Sensitivity Analysis by the PROMETHEE-GAIA method: Algorithms evaluation for COVID-19 prediction
With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The paper addresses a machine learning algorithms analysis used to predict and identify infected patients. For analysis, we use a multicriteria a...
Saved in:
| Published in | Procedia computer science Vol. 199; pp. 431 - 438 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.01.2022
The Author(s). Published by Elsevier B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1877-0509 1877-0509 |
| DOI | 10.1016/j.procs.2022.01.052 |
Cover
| Abstract | With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The paper addresses a machine learning algorithms analysis used to predict and identify infected patients. For analysis, we use a multicriteria approach using the PROMETHEE-GAIA method, providing the structuring of alternatives respective to a set of criteria, thus enabling the obtaining of their importance degree under the perspective of multiple criteria. The study approaches a sensitivity analysis, evaluating the alternatives using the PROMETHEE I and II methods, along with the GAIA plan, both implemented by the Visual PROMETHEE computational tool, exploring numerical and graphical resources. The analysis model proves to be effective, guaranteeing the ranking of alternatives by inter criterion evaluation and local results with intra criterion evaluation, providing a transparent analysis concerning the selection of prediction algorithms to combat the COVID-19 pandemic. |
|---|---|
| AbstractList | With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The paper addresses a machine learning algorithms analysis used to predict and identify infected patients. For analysis, we use a multicriteria approach using the PROMETHEE-GAIA method, providing the structuring of alternatives respective to a set of criteria, thus enabling the obtaining of their importance degree under the perspective of multiple criteria. The study approaches a sensitivity analysis, evaluating the alternatives using the PROMETHEE I and II methods, along with the GAIA plan, both implemented by the Visual PROMETHEE computational tool, exploring numerical and graphical resources. The analysis model proves to be effective, guaranteeing the ranking of alternatives by inter criterion evaluation and local results with intra criterion evaluation, providing a transparent analysis concerning the selection of prediction algorithms to combat the COVID-19 pandemic.With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The paper addresses a machine learning algorithms analysis used to predict and identify infected patients. For analysis, we use a multicriteria approach using the PROMETHEE-GAIA method, providing the structuring of alternatives respective to a set of criteria, thus enabling the obtaining of their importance degree under the perspective of multiple criteria. The study approaches a sensitivity analysis, evaluating the alternatives using the PROMETHEE I and II methods, along with the GAIA plan, both implemented by the Visual PROMETHEE computational tool, exploring numerical and graphical resources. The analysis model proves to be effective, guaranteeing the ranking of alternatives by inter criterion evaluation and local results with intra criterion evaluation, providing a transparent analysis concerning the selection of prediction algorithms to combat the COVID-19 pandemic. With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The paper addresses a machine learning algorithms analysis used to predict and identify infected patients. For analysis, we use a multicriteria approach using the PROMETHEE-GAIA method, providing the structuring of alternatives respective to a set of criteria, thus enabling the obtaining of their importance degree under the perspective of multiple criteria. The study approaches a sensitivity analysis, evaluating the alternatives using the PROMETHEE I and II methods, along with the GAIA plan, both implemented by the Visual PROMETHEE computational tool, exploring numerical and graphical resources. The analysis model proves to be effective, guaranteeing the ranking of alternatives by inter criterion evaluation and local results with intra criterion evaluation, providing a transparent analysis concerning the selection of prediction algorithms to combat the COVID-19 pandemic. |
| Author | dos Santos, Marcos Simões Gomes, Carlos Francisco de Araújo Costa, Igor Pinheiro Lellis Moreira, Miguel Ângelo da Silva Júnior, Antonio Carlos |
| Author_xml | – sequence: 1 givenname: Miguel Ângelo surname: Lellis Moreira fullname: Lellis Moreira, Miguel Ângelo email: miguellellis@hotmail.com organization: Fluminense Federal University, Niterói, RJ 24210-240, Brazil – sequence: 2 givenname: Carlos Francisco surname: Simões Gomes fullname: Simões Gomes, Carlos Francisco organization: Fluminense Federal University, Niterói, RJ 24210-240, Brazil – sequence: 3 givenname: Marcos surname: dos Santos fullname: dos Santos, Marcos organization: Military Institute of Engineering, Urca, RJ 22290-270, Brazil – sequence: 4 givenname: Antonio Carlos surname: da Silva Júnior fullname: da Silva Júnior, Antonio Carlos organization: Federal University of Paraná, Curitiba, PR 80060-000, Brazil – sequence: 5 givenname: Igor Pinheiro surname: de Araújo Costa fullname: de Araújo Costa, Igor Pinheiro organization: Fluminense Federal University, Niterói, RJ 24210-240, Brazil |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35136460$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1DAUhS1UREvpEyAhL9kk-C9OjARSNEzbkYoGQWFrHMfpeJTEwXYG5e2b6RQoLABvbF3f7xzdc5-Co971BoDnGKUYYf5qmw7e6ZASREiKcIoy8gic4CLPE5QhcfTgfQzOQtii-dCiEDh_Ao5philnHJ2Ar59MH2y0OxsnWPaqnYINsJpg3Bj44eP6_fL6crlMLspVCTsTN65-Dcv2xnkbN12AZqfaUUXretg4DxfrL6t3CRZw8Ka2el9_Bh43qg3m7P4-BZ_Pl9eLy-RqfbFalFeJZpmIiW4MpxktmCE655jXOUEMs0pppBlXjHBRcUGYKCjNRI4RKTKllMiauqENq-gpYAfdsR_U9F21rRy87ZSfJEZyn5ncyrvM5D4zibCcM5uxtwdsGKvO1Nr00atfqFNW_v7T2428cTtZFJigQswCL-8FvPs2mhBlZ4M2bat648bZjJMcU8bJ3uvFQ6-fJj-2MTeIQ4P2LgRvGqltvEt3trbtPwahf7D_N_6bA2Xm1eys8TJoa3o9b88bHWXt7F_5WwHyx6I |
| CitedBy_id | crossref_primary_10_1016_j_enconman_2024_119464 crossref_primary_10_1016_j_desal_2024_118266 crossref_primary_10_1016_j_procs_2024_08_263 crossref_primary_10_1016_j_procs_2024_08_261 crossref_primary_10_1016_j_procs_2023_08_040 crossref_primary_10_3390_bdcc6040160 crossref_primary_10_1080_23311916_2024_2374944 crossref_primary_10_3390_sym14112317 crossref_primary_10_1016_j_simpa_2023_100581 crossref_primary_10_1016_j_procs_2022_11_201 crossref_primary_10_3390_healthcare10112147 crossref_primary_10_1016_j_procs_2022_11_202 crossref_primary_10_3390_su15108359 crossref_primary_10_1016_j_procs_2023_08_039 crossref_primary_10_3390_su15054419 crossref_primary_10_1016_j_procs_2024_08_217 crossref_primary_10_1016_j_procs_2024_08_215 crossref_primary_10_1016_j_procs_2024_08_259 crossref_primary_10_1016_j_procs_2024_08_235 crossref_primary_10_3390_informatics11020022 crossref_primary_10_1016_j_renene_2024_121761 crossref_primary_10_1016_j_procs_2023_12_052 crossref_primary_10_1016_j_procs_2023_07_028 crossref_primary_10_1016_j_procs_2023_07_005 crossref_primary_10_1016_j_procs_2023_07_049 crossref_primary_10_1155_2022_6074579 crossref_primary_10_1016_j_procs_2023_07_025 crossref_primary_10_3390_diagnostics12092069 crossref_primary_10_1016_j_omega_2024_103116 crossref_primary_10_1016_j_procs_2023_07_055 crossref_primary_10_1016_j_procs_2023_07_054 crossref_primary_10_1016_j_procs_2023_07_053 crossref_primary_10_1016_j_procs_2022_11_155 crossref_primary_10_1016_j_procs_2022_11_156 crossref_primary_10_3390_healthcare11071003 crossref_primary_10_1016_j_procs_2024_08_208 crossref_primary_10_1016_j_procs_2022_11_154 crossref_primary_10_1016_j_procs_2024_08_206 crossref_primary_10_1016_j_procs_2024_08_205 crossref_primary_10_1016_j_procs_2022_11_194 |
| Cites_doi | 10.7861/futurehosp.6-2-94 10.1007/978-1-4614-6849-3 10.1007/978-1-4939-3094-4_6 10.1016/0377-2217(86)90044-5 10.2139/ssrn.3590821 10.1101/2020.02.14.20023028 10.1590/0101-7438.2020.040.00226524 10.1017/ice.2020.61 10.1142/S2424862220500268 10.1016/j.ijinfomgt.2019.02.001 10.1007/s00500-017-2884-0 10.1016/0167-9236(94)90048-5 10.1007/s42979-020-00209-9 10.1016/j.chaos.2020.110059 10.3390/a14050140 10.1007/978-3-030-56920-4_31 10.1016/j.eswa.2016.11.034 10.11606/s1518-8787.2020054002792 |
| ContentType | Journal Article |
| Copyright | 2021 2022 The Author(s). Published by Elsevier B.V. 2022 The Author(s). Published by Elsevier B.V. 2021 |
| Copyright_xml | – notice: 2021 – notice: 2022 The Author(s). Published by Elsevier B.V. – notice: 2022 The Author(s). Published by Elsevier B.V. 2021 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.procs.2022.01.052 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1877-0509 |
| EndPage | 438 |
| ExternalDocumentID | 10.1016/j.procs.2022.01.052 PMC8812089 35136460 10_1016_j_procs_2022_01_052 S1877050922000527 |
| Genre | Journal Article |
| GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ~HD NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c459t-cfe635384e2c7616d720414bac0c46a4269b6924983359710285aaa95fdf3f4b3 |
| IEDL.DBID | IXB |
| ISSN | 1877-0509 |
| IngestDate | Sun Oct 26 04:19:38 EDT 2025 Tue Sep 30 15:08:59 EDT 2025 Sun Sep 28 08:28:48 EDT 2025 Thu Jan 02 22:55:40 EST 2025 Thu Apr 24 23:08:10 EDT 2025 Wed Oct 01 02:35:55 EDT 2025 Wed May 17 01:06:49 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | COVID-19 Predicition Algorithms Multiple Criteria Decision Analysis PROMETHEE method |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2022 The Author(s). Published by Elsevier B.V. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-cfe635384e2c7616d720414bac0c46a4269b6924983359710285aaa95fdf3f4b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050922000527 |
| PMID | 35136460 |
| PQID | 2627134622 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1016_j_procs_2022_01_052 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8812089 proquest_miscellaneous_2627134622 pubmed_primary_35136460 crossref_citationtrail_10_1016_j_procs_2022_01_052 crossref_primary_10_1016_j_procs_2022_01_052 elsevier_sciencedirect_doi_10_1016_j_procs_2022_01_052 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Procedia computer science |
| PublicationTitleAlternate | Procedia Comput Sci |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V The Author(s). Published by Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V – name: The Author(s). Published by Elsevier B.V |
| References | Pinter, Felde, Mosavi, Ghamisi, Gloaguen (bib0003) 2020 Lalmuanawma, Hussain, Chhakchhuak (bib0001) 2020; 139 M.Â.L. Moreira, C.F.S. Gomes, M. dos Santos, M. do Carmo Silva, J.V.G.A. Araujo, PROMETHEE-SAPEVO-M1 a Hybrid Modeling Proposal: Multicriteria Evaluation of Drones for Use in Naval Warfare, in: Springer Proceedings in Mathematics & Statistics, 1st ed., Springer, Cham, 2020: pp. 381–393. Ishizaka, Resce, Mareschal (bib00011) 2018; 22 Kuhn, Johnson (bib00018) 2013 J.-P. Brans, Y. De Smet, PROMETHEE methods, in: Multiple Criteria Decision Analysis: State of the Art Surveys, (2016). Brans, Vincke, Mareschal (bib00013) 1986; 24 de Oliveira, Oliveira, Gomes, Ribeiro (bib00016) 2019; 48 B. Mareschal, Visual PROMETHEE, (2011). S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, X. Meng, B. Xu, A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19), MedRxiv. (2020). Costa, Maêda, Teixeira, Gomes, Santos (bib0007) 2020; 54 Kushwaha, Bahl, Bagha, Parmar, Javaid, Haleem, Singh (bib0005) 2020; 5 Shinde, Kalamkar, Mahalle, Dey, Chaki, Hassanien (bib00017) 2020; 1 Moreira, de Araújo Costa, Pereira, dos Santos, Gomes, Muradas (bib00015) 2021; 14 Brans, Mareschal (bib00014) 1994; 12 Ali, Lee, Chung (bib0006) 2017; 71 Srinivasa Rao, Vazquez (bib0004) 2020; 41 Davenport, Kalakota (bib0002) 2019; 6 Gomes, dos Santos, de S. de B. Teixeira, Sanseverino, Barcelos (bib0009) 2020; 40 Doan, De Smet (bib00012) 2018; 80 10.1016/j.procs.2022.01.052_bib00019 Pinter (10.1016/j.procs.2022.01.052_bib0003) 2020 Doan (10.1016/j.procs.2022.01.052_bib00012) 2018; 80 Srinivasa Rao (10.1016/j.procs.2022.01.052_bib0004) 2020; 41 Brans (10.1016/j.procs.2022.01.052_bib00013) 1986; 24 10.1016/j.procs.2022.01.052_bib00010 Kuhn (10.1016/j.procs.2022.01.052_bib00018) 2013 Moreira (10.1016/j.procs.2022.01.052_bib00015) 2021; 14 Brans (10.1016/j.procs.2022.01.052_bib00014) 1994; 12 Shinde (10.1016/j.procs.2022.01.052_bib00017) 2020; 1 10.1016/j.procs.2022.01.052_bib00020 Ali (10.1016/j.procs.2022.01.052_bib0006) 2017; 71 Costa (10.1016/j.procs.2022.01.052_bib0007) 2020; 54 Kushwaha (10.1016/j.procs.2022.01.052_bib0005) 2020; 5 10.1016/j.procs.2022.01.052_bib0008 Gomes (10.1016/j.procs.2022.01.052_bib0009) 2020; 40 Davenport (10.1016/j.procs.2022.01.052_bib0002) 2019; 6 Ishizaka (10.1016/j.procs.2022.01.052_bib00011) 2018; 22 Lalmuanawma (10.1016/j.procs.2022.01.052_bib0001) 2020; 139 de Oliveira (10.1016/j.procs.2022.01.052_bib00016) 2019; 48 |
| References_xml | – volume: 22 start-page: 7325 year: 2018 end-page: 7338 ident: bib00011 article-title: Visual management of performance with PROMETHEE productivity analysis publication-title: Soft Computing – volume: 14 year: 2021 ident: bib00015 article-title: PROMETHEE-SAPEVO-M1 a Hybrid Approach Based on Ordinal and Cardinal Inputs: Multi-Criteria Evaluation of Helicopters to Support Brazilian Navy Operations publication-title: Algorithms – volume: 5 start-page: 453 year: 2020 end-page: 479 ident: bib0005 article-title: Significant applications of machine learning for covid-19 pandemic publication-title: Journal of Industrial Integration and Management – volume: 54 start-page: 79 year: 2020 ident: bib0007 article-title: Choosing a hospital assistance ship to fight the covid-19 pandemic publication-title: Revista de Saude Publica – volume: 139 start-page: 110059 year: 2020 ident: bib0001 article-title: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review, Chaos publication-title: Solitons and Fractals – volume: 41 start-page: 826 year: 2020 end-page: 830 ident: bib0004 article-title: Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey when cities and towns are under quarantine publication-title: Infection Control and Hospital Epidemiology – volume: 12 start-page: 297 year: 1994 end-page: 310 ident: bib00014 article-title: The PROMCALC & GAIA decision support system for multicriteria decision aid publication-title: Decision Support Systems – year: 2013 ident: bib00018 publication-title: Applied predictive modeling – volume: 71 start-page: 257 year: 2017 end-page: 278 ident: bib0006 article-title: Accurate multi-criteria decision making methodology for recommending machine learning algorithm publication-title: Expert Systems with Applications – volume: 40 start-page: 1 year: 2020 end-page: 20 ident: bib0009 article-title: SAPEVO-M a group multicriteria ordinal ranking method publication-title: Pesquisa Operacional – year: 2020 ident: bib0003 article-title: COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach publication-title: SSRN Electronic Journal – reference: J.-P. Brans, Y. De Smet, PROMETHEE methods, in: Multiple Criteria Decision Analysis: State of the Art Surveys, (2016). – reference: B. Mareschal, Visual PROMETHEE, (2011). – volume: 6 start-page: 94 year: 2019 end-page: 98 ident: bib0002 article-title: The potential for artificial intelligence in healthcare publication-title: Future Healthcare Journal – volume: 48 start-page: 185 year: 2019 end-page: 192 ident: bib00016 article-title: Quantitative analysis of RFID’ publications from 2006 to 2016 publication-title: International Journal of Information Management – volume: 24 start-page: 228 year: 1986 end-page: 238 ident: bib00013 article-title: How to select and how to rank projects: The Promethee method publication-title: European Journal of Operational Research – volume: 80 start-page: 166 year: 2018 end-page: 174 ident: bib00012 article-title: An alternative weight sensitivity analysis for PROMETHEE II rankings publication-title: Omega (United Kingdom) – reference: M.Â.L. Moreira, C.F.S. Gomes, M. dos Santos, M. do Carmo Silva, J.V.G.A. Araujo, PROMETHEE-SAPEVO-M1 a Hybrid Modeling Proposal: Multicriteria Evaluation of Drones for Use in Naval Warfare, in: Springer Proceedings in Mathematics & Statistics, 1st ed., Springer, Cham, 2020: pp. 381–393. – volume: 1 start-page: 1 year: 2020 end-page: 15 ident: bib00017 article-title: Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art publication-title: SN Computer Science – reference: S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, X. Meng, B. Xu, A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19), MedRxiv. (2020). – volume: 6 start-page: 94 year: 2019 ident: 10.1016/j.procs.2022.01.052_bib0002 article-title: The potential for artificial intelligence in healthcare publication-title: Future Healthcare Journal doi: 10.7861/futurehosp.6-2-94 – year: 2013 ident: 10.1016/j.procs.2022.01.052_bib00018 publication-title: Applied predictive modeling doi: 10.1007/978-1-4614-6849-3 – ident: 10.1016/j.procs.2022.01.052_bib00010 doi: 10.1007/978-1-4939-3094-4_6 – volume: 24 start-page: 228 year: 1986 ident: 10.1016/j.procs.2022.01.052_bib00013 article-title: How to select and how to rank projects: The Promethee method publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(86)90044-5 – year: 2020 ident: 10.1016/j.procs.2022.01.052_bib0003 article-title: COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach publication-title: SSRN Electronic Journal doi: 10.2139/ssrn.3590821 – ident: 10.1016/j.procs.2022.01.052_bib00019 doi: 10.1101/2020.02.14.20023028 – volume: 40 start-page: 1 year: 2020 ident: 10.1016/j.procs.2022.01.052_bib0009 article-title: SAPEVO-M a group multicriteria ordinal ranking method publication-title: Pesquisa Operacional doi: 10.1590/0101-7438.2020.040.00226524 – volume: 41 start-page: 826 year: 2020 ident: 10.1016/j.procs.2022.01.052_bib0004 article-title: Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey when cities and towns are under quarantine publication-title: Infection Control and Hospital Epidemiology doi: 10.1017/ice.2020.61 – volume: 80 start-page: 166 year: 2018 ident: 10.1016/j.procs.2022.01.052_bib00012 article-title: An alternative weight sensitivity analysis for PROMETHEE II rankings publication-title: Omega (United Kingdom) – volume: 5 start-page: 453 year: 2020 ident: 10.1016/j.procs.2022.01.052_bib0005 article-title: Significant applications of machine learning for covid-19 pandemic publication-title: Journal of Industrial Integration and Management doi: 10.1142/S2424862220500268 – volume: 48 start-page: 185 year: 2019 ident: 10.1016/j.procs.2022.01.052_bib00016 article-title: Quantitative analysis of RFID’ publications from 2006 to 2016 publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2019.02.001 – volume: 22 start-page: 7325 year: 2018 ident: 10.1016/j.procs.2022.01.052_bib00011 article-title: Visual management of performance with PROMETHEE productivity analysis publication-title: Soft Computing doi: 10.1007/s00500-017-2884-0 – volume: 12 start-page: 297 year: 1994 ident: 10.1016/j.procs.2022.01.052_bib00014 article-title: The PROMCALC & GAIA decision support system for multicriteria decision aid publication-title: Decision Support Systems doi: 10.1016/0167-9236(94)90048-5 – ident: 10.1016/j.procs.2022.01.052_bib00020 – volume: 1 start-page: 1 year: 2020 ident: 10.1016/j.procs.2022.01.052_bib00017 article-title: Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art publication-title: SN Computer Science doi: 10.1007/s42979-020-00209-9 – volume: 139 start-page: 110059 year: 2020 ident: 10.1016/j.procs.2022.01.052_bib0001 article-title: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review, Chaos publication-title: Solitons and Fractals doi: 10.1016/j.chaos.2020.110059 – volume: 14 year: 2021 ident: 10.1016/j.procs.2022.01.052_bib00015 article-title: PROMETHEE-SAPEVO-M1 a Hybrid Approach Based on Ordinal and Cardinal Inputs: Multi-Criteria Evaluation of Helicopters to Support Brazilian Navy Operations publication-title: Algorithms doi: 10.3390/a14050140 – ident: 10.1016/j.procs.2022.01.052_bib0008 doi: 10.1007/978-3-030-56920-4_31 – volume: 71 start-page: 257 year: 2017 ident: 10.1016/j.procs.2022.01.052_bib0006 article-title: Accurate multi-criteria decision making methodology for recommending machine learning algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.11.034 – volume: 54 start-page: 79 year: 2020 ident: 10.1016/j.procs.2022.01.052_bib0007 article-title: Choosing a hospital assistance ship to fight the covid-19 pandemic publication-title: Revista de Saude Publica doi: 10.11606/s1518-8787.2020054002792 |
| SSID | ssj0000388917 |
| Score | 2.4564362 |
| Snippet | With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 431 |
| SubjectTerms | COVID-19 Multiple Criteria Decision Analysis Predicition Algorithms PROMETHEE method |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELdQeYCXMRjbygbypD3OKM6Hk-wtKoWCxIc2iuDJc2xnfJS0Kqmm7q_nLh-Fjg2xxyTnKLbP9u9yd78j5HMWCp1ZzpmJjGE-dzKWKhMwFQnjhZH2dIQJzodHotf3D86D85pnG3Nh5vz3ZRwWbuTIq-26Jb9mAPvtoggAeLfIYv_oJLlAkyoKQ4ZMJg2v0N9b_uvseYotn4ZILk3ykZr-UoPBo_Nnd6VK7L4raQsx7ORme1Kk2_r3H6SOL-zaa_KqxqE0qRRnlSzYfI2sNDUeaL3k35Af3zHCvSoxQRsGE5pOKQBHevLt-LB72ut22V6yn9CqGvVXmgx-DsdXxeXtHX0gE6eAjmnn-Gx_h_GYjsboIML766S_2z3t9FhdlYFpP4gLBlMLIMWLfOvqUHBhsMwN91OlHe0LhamxqUCrDtO54hLABEqpOMhM5mV-6r0lrXyY2_eEphpsYg0giYPRZi0gD3hTLIxQcWw8q9vEbeZL6pqyHCtnDGQTm3YtyzGUOIbS4RLGsE2-zBqNKsaO58VFowiyBh0VmJAwX883_NSojYQliX4WldvhBISEixm6wgWZd5Uazb7EC7gnfOG0STinYDMBpPuef5JfXZa03xFgMSeK24TNVPElHdz4T_kPZBmvqt9MH0mrGE_sJgCvIt2qF9w9CKApFw priority: 102 providerName: Unpaywall |
| Title | Sensitivity Analysis by the PROMETHEE-GAIA method: Algorithms evaluation for COVID-19 prediction |
| URI | https://dx.doi.org/10.1016/j.procs.2022.01.052 https://www.ncbi.nlm.nih.gov/pubmed/35136460 https://www.proquest.com/docview/2627134622 https://pubmed.ncbi.nlm.nih.gov/PMC8812089 https://doi.org/10.1016/j.procs.2022.01.052 |
| UnpaywallVersion | publishedVersion |
| Volume | 199 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: KQ8 dateStart: 20100501 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: ScienceDirect Open Access Journals (Elsevier) customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: IXB dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: AKRWK dateStart: 20100501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWywEuvB_lsTISR6zGduLY3ELp0rLah3a3UE7GsRO2qKRVaYX23-NxHlCtWCGOccZR7LE9n-2ZbxB6VabClgWlxEnnSEyjkuTGJcRI4XgqLbcSApwPj8RoEn-YJtMdNGhjYcCtsln76zU9rNZNSb_pzf5yNuufUZmmwF7CWLivgohyHktI3zCevu3OWYDtRIXEuyBPoEJLPhTcvMBOAG03Y4G-M2F_M1BXAehVP8qbm2ppLn-a-fwPI7V_F91u0CXO6gbcQztFdR_daTM34GYiP0BfzsBvvU4cgVteEpxfYg8H8cnp8eHwfDQckvfZOMN1juk3OJt_Xaxm64vvP_BvinDsMS8eHH8cvyNU4eUKrn2g_CGa7A_PByPS5FogNk7UmniFeejBZVwwmwoqHCSvoXFubGRjYSDgNRewV4MgLRVgSWKMUUnpSl7GOX-EdqtFVTxBOLd-p2s99KF-K1YUHk_4LynhhFHK8cL2EGs7WNuGiBzyYcx163H2TQetaNCKjqj2Wumh112lZc3Dcb24aDWnt4aT9pbi-oovWz1rP9Hg9sRUxWLjhQSDuFvBvMzjWu_dn_CEchGLqIfSrRHRCQCJ9_abanYRyLylR1iRVD1EurHzLw18-r8NfIZuwVN9ivQc7a5Xm-KFx1XrfA_dyA5OPx3shQnknyZHJ9nnX8lwIyI |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKOZQL70d4GokjVtZer3fNLYSUBJoW0RTl5nptL02VbqKQCPXf4_E-IKqoEFd7ZrX2-PHZnvkGoTdFKkzhKCU2s5ZwGhUk1zYhOhM2TjMTmwwCnMeHYnjCP02T6Q7qN7Ew4FZZr_3Vmh5W67qkW_dmdzmbdY9plqbAXsJYeK9Kb6CbPPHoBKL4pu_bixagO5Eh8y4oENBo2IeCnxdsFMDbzVjg70zY33aoqwj0qiPl3qZc6sufej7_Y5fav4tu1_AS96oW3EM7rryP7jSpG3A9kx-g02NwXK8yR-CGmATnl9jjQfzl69F4MBkOBuRjb9TDVZLpd7g3_75YzdZnFz_wb45w7EEv7h99G30gVOLlCt59oPwhOtkfTPpDUidbIIYnck28xTz2iDPumEkFFRay11CeaxMZLjREvOYCDmsQpSUDLkm01jIpbBEXPI8fod1yUbonCOfGH3WNxz7Un8Wc84DCf0kKK7SUNnamg1jTwcrUTOSQEGOuGpezcxWsosAqKqLKW6WD3rZKy4qI43px0VhObY0n5beK6xVfN3ZWfqbB84ku3WLjhQSDwFvBvMzjyu7tn8QJjQUXUQelWyOiFQAW7-2acnYW2LwzD7GiTHYQacfOvzTw6f828BXaG07GB-pgdPj5GboFNdWV0nO0u15t3AsPstb5yzCJfgE7yyL1 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELdQeYCXMRjbygbypD3OKM6Hk-wtKoWCxIc2iuDJc2xnfJS0Kqmm7q_nLh-Fjg2xxyTnKLbP9u9yd78j5HMWCp1ZzpmJjGE-dzKWKhMwFQnjhZH2dIQJzodHotf3D86D85pnG3Nh5vz3ZRwWbuTIq-26Jb9mAPvtoggAeLfIYv_oJLlAkyoKQ4ZMJg2v0N9b_uvseYotn4ZILk3ykZr-UoPBo_Nnd6VK7L4raQsx7ORme1Kk2_r3H6SOL-zaa_KqxqE0qRRnlSzYfI2sNDUeaL3k35Af3zHCvSoxQRsGE5pOKQBHevLt-LB72ut22V6yn9CqGvVXmgx-DsdXxeXtHX0gE6eAjmnn-Gx_h_GYjsboIML766S_2z3t9FhdlYFpP4gLBlMLIMWLfOvqUHBhsMwN91OlHe0LhamxqUCrDtO54hLABEqpOMhM5mV-6r0lrXyY2_eEphpsYg0giYPRZi0gD3hTLIxQcWw8q9vEbeZL6pqyHCtnDGQTm3YtyzGUOIbS4RLGsE2-zBqNKsaO58VFowiyBh0VmJAwX883_NSojYQliX4WldvhBISEixm6wgWZd5Uazb7EC7gnfOG0STinYDMBpPuef5JfXZa03xFgMSeK24TNVPElHdz4T_kPZBmvqt9MH0mrGE_sJgCvIt2qF9w9CKApFw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+Analysis+by+the+PROMETHEE-GAIA+method%3A+Algorithms+evaluation+for+COVID-19+prediction&rft.jtitle=Procedia+computer+science&rft.au=Lellis+Moreira%2C+Miguel+%C3%82ngelo&rft.au=Sim%C3%B5es+Gomes%2C+Carlos+Francisco&rft.au=Dos+Santos%2C+Marcos&rft.au=da+Silva+J%C3%BAnior%2C+Antonio+Carlos&rft.date=2022-01-01&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=199&rft.spage=431&rft_id=info:doi/10.1016%2Fj.procs.2022.01.052&rft_id=info%3Apmid%2F35136460&rft.externalDocID=35136460 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |