Sensitivity Analysis by the PROMETHEE-GAIA method: Algorithms evaluation for COVID-19 prediction

With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The paper addresses a machine learning algorithms analysis used to predict and identify infected patients. For analysis, we use a multicriteria a...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 199; pp. 431 - 438
Main Authors Lellis Moreira, Miguel Ângelo, Simões Gomes, Carlos Francisco, dos Santos, Marcos, da Silva Júnior, Antonio Carlos, de Araújo Costa, Igor Pinheiro
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2022
The Author(s). Published by Elsevier B.V
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2022.01.052

Cover

Abstract With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The paper addresses a machine learning algorithms analysis used to predict and identify infected patients. For analysis, we use a multicriteria approach using the PROMETHEE-GAIA method, providing the structuring of alternatives respective to a set of criteria, thus enabling the obtaining of their importance degree under the perspective of multiple criteria. The study approaches a sensitivity analysis, evaluating the alternatives using the PROMETHEE I and II methods, along with the GAIA plan, both implemented by the Visual PROMETHEE computational tool, exploring numerical and graphical resources. The analysis model proves to be effective, guaranteeing the ranking of alternatives by inter criterion evaluation and local results with intra criterion evaluation, providing a transparent analysis concerning the selection of prediction algorithms to combat the COVID-19 pandemic.
AbstractList With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The paper addresses a machine learning algorithms analysis used to predict and identify infected patients. For analysis, we use a multicriteria approach using the PROMETHEE-GAIA method, providing the structuring of alternatives respective to a set of criteria, thus enabling the obtaining of their importance degree under the perspective of multiple criteria. The study approaches a sensitivity analysis, evaluating the alternatives using the PROMETHEE I and II methods, along with the GAIA plan, both implemented by the Visual PROMETHEE computational tool, exploring numerical and graphical resources. The analysis model proves to be effective, guaranteeing the ranking of alternatives by inter criterion evaluation and local results with intra criterion evaluation, providing a transparent analysis concerning the selection of prediction algorithms to combat the COVID-19 pandemic.With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The paper addresses a machine learning algorithms analysis used to predict and identify infected patients. For analysis, we use a multicriteria approach using the PROMETHEE-GAIA method, providing the structuring of alternatives respective to a set of criteria, thus enabling the obtaining of their importance degree under the perspective of multiple criteria. The study approaches a sensitivity analysis, evaluating the alternatives using the PROMETHEE I and II methods, along with the GAIA plan, both implemented by the Visual PROMETHEE computational tool, exploring numerical and graphical resources. The analysis model proves to be effective, guaranteeing the ranking of alternatives by inter criterion evaluation and local results with intra criterion evaluation, providing a transparent analysis concerning the selection of prediction algorithms to combat the COVID-19 pandemic.
With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The paper addresses a machine learning algorithms analysis used to predict and identify infected patients. For analysis, we use a multicriteria approach using the PROMETHEE-GAIA method, providing the structuring of alternatives respective to a set of criteria, thus enabling the obtaining of their importance degree under the perspective of multiple criteria. The study approaches a sensitivity analysis, evaluating the alternatives using the PROMETHEE I and II methods, along with the GAIA plan, both implemented by the Visual PROMETHEE computational tool, exploring numerical and graphical resources. The analysis model proves to be effective, guaranteeing the ranking of alternatives by inter criterion evaluation and local results with intra criterion evaluation, providing a transparent analysis concerning the selection of prediction algorithms to combat the COVID-19 pandemic.
Author dos Santos, Marcos
Simões Gomes, Carlos Francisco
de Araújo Costa, Igor Pinheiro
Lellis Moreira, Miguel Ângelo
da Silva Júnior, Antonio Carlos
Author_xml – sequence: 1
  givenname: Miguel Ângelo
  surname: Lellis Moreira
  fullname: Lellis Moreira, Miguel Ângelo
  email: miguellellis@hotmail.com
  organization: Fluminense Federal University, Niterói, RJ 24210-240, Brazil
– sequence: 2
  givenname: Carlos Francisco
  surname: Simões Gomes
  fullname: Simões Gomes, Carlos Francisco
  organization: Fluminense Federal University, Niterói, RJ 24210-240, Brazil
– sequence: 3
  givenname: Marcos
  surname: dos Santos
  fullname: dos Santos, Marcos
  organization: Military Institute of Engineering, Urca, RJ 22290-270, Brazil
– sequence: 4
  givenname: Antonio Carlos
  surname: da Silva Júnior
  fullname: da Silva Júnior, Antonio Carlos
  organization: Federal University of Paraná, Curitiba, PR 80060-000, Brazil
– sequence: 5
  givenname: Igor Pinheiro
  surname: de Araújo Costa
  fullname: de Araújo Costa, Igor Pinheiro
  organization: Fluminense Federal University, Niterói, RJ 24210-240, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35136460$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1UREvpEyAhL9kk-C9OjARSNEzbkYoGQWFrHMfpeJTEwXYG5e2b6RQoLABvbF3f7xzdc5-Co971BoDnGKUYYf5qmw7e6ZASREiKcIoy8gic4CLPE5QhcfTgfQzOQtii-dCiEDh_Ao5philnHJ2Ar59MH2y0OxsnWPaqnYINsJpg3Bj44eP6_fL6crlMLspVCTsTN65-Dcv2xnkbN12AZqfaUUXretg4DxfrL6t3CRZw8Ka2el9_Bh43qg3m7P4-BZ_Pl9eLy-RqfbFalFeJZpmIiW4MpxktmCE655jXOUEMs0pppBlXjHBRcUGYKCjNRI4RKTKllMiauqENq-gpYAfdsR_U9F21rRy87ZSfJEZyn5ncyrvM5D4zibCcM5uxtwdsGKvO1Nr00atfqFNW_v7T2428cTtZFJigQswCL-8FvPs2mhBlZ4M2bat648bZjJMcU8bJ3uvFQ6-fJj-2MTeIQ4P2LgRvGqltvEt3trbtPwahf7D_N_6bA2Xm1eys8TJoa3o9b88bHWXt7F_5WwHyx6I
CitedBy_id crossref_primary_10_1016_j_enconman_2024_119464
crossref_primary_10_1016_j_desal_2024_118266
crossref_primary_10_1016_j_procs_2024_08_263
crossref_primary_10_1016_j_procs_2024_08_261
crossref_primary_10_1016_j_procs_2023_08_040
crossref_primary_10_3390_bdcc6040160
crossref_primary_10_1080_23311916_2024_2374944
crossref_primary_10_3390_sym14112317
crossref_primary_10_1016_j_simpa_2023_100581
crossref_primary_10_1016_j_procs_2022_11_201
crossref_primary_10_3390_healthcare10112147
crossref_primary_10_1016_j_procs_2022_11_202
crossref_primary_10_3390_su15108359
crossref_primary_10_1016_j_procs_2023_08_039
crossref_primary_10_3390_su15054419
crossref_primary_10_1016_j_procs_2024_08_217
crossref_primary_10_1016_j_procs_2024_08_215
crossref_primary_10_1016_j_procs_2024_08_259
crossref_primary_10_1016_j_procs_2024_08_235
crossref_primary_10_3390_informatics11020022
crossref_primary_10_1016_j_renene_2024_121761
crossref_primary_10_1016_j_procs_2023_12_052
crossref_primary_10_1016_j_procs_2023_07_028
crossref_primary_10_1016_j_procs_2023_07_005
crossref_primary_10_1016_j_procs_2023_07_049
crossref_primary_10_1155_2022_6074579
crossref_primary_10_1016_j_procs_2023_07_025
crossref_primary_10_3390_diagnostics12092069
crossref_primary_10_1016_j_omega_2024_103116
crossref_primary_10_1016_j_procs_2023_07_055
crossref_primary_10_1016_j_procs_2023_07_054
crossref_primary_10_1016_j_procs_2023_07_053
crossref_primary_10_1016_j_procs_2022_11_155
crossref_primary_10_1016_j_procs_2022_11_156
crossref_primary_10_3390_healthcare11071003
crossref_primary_10_1016_j_procs_2024_08_208
crossref_primary_10_1016_j_procs_2022_11_154
crossref_primary_10_1016_j_procs_2024_08_206
crossref_primary_10_1016_j_procs_2024_08_205
crossref_primary_10_1016_j_procs_2022_11_194
Cites_doi 10.7861/futurehosp.6-2-94
10.1007/978-1-4614-6849-3
10.1007/978-1-4939-3094-4_6
10.1016/0377-2217(86)90044-5
10.2139/ssrn.3590821
10.1101/2020.02.14.20023028
10.1590/0101-7438.2020.040.00226524
10.1017/ice.2020.61
10.1142/S2424862220500268
10.1016/j.ijinfomgt.2019.02.001
10.1007/s00500-017-2884-0
10.1016/0167-9236(94)90048-5
10.1007/s42979-020-00209-9
10.1016/j.chaos.2020.110059
10.3390/a14050140
10.1007/978-3-030-56920-4_31
10.1016/j.eswa.2016.11.034
10.11606/s1518-8787.2020054002792
ContentType Journal Article
Copyright 2021
2022 The Author(s). Published by Elsevier B.V.
2022 The Author(s). Published by Elsevier B.V. 2021
Copyright_xml – notice: 2021
– notice: 2022 The Author(s). Published by Elsevier B.V.
– notice: 2022 The Author(s). Published by Elsevier B.V. 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.procs.2022.01.052
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 438
ExternalDocumentID 10.1016/j.procs.2022.01.052
PMC8812089
35136460
10_1016_j_procs_2022_01_052
S1877050922000527
Genre Journal Article
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c459t-cfe635384e2c7616d720414bac0c46a4269b6924983359710285aaa95fdf3f4b3
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Sun Oct 26 04:19:38 EDT 2025
Tue Sep 30 15:08:59 EDT 2025
Sun Sep 28 08:28:48 EDT 2025
Thu Jan 02 22:55:40 EST 2025
Thu Apr 24 23:08:10 EDT 2025
Wed Oct 01 02:35:55 EDT 2025
Wed May 17 01:06:49 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Predicition Algorithms
Multiple Criteria Decision Analysis
PROMETHEE method
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 The Author(s). Published by Elsevier B.V.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-cfe635384e2c7616d720414bac0c46a4269b6924983359710285aaa95fdf3f4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050922000527
PMID 35136460
PQID 2627134622
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_procs_2022_01_052
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8812089
proquest_miscellaneous_2627134622
pubmed_primary_35136460
crossref_citationtrail_10_1016_j_procs_2022_01_052
crossref_primary_10_1016_j_procs_2022_01_052
elsevier_sciencedirect_doi_10_1016_j_procs_2022_01_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Procedia computer science
PublicationTitleAlternate Procedia Comput Sci
PublicationYear 2022
Publisher Elsevier B.V
The Author(s). Published by Elsevier B.V
Publisher_xml – name: Elsevier B.V
– name: The Author(s). Published by Elsevier B.V
References Pinter, Felde, Mosavi, Ghamisi, Gloaguen (bib0003) 2020
Lalmuanawma, Hussain, Chhakchhuak (bib0001) 2020; 139
M.Â.L. Moreira, C.F.S. Gomes, M. dos Santos, M. do Carmo Silva, J.V.G.A. Araujo, PROMETHEE-SAPEVO-M1 a Hybrid Modeling Proposal: Multicriteria Evaluation of Drones for Use in Naval Warfare, in: Springer Proceedings in Mathematics & Statistics, 1st ed., Springer, Cham, 2020: pp. 381–393.
Ishizaka, Resce, Mareschal (bib00011) 2018; 22
Kuhn, Johnson (bib00018) 2013
J.-P. Brans, Y. De Smet, PROMETHEE methods, in: Multiple Criteria Decision Analysis: State of the Art Surveys, (2016).
Brans, Vincke, Mareschal (bib00013) 1986; 24
de Oliveira, Oliveira, Gomes, Ribeiro (bib00016) 2019; 48
B. Mareschal, Visual PROMETHEE, (2011).
S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, X. Meng, B. Xu, A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19), MedRxiv. (2020).
Costa, Maêda, Teixeira, Gomes, Santos (bib0007) 2020; 54
Kushwaha, Bahl, Bagha, Parmar, Javaid, Haleem, Singh (bib0005) 2020; 5
Shinde, Kalamkar, Mahalle, Dey, Chaki, Hassanien (bib00017) 2020; 1
Moreira, de Araújo Costa, Pereira, dos Santos, Gomes, Muradas (bib00015) 2021; 14
Brans, Mareschal (bib00014) 1994; 12
Ali, Lee, Chung (bib0006) 2017; 71
Srinivasa Rao, Vazquez (bib0004) 2020; 41
Davenport, Kalakota (bib0002) 2019; 6
Gomes, dos Santos, de S. de B. Teixeira, Sanseverino, Barcelos (bib0009) 2020; 40
Doan, De Smet (bib00012) 2018; 80
10.1016/j.procs.2022.01.052_bib00019
Pinter (10.1016/j.procs.2022.01.052_bib0003) 2020
Doan (10.1016/j.procs.2022.01.052_bib00012) 2018; 80
Srinivasa Rao (10.1016/j.procs.2022.01.052_bib0004) 2020; 41
Brans (10.1016/j.procs.2022.01.052_bib00013) 1986; 24
10.1016/j.procs.2022.01.052_bib00010
Kuhn (10.1016/j.procs.2022.01.052_bib00018) 2013
Moreira (10.1016/j.procs.2022.01.052_bib00015) 2021; 14
Brans (10.1016/j.procs.2022.01.052_bib00014) 1994; 12
Shinde (10.1016/j.procs.2022.01.052_bib00017) 2020; 1
10.1016/j.procs.2022.01.052_bib00020
Ali (10.1016/j.procs.2022.01.052_bib0006) 2017; 71
Costa (10.1016/j.procs.2022.01.052_bib0007) 2020; 54
Kushwaha (10.1016/j.procs.2022.01.052_bib0005) 2020; 5
10.1016/j.procs.2022.01.052_bib0008
Gomes (10.1016/j.procs.2022.01.052_bib0009) 2020; 40
Davenport (10.1016/j.procs.2022.01.052_bib0002) 2019; 6
Ishizaka (10.1016/j.procs.2022.01.052_bib00011) 2018; 22
Lalmuanawma (10.1016/j.procs.2022.01.052_bib0001) 2020; 139
de Oliveira (10.1016/j.procs.2022.01.052_bib00016) 2019; 48
References_xml – volume: 22
  start-page: 7325
  year: 2018
  end-page: 7338
  ident: bib00011
  article-title: Visual management of performance with PROMETHEE productivity analysis
  publication-title: Soft Computing
– volume: 14
  year: 2021
  ident: bib00015
  article-title: PROMETHEE-SAPEVO-M1 a Hybrid Approach Based on Ordinal and Cardinal Inputs: Multi-Criteria Evaluation of Helicopters to Support Brazilian Navy Operations
  publication-title: Algorithms
– volume: 5
  start-page: 453
  year: 2020
  end-page: 479
  ident: bib0005
  article-title: Significant applications of machine learning for covid-19 pandemic
  publication-title: Journal of Industrial Integration and Management
– volume: 54
  start-page: 79
  year: 2020
  ident: bib0007
  article-title: Choosing a hospital assistance ship to fight the covid-19 pandemic
  publication-title: Revista de Saude Publica
– volume: 139
  start-page: 110059
  year: 2020
  ident: bib0001
  article-title: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review, Chaos
  publication-title: Solitons and Fractals
– volume: 41
  start-page: 826
  year: 2020
  end-page: 830
  ident: bib0004
  article-title: Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey when cities and towns are under quarantine
  publication-title: Infection Control and Hospital Epidemiology
– volume: 12
  start-page: 297
  year: 1994
  end-page: 310
  ident: bib00014
  article-title: The PROMCALC & GAIA decision support system for multicriteria decision aid
  publication-title: Decision Support Systems
– year: 2013
  ident: bib00018
  publication-title: Applied predictive modeling
– volume: 71
  start-page: 257
  year: 2017
  end-page: 278
  ident: bib0006
  article-title: Accurate multi-criteria decision making methodology for recommending machine learning algorithm
  publication-title: Expert Systems with Applications
– volume: 40
  start-page: 1
  year: 2020
  end-page: 20
  ident: bib0009
  article-title: SAPEVO-M a group multicriteria ordinal ranking method
  publication-title: Pesquisa Operacional
– year: 2020
  ident: bib0003
  article-title: COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach
  publication-title: SSRN Electronic Journal
– reference: J.-P. Brans, Y. De Smet, PROMETHEE methods, in: Multiple Criteria Decision Analysis: State of the Art Surveys, (2016).
– reference: B. Mareschal, Visual PROMETHEE, (2011).
– volume: 6
  start-page: 94
  year: 2019
  end-page: 98
  ident: bib0002
  article-title: The potential for artificial intelligence in healthcare
  publication-title: Future Healthcare Journal
– volume: 48
  start-page: 185
  year: 2019
  end-page: 192
  ident: bib00016
  article-title: Quantitative analysis of RFID’ publications from 2006 to 2016
  publication-title: International Journal of Information Management
– volume: 24
  start-page: 228
  year: 1986
  end-page: 238
  ident: bib00013
  article-title: How to select and how to rank projects: The Promethee method
  publication-title: European Journal of Operational Research
– volume: 80
  start-page: 166
  year: 2018
  end-page: 174
  ident: bib00012
  article-title: An alternative weight sensitivity analysis for PROMETHEE II rankings
  publication-title: Omega (United Kingdom)
– reference: M.Â.L. Moreira, C.F.S. Gomes, M. dos Santos, M. do Carmo Silva, J.V.G.A. Araujo, PROMETHEE-SAPEVO-M1 a Hybrid Modeling Proposal: Multicriteria Evaluation of Drones for Use in Naval Warfare, in: Springer Proceedings in Mathematics & Statistics, 1st ed., Springer, Cham, 2020: pp. 381–393.
– volume: 1
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib00017
  article-title: Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art
  publication-title: SN Computer Science
– reference: S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, X. Meng, B. Xu, A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19), MedRxiv. (2020).
– volume: 6
  start-page: 94
  year: 2019
  ident: 10.1016/j.procs.2022.01.052_bib0002
  article-title: The potential for artificial intelligence in healthcare
  publication-title: Future Healthcare Journal
  doi: 10.7861/futurehosp.6-2-94
– year: 2013
  ident: 10.1016/j.procs.2022.01.052_bib00018
  publication-title: Applied predictive modeling
  doi: 10.1007/978-1-4614-6849-3
– ident: 10.1016/j.procs.2022.01.052_bib00010
  doi: 10.1007/978-1-4939-3094-4_6
– volume: 24
  start-page: 228
  year: 1986
  ident: 10.1016/j.procs.2022.01.052_bib00013
  article-title: How to select and how to rank projects: The Promethee method
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(86)90044-5
– year: 2020
  ident: 10.1016/j.procs.2022.01.052_bib0003
  article-title: COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach
  publication-title: SSRN Electronic Journal
  doi: 10.2139/ssrn.3590821
– ident: 10.1016/j.procs.2022.01.052_bib00019
  doi: 10.1101/2020.02.14.20023028
– volume: 40
  start-page: 1
  year: 2020
  ident: 10.1016/j.procs.2022.01.052_bib0009
  article-title: SAPEVO-M a group multicriteria ordinal ranking method
  publication-title: Pesquisa Operacional
  doi: 10.1590/0101-7438.2020.040.00226524
– volume: 41
  start-page: 826
  year: 2020
  ident: 10.1016/j.procs.2022.01.052_bib0004
  article-title: Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey when cities and towns are under quarantine
  publication-title: Infection Control and Hospital Epidemiology
  doi: 10.1017/ice.2020.61
– volume: 80
  start-page: 166
  year: 2018
  ident: 10.1016/j.procs.2022.01.052_bib00012
  article-title: An alternative weight sensitivity analysis for PROMETHEE II rankings
  publication-title: Omega (United Kingdom)
– volume: 5
  start-page: 453
  year: 2020
  ident: 10.1016/j.procs.2022.01.052_bib0005
  article-title: Significant applications of machine learning for covid-19 pandemic
  publication-title: Journal of Industrial Integration and Management
  doi: 10.1142/S2424862220500268
– volume: 48
  start-page: 185
  year: 2019
  ident: 10.1016/j.procs.2022.01.052_bib00016
  article-title: Quantitative analysis of RFID’ publications from 2006 to 2016
  publication-title: International Journal of Information Management
  doi: 10.1016/j.ijinfomgt.2019.02.001
– volume: 22
  start-page: 7325
  year: 2018
  ident: 10.1016/j.procs.2022.01.052_bib00011
  article-title: Visual management of performance with PROMETHEE productivity analysis
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2884-0
– volume: 12
  start-page: 297
  year: 1994
  ident: 10.1016/j.procs.2022.01.052_bib00014
  article-title: The PROMCALC & GAIA decision support system for multicriteria decision aid
  publication-title: Decision Support Systems
  doi: 10.1016/0167-9236(94)90048-5
– ident: 10.1016/j.procs.2022.01.052_bib00020
– volume: 1
  start-page: 1
  year: 2020
  ident: 10.1016/j.procs.2022.01.052_bib00017
  article-title: Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art
  publication-title: SN Computer Science
  doi: 10.1007/s42979-020-00209-9
– volume: 139
  start-page: 110059
  year: 2020
  ident: 10.1016/j.procs.2022.01.052_bib0001
  article-title: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review, Chaos
  publication-title: Solitons and Fractals
  doi: 10.1016/j.chaos.2020.110059
– volume: 14
  year: 2021
  ident: 10.1016/j.procs.2022.01.052_bib00015
  article-title: PROMETHEE-SAPEVO-M1 a Hybrid Approach Based on Ordinal and Cardinal Inputs: Multi-Criteria Evaluation of Helicopters to Support Brazilian Navy Operations
  publication-title: Algorithms
  doi: 10.3390/a14050140
– ident: 10.1016/j.procs.2022.01.052_bib0008
  doi: 10.1007/978-3-030-56920-4_31
– volume: 71
  start-page: 257
  year: 2017
  ident: 10.1016/j.procs.2022.01.052_bib0006
  article-title: Accurate multi-criteria decision making methodology for recommending machine learning algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.11.034
– volume: 54
  start-page: 79
  year: 2020
  ident: 10.1016/j.procs.2022.01.052_bib0007
  article-title: Choosing a hospital assistance ship to fight the covid-19 pandemic
  publication-title: Revista de Saude Publica
  doi: 10.11606/s1518-8787.2020054002792
SSID ssj0000388917
Score 2.4564362
Snippet With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 431
SubjectTerms COVID-19
Multiple Criteria Decision Analysis
Predicition Algorithms
PROMETHEE method
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELdQeYCXMRjbygbypD3OKM6Hk-wtKoWCxIc2iuDJc2xnfJS0Kqmm7q_nLh-Fjg2xxyTnKLbP9u9yd78j5HMWCp1ZzpmJjGE-dzKWKhMwFQnjhZH2dIQJzodHotf3D86D85pnG3Nh5vz3ZRwWbuTIq-26Jb9mAPvtoggAeLfIYv_oJLlAkyoKQ4ZMJg2v0N9b_uvseYotn4ZILk3ykZr-UoPBo_Nnd6VK7L4raQsx7ORme1Kk2_r3H6SOL-zaa_KqxqE0qRRnlSzYfI2sNDUeaL3k35Af3zHCvSoxQRsGE5pOKQBHevLt-LB72ut22V6yn9CqGvVXmgx-DsdXxeXtHX0gE6eAjmnn-Gx_h_GYjsboIML766S_2z3t9FhdlYFpP4gLBlMLIMWLfOvqUHBhsMwN91OlHe0LhamxqUCrDtO54hLABEqpOMhM5mV-6r0lrXyY2_eEphpsYg0giYPRZi0gD3hTLIxQcWw8q9vEbeZL6pqyHCtnDGQTm3YtyzGUOIbS4RLGsE2-zBqNKsaO58VFowiyBh0VmJAwX883_NSojYQliX4WldvhBISEixm6wgWZd5Uazb7EC7gnfOG0STinYDMBpPuef5JfXZa03xFgMSeK24TNVPElHdz4T_kPZBmvqt9MH0mrGE_sJgCvIt2qF9w9CKApFw
  priority: 102
  providerName: Unpaywall
Title Sensitivity Analysis by the PROMETHEE-GAIA method: Algorithms evaluation for COVID-19 prediction
URI https://dx.doi.org/10.1016/j.procs.2022.01.052
https://www.ncbi.nlm.nih.gov/pubmed/35136460
https://www.proquest.com/docview/2627134622
https://pubmed.ncbi.nlm.nih.gov/PMC8812089
https://doi.org/10.1016/j.procs.2022.01.052
UnpaywallVersion publishedVersion
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: KQ8
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: ScienceDirect Open Access Journals (Elsevier)
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: IXB
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: AKRWK
  dateStart: 20100501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWywEuvB_lsTISR6zGduLY3ELp0rLah3a3UE7GsRO2qKRVaYX23-NxHlCtWCGOccZR7LE9n-2ZbxB6VabClgWlxEnnSEyjkuTGJcRI4XgqLbcSApwPj8RoEn-YJtMdNGhjYcCtsln76zU9rNZNSb_pzf5yNuufUZmmwF7CWLivgohyHktI3zCevu3OWYDtRIXEuyBPoEJLPhTcvMBOAG03Y4G-M2F_M1BXAehVP8qbm2ppLn-a-fwPI7V_F91u0CXO6gbcQztFdR_daTM34GYiP0BfzsBvvU4cgVteEpxfYg8H8cnp8eHwfDQckvfZOMN1juk3OJt_Xaxm64vvP_BvinDsMS8eHH8cvyNU4eUKrn2g_CGa7A_PByPS5FogNk7UmniFeejBZVwwmwoqHCSvoXFubGRjYSDgNRewV4MgLRVgSWKMUUnpSl7GOX-EdqtFVTxBOLd-p2s99KF-K1YUHk_4LynhhFHK8cL2EGs7WNuGiBzyYcx163H2TQetaNCKjqj2Wumh112lZc3Dcb24aDWnt4aT9pbi-oovWz1rP9Hg9sRUxWLjhQSDuFvBvMzjWu_dn_CEchGLqIfSrRHRCQCJ9_abanYRyLylR1iRVD1EurHzLw18-r8NfIZuwVN9ivQc7a5Xm-KFx1XrfA_dyA5OPx3shQnknyZHJ9nnX8lwIyI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKOZQL70d4GokjVtZer3fNLYSUBJoW0RTl5nptL02VbqKQCPXf4_E-IKqoEFd7ZrX2-PHZnvkGoTdFKkzhKCU2s5ZwGhUk1zYhOhM2TjMTmwwCnMeHYnjCP02T6Q7qN7Ew4FZZr_3Vmh5W67qkW_dmdzmbdY9plqbAXsJYeK9Kb6CbPPHoBKL4pu_bixagO5Eh8y4oENBo2IeCnxdsFMDbzVjg70zY33aoqwj0qiPl3qZc6sufej7_Y5fav4tu1_AS96oW3EM7rryP7jSpG3A9kx-g02NwXK8yR-CGmATnl9jjQfzl69F4MBkOBuRjb9TDVZLpd7g3_75YzdZnFz_wb45w7EEv7h99G30gVOLlCt59oPwhOtkfTPpDUidbIIYnck28xTz2iDPumEkFFRay11CeaxMZLjREvOYCDmsQpSUDLkm01jIpbBEXPI8fod1yUbonCOfGH3WNxz7Un8Wc84DCf0kKK7SUNnamg1jTwcrUTOSQEGOuGpezcxWsosAqKqLKW6WD3rZKy4qI43px0VhObY0n5beK6xVfN3ZWfqbB84ku3WLjhQSDwFvBvMzjyu7tn8QJjQUXUQelWyOiFQAW7-2acnYW2LwzD7GiTHYQacfOvzTw6f828BXaG07GB-pgdPj5GboFNdWV0nO0u15t3AsPstb5yzCJfgE7yyL1
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELdQeYCXMRjbygbypD3OKM6Hk-wtKoWCxIc2iuDJc2xnfJS0Kqmm7q_nLh-Fjg2xxyTnKLbP9u9yd78j5HMWCp1ZzpmJjGE-dzKWKhMwFQnjhZH2dIQJzodHotf3D86D85pnG3Nh5vz3ZRwWbuTIq-26Jb9mAPvtoggAeLfIYv_oJLlAkyoKQ4ZMJg2v0N9b_uvseYotn4ZILk3ykZr-UoPBo_Nnd6VK7L4raQsx7ORme1Kk2_r3H6SOL-zaa_KqxqE0qRRnlSzYfI2sNDUeaL3k35Af3zHCvSoxQRsGE5pOKQBHevLt-LB72ut22V6yn9CqGvVXmgx-DsdXxeXtHX0gE6eAjmnn-Gx_h_GYjsboIML766S_2z3t9FhdlYFpP4gLBlMLIMWLfOvqUHBhsMwN91OlHe0LhamxqUCrDtO54hLABEqpOMhM5mV-6r0lrXyY2_eEphpsYg0giYPRZi0gD3hTLIxQcWw8q9vEbeZL6pqyHCtnDGQTm3YtyzGUOIbS4RLGsE2-zBqNKsaO58VFowiyBh0VmJAwX883_NSojYQliX4WldvhBISEixm6wgWZd5Uazb7EC7gnfOG0STinYDMBpPuef5JfXZa03xFgMSeK24TNVPElHdz4T_kPZBmvqt9MH0mrGE_sJgCvIt2qF9w9CKApFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+Analysis+by+the+PROMETHEE-GAIA+method%3A+Algorithms+evaluation+for+COVID-19+prediction&rft.jtitle=Procedia+computer+science&rft.au=Lellis+Moreira%2C+Miguel+%C3%82ngelo&rft.au=Sim%C3%B5es+Gomes%2C+Carlos+Francisco&rft.au=Dos+Santos%2C+Marcos&rft.au=da+Silva+J%C3%BAnior%2C+Antonio+Carlos&rft.date=2022-01-01&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=199&rft.spage=431&rft_id=info:doi/10.1016%2Fj.procs.2022.01.052&rft_id=info%3Apmid%2F35136460&rft.externalDocID=35136460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon