Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment
[Display omitted] •The effects of the combined method on HBS geomechanical properties were examined.•Mechanical behavior depended on dissociation ratios and GH saturations.•Mechanical strength of the replaced HBSs was significantly recovered.•The combination of depressurization and replacement incre...
Saved in:
Published in | Applied energy Vol. 277; p. 115569 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-2619 1872-9118 |
DOI | 10.1016/j.apenergy.2020.115569 |
Cover
Abstract | [Display omitted]
•The effects of the combined method on HBS geomechanical properties were examined.•Mechanical behavior depended on dissociation ratios and GH saturations.•Mechanical strength of the replaced HBSs was significantly recovered.•The combination of depressurization and replacement increased total CH4 recovery.•Optimum replacement occurred at a dissociation ratio of 20% with CO2 injection.
This study analyzed the potential effects of gas hydrate (GH) exploitation on the geomechanical properties of hydrate-bearing sediment (HBS) by examining the combined effects of depressurization and CO2 injection using triaxial compression tests. The stress-strain behavior of the initial CH4 HBS showed strong hardening-softening characteristics and high peak strength, whereas milder hardening-softening behavior and reduced peak strength were observed after partial (20, 40, 60, and 80%) or complete GH dissociation (100%), indicating that the mechanical behavior clearly depended on dissociation ratios and GH saturations. In response to CO2 injection in partially dissociated HBS, subsequent CH4–CO2 hydrate exchange, and secondary CO2 hydrate formation, the mechanical strength of the replaced HBS recovered significantly, and stress-strain characteristics were similar to that of the 20% dissociated CH4 HBS. Although total CH4 recovery was increased by the combination of depressurization and replacement, optimum recovery was found at a dissociation ratio of 20% followed by replacement because production by replacement decreased as the dissociation ratio increased. These results contribute to the understanding of how depressurization and CO2 injection schemes may be combined to optimize energy recovery and CO2 sequestration. In particular, this research demonstrates that CH4–CO2 hydrate exchange and secondary GH formation are suitable methods for controlling and maintaining the mechanical stability of HBSs. |
---|---|
AbstractList | [Display omitted]
•The effects of the combined method on HBS geomechanical properties were examined.•Mechanical behavior depended on dissociation ratios and GH saturations.•Mechanical strength of the replaced HBSs was significantly recovered.•The combination of depressurization and replacement increased total CH4 recovery.•Optimum replacement occurred at a dissociation ratio of 20% with CO2 injection.
This study analyzed the potential effects of gas hydrate (GH) exploitation on the geomechanical properties of hydrate-bearing sediment (HBS) by examining the combined effects of depressurization and CO2 injection using triaxial compression tests. The stress-strain behavior of the initial CH4 HBS showed strong hardening-softening characteristics and high peak strength, whereas milder hardening-softening behavior and reduced peak strength were observed after partial (20, 40, 60, and 80%) or complete GH dissociation (100%), indicating that the mechanical behavior clearly depended on dissociation ratios and GH saturations. In response to CO2 injection in partially dissociated HBS, subsequent CH4–CO2 hydrate exchange, and secondary CO2 hydrate formation, the mechanical strength of the replaced HBS recovered significantly, and stress-strain characteristics were similar to that of the 20% dissociated CH4 HBS. Although total CH4 recovery was increased by the combination of depressurization and replacement, optimum recovery was found at a dissociation ratio of 20% followed by replacement because production by replacement decreased as the dissociation ratio increased. These results contribute to the understanding of how depressurization and CO2 injection schemes may be combined to optimize energy recovery and CO2 sequestration. In particular, this research demonstrates that CH4–CO2 hydrate exchange and secondary GH formation are suitable methods for controlling and maintaining the mechanical stability of HBSs. This study analyzed the potential effects of gas hydrate (GH) exploitation on the geomechanical properties of hydrate-bearing sediment (HBS) by examining the combined effects of depressurization and CO₂ injection using triaxial compression tests. The stress-strain behavior of the initial CH₄ HBS showed strong hardening-softening characteristics and high peak strength, whereas milder hardening-softening behavior and reduced peak strength were observed after partial (20, 40, 60, and 80%) or complete GH dissociation (100%), indicating that the mechanical behavior clearly depended on dissociation ratios and GH saturations. In response to CO₂ injection in partially dissociated HBS, subsequent CH₄–CO₂ hydrate exchange, and secondary CO₂ hydrate formation, the mechanical strength of the replaced HBS recovered significantly, and stress-strain characteristics were similar to that of the 20% dissociated CH₄ HBS. Although total CH₄ recovery was increased by the combination of depressurization and replacement, optimum recovery was found at a dissociation ratio of 20% followed by replacement because production by replacement decreased as the dissociation ratio increased. These results contribute to the understanding of how depressurization and CO₂ injection schemes may be combined to optimize energy recovery and CO₂ sequestration. In particular, this research demonstrates that CH₄–CO₂ hydrate exchange and secondary GH formation are suitable methods for controlling and maintaining the mechanical stability of HBSs. |
ArticleNumber | 115569 |
Author | Choi, Wonjung Kossel, Elke Seo, Yongwon Lee, Yohan Haeckel, Matthias Deusner, Christian |
Author_xml | – sequence: 1 givenname: Yohan surname: Lee fullname: Lee, Yohan organization: Department of Chemical and Biological Engineering, Colorado School of Mines, Golden 80401, CO, USA – sequence: 2 givenname: Christian surname: Deusner fullname: Deusner, Christian organization: GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany – sequence: 3 givenname: Elke surname: Kossel fullname: Kossel, Elke organization: GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany – sequence: 4 givenname: Wonjung surname: Choi fullname: Choi, Wonjung organization: School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea – sequence: 5 givenname: Yongwon surname: Seo fullname: Seo, Yongwon email: ywseo@unist.ac.kr organization: School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea – sequence: 6 givenname: Matthias surname: Haeckel fullname: Haeckel, Matthias email: mhaeckel@geomar.de organization: GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany |
BookMark | eNqFkc-K2zAQh0XJQrPZfYVFx16cSrLkP9BDl7DbBAK9tGehSONEwZZcSV42fYG-dm2cXnrJaWBmvt_AN_do4bwDhJ4oWVNCi8_nterBQThe1oywsUmFKOoPaEmrkmU1pdUCLUlOiowVtP6I7mM8E0IYZWSJ_uxc0w7gNGDf4M2W49PFBJUAw3vfeptUst7hIVp3xAb6ADEOwf6e28oZHKBvlYYOXMIdpJM3EY-jDvRJOatVi2MK4I7pNF24pmcHUGGKjGDshD6gu0a1ER6vdYV-vr782Gyz_fdvu83zPtNc1CkzTICgQinCK64qURW5ZmacKVZpcRBcN2M5aFEbWlFuOOFQ6IZUJeelhjJfoU9zbh_8rwFikp2NGtpWOfBDlIyXZcHyPJ9Wv8yrOvgYAzRSX3WkoGwrKZGTf3mW__zLyb-c_Y948R_eB9upcLkNfp1BGD28WQgyajt9yNgAOknj7a2Iv8K5qcM |
CitedBy_id | crossref_primary_10_1016_j_cjche_2023_10_014 crossref_primary_10_1016_j_rser_2023_114045 crossref_primary_10_1016_j_jclepro_2024_143954 crossref_primary_10_1021_acs_energyfuels_3c04911 crossref_primary_10_1016_j_apenergy_2024_125131 crossref_primary_10_1021_acs_energyfuels_3c00715 crossref_primary_10_1021_acs_energyfuels_4c01534 crossref_primary_10_1016_j_petrol_2022_111121 crossref_primary_10_1016_j_jgsce_2023_205020 crossref_primary_10_3390_en18040975 crossref_primary_10_1016_j_jgsce_2024_205345 crossref_primary_10_1016_j_apenergy_2024_123952 crossref_primary_10_3390_jmse12101861 crossref_primary_10_1016_j_energy_2021_120047 crossref_primary_10_1016_j_energy_2021_120960 crossref_primary_10_1016_j_energy_2024_133130 crossref_primary_10_1016_j_petsci_2024_01_008 crossref_primary_10_1016_j_jngse_2022_104852 crossref_primary_10_3390_jmse12050840 crossref_primary_10_1016_j_rser_2024_114714 crossref_primary_10_1021_acs_energyfuels_4c04614 crossref_primary_10_1016_j_cej_2022_140937 crossref_primary_10_1002_ese3_1016 crossref_primary_10_1016_j_compgeo_2024_106870 crossref_primary_10_1016_j_jgsce_2024_205434 crossref_primary_10_1016_j_cej_2022_140981 crossref_primary_10_1016_j_apenergy_2022_119971 crossref_primary_10_1080_1064119X_2024_2437563 crossref_primary_10_1016_j_enggeo_2023_107359 crossref_primary_10_1016_j_apenergy_2022_119891 crossref_primary_10_1016_j_cej_2023_144680 crossref_primary_10_1016_j_jngse_2022_104686 crossref_primary_10_1088_1361_6463_ad6dcf crossref_primary_10_1016_j_fuel_2024_134123 crossref_primary_10_1016_j_rockmb_2024_100114 crossref_primary_10_1016_j_energy_2024_130631 crossref_primary_10_1016_j_cej_2023_146216 crossref_primary_10_1016_j_compgeo_2025_107141 crossref_primary_10_1016_j_powtec_2024_119811 crossref_primary_10_1021_acs_energyfuels_4c02765 crossref_primary_10_1016_j_energy_2023_128110 crossref_primary_10_1039_D1EE02093E crossref_primary_10_1016_j_compgeo_2024_106287 crossref_primary_10_1016_j_jgsce_2024_205521 crossref_primary_10_1016_j_jclepro_2022_131703 crossref_primary_10_1016_j_jrmge_2025_02_001 crossref_primary_10_1016_j_energy_2023_129836 crossref_primary_10_1016_j_jgsce_2023_205045 crossref_primary_10_1021_acs_energyfuels_2c02657 crossref_primary_10_1016_j_compgeo_2022_105116 crossref_primary_10_3390_pr11072075 crossref_primary_10_1016_j_fluid_2022_113562 crossref_primary_10_15446_dyna_v89n222_101826 crossref_primary_10_1016_j_energy_2024_131998 crossref_primary_10_1016_j_fuel_2021_122873 crossref_primary_10_1016_j_geoen_2024_213290 crossref_primary_10_3390_en15155634 crossref_primary_10_1016_j_molliq_2022_120951 crossref_primary_10_1021_acs_energyfuels_0c04138 crossref_primary_10_1007_s11440_025_02583_1 crossref_primary_10_1021_acs_energyfuels_4c01448 crossref_primary_10_1016_j_energy_2021_122153 crossref_primary_10_1016_j_energy_2022_125127 crossref_primary_10_1088_1742_6596_2834_1_012158 crossref_primary_10_1016_j_geoen_2023_212412 crossref_primary_10_1021_acs_energyfuels_4c05292 |
Cites_doi | 10.1016/j.apenergy.2015.04.012 10.1061/(ASCE)1090-0241(2008)134:4(547) 10.1016/j.jngse.2016.03.012 10.1016/j.apenergy.2015.04.065 10.1130/0091-7613(2001)029<0867:VOOGHF>2.0.CO;2 10.1021/jp004389o 10.1029/2019GC008458 10.1007/s10596-018-9769-x 10.1139/cgj-2017-0241 10.1016/j.petrol.2016.05.009 10.3390/en5072112 10.1002/2017GC006901 10.1021/j100313a018 10.1038/s41467-018-03176-1 10.1029/2006JB004484 10.1016/j.cej.2016.09.031 10.1029/2008RG000279 10.1039/C0EE00203H 10.1029/2009JB006284 10.2138/am.2014.4620 10.1021/acs.jpcc.6b09460 10.1002/2013JB010233 10.1002/aic.14687 10.1016/j.apenergy.2018.06.088 10.1680/gr.14.00011 10.1016/j.enconman.2017.08.023 10.1016/j.cej.2014.02.045 10.1016/j.sandf.2018.05.007 10.1016/j.apenergy.2014.12.061 10.1016/j.marpetgeo.2012.02.010 10.17736/ijope.2016.jc631 10.1021/je00001a020 10.1016/j.apenergy.2015.11.009 10.1021/acs.est.5b01640 10.1038/s41467-017-02550-9 10.1002/2017JB014154 10.1016/j.apenergy.2018.06.062 10.1016/j.marpetgeo.2013.11.015 10.1016/j.apenergy.2016.03.101 10.1016/j.cej.2018.10.032 10.3390/en5072449 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2020.115569 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
ExternalDocumentID | 10_1016_j_apenergy_2020_115569 S0306261920310813 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW SSH WUQ ZY4 7S9 ACLOT EFKBS L.6 ~HD |
ID | FETCH-LOGICAL-c459t-d25e515aa0484a85863c2dc45a28c5b54cfc5bbc59d1814d404e6cf087447ce73 |
IEDL.DBID | AIKHN |
ISSN | 0306-2619 |
IngestDate | Sat Sep 27 18:57:54 EDT 2025 Tue Jul 01 02:53:53 EDT 2025 Thu Apr 24 23:01:04 EDT 2025 Fri Feb 23 02:47:59 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CO2 sequestration Gas hydrate Replacement Mechanical strength |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-d25e515aa0484a85863c2dc45a28c5b54cfc5bbc59d1814d404e6cf087447ce73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://oceanrep.geomar.de/id/eprint/50293/1/Lee_manuscript_AE_marked.docx |
PQID | 2477623337 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2477623337 crossref_citationtrail_10_1016_j_apenergy_2020_115569 crossref_primary_10_1016_j_apenergy_2020_115569 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_115569 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 2020-11-00 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sultaniya, Priest, Clayton (b0140) 2017; 55 Teixeira Parente, Mattis, Gupta, Deusner, Wohlmuth (b0220) 2019; 23 Li, Xu, Zhang, Ruan, Li, Wang (b0050) 2016; 172 Boswell, Collett (b0025) 2011; 4 Lee, Choi, Seo, Lee, Lee, Seo (b0080) 2018; 228 Chong, Yang, Babu, Linga, Li (b0035) 2016; 162 Hyodo, Li, Yoneda, Nakata, Yoshimoto, Nishimura (b0125) 2014; 51 Wu L, Grozic JL. Laboratory analysis of carbon dioxide hydrate-bearing sands. 2008;134:547–50. Wallmann, Riedel, Hong, Patton, Hubbard, Pape (b0065) 2018; 9 Sloan, Koh (b0005) 2008 Song, Zhu, Liu, Li, Lu, Shen (b0130) 2016; 147 Udachin, Ratcliffe, Ripmeester (b0190) 2001; 105 Choi, Lee, Mok, Lee, Lee, Seo (b0020) 2019; 358 Hyodo, Li, Yoneda, Nakata, Yoshimoto, Kajiyama (b0165) 2014; 99 Yun, Santamarina, Ruppel (b0085) 2007; 112 Hyodo, Li, Yoneda, Nakata, Yoshimoto, Nishimura (b0120) 2013; 118 Elger, Berndt, Rüpke, Krastel, Gross, Geissler (b0060) 2018; 9 Koh, Ahn, Kang, Park, Lee, Kim (b0205) 2015; 61 Li, Liu, Zhu, Chen, Song, Li (b0110) 2016; 162 Gupta, Deusner, Haeckel, Helmig, Wohlmuth (b0180) 2017; 18 Haeckel, Bialas, Klaucke, Wallmann, Bohrmann, Schwalenberg (b0045) 2015; 15 Lee, Lee, Lee, Seo (b0010) 2014; 246 Adisasmito, Frank, Sloan (b0200) 1991; 36 Iwai, Konishi, Saimyou, Kimoto, Oka (b0150) 2018; 58 Lee, Choi, Shin, Seo (b0075) 2017; 150 Wang, Feng, Li, Zhang, Han (b0145) 2018; 226 Wallmann, Pinero, Burwicz, Haeckel, Hensen, Dale (b0030) 2012; 5 Liu, Luo, Li, Song, Zhu, Liu (b0170) 2016; 32 Schoderbek, Boswell (b0040) 2011; 304 Falenty, Qin, Salamatin, Yang, Kuhs (b0100) 2016; 120 Lee, Seo, Ahn, Lee, Lee, Kim (b0105) 2017; 308 Santamarina, Ruppel (b0115) 2010 Miyazaki K, Oikawa Y, Haneda H, Yamaguchi T. Triaxial compressive property of artificial CO2-hydrate sand. ISOPE-16-26-3-315. 2016;26:315–20. Ripmeester, Ratcliffe (b0195) 1988; 92 Waite, Santamarina, Cortes, Dugan, Espinoza, Germaine (b0090) 2009; 47 Lee, Lee, Lee, Seo (b0015) 2016; 163 Deusner C, Freise M, Gupta S, Kossel E, Anbergen H, Wille T, et al. Advanced mechanical testing of gas hydrate-bearing sediments. In: 19th international conference on soil mechanics and geotechnical engineering. Seoul, Republic of Korea; 2017. Deusner, Bigalke, Kossel, Haeckel (b0175) 2012; 5 Hyodo, Wu, Nakashima, Kajiyama, Nakata (b0135) 2017; 122 Priest, Rees, Clayton (b0225) 2009; 114 Tohidi, Anderson, Clennell, Burgass, Biderkab (b0230) 2001; 29 Lee, Kim, Lee, Lee, Seo (b0095) 2015; 150 Deusner, Gupta, Xie, Leung, Uchida, Kossel (b0215) 2019; 20 McConnell, Zhang, Boswell (b0055) 2012; 34 Lee, Kim, Seo (b0070) 2015; 49 Lade, Trads (b0210) 2014; 1 Haeckel (10.1016/j.apenergy.2020.115569_b0045) 2015; 15 Lee (10.1016/j.apenergy.2020.115569_b0015) 2016; 163 Sloan (10.1016/j.apenergy.2020.115569_b0005) 2008 Koh (10.1016/j.apenergy.2020.115569_b0205) 2015; 61 Hyodo (10.1016/j.apenergy.2020.115569_b0120) 2013; 118 Lee (10.1016/j.apenergy.2020.115569_b0075) 2017; 150 Lee (10.1016/j.apenergy.2020.115569_b0105) 2017; 308 Li (10.1016/j.apenergy.2020.115569_b0110) 2016; 162 10.1016/j.apenergy.2020.115569_b0160 Tohidi (10.1016/j.apenergy.2020.115569_b0230) 2001; 29 Choi (10.1016/j.apenergy.2020.115569_b0020) 2019; 358 Lee (10.1016/j.apenergy.2020.115569_b0070) 2015; 49 10.1016/j.apenergy.2020.115569_b0185 Udachin (10.1016/j.apenergy.2020.115569_b0190) 2001; 105 Waite (10.1016/j.apenergy.2020.115569_b0090) 2009; 47 Lee (10.1016/j.apenergy.2020.115569_b0080) 2018; 228 Liu (10.1016/j.apenergy.2020.115569_b0170) 2016; 32 10.1016/j.apenergy.2020.115569_b0155 Deusner (10.1016/j.apenergy.2020.115569_b0215) 2019; 20 Wallmann (10.1016/j.apenergy.2020.115569_b0030) 2012; 5 Chong (10.1016/j.apenergy.2020.115569_b0035) 2016; 162 Wallmann (10.1016/j.apenergy.2020.115569_b0065) 2018; 9 Hyodo (10.1016/j.apenergy.2020.115569_b0135) 2017; 122 Li (10.1016/j.apenergy.2020.115569_b0050) 2016; 172 Hyodo (10.1016/j.apenergy.2020.115569_b0125) 2014; 51 Elger (10.1016/j.apenergy.2020.115569_b0060) 2018; 9 Deusner (10.1016/j.apenergy.2020.115569_b0175) 2012; 5 Lee (10.1016/j.apenergy.2020.115569_b0095) 2015; 150 Song (10.1016/j.apenergy.2020.115569_b0130) 2016; 147 Priest (10.1016/j.apenergy.2020.115569_b0225) 2009; 114 Ripmeester (10.1016/j.apenergy.2020.115569_b0195) 1988; 92 Sultaniya (10.1016/j.apenergy.2020.115569_b0140) 2017; 55 Adisasmito (10.1016/j.apenergy.2020.115569_b0200) 1991; 36 Falenty (10.1016/j.apenergy.2020.115569_b0100) 2016; 120 Wang (10.1016/j.apenergy.2020.115569_b0145) 2018; 226 Gupta (10.1016/j.apenergy.2020.115569_b0180) 2017; 18 Lee (10.1016/j.apenergy.2020.115569_b0010) 2014; 246 Lade (10.1016/j.apenergy.2020.115569_b0210) 2014; 1 Teixeira Parente (10.1016/j.apenergy.2020.115569_b0220) 2019; 23 Iwai (10.1016/j.apenergy.2020.115569_b0150) 2018; 58 McConnell (10.1016/j.apenergy.2020.115569_b0055) 2012; 34 Santamarina (10.1016/j.apenergy.2020.115569_b0115) 2010 Hyodo (10.1016/j.apenergy.2020.115569_b0165) 2014; 99 Schoderbek (10.1016/j.apenergy.2020.115569_b0040) 2011; 304 Yun (10.1016/j.apenergy.2020.115569_b0085) 2007; 112 Boswell (10.1016/j.apenergy.2020.115569_b0025) 2011; 4 |
References_xml | – volume: 162 start-page: 1627 year: 2016 end-page: 1632 ident: b0110 article-title: Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods publication-title: Appl Energy – volume: 15 start-page: 6 year: 2015 end-page: 9 ident: b0045 article-title: Gas hydrate occurrences in the Black Sea–new observations from the German SUGAR project publication-title: Fire Ice: Methane Hydrate Newslett – volume: 112 year: 2007 ident: b0085 article-title: Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate publication-title: J Geophys Res Solid Earth – volume: 120 start-page: 27159 year: 2016 end-page: 27172 ident: b0100 article-title: Fluid composition and kinetics of the in situ replacement in CH publication-title: J Phys Chem C – volume: 47 year: 2009 ident: b0090 article-title: Physical properties of hydrate-bearing sediments publication-title: Rev Geophys – volume: 58 start-page: 1113 year: 2018 end-page: 1132 ident: b0150 article-title: Rate effect on the stress-strain relations of synthetic carbon dioxide hydrate-bearing sand and dissociation tests by thermal stimulation publication-title: Soils Found – volume: 105 start-page: 4200 year: 2001 end-page: 4204 ident: b0190 article-title: Structure, composition, and thermal expansion of CO publication-title: J Phys Chem B – volume: 29 start-page: 867 year: 2001 end-page: 870 ident: b0230 article-title: Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels publication-title: Geology – volume: 5 start-page: 2112 year: 2012 ident: b0175 article-title: Methane production from gas hydrate deposits through injection of supercritical CO publication-title: Energies – volume: 49 start-page: 8899 year: 2015 end-page: 8906 ident: b0070 article-title: Enhanced CH publication-title: Environ Sci Technol – volume: 150 start-page: 120 year: 2015 end-page: 127 ident: b0095 article-title: CH publication-title: Appl Energy – volume: 18 start-page: 3419 year: 2017 end-page: 3437 ident: b0180 article-title: Testing a thermo-chemo-hydro-geomechanical model for gas hydrate-bearing sediments using triaxial compression laboratory experiments publication-title: Geochem Geophys Geosyst – volume: 163 start-page: 51 year: 2016 end-page: 59 ident: b0015 article-title: Enclathration of CO publication-title: Appl Energy – volume: 304 start-page: 285 year: 2011 end-page: 4541 ident: b0040 article-title: Iġnik Sikumi# 1, gas hydrate test well, successfully installed on the Alaska North Slope publication-title: Nat Gas Oil – volume: 99 start-page: 178 year: 2014 end-page: 183 ident: b0165 article-title: A comparative analysis of the mechanical behavior of carbon dioxide and methane hydrate-bearing sediments publication-title: Am Mineral – volume: 308 start-page: 50 year: 2017 end-page: 58 ident: b0105 article-title: CH publication-title: Chem Eng J – volume: 150 start-page: 356 year: 2017 end-page: 364 ident: b0075 article-title: CH publication-title: Energy Convers Manage – volume: 162 start-page: 1633 year: 2016 end-page: 1652 ident: b0035 article-title: Review of natural gas hydrates as an energy resource: prospects and challenges publication-title: Appl Energy – volume: 147 start-page: 77 year: 2016 end-page: 86 ident: b0130 article-title: The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments publication-title: J Petrol Sci Eng – year: 2008 ident: b0005 article-title: Clathrate hydrates of natural gases – volume: 55 start-page: 988 year: 2017 end-page: 998 ident: b0140 article-title: Impact of formation and dissociation conditions on stiffness of a hydrate-bearing sand publication-title: Can Geotech J – volume: 172 start-page: 286 year: 2016 end-page: 322 ident: b0050 article-title: Investigation into gas production from natural gas hydrate: a review publication-title: Appl Energy – volume: 92 start-page: 337 year: 1988 end-page: 339 ident: b0195 article-title: Low-temperature cross-polarization/magic angle spinning carbon-13 NMR of solid methane hydrates: structure, cage occupancy, and hydration number publication-title: J Phys Chem – reference: Wu L, Grozic JL. Laboratory analysis of carbon dioxide hydrate-bearing sands. 2008;134:547–50. – volume: 32 start-page: 20 year: 2016 end-page: 27 ident: b0170 article-title: Experimental study on the mechanical properties of sediments containing CH publication-title: J Nat Gas Sci Eng – volume: 20 start-page: 4885 year: 2019 end-page: 4905 ident: b0215 article-title: Strain rate-dependent hardening-softening characteristics of gas hydrate-bearing sediments publication-title: Geochem Geophys Geosyst – volume: 118 start-page: 5185 year: 2013 end-page: 5194 ident: b0120 article-title: Mechanical behavior of gas-saturated methane hydrate-bearing sediments publication-title: J Geophys Res Solid Earth – volume: 5 start-page: 2449 year: 2012 end-page: 2498 ident: b0030 article-title: The global inventory of methane hydrate in marine sediments: a theoretical approach publication-title: Energies – volume: 358 start-page: 598 year: 2019 end-page: 605 ident: b0020 article-title: Thermodynamic and kinetic influences of nacl on HFC-125a hydrates and their significance in gas hydrate-based desalination publication-title: Chem Eng J – volume: 122 start-page: 7511 year: 2017 end-page: 7524 ident: b0135 article-title: Influence of fines content on the mechanical behavior of methane hydrate-bearing sediments publication-title: J Geophys Res Solid Earth – volume: 246 start-page: 20 year: 2014 end-page: 26 ident: b0010 article-title: Structure identification and dissociation enthalpy measurements of the CO publication-title: Chem Eng J – volume: 9 start-page: 83 year: 2018 ident: b0065 article-title: Gas hydrate dissociation off svalbard induced by isostatic rebound rather than global warming publication-title: Nat Commun – volume: 4 start-page: 1206 year: 2011 end-page: 1215 ident: b0025 article-title: Current perspectives on gas hydrate resources publication-title: Energy Environ Sci – volume: 61 start-page: 1004 year: 2015 end-page: 1014 ident: b0205 article-title: One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas publication-title: AIChE J – volume: 9 start-page: 715 year: 2018 ident: b0060 article-title: Submarine slope failures due to pipe structure formation publication-title: Nat Commun – volume: 228 start-page: 229 year: 2018 end-page: 239 ident: b0080 article-title: Structural transition induced by cage-dependent guest exchange in CH publication-title: Appl Energy – reference: Miyazaki K, Oikawa Y, Haneda H, Yamaguchi T. Triaxial compressive property of artificial CO2-hydrate sand. ISOPE-16-26-3-315. 2016;26:315–20. – volume: 51 start-page: 52 year: 2014 end-page: 62 ident: b0125 article-title: Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments publication-title: Mar Pet Geol – volume: 36 start-page: 68 year: 1991 end-page: 71 ident: b0200 article-title: Hydrates of carbon dioxide and methane mixtures publication-title: J Chem Eng Data – volume: 114 year: 2009 ident: b0225 article-title: Influence of gas hydrate morphology on the seismic velocities of sands publication-title: J Geophys Res Solid Earth – reference: Deusner C, Freise M, Gupta S, Kossel E, Anbergen H, Wille T, et al. Advanced mechanical testing of gas hydrate-bearing sediments. In: 19th international conference on soil mechanics and geotechnical engineering. Seoul, Republic of Korea; 2017. – start-page: 373 year: 2010 end-page: 384 ident: b0115 article-title: The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay. Geophysical characterization of gas hydrates publication-title: Soc Explor Geophy – volume: 226 start-page: 916 year: 2018 end-page: 923 ident: b0145 article-title: Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system publication-title: Appl Energy – volume: 1 start-page: 111 year: 2014 end-page: 132 ident: b0210 article-title: The role of cementation in the behaviour of cemented soils publication-title: Geotech Res – volume: 34 start-page: 209 year: 2012 end-page: 223 ident: b0055 article-title: Review of progress in evaluating gas hydrate drilling hazards publication-title: Mar Pet Geol – volume: 23 start-page: 355 year: 2019 end-page: 372 ident: b0220 article-title: Efficient parameter estimation for a methane hydrate model with active subspaces publication-title: Comput Geosci – volume: 150 start-page: 120 year: 2015 ident: 10.1016/j.apenergy.2020.115569_b0095 article-title: CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.04.012 – ident: 10.1016/j.apenergy.2020.115569_b0160 doi: 10.1061/(ASCE)1090-0241(2008)134:4(547) – volume: 15 start-page: 6 year: 2015 ident: 10.1016/j.apenergy.2020.115569_b0045 article-title: Gas hydrate occurrences in the Black Sea–new observations from the German SUGAR project publication-title: Fire Ice: Methane Hydrate Newslett – volume: 32 start-page: 20 year: 2016 ident: 10.1016/j.apenergy.2020.115569_b0170 article-title: Experimental study on the mechanical properties of sediments containing CH4 and CO2 hydrate mixtures publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2016.03.012 – volume: 162 start-page: 1627 year: 2016 ident: 10.1016/j.apenergy.2020.115569_b0110 article-title: Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.04.065 – volume: 29 start-page: 867 year: 2001 ident: 10.1016/j.apenergy.2020.115569_b0230 article-title: Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels publication-title: Geology doi: 10.1130/0091-7613(2001)029<0867:VOOGHF>2.0.CO;2 – volume: 105 start-page: 4200 year: 2001 ident: 10.1016/j.apenergy.2020.115569_b0190 article-title: Structure, composition, and thermal expansion of CO2 hydrate from single crystal x-ray diffraction measurements publication-title: J Phys Chem B doi: 10.1021/jp004389o – volume: 20 start-page: 4885 year: 2019 ident: 10.1016/j.apenergy.2020.115569_b0215 article-title: Strain rate-dependent hardening-softening characteristics of gas hydrate-bearing sediments publication-title: Geochem Geophys Geosyst doi: 10.1029/2019GC008458 – volume: 23 start-page: 355 year: 2019 ident: 10.1016/j.apenergy.2020.115569_b0220 article-title: Efficient parameter estimation for a methane hydrate model with active subspaces publication-title: Comput Geosci doi: 10.1007/s10596-018-9769-x – volume: 55 start-page: 988 year: 2017 ident: 10.1016/j.apenergy.2020.115569_b0140 article-title: Impact of formation and dissociation conditions on stiffness of a hydrate-bearing sand publication-title: Can Geotech J doi: 10.1139/cgj-2017-0241 – volume: 147 start-page: 77 year: 2016 ident: 10.1016/j.apenergy.2020.115569_b0130 article-title: The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2016.05.009 – volume: 5 start-page: 2112 year: 2012 ident: 10.1016/j.apenergy.2020.115569_b0175 article-title: Methane production from gas hydrate deposits through injection of supercritical CO2 publication-title: Energies doi: 10.3390/en5072112 – volume: 18 start-page: 3419 year: 2017 ident: 10.1016/j.apenergy.2020.115569_b0180 article-title: Testing a thermo-chemo-hydro-geomechanical model for gas hydrate-bearing sediments using triaxial compression laboratory experiments publication-title: Geochem Geophys Geosyst doi: 10.1002/2017GC006901 – volume: 92 start-page: 337 year: 1988 ident: 10.1016/j.apenergy.2020.115569_b0195 article-title: Low-temperature cross-polarization/magic angle spinning carbon-13 NMR of solid methane hydrates: structure, cage occupancy, and hydration number publication-title: J Phys Chem doi: 10.1021/j100313a018 – volume: 9 start-page: 715 year: 2018 ident: 10.1016/j.apenergy.2020.115569_b0060 article-title: Submarine slope failures due to pipe structure formation publication-title: Nat Commun doi: 10.1038/s41467-018-03176-1 – volume: 112 year: 2007 ident: 10.1016/j.apenergy.2020.115569_b0085 article-title: Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate publication-title: J Geophys Res Solid Earth doi: 10.1029/2006JB004484 – volume: 308 start-page: 50 year: 2017 ident: 10.1016/j.apenergy.2020.115569_b0105 article-title: CH4 – flue gas replacement occurring in sH hydrates and its significance for CH4 recovery and CO2 sequestration publication-title: Chem Eng J doi: 10.1016/j.cej.2016.09.031 – volume: 47 year: 2009 ident: 10.1016/j.apenergy.2020.115569_b0090 article-title: Physical properties of hydrate-bearing sediments publication-title: Rev Geophys doi: 10.1029/2008RG000279 – volume: 4 start-page: 1206 year: 2011 ident: 10.1016/j.apenergy.2020.115569_b0025 article-title: Current perspectives on gas hydrate resources publication-title: Energy Environ Sci doi: 10.1039/C0EE00203H – volume: 114 year: 2009 ident: 10.1016/j.apenergy.2020.115569_b0225 article-title: Influence of gas hydrate morphology on the seismic velocities of sands publication-title: J Geophys Res Solid Earth doi: 10.1029/2009JB006284 – volume: 99 start-page: 178 year: 2014 ident: 10.1016/j.apenergy.2020.115569_b0165 article-title: A comparative analysis of the mechanical behavior of carbon dioxide and methane hydrate-bearing sediments publication-title: Am Mineral doi: 10.2138/am.2014.4620 – volume: 120 start-page: 27159 year: 2016 ident: 10.1016/j.apenergy.2020.115569_b0100 article-title: Fluid composition and kinetics of the in situ replacement in CH4–CO2 hydrate system publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b09460 – volume: 118 start-page: 5185 year: 2013 ident: 10.1016/j.apenergy.2020.115569_b0120 article-title: Mechanical behavior of gas-saturated methane hydrate-bearing sediments publication-title: J Geophys Res Solid Earth doi: 10.1002/2013JB010233 – volume: 61 start-page: 1004 year: 2015 ident: 10.1016/j.apenergy.2020.115569_b0205 article-title: One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas publication-title: AIChE J doi: 10.1002/aic.14687 – ident: 10.1016/j.apenergy.2020.115569_b0185 – volume: 228 start-page: 229 year: 2018 ident: 10.1016/j.apenergy.2020.115569_b0080 article-title: Structural transition induced by cage-dependent guest exchange in CH4 + C3H8 hydrates with CO2 injection for energy recovery and CO2 sequestration publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.06.088 – volume: 1 start-page: 111 year: 2014 ident: 10.1016/j.apenergy.2020.115569_b0210 article-title: The role of cementation in the behaviour of cemented soils publication-title: Geotech Res doi: 10.1680/gr.14.00011 – year: 2008 ident: 10.1016/j.apenergy.2020.115569_b0005 – volume: 150 start-page: 356 year: 2017 ident: 10.1016/j.apenergy.2020.115569_b0075 article-title: CH4-CO2 replacement occurring in sII natural gas hydrates for CH4 recovery and CO2 sequestration publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.08.023 – start-page: 373 year: 2010 ident: 10.1016/j.apenergy.2020.115569_b0115 article-title: The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay. Geophysical characterization of gas hydrates publication-title: Soc Explor Geophy – volume: 246 start-page: 20 year: 2014 ident: 10.1016/j.apenergy.2020.115569_b0010 article-title: Structure identification and dissociation enthalpy measurements of the CO2+N2 hydrates for their application to CO2 capture and storage publication-title: Chem Eng J doi: 10.1016/j.cej.2014.02.045 – volume: 58 start-page: 1113 year: 2018 ident: 10.1016/j.apenergy.2020.115569_b0150 article-title: Rate effect on the stress-strain relations of synthetic carbon dioxide hydrate-bearing sand and dissociation tests by thermal stimulation publication-title: Soils Found doi: 10.1016/j.sandf.2018.05.007 – volume: 162 start-page: 1633 year: 2016 ident: 10.1016/j.apenergy.2020.115569_b0035 article-title: Review of natural gas hydrates as an energy resource: prospects and challenges publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.12.061 – volume: 304 start-page: 285 year: 2011 ident: 10.1016/j.apenergy.2020.115569_b0040 article-title: Iġnik Sikumi# 1, gas hydrate test well, successfully installed on the Alaska North Slope publication-title: Nat Gas Oil – volume: 34 start-page: 209 year: 2012 ident: 10.1016/j.apenergy.2020.115569_b0055 article-title: Review of progress in evaluating gas hydrate drilling hazards publication-title: Mar Pet Geol doi: 10.1016/j.marpetgeo.2012.02.010 – ident: 10.1016/j.apenergy.2020.115569_b0155 doi: 10.17736/ijope.2016.jc631 – volume: 36 start-page: 68 year: 1991 ident: 10.1016/j.apenergy.2020.115569_b0200 article-title: Hydrates of carbon dioxide and methane mixtures publication-title: J Chem Eng Data doi: 10.1021/je00001a020 – volume: 163 start-page: 51 year: 2016 ident: 10.1016/j.apenergy.2020.115569_b0015 article-title: Enclathration of CO2 as a co-guest of structure h hydrates and its implications for CO2 capture and sequestration publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.11.009 – volume: 49 start-page: 8899 year: 2015 ident: 10.1016/j.apenergy.2020.115569_b0070 article-title: Enhanced CH4 recovery induced via structural transformation in the CH4/CO2 replacement that occurs in sH hydrates publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b01640 – volume: 9 start-page: 83 year: 2018 ident: 10.1016/j.apenergy.2020.115569_b0065 article-title: Gas hydrate dissociation off svalbard induced by isostatic rebound rather than global warming publication-title: Nat Commun doi: 10.1038/s41467-017-02550-9 – volume: 122 start-page: 7511 year: 2017 ident: 10.1016/j.apenergy.2020.115569_b0135 article-title: Influence of fines content on the mechanical behavior of methane hydrate-bearing sediments publication-title: J Geophys Res Solid Earth doi: 10.1002/2017JB014154 – volume: 226 start-page: 916 year: 2018 ident: 10.1016/j.apenergy.2020.115569_b0145 article-title: Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.06.062 – volume: 51 start-page: 52 year: 2014 ident: 10.1016/j.apenergy.2020.115569_b0125 article-title: Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments publication-title: Mar Pet Geol doi: 10.1016/j.marpetgeo.2013.11.015 – volume: 172 start-page: 286 year: 2016 ident: 10.1016/j.apenergy.2020.115569_b0050 article-title: Investigation into gas production from natural gas hydrate: a review publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.101 – volume: 358 start-page: 598 year: 2019 ident: 10.1016/j.apenergy.2020.115569_b0020 article-title: Thermodynamic and kinetic influences of nacl on HFC-125a hydrates and their significance in gas hydrate-based desalination publication-title: Chem Eng J doi: 10.1016/j.cej.2018.10.032 – volume: 5 start-page: 2449 year: 2012 ident: 10.1016/j.apenergy.2020.115569_b0030 article-title: The global inventory of methane hydrate in marine sediments: a theoretical approach publication-title: Energies doi: 10.3390/en5072449 |
SSID | ssj0002120 |
Score | 2.5699766 |
Snippet | [Display omitted]
•The effects of the combined method on HBS geomechanical properties were examined.•Mechanical behavior depended on dissociation ratios and GH... This study analyzed the potential effects of gas hydrate (GH) exploitation on the geomechanical properties of hydrate-bearing sediment (HBS) by examining the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115569 |
SubjectTerms | carbon dioxide carbon sequestration CO2 sequestration dissociation energy recovery Gas hydrate Mechanical strength methane Replacement sediments strength (mechanics) |
Title | Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment |
URI | https://dx.doi.org/10.1016/j.apenergy.2020.115569 https://www.proquest.com/docview/2477623337 |
Volume | 277 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BcoEDKhTUBYpcqVfvBsfeJMfVatECKpcWiZvl-MFDJbvax6GXXvu3O5M4lCKkPXCKEmcmscfziDLfDMBXJUzuTJDcFyHnUpaCl8Jn3CSFDapQmTWEHf52PZjcyMtbdbsBoxYLQ2mV0fY3Nr221vFKP65mf_bw0P9O0W4d_1N1y5w6124J9PZ5B7aGF1eT62eDLGJ1RryfE8ELoPBjz8x8DbLDT0VBBkQpyn1-20e9sta1Czr_ALsxdmTD5vX2YMNX-7DzoqLgPhyO_wHX8NaouYuP8Oei7UbCpoGNJpLd_3JUJoJ5ysKLlboZpcHfsZgeu5pHkCYzlWNzX-dvEWfW9J1eMBx68oQdJlEzwp1Ud8t7ekLkzkvUJGK5wIUm0gO4OR__GE14bMLArVTFkjuhPMY8xqCqS5OrfJBa4XDMiNyqUkkb8FBaVTgMFqSTifQDGxIqq59Zn6WH0Kmmlf8EzOciJN5Jgu_KLDszGH66ohTC2BDSLOmCapdd2zhvapTxU7epaI-6FZcmcelGXF3oP9PNmhodaymKVqr6v92m0ZGspf3SbgONqkj_V0zlp6uFpklhNJmm2dE7-B_DNp01eMcT6CznK_8ZA59leQqbvd9np3F7_wWjpQdC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwEB2hpQAKxClujERrNjj2JinRCpTl2AaQ6CzHB4cgu9qj4Av4bTyJwyUkCqpIsWcSe-zxizJvBuBQMJUa5Ti1mUsp5wWjBbMJVVGmnchEohVyh6_6nfyWn9-JuxnoNlwYDKsMvr_26ZW3DnfaYTbbw8fH9jWi3Qr_Y3bLFCvXznIsat2C2ZPeRd7_cMgsZGf0_SkKfCEKPx2poa1Idv5TkaEDEQJjn38_o3546-oIOluCxYAdyUn9esswY8sVWPiSUXAF1k8_iWu-a9i541V46zXVSMjAkW7OycOrwTQRxGIUXsjUTTAM_p6E8NjpKJA0iSoNGdkqfgs1k7ru9Jj4pheL3GE0NUHeSXk_ecAnBO208DsJVY79RKPoGtyend50cxqKMFDNRTahhgnrMY9SfqtzlYq0E2tmfJtiqRaF4Nr5S6FFZjxY4IZH3Ha0izCtfqJtEq9DqxyUdgOITZmLrOFI3-VJcqw8_DRZwZjSzsVJtAmimXapw7ixUMazbELRnmRjLonmkrW5NqH9ITesc3T8KZE1VpXfVpv0B8mfsgfNMpB-K-L_FVXawXQscVAeTcZxsvUP_fswl99cXcrLXv9iG-axpeY-7kBrMpraXQ-CJsVeWOTv1t8JKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+CH4+hydrate+exploitation+using+depressurization+and+replacement+methods+on+mechanical+strength+of+hydrate-bearing+sediment&rft.jtitle=Applied+energy&rft.au=Lee%2C+Yohan&rft.au=Deusner%2C+Christian&rft.au=Kossel%2C+Elke&rft.au=Choi%2C+Wonjung&rft.date=2020-11-01&rft.issn=0306-2619&rft.volume=277&rft.spage=115569&rft_id=info:doi/10.1016%2Fj.apenergy.2020.115569&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_115569 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |