Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment

[Display omitted] •The effects of the combined method on HBS geomechanical properties were examined.•Mechanical behavior depended on dissociation ratios and GH saturations.•Mechanical strength of the replaced HBSs was significantly recovered.•The combination of depressurization and replacement incre...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 277; p. 115569
Main Authors Lee, Yohan, Deusner, Christian, Kossel, Elke, Choi, Wonjung, Seo, Yongwon, Haeckel, Matthias
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2020
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2020.115569

Cover

Abstract [Display omitted] •The effects of the combined method on HBS geomechanical properties were examined.•Mechanical behavior depended on dissociation ratios and GH saturations.•Mechanical strength of the replaced HBSs was significantly recovered.•The combination of depressurization and replacement increased total CH4 recovery.•Optimum replacement occurred at a dissociation ratio of 20% with CO2 injection. This study analyzed the potential effects of gas hydrate (GH) exploitation on the geomechanical properties of hydrate-bearing sediment (HBS) by examining the combined effects of depressurization and CO2 injection using triaxial compression tests. The stress-strain behavior of the initial CH4 HBS showed strong hardening-softening characteristics and high peak strength, whereas milder hardening-softening behavior and reduced peak strength were observed after partial (20, 40, 60, and 80%) or complete GH dissociation (100%), indicating that the mechanical behavior clearly depended on dissociation ratios and GH saturations. In response to CO2 injection in partially dissociated HBS, subsequent CH4–CO2 hydrate exchange, and secondary CO2 hydrate formation, the mechanical strength of the replaced HBS recovered significantly, and stress-strain characteristics were similar to that of the 20% dissociated CH4 HBS. Although total CH4 recovery was increased by the combination of depressurization and replacement, optimum recovery was found at a dissociation ratio of 20% followed by replacement because production by replacement decreased as the dissociation ratio increased. These results contribute to the understanding of how depressurization and CO2 injection schemes may be combined to optimize energy recovery and CO2 sequestration. In particular, this research demonstrates that CH4–CO2 hydrate exchange and secondary GH formation are suitable methods for controlling and maintaining the mechanical stability of HBSs.
AbstractList [Display omitted] •The effects of the combined method on HBS geomechanical properties were examined.•Mechanical behavior depended on dissociation ratios and GH saturations.•Mechanical strength of the replaced HBSs was significantly recovered.•The combination of depressurization and replacement increased total CH4 recovery.•Optimum replacement occurred at a dissociation ratio of 20% with CO2 injection. This study analyzed the potential effects of gas hydrate (GH) exploitation on the geomechanical properties of hydrate-bearing sediment (HBS) by examining the combined effects of depressurization and CO2 injection using triaxial compression tests. The stress-strain behavior of the initial CH4 HBS showed strong hardening-softening characteristics and high peak strength, whereas milder hardening-softening behavior and reduced peak strength were observed after partial (20, 40, 60, and 80%) or complete GH dissociation (100%), indicating that the mechanical behavior clearly depended on dissociation ratios and GH saturations. In response to CO2 injection in partially dissociated HBS, subsequent CH4–CO2 hydrate exchange, and secondary CO2 hydrate formation, the mechanical strength of the replaced HBS recovered significantly, and stress-strain characteristics were similar to that of the 20% dissociated CH4 HBS. Although total CH4 recovery was increased by the combination of depressurization and replacement, optimum recovery was found at a dissociation ratio of 20% followed by replacement because production by replacement decreased as the dissociation ratio increased. These results contribute to the understanding of how depressurization and CO2 injection schemes may be combined to optimize energy recovery and CO2 sequestration. In particular, this research demonstrates that CH4–CO2 hydrate exchange and secondary GH formation are suitable methods for controlling and maintaining the mechanical stability of HBSs.
This study analyzed the potential effects of gas hydrate (GH) exploitation on the geomechanical properties of hydrate-bearing sediment (HBS) by examining the combined effects of depressurization and CO₂ injection using triaxial compression tests. The stress-strain behavior of the initial CH₄ HBS showed strong hardening-softening characteristics and high peak strength, whereas milder hardening-softening behavior and reduced peak strength were observed after partial (20, 40, 60, and 80%) or complete GH dissociation (100%), indicating that the mechanical behavior clearly depended on dissociation ratios and GH saturations. In response to CO₂ injection in partially dissociated HBS, subsequent CH₄–CO₂ hydrate exchange, and secondary CO₂ hydrate formation, the mechanical strength of the replaced HBS recovered significantly, and stress-strain characteristics were similar to that of the 20% dissociated CH₄ HBS. Although total CH₄ recovery was increased by the combination of depressurization and replacement, optimum recovery was found at a dissociation ratio of 20% followed by replacement because production by replacement decreased as the dissociation ratio increased. These results contribute to the understanding of how depressurization and CO₂ injection schemes may be combined to optimize energy recovery and CO₂ sequestration. In particular, this research demonstrates that CH₄–CO₂ hydrate exchange and secondary GH formation are suitable methods for controlling and maintaining the mechanical stability of HBSs.
ArticleNumber 115569
Author Choi, Wonjung
Kossel, Elke
Seo, Yongwon
Lee, Yohan
Haeckel, Matthias
Deusner, Christian
Author_xml – sequence: 1
  givenname: Yohan
  surname: Lee
  fullname: Lee, Yohan
  organization: Department of Chemical and Biological Engineering, Colorado School of Mines, Golden 80401, CO, USA
– sequence: 2
  givenname: Christian
  surname: Deusner
  fullname: Deusner, Christian
  organization: GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
– sequence: 3
  givenname: Elke
  surname: Kossel
  fullname: Kossel, Elke
  organization: GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
– sequence: 4
  givenname: Wonjung
  surname: Choi
  fullname: Choi, Wonjung
  organization: School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
– sequence: 5
  givenname: Yongwon
  surname: Seo
  fullname: Seo, Yongwon
  email: ywseo@unist.ac.kr
  organization: School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
– sequence: 6
  givenname: Matthias
  surname: Haeckel
  fullname: Haeckel, Matthias
  email: mhaeckel@geomar.de
  organization: GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
BookMark eNqFkc-K2zAQh0XJQrPZfYVFx16cSrLkP9BDl7DbBAK9tGehSONEwZZcSV42fYG-dm2cXnrJaWBmvt_AN_do4bwDhJ4oWVNCi8_nterBQThe1oywsUmFKOoPaEmrkmU1pdUCLUlOiowVtP6I7mM8E0IYZWSJ_uxc0w7gNGDf4M2W49PFBJUAw3vfeptUst7hIVp3xAb6ADEOwf6e28oZHKBvlYYOXMIdpJM3EY-jDvRJOatVi2MK4I7pNF24pmcHUGGKjGDshD6gu0a1ER6vdYV-vr782Gyz_fdvu83zPtNc1CkzTICgQinCK64qURW5ZmacKVZpcRBcN2M5aFEbWlFuOOFQ6IZUJeelhjJfoU9zbh_8rwFikp2NGtpWOfBDlIyXZcHyPJ9Wv8yrOvgYAzRSX3WkoGwrKZGTf3mW__zLyb-c_Y948R_eB9upcLkNfp1BGD28WQgyajt9yNgAOknj7a2Iv8K5qcM
CitedBy_id crossref_primary_10_1016_j_cjche_2023_10_014
crossref_primary_10_1016_j_rser_2023_114045
crossref_primary_10_1016_j_jclepro_2024_143954
crossref_primary_10_1021_acs_energyfuels_3c04911
crossref_primary_10_1016_j_apenergy_2024_125131
crossref_primary_10_1021_acs_energyfuels_3c00715
crossref_primary_10_1021_acs_energyfuels_4c01534
crossref_primary_10_1016_j_petrol_2022_111121
crossref_primary_10_1016_j_jgsce_2023_205020
crossref_primary_10_3390_en18040975
crossref_primary_10_1016_j_jgsce_2024_205345
crossref_primary_10_1016_j_apenergy_2024_123952
crossref_primary_10_3390_jmse12101861
crossref_primary_10_1016_j_energy_2021_120047
crossref_primary_10_1016_j_energy_2021_120960
crossref_primary_10_1016_j_energy_2024_133130
crossref_primary_10_1016_j_petsci_2024_01_008
crossref_primary_10_1016_j_jngse_2022_104852
crossref_primary_10_3390_jmse12050840
crossref_primary_10_1016_j_rser_2024_114714
crossref_primary_10_1021_acs_energyfuels_4c04614
crossref_primary_10_1016_j_cej_2022_140937
crossref_primary_10_1002_ese3_1016
crossref_primary_10_1016_j_compgeo_2024_106870
crossref_primary_10_1016_j_jgsce_2024_205434
crossref_primary_10_1016_j_cej_2022_140981
crossref_primary_10_1016_j_apenergy_2022_119971
crossref_primary_10_1080_1064119X_2024_2437563
crossref_primary_10_1016_j_enggeo_2023_107359
crossref_primary_10_1016_j_apenergy_2022_119891
crossref_primary_10_1016_j_cej_2023_144680
crossref_primary_10_1016_j_jngse_2022_104686
crossref_primary_10_1088_1361_6463_ad6dcf
crossref_primary_10_1016_j_fuel_2024_134123
crossref_primary_10_1016_j_rockmb_2024_100114
crossref_primary_10_1016_j_energy_2024_130631
crossref_primary_10_1016_j_cej_2023_146216
crossref_primary_10_1016_j_compgeo_2025_107141
crossref_primary_10_1016_j_powtec_2024_119811
crossref_primary_10_1021_acs_energyfuels_4c02765
crossref_primary_10_1016_j_energy_2023_128110
crossref_primary_10_1039_D1EE02093E
crossref_primary_10_1016_j_compgeo_2024_106287
crossref_primary_10_1016_j_jgsce_2024_205521
crossref_primary_10_1016_j_jclepro_2022_131703
crossref_primary_10_1016_j_jrmge_2025_02_001
crossref_primary_10_1016_j_energy_2023_129836
crossref_primary_10_1016_j_jgsce_2023_205045
crossref_primary_10_1021_acs_energyfuels_2c02657
crossref_primary_10_1016_j_compgeo_2022_105116
crossref_primary_10_3390_pr11072075
crossref_primary_10_1016_j_fluid_2022_113562
crossref_primary_10_15446_dyna_v89n222_101826
crossref_primary_10_1016_j_energy_2024_131998
crossref_primary_10_1016_j_fuel_2021_122873
crossref_primary_10_1016_j_geoen_2024_213290
crossref_primary_10_3390_en15155634
crossref_primary_10_1016_j_molliq_2022_120951
crossref_primary_10_1021_acs_energyfuels_0c04138
crossref_primary_10_1007_s11440_025_02583_1
crossref_primary_10_1021_acs_energyfuels_4c01448
crossref_primary_10_1016_j_energy_2021_122153
crossref_primary_10_1016_j_energy_2022_125127
crossref_primary_10_1088_1742_6596_2834_1_012158
crossref_primary_10_1016_j_geoen_2023_212412
crossref_primary_10_1021_acs_energyfuels_4c05292
Cites_doi 10.1016/j.apenergy.2015.04.012
10.1061/(ASCE)1090-0241(2008)134:4(547)
10.1016/j.jngse.2016.03.012
10.1016/j.apenergy.2015.04.065
10.1130/0091-7613(2001)029<0867:VOOGHF>2.0.CO;2
10.1021/jp004389o
10.1029/2019GC008458
10.1007/s10596-018-9769-x
10.1139/cgj-2017-0241
10.1016/j.petrol.2016.05.009
10.3390/en5072112
10.1002/2017GC006901
10.1021/j100313a018
10.1038/s41467-018-03176-1
10.1029/2006JB004484
10.1016/j.cej.2016.09.031
10.1029/2008RG000279
10.1039/C0EE00203H
10.1029/2009JB006284
10.2138/am.2014.4620
10.1021/acs.jpcc.6b09460
10.1002/2013JB010233
10.1002/aic.14687
10.1016/j.apenergy.2018.06.088
10.1680/gr.14.00011
10.1016/j.enconman.2017.08.023
10.1016/j.cej.2014.02.045
10.1016/j.sandf.2018.05.007
10.1016/j.apenergy.2014.12.061
10.1016/j.marpetgeo.2012.02.010
10.17736/ijope.2016.jc631
10.1021/je00001a020
10.1016/j.apenergy.2015.11.009
10.1021/acs.est.5b01640
10.1038/s41467-017-02550-9
10.1002/2017JB014154
10.1016/j.apenergy.2018.06.062
10.1016/j.marpetgeo.2013.11.015
10.1016/j.apenergy.2016.03.101
10.1016/j.cej.2018.10.032
10.3390/en5072449
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2020.115569
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_115569
S0306261920310813
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
ZY4
7S9
ACLOT
EFKBS
L.6
~HD
ID FETCH-LOGICAL-c459t-d25e515aa0484a85863c2dc45a28c5b54cfc5bbc59d1814d404e6cf087447ce73
IEDL.DBID AIKHN
ISSN 0306-2619
IngestDate Sat Sep 27 18:57:54 EDT 2025
Tue Jul 01 02:53:53 EDT 2025
Thu Apr 24 23:01:04 EDT 2025
Fri Feb 23 02:47:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CO2 sequestration
Gas hydrate
Replacement
Mechanical strength
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-d25e515aa0484a85863c2dc45a28c5b54cfc5bbc59d1814d404e6cf087447ce73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://oceanrep.geomar.de/id/eprint/50293/1/Lee_manuscript_AE_marked.docx
PQID 2477623337
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2477623337
crossref_citationtrail_10_1016_j_apenergy_2020_115569
crossref_primary_10_1016_j_apenergy_2020_115569
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_115569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sultaniya, Priest, Clayton (b0140) 2017; 55
Teixeira Parente, Mattis, Gupta, Deusner, Wohlmuth (b0220) 2019; 23
Li, Xu, Zhang, Ruan, Li, Wang (b0050) 2016; 172
Boswell, Collett (b0025) 2011; 4
Lee, Choi, Seo, Lee, Lee, Seo (b0080) 2018; 228
Chong, Yang, Babu, Linga, Li (b0035) 2016; 162
Hyodo, Li, Yoneda, Nakata, Yoshimoto, Nishimura (b0125) 2014; 51
Wu L, Grozic JL. Laboratory analysis of carbon dioxide hydrate-bearing sands. 2008;134:547–50.
Wallmann, Riedel, Hong, Patton, Hubbard, Pape (b0065) 2018; 9
Sloan, Koh (b0005) 2008
Song, Zhu, Liu, Li, Lu, Shen (b0130) 2016; 147
Udachin, Ratcliffe, Ripmeester (b0190) 2001; 105
Choi, Lee, Mok, Lee, Lee, Seo (b0020) 2019; 358
Hyodo, Li, Yoneda, Nakata, Yoshimoto, Kajiyama (b0165) 2014; 99
Yun, Santamarina, Ruppel (b0085) 2007; 112
Hyodo, Li, Yoneda, Nakata, Yoshimoto, Nishimura (b0120) 2013; 118
Elger, Berndt, Rüpke, Krastel, Gross, Geissler (b0060) 2018; 9
Koh, Ahn, Kang, Park, Lee, Kim (b0205) 2015; 61
Li, Liu, Zhu, Chen, Song, Li (b0110) 2016; 162
Gupta, Deusner, Haeckel, Helmig, Wohlmuth (b0180) 2017; 18
Haeckel, Bialas, Klaucke, Wallmann, Bohrmann, Schwalenberg (b0045) 2015; 15
Lee, Lee, Lee, Seo (b0010) 2014; 246
Adisasmito, Frank, Sloan (b0200) 1991; 36
Iwai, Konishi, Saimyou, Kimoto, Oka (b0150) 2018; 58
Lee, Choi, Shin, Seo (b0075) 2017; 150
Wang, Feng, Li, Zhang, Han (b0145) 2018; 226
Wallmann, Pinero, Burwicz, Haeckel, Hensen, Dale (b0030) 2012; 5
Liu, Luo, Li, Song, Zhu, Liu (b0170) 2016; 32
Schoderbek, Boswell (b0040) 2011; 304
Falenty, Qin, Salamatin, Yang, Kuhs (b0100) 2016; 120
Lee, Seo, Ahn, Lee, Lee, Kim (b0105) 2017; 308
Santamarina, Ruppel (b0115) 2010
Miyazaki K, Oikawa Y, Haneda H, Yamaguchi T. Triaxial compressive property of artificial CO2-hydrate sand. ISOPE-16-26-3-315. 2016;26:315–20.
Ripmeester, Ratcliffe (b0195) 1988; 92
Waite, Santamarina, Cortes, Dugan, Espinoza, Germaine (b0090) 2009; 47
Lee, Lee, Lee, Seo (b0015) 2016; 163
Deusner C, Freise M, Gupta S, Kossel E, Anbergen H, Wille T, et al. Advanced mechanical testing of gas hydrate-bearing sediments. In: 19th international conference on soil mechanics and geotechnical engineering. Seoul, Republic of Korea; 2017.
Deusner, Bigalke, Kossel, Haeckel (b0175) 2012; 5
Hyodo, Wu, Nakashima, Kajiyama, Nakata (b0135) 2017; 122
Priest, Rees, Clayton (b0225) 2009; 114
Tohidi, Anderson, Clennell, Burgass, Biderkab (b0230) 2001; 29
Lee, Kim, Lee, Lee, Seo (b0095) 2015; 150
Deusner, Gupta, Xie, Leung, Uchida, Kossel (b0215) 2019; 20
McConnell, Zhang, Boswell (b0055) 2012; 34
Lee, Kim, Seo (b0070) 2015; 49
Lade, Trads (b0210) 2014; 1
Haeckel (10.1016/j.apenergy.2020.115569_b0045) 2015; 15
Lee (10.1016/j.apenergy.2020.115569_b0015) 2016; 163
Sloan (10.1016/j.apenergy.2020.115569_b0005) 2008
Koh (10.1016/j.apenergy.2020.115569_b0205) 2015; 61
Hyodo (10.1016/j.apenergy.2020.115569_b0120) 2013; 118
Lee (10.1016/j.apenergy.2020.115569_b0075) 2017; 150
Lee (10.1016/j.apenergy.2020.115569_b0105) 2017; 308
Li (10.1016/j.apenergy.2020.115569_b0110) 2016; 162
10.1016/j.apenergy.2020.115569_b0160
Tohidi (10.1016/j.apenergy.2020.115569_b0230) 2001; 29
Choi (10.1016/j.apenergy.2020.115569_b0020) 2019; 358
Lee (10.1016/j.apenergy.2020.115569_b0070) 2015; 49
10.1016/j.apenergy.2020.115569_b0185
Udachin (10.1016/j.apenergy.2020.115569_b0190) 2001; 105
Waite (10.1016/j.apenergy.2020.115569_b0090) 2009; 47
Lee (10.1016/j.apenergy.2020.115569_b0080) 2018; 228
Liu (10.1016/j.apenergy.2020.115569_b0170) 2016; 32
10.1016/j.apenergy.2020.115569_b0155
Deusner (10.1016/j.apenergy.2020.115569_b0215) 2019; 20
Wallmann (10.1016/j.apenergy.2020.115569_b0030) 2012; 5
Chong (10.1016/j.apenergy.2020.115569_b0035) 2016; 162
Wallmann (10.1016/j.apenergy.2020.115569_b0065) 2018; 9
Hyodo (10.1016/j.apenergy.2020.115569_b0135) 2017; 122
Li (10.1016/j.apenergy.2020.115569_b0050) 2016; 172
Hyodo (10.1016/j.apenergy.2020.115569_b0125) 2014; 51
Elger (10.1016/j.apenergy.2020.115569_b0060) 2018; 9
Deusner (10.1016/j.apenergy.2020.115569_b0175) 2012; 5
Lee (10.1016/j.apenergy.2020.115569_b0095) 2015; 150
Song (10.1016/j.apenergy.2020.115569_b0130) 2016; 147
Priest (10.1016/j.apenergy.2020.115569_b0225) 2009; 114
Ripmeester (10.1016/j.apenergy.2020.115569_b0195) 1988; 92
Sultaniya (10.1016/j.apenergy.2020.115569_b0140) 2017; 55
Adisasmito (10.1016/j.apenergy.2020.115569_b0200) 1991; 36
Falenty (10.1016/j.apenergy.2020.115569_b0100) 2016; 120
Wang (10.1016/j.apenergy.2020.115569_b0145) 2018; 226
Gupta (10.1016/j.apenergy.2020.115569_b0180) 2017; 18
Lee (10.1016/j.apenergy.2020.115569_b0010) 2014; 246
Lade (10.1016/j.apenergy.2020.115569_b0210) 2014; 1
Teixeira Parente (10.1016/j.apenergy.2020.115569_b0220) 2019; 23
Iwai (10.1016/j.apenergy.2020.115569_b0150) 2018; 58
McConnell (10.1016/j.apenergy.2020.115569_b0055) 2012; 34
Santamarina (10.1016/j.apenergy.2020.115569_b0115) 2010
Hyodo (10.1016/j.apenergy.2020.115569_b0165) 2014; 99
Schoderbek (10.1016/j.apenergy.2020.115569_b0040) 2011; 304
Yun (10.1016/j.apenergy.2020.115569_b0085) 2007; 112
Boswell (10.1016/j.apenergy.2020.115569_b0025) 2011; 4
References_xml – volume: 162
  start-page: 1627
  year: 2016
  end-page: 1632
  ident: b0110
  article-title: Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods
  publication-title: Appl Energy
– volume: 15
  start-page: 6
  year: 2015
  end-page: 9
  ident: b0045
  article-title: Gas hydrate occurrences in the Black Sea–new observations from the German SUGAR project
  publication-title: Fire Ice: Methane Hydrate Newslett
– volume: 112
  year: 2007
  ident: b0085
  article-title: Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate
  publication-title: J Geophys Res Solid Earth
– volume: 120
  start-page: 27159
  year: 2016
  end-page: 27172
  ident: b0100
  article-title: Fluid composition and kinetics of the in situ replacement in CH
  publication-title: J Phys Chem C
– volume: 47
  year: 2009
  ident: b0090
  article-title: Physical properties of hydrate-bearing sediments
  publication-title: Rev Geophys
– volume: 58
  start-page: 1113
  year: 2018
  end-page: 1132
  ident: b0150
  article-title: Rate effect on the stress-strain relations of synthetic carbon dioxide hydrate-bearing sand and dissociation tests by thermal stimulation
  publication-title: Soils Found
– volume: 105
  start-page: 4200
  year: 2001
  end-page: 4204
  ident: b0190
  article-title: Structure, composition, and thermal expansion of CO
  publication-title: J Phys Chem B
– volume: 29
  start-page: 867
  year: 2001
  end-page: 870
  ident: b0230
  article-title: Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels
  publication-title: Geology
– volume: 5
  start-page: 2112
  year: 2012
  ident: b0175
  article-title: Methane production from gas hydrate deposits through injection of supercritical CO
  publication-title: Energies
– volume: 49
  start-page: 8899
  year: 2015
  end-page: 8906
  ident: b0070
  article-title: Enhanced CH
  publication-title: Environ Sci Technol
– volume: 150
  start-page: 120
  year: 2015
  end-page: 127
  ident: b0095
  article-title: CH
  publication-title: Appl Energy
– volume: 18
  start-page: 3419
  year: 2017
  end-page: 3437
  ident: b0180
  article-title: Testing a thermo-chemo-hydro-geomechanical model for gas hydrate-bearing sediments using triaxial compression laboratory experiments
  publication-title: Geochem Geophys Geosyst
– volume: 163
  start-page: 51
  year: 2016
  end-page: 59
  ident: b0015
  article-title: Enclathration of CO
  publication-title: Appl Energy
– volume: 304
  start-page: 285
  year: 2011
  end-page: 4541
  ident: b0040
  article-title: Iġnik Sikumi# 1, gas hydrate test well, successfully installed on the Alaska North Slope
  publication-title: Nat Gas Oil
– volume: 99
  start-page: 178
  year: 2014
  end-page: 183
  ident: b0165
  article-title: A comparative analysis of the mechanical behavior of carbon dioxide and methane hydrate-bearing sediments
  publication-title: Am Mineral
– volume: 308
  start-page: 50
  year: 2017
  end-page: 58
  ident: b0105
  article-title: CH
  publication-title: Chem Eng J
– volume: 150
  start-page: 356
  year: 2017
  end-page: 364
  ident: b0075
  article-title: CH
  publication-title: Energy Convers Manage
– volume: 162
  start-page: 1633
  year: 2016
  end-page: 1652
  ident: b0035
  article-title: Review of natural gas hydrates as an energy resource: prospects and challenges
  publication-title: Appl Energy
– volume: 147
  start-page: 77
  year: 2016
  end-page: 86
  ident: b0130
  article-title: The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments
  publication-title: J Petrol Sci Eng
– year: 2008
  ident: b0005
  article-title: Clathrate hydrates of natural gases
– volume: 55
  start-page: 988
  year: 2017
  end-page: 998
  ident: b0140
  article-title: Impact of formation and dissociation conditions on stiffness of a hydrate-bearing sand
  publication-title: Can Geotech J
– volume: 172
  start-page: 286
  year: 2016
  end-page: 322
  ident: b0050
  article-title: Investigation into gas production from natural gas hydrate: a review
  publication-title: Appl Energy
– volume: 92
  start-page: 337
  year: 1988
  end-page: 339
  ident: b0195
  article-title: Low-temperature cross-polarization/magic angle spinning carbon-13 NMR of solid methane hydrates: structure, cage occupancy, and hydration number
  publication-title: J Phys Chem
– reference: Wu L, Grozic JL. Laboratory analysis of carbon dioxide hydrate-bearing sands. 2008;134:547–50.
– volume: 32
  start-page: 20
  year: 2016
  end-page: 27
  ident: b0170
  article-title: Experimental study on the mechanical properties of sediments containing CH
  publication-title: J Nat Gas Sci Eng
– volume: 20
  start-page: 4885
  year: 2019
  end-page: 4905
  ident: b0215
  article-title: Strain rate-dependent hardening-softening characteristics of gas hydrate-bearing sediments
  publication-title: Geochem Geophys Geosyst
– volume: 118
  start-page: 5185
  year: 2013
  end-page: 5194
  ident: b0120
  article-title: Mechanical behavior of gas-saturated methane hydrate-bearing sediments
  publication-title: J Geophys Res Solid Earth
– volume: 5
  start-page: 2449
  year: 2012
  end-page: 2498
  ident: b0030
  article-title: The global inventory of methane hydrate in marine sediments: a theoretical approach
  publication-title: Energies
– volume: 358
  start-page: 598
  year: 2019
  end-page: 605
  ident: b0020
  article-title: Thermodynamic and kinetic influences of nacl on HFC-125a hydrates and their significance in gas hydrate-based desalination
  publication-title: Chem Eng J
– volume: 122
  start-page: 7511
  year: 2017
  end-page: 7524
  ident: b0135
  article-title: Influence of fines content on the mechanical behavior of methane hydrate-bearing sediments
  publication-title: J Geophys Res Solid Earth
– volume: 246
  start-page: 20
  year: 2014
  end-page: 26
  ident: b0010
  article-title: Structure identification and dissociation enthalpy measurements of the CO
  publication-title: Chem Eng J
– volume: 9
  start-page: 83
  year: 2018
  ident: b0065
  article-title: Gas hydrate dissociation off svalbard induced by isostatic rebound rather than global warming
  publication-title: Nat Commun
– volume: 4
  start-page: 1206
  year: 2011
  end-page: 1215
  ident: b0025
  article-title: Current perspectives on gas hydrate resources
  publication-title: Energy Environ Sci
– volume: 61
  start-page: 1004
  year: 2015
  end-page: 1014
  ident: b0205
  article-title: One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas
  publication-title: AIChE J
– volume: 9
  start-page: 715
  year: 2018
  ident: b0060
  article-title: Submarine slope failures due to pipe structure formation
  publication-title: Nat Commun
– volume: 228
  start-page: 229
  year: 2018
  end-page: 239
  ident: b0080
  article-title: Structural transition induced by cage-dependent guest exchange in CH
  publication-title: Appl Energy
– reference: Miyazaki K, Oikawa Y, Haneda H, Yamaguchi T. Triaxial compressive property of artificial CO2-hydrate sand. ISOPE-16-26-3-315. 2016;26:315–20.
– volume: 51
  start-page: 52
  year: 2014
  end-page: 62
  ident: b0125
  article-title: Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments
  publication-title: Mar Pet Geol
– volume: 36
  start-page: 68
  year: 1991
  end-page: 71
  ident: b0200
  article-title: Hydrates of carbon dioxide and methane mixtures
  publication-title: J Chem Eng Data
– volume: 114
  year: 2009
  ident: b0225
  article-title: Influence of gas hydrate morphology on the seismic velocities of sands
  publication-title: J Geophys Res Solid Earth
– reference: Deusner C, Freise M, Gupta S, Kossel E, Anbergen H, Wille T, et al. Advanced mechanical testing of gas hydrate-bearing sediments. In: 19th international conference on soil mechanics and geotechnical engineering. Seoul, Republic of Korea; 2017.
– start-page: 373
  year: 2010
  end-page: 384
  ident: b0115
  article-title: The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay. Geophysical characterization of gas hydrates
  publication-title: Soc Explor Geophy
– volume: 226
  start-page: 916
  year: 2018
  end-page: 923
  ident: b0145
  article-title: Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system
  publication-title: Appl Energy
– volume: 1
  start-page: 111
  year: 2014
  end-page: 132
  ident: b0210
  article-title: The role of cementation in the behaviour of cemented soils
  publication-title: Geotech Res
– volume: 34
  start-page: 209
  year: 2012
  end-page: 223
  ident: b0055
  article-title: Review of progress in evaluating gas hydrate drilling hazards
  publication-title: Mar Pet Geol
– volume: 23
  start-page: 355
  year: 2019
  end-page: 372
  ident: b0220
  article-title: Efficient parameter estimation for a methane hydrate model with active subspaces
  publication-title: Comput Geosci
– volume: 150
  start-page: 120
  year: 2015
  ident: 10.1016/j.apenergy.2020.115569_b0095
  article-title: CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.04.012
– ident: 10.1016/j.apenergy.2020.115569_b0160
  doi: 10.1061/(ASCE)1090-0241(2008)134:4(547)
– volume: 15
  start-page: 6
  year: 2015
  ident: 10.1016/j.apenergy.2020.115569_b0045
  article-title: Gas hydrate occurrences in the Black Sea–new observations from the German SUGAR project
  publication-title: Fire Ice: Methane Hydrate Newslett
– volume: 32
  start-page: 20
  year: 2016
  ident: 10.1016/j.apenergy.2020.115569_b0170
  article-title: Experimental study on the mechanical properties of sediments containing CH4 and CO2 hydrate mixtures
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2016.03.012
– volume: 162
  start-page: 1627
  year: 2016
  ident: 10.1016/j.apenergy.2020.115569_b0110
  article-title: Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.04.065
– volume: 29
  start-page: 867
  year: 2001
  ident: 10.1016/j.apenergy.2020.115569_b0230
  article-title: Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels
  publication-title: Geology
  doi: 10.1130/0091-7613(2001)029<0867:VOOGHF>2.0.CO;2
– volume: 105
  start-page: 4200
  year: 2001
  ident: 10.1016/j.apenergy.2020.115569_b0190
  article-title: Structure, composition, and thermal expansion of CO2 hydrate from single crystal x-ray diffraction measurements
  publication-title: J Phys Chem B
  doi: 10.1021/jp004389o
– volume: 20
  start-page: 4885
  year: 2019
  ident: 10.1016/j.apenergy.2020.115569_b0215
  article-title: Strain rate-dependent hardening-softening characteristics of gas hydrate-bearing sediments
  publication-title: Geochem Geophys Geosyst
  doi: 10.1029/2019GC008458
– volume: 23
  start-page: 355
  year: 2019
  ident: 10.1016/j.apenergy.2020.115569_b0220
  article-title: Efficient parameter estimation for a methane hydrate model with active subspaces
  publication-title: Comput Geosci
  doi: 10.1007/s10596-018-9769-x
– volume: 55
  start-page: 988
  year: 2017
  ident: 10.1016/j.apenergy.2020.115569_b0140
  article-title: Impact of formation and dissociation conditions on stiffness of a hydrate-bearing sand
  publication-title: Can Geotech J
  doi: 10.1139/cgj-2017-0241
– volume: 147
  start-page: 77
  year: 2016
  ident: 10.1016/j.apenergy.2020.115569_b0130
  article-title: The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2016.05.009
– volume: 5
  start-page: 2112
  year: 2012
  ident: 10.1016/j.apenergy.2020.115569_b0175
  article-title: Methane production from gas hydrate deposits through injection of supercritical CO2
  publication-title: Energies
  doi: 10.3390/en5072112
– volume: 18
  start-page: 3419
  year: 2017
  ident: 10.1016/j.apenergy.2020.115569_b0180
  article-title: Testing a thermo-chemo-hydro-geomechanical model for gas hydrate-bearing sediments using triaxial compression laboratory experiments
  publication-title: Geochem Geophys Geosyst
  doi: 10.1002/2017GC006901
– volume: 92
  start-page: 337
  year: 1988
  ident: 10.1016/j.apenergy.2020.115569_b0195
  article-title: Low-temperature cross-polarization/magic angle spinning carbon-13 NMR of solid methane hydrates: structure, cage occupancy, and hydration number
  publication-title: J Phys Chem
  doi: 10.1021/j100313a018
– volume: 9
  start-page: 715
  year: 2018
  ident: 10.1016/j.apenergy.2020.115569_b0060
  article-title: Submarine slope failures due to pipe structure formation
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03176-1
– volume: 112
  year: 2007
  ident: 10.1016/j.apenergy.2020.115569_b0085
  article-title: Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2006JB004484
– volume: 308
  start-page: 50
  year: 2017
  ident: 10.1016/j.apenergy.2020.115569_b0105
  article-title: CH4 – flue gas replacement occurring in sH hydrates and its significance for CH4 recovery and CO2 sequestration
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2016.09.031
– volume: 47
  year: 2009
  ident: 10.1016/j.apenergy.2020.115569_b0090
  article-title: Physical properties of hydrate-bearing sediments
  publication-title: Rev Geophys
  doi: 10.1029/2008RG000279
– volume: 4
  start-page: 1206
  year: 2011
  ident: 10.1016/j.apenergy.2020.115569_b0025
  article-title: Current perspectives on gas hydrate resources
  publication-title: Energy Environ Sci
  doi: 10.1039/C0EE00203H
– volume: 114
  year: 2009
  ident: 10.1016/j.apenergy.2020.115569_b0225
  article-title: Influence of gas hydrate morphology on the seismic velocities of sands
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2009JB006284
– volume: 99
  start-page: 178
  year: 2014
  ident: 10.1016/j.apenergy.2020.115569_b0165
  article-title: A comparative analysis of the mechanical behavior of carbon dioxide and methane hydrate-bearing sediments
  publication-title: Am Mineral
  doi: 10.2138/am.2014.4620
– volume: 120
  start-page: 27159
  year: 2016
  ident: 10.1016/j.apenergy.2020.115569_b0100
  article-title: Fluid composition and kinetics of the in situ replacement in CH4–CO2 hydrate system
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b09460
– volume: 118
  start-page: 5185
  year: 2013
  ident: 10.1016/j.apenergy.2020.115569_b0120
  article-title: Mechanical behavior of gas-saturated methane hydrate-bearing sediments
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2013JB010233
– volume: 61
  start-page: 1004
  year: 2015
  ident: 10.1016/j.apenergy.2020.115569_b0205
  article-title: One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas
  publication-title: AIChE J
  doi: 10.1002/aic.14687
– ident: 10.1016/j.apenergy.2020.115569_b0185
– volume: 228
  start-page: 229
  year: 2018
  ident: 10.1016/j.apenergy.2020.115569_b0080
  article-title: Structural transition induced by cage-dependent guest exchange in CH4 + C3H8 hydrates with CO2 injection for energy recovery and CO2 sequestration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.06.088
– volume: 1
  start-page: 111
  year: 2014
  ident: 10.1016/j.apenergy.2020.115569_b0210
  article-title: The role of cementation in the behaviour of cemented soils
  publication-title: Geotech Res
  doi: 10.1680/gr.14.00011
– year: 2008
  ident: 10.1016/j.apenergy.2020.115569_b0005
– volume: 150
  start-page: 356
  year: 2017
  ident: 10.1016/j.apenergy.2020.115569_b0075
  article-title: CH4-CO2 replacement occurring in sII natural gas hydrates for CH4 recovery and CO2 sequestration
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.08.023
– start-page: 373
  year: 2010
  ident: 10.1016/j.apenergy.2020.115569_b0115
  article-title: The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay. Geophysical characterization of gas hydrates
  publication-title: Soc Explor Geophy
– volume: 246
  start-page: 20
  year: 2014
  ident: 10.1016/j.apenergy.2020.115569_b0010
  article-title: Structure identification and dissociation enthalpy measurements of the CO2+N2 hydrates for their application to CO2 capture and storage
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2014.02.045
– volume: 58
  start-page: 1113
  year: 2018
  ident: 10.1016/j.apenergy.2020.115569_b0150
  article-title: Rate effect on the stress-strain relations of synthetic carbon dioxide hydrate-bearing sand and dissociation tests by thermal stimulation
  publication-title: Soils Found
  doi: 10.1016/j.sandf.2018.05.007
– volume: 162
  start-page: 1633
  year: 2016
  ident: 10.1016/j.apenergy.2020.115569_b0035
  article-title: Review of natural gas hydrates as an energy resource: prospects and challenges
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.12.061
– volume: 304
  start-page: 285
  year: 2011
  ident: 10.1016/j.apenergy.2020.115569_b0040
  article-title: Iġnik Sikumi# 1, gas hydrate test well, successfully installed on the Alaska North Slope
  publication-title: Nat Gas Oil
– volume: 34
  start-page: 209
  year: 2012
  ident: 10.1016/j.apenergy.2020.115569_b0055
  article-title: Review of progress in evaluating gas hydrate drilling hazards
  publication-title: Mar Pet Geol
  doi: 10.1016/j.marpetgeo.2012.02.010
– ident: 10.1016/j.apenergy.2020.115569_b0155
  doi: 10.17736/ijope.2016.jc631
– volume: 36
  start-page: 68
  year: 1991
  ident: 10.1016/j.apenergy.2020.115569_b0200
  article-title: Hydrates of carbon dioxide and methane mixtures
  publication-title: J Chem Eng Data
  doi: 10.1021/je00001a020
– volume: 163
  start-page: 51
  year: 2016
  ident: 10.1016/j.apenergy.2020.115569_b0015
  article-title: Enclathration of CO2 as a co-guest of structure h hydrates and its implications for CO2 capture and sequestration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.11.009
– volume: 49
  start-page: 8899
  year: 2015
  ident: 10.1016/j.apenergy.2020.115569_b0070
  article-title: Enhanced CH4 recovery induced via structural transformation in the CH4/CO2 replacement that occurs in sH hydrates
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b01640
– volume: 9
  start-page: 83
  year: 2018
  ident: 10.1016/j.apenergy.2020.115569_b0065
  article-title: Gas hydrate dissociation off svalbard induced by isostatic rebound rather than global warming
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02550-9
– volume: 122
  start-page: 7511
  year: 2017
  ident: 10.1016/j.apenergy.2020.115569_b0135
  article-title: Influence of fines content on the mechanical behavior of methane hydrate-bearing sediments
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2017JB014154
– volume: 226
  start-page: 916
  year: 2018
  ident: 10.1016/j.apenergy.2020.115569_b0145
  article-title: Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.06.062
– volume: 51
  start-page: 52
  year: 2014
  ident: 10.1016/j.apenergy.2020.115569_b0125
  article-title: Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments
  publication-title: Mar Pet Geol
  doi: 10.1016/j.marpetgeo.2013.11.015
– volume: 172
  start-page: 286
  year: 2016
  ident: 10.1016/j.apenergy.2020.115569_b0050
  article-title: Investigation into gas production from natural gas hydrate: a review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.101
– volume: 358
  start-page: 598
  year: 2019
  ident: 10.1016/j.apenergy.2020.115569_b0020
  article-title: Thermodynamic and kinetic influences of nacl on HFC-125a hydrates and their significance in gas hydrate-based desalination
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.10.032
– volume: 5
  start-page: 2449
  year: 2012
  ident: 10.1016/j.apenergy.2020.115569_b0030
  article-title: The global inventory of methane hydrate in marine sediments: a theoretical approach
  publication-title: Energies
  doi: 10.3390/en5072449
SSID ssj0002120
Score 2.5699766
Snippet [Display omitted] •The effects of the combined method on HBS geomechanical properties were examined.•Mechanical behavior depended on dissociation ratios and GH...
This study analyzed the potential effects of gas hydrate (GH) exploitation on the geomechanical properties of hydrate-bearing sediment (HBS) by examining the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115569
SubjectTerms carbon dioxide
carbon sequestration
CO2 sequestration
dissociation
energy recovery
Gas hydrate
Mechanical strength
methane
Replacement
sediments
strength (mechanics)
Title Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment
URI https://dx.doi.org/10.1016/j.apenergy.2020.115569
https://www.proquest.com/docview/2477623337
Volume 277
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BcoEDKhTUBYpcqVfvBsfeJMfVatECKpcWiZvl-MFDJbvax6GXXvu3O5M4lCKkPXCKEmcmscfziDLfDMBXJUzuTJDcFyHnUpaCl8Jn3CSFDapQmTWEHf52PZjcyMtbdbsBoxYLQ2mV0fY3Nr221vFKP65mf_bw0P9O0W4d_1N1y5w6124J9PZ5B7aGF1eT62eDLGJ1RryfE8ELoPBjz8x8DbLDT0VBBkQpyn1-20e9sta1Czr_ALsxdmTD5vX2YMNX-7DzoqLgPhyO_wHX8NaouYuP8Oei7UbCpoGNJpLd_3JUJoJ5ysKLlboZpcHfsZgeu5pHkCYzlWNzX-dvEWfW9J1eMBx68oQdJlEzwp1Ud8t7ekLkzkvUJGK5wIUm0gO4OR__GE14bMLArVTFkjuhPMY8xqCqS5OrfJBa4XDMiNyqUkkb8FBaVTgMFqSTifQDGxIqq59Zn6WH0Kmmlf8EzOciJN5Jgu_KLDszGH66ohTC2BDSLOmCapdd2zhvapTxU7epaI-6FZcmcelGXF3oP9PNmhodaymKVqr6v92m0ZGspf3SbgONqkj_V0zlp6uFpklhNJmm2dE7-B_DNp01eMcT6CznK_8ZA59leQqbvd9np3F7_wWjpQdC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwEB2hpQAKxClujERrNjj2JinRCpTl2AaQ6CzHB4cgu9qj4Av4bTyJwyUkCqpIsWcSe-zxizJvBuBQMJUa5Ti1mUsp5wWjBbMJVVGmnchEohVyh6_6nfyWn9-JuxnoNlwYDKsMvr_26ZW3DnfaYTbbw8fH9jWi3Qr_Y3bLFCvXznIsat2C2ZPeRd7_cMgsZGf0_SkKfCEKPx2poa1Idv5TkaEDEQJjn38_o3546-oIOluCxYAdyUn9esswY8sVWPiSUXAF1k8_iWu-a9i541V46zXVSMjAkW7OycOrwTQRxGIUXsjUTTAM_p6E8NjpKJA0iSoNGdkqfgs1k7ru9Jj4pheL3GE0NUHeSXk_ecAnBO208DsJVY79RKPoGtyend50cxqKMFDNRTahhgnrMY9SfqtzlYq0E2tmfJtiqRaF4Nr5S6FFZjxY4IZH3Ha0izCtfqJtEq9DqxyUdgOITZmLrOFI3-VJcqw8_DRZwZjSzsVJtAmimXapw7ixUMazbELRnmRjLonmkrW5NqH9ITesc3T8KZE1VpXfVpv0B8mfsgfNMpB-K-L_FVXawXQscVAeTcZxsvUP_fswl99cXcrLXv9iG-axpeY-7kBrMpraXQ-CJsVeWOTv1t8JKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+CH4+hydrate+exploitation+using+depressurization+and+replacement+methods+on+mechanical+strength+of+hydrate-bearing+sediment&rft.jtitle=Applied+energy&rft.au=Lee%2C+Yohan&rft.au=Deusner%2C+Christian&rft.au=Kossel%2C+Elke&rft.au=Choi%2C+Wonjung&rft.date=2020-11-01&rft.issn=0306-2619&rft.volume=277&rft.spage=115569&rft_id=info:doi/10.1016%2Fj.apenergy.2020.115569&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_115569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon