volume: 5 start-page: 1602 year: 2012 ident: 10.1016/j.energy.2013.06.049_bib36 article-title: Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen publication-title: ChemSusChem doi: 10.1002/cssc.201100699 – volume: 24 start-page: 2071 year: 2010 ident: 10.1016/j.energy.2013.06.049_bib26 article-title: Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol publication-title: Energy Fuels doi: 10.1021/ef901241e |
SSID | ssj0005899 |
Score | 2.4975061 |
Snippet | In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 173 |
SubjectTerms | Applied sciences Biocrude Biomass carbon catalysts Conversion Energy Ethanol Ethyl alcohol Exact sciences and technology feedstocks heat hydrogen Hydrogen donor Lignocellulose Lignocellulosic biomass Liquefaction molecular weight Natural energy nitrogen oxygen Process parameters Supercritical ethanol temperature Wood |
Title | Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters |
URI | https://dx.doi.org/10.1016/j.energy.2013.06.049 https://www.proquest.com/docview/1464558409 https://www.proquest.com/docview/1513427238 https://www.proquest.com/docview/2000046800 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbW7gFeEAymdUBlJF5NGyeOHd6maVMHYi-l0t4s13ZGUZdES_O6v507x9k08WMSr9ZZcnznu8_xd3eEfLQFwI61Eoxb6xjgf8eUMIbNjeOpVX4tw1PMt8t8scq-XImrPXI65MIgrTL6_t6nB28dR2ZxN2fNZjNbgu8FvJFxfJAB3J2OyD6HaK_GZP_k4uvi8oHpoUIbSZRnOGHIoAs0Lx9S7JDjlYZCnlhU888RalSaGqmTpoXdK_u2F7958BCWzl-SFxFP0pN-ya_Inq8OyLMh3bg9IIdnD6lsIBjPcvua3C27xt_a2OqAevyHXm-paampqK9-BGoAxbf37oYCtKXbzXVV44_-bluDbilm7gP0hnFYWUyQ-Ewvhq4ntC5pE62ANn0-AsVK4zfIwGnfkNX52ffTBYvdGJjNRLFjTpgyyR0APGHw_ZYr4R2AobXiTinrPHfJ3Mg8U0YaL2UBviAT0mcqF6nzZXpIxlVd-SNCy3lincyEcDYFffgiM3NeOF6mRuWJMxOSDhrQNpYqx44ZWz1w0n7qXm8a9aaRmpcVE8LuZzV9qY4n5OWgXP3I5DREkydmHoEtaHMNflivlhyr9AWsm6gJmT4ykPuVcCkTLBY4IR8Gi9FwklFrpvJ11-IlDLYEL9z_kBFJmnFsFPd3GR7ufTncBI7_-wvfkuc89P0oWCLekfHutvPvAX3t1lMy-nSXTOMZ-wU4wDAJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELegPLCXaWNDdB_Mk_ZqtXHs2NkbQqB2QF9KJd4sN3ZYp5JEpH3d3747xwGhfSDt1TpLju98_l38uztCvhQ5wI6llowXhWOA_x3T0lo2to6nhfZLFZ5irmbZZCG-3cibHXLa58IgrTL6_s6nB28dR0ZxN0fNajWag-8FvCE4PsgA7k53yZ7AptYDsncyvZjMHpkeOrSRRHmGE_oMukDz8iHFDjleaSjkiUU1_3xD7Za2RuqkbWH3yq7txW8ePFxL56_Iy4gn6Um35Ndkx1cHZL9PN24PyOHZYyobCMaz3L4hP-fbxt8XsdUB9fgPvV5T21JbUV99D9QAim_v2zsK0JauV7dVjT_6t-sadEsxcx-gN4zDymKCxFc67bue0LqkTbQC2nT5CBQrjd8hA6d9SxbnZ9enExa7MbBCyHzDnLRlkjkAeNLi-y3X0jsAQ0vNndaF89wlY6syoa2yXqkcfIGQygudydT5Mj0kg6qu_BGh5TgpnBJSuiIFffhc2DHPHS9Tq7PE2SFJew2YIpYqx44Za9Nz0n6YTm8G9WaQmifyIWEPs5quVMcz8qpXrnlicgZuk2dmHoEtGHsLftgs5hyr9AWsm-ghOX5iIA8r4UolWCxwSD73FmPgJKPWbOXrbYtBGGwJBtz_kJFJKjg2ivu7DA9xXwaRwLv__sJPZH9yfXVpLqezi_fkBQ89QHKWyA9ksLnf-o-AxDbL43jSfgFc7THv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supercritical+ethanol+as+an+enhanced+medium+for+lignocellulosic+biomass+liquefaction%3A+Influence+of+physical+process+parameters&rft.jtitle=Energy+%28Oxford%29&rft.au=Brand%2C+Steffen&rft.au=Susanti%2C+Ratna+Frida&rft.au=Kim%2C+Seok+Ki&rft.au=Lee%2C+Hong-shik&rft.date=2013-09-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=59&rft.spage=173&rft.epage=182&rft_id=info:doi/10.1016%2Fj.energy.2013.06.049&rft.externalDocID=S0360544213005483 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |