New Insights Into Sunflower (Helianthus annuus L.) FatA and FatB Thioesterases, Their Regulation, Structure and Distribution

Sunflower seeds ( L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal acyl-acyl carrier protein (acyl-ACP) thioesterase activity , the enzymes that terminate the process of fatty acid synthesis by catalyzing the hydrol...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 9; p. 1496
Main Authors Aznar-Moreno, Jose A., Sánchez, Rosario, Gidda, Satinder K., Martínez-Force, Enrique, Moreno-Pérez, Antonio J., Venegas Calerón, Mónica, Garcés, Rafael, Mullen, Robert T., Salas, Joaquín J.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 16.10.2018
Subjects
Online AccessGet full text
ISSN1664-462X
1664-462X
DOI10.3389/fpls.2018.01496

Cover

Abstract Sunflower seeds ( L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal acyl-acyl carrier protein (acyl-ACP) thioesterase activity , the enzymes that terminate the process of fatty acid synthesis by catalyzing the hydrolysis of the acyl-ACPs synthesized by fatty acid synthase. Fatty acid thioesterases can be classified into two families with distinct substrate specificities, namely FatA and FatB. Here, some new aspects of these enzymes have been studied, assessing how both enzymes contribute to the acyl composition of sunflower oil, not least through the changes in their expression during the process of seed filling. Moreover, the binding pockets of these enzymes were modeled based on new data from plant thioesterases, revealing important differences in their volume and geometry. Finally, the subcellular location of the two enzymes was evaluated and while both possess an N-terminal plastid transit peptide, only in FatB contains a hydrophobic sequence that could potentially serve as a transmembrane domain. Indeed, using imaging and organelle fractionation, thioesterases, FatA and FatB, appear to be differentially localized in the plastid stroma and membrane envelope, respectively. The divergent roles fulfilled by FatA and FatB in oil biosynthesis are discussed in the light of our data.
AbstractList Sunflower seeds ( L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal acyl-acyl carrier protein (acyl-ACP) thioesterase activity , the enzymes that terminate the process of fatty acid synthesis by catalyzing the hydrolysis of the acyl-ACPs synthesized by fatty acid synthase. Fatty acid thioesterases can be classified into two families with distinct substrate specificities, namely FatA and FatB. Here, some new aspects of these enzymes have been studied, assessing how both enzymes contribute to the acyl composition of sunflower oil, not least through the changes in their expression during the process of seed filling. Moreover, the binding pockets of these enzymes were modeled based on new data from plant thioesterases, revealing important differences in their volume and geometry. Finally, the subcellular location of the two enzymes was evaluated and while both possess an N-terminal plastid transit peptide, only in FatB contains a hydrophobic sequence that could potentially serve as a transmembrane domain. Indeed, using imaging and organelle fractionation, thioesterases, FatA and FatB, appear to be differentially localized in the plastid stroma and membrane envelope, respectively. The divergent roles fulfilled by FatA and FatB in oil biosynthesis are discussed in the light of our data.
Sunflower seeds ( Helianthus annuus L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal acyl-acyl carrier protein (acyl-ACP) thioesterase activity in vitro , the enzymes that terminate the process of de novo fatty acid synthesis by catalyzing the hydrolysis of the acyl-ACPs synthesized by fatty acid synthase. Fatty acid thioesterases can be classified into two families with distinct substrate specificities, namely FatA and FatB. Here, some new aspects of these enzymes have been studied, assessing how both enzymes contribute to the acyl composition of sunflower oil, not least through the changes in their expression during the process of seed filling. Moreover, the binding pockets of these enzymes were modeled based on new data from plant thioesterases, revealing important differences in their volume and geometry. Finally, the subcellular location of the two enzymes was evaluated and while both possess an N-terminal plastid transit peptide, only in FatB contains a hydrophobic sequence that could potentially serve as a transmembrane domain. Indeed, using in vivo imaging and organelle fractionation, H. annuus thioesterases, Ha FatA and Ha FatB, appear to be differentially localized in the plastid stroma and membrane envelope, respectively. The divergent roles fulfilled by Ha FatA and Ha FatB in oil biosynthesis are discussed in the light of our data.
Sunflower seeds (Helianthus annuus L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal acyl-acyl carrier protein (acyl-ACP) thioesterase activity in vitro, the enzymes that terminate the process of de novo fatty acid synthesis by catalyzing the hydrolysis of the acyl-ACPs synthesized by fatty acid synthase. Fatty acid thioesterases can be classified into two families with distinct substrate specificities, namely FatA and FatB. Here, some new aspects of these enzymes have been studied, assessing how both enzymes contribute to the acyl composition of sunflower oil, not least through the changes in their expression during the process of seed filling. Moreover, the binding pockets of these enzymes were modeled based on new data from plant thioesterases, revealing important differences in their volume and geometry. Finally, the subcellular location of the two enzymes was evaluated and while both possess an N-terminal plastid transit peptide, only in FatB contains a hydrophobic sequence that could potentially serve as a transmembrane domain. Indeed, using in vivo imaging and organelle fractionation, H. annuus thioesterases, HaFatA and HaFatB, appear to be differentially localized in the plastid stroma and membrane envelope, respectively. The divergent roles fulfilled by HaFatA and HaFatB in oil biosynthesis are discussed in the light of our data.
Sunflower seeds (Helianthus annuus L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal acyl-acyl carrier protein (acyl-ACP) thioesterase activity in vitro, the enzymes that terminate the process of de novo fatty acid synthesis by catalyzing the hydrolysis of the acyl-ACPs synthesized by fatty acid synthase. Fatty acid thioesterases can be classified into two families with distinct substrate specificities, namely FatA and FatB. Here, some new aspects of these enzymes have been studied, assessing how both enzymes contribute to the acyl composition of sunflower oil, not least through the changes in their expression during the process of seed filling. Moreover, the binding pockets of these enzymes were modeled based on new data from plant thioesterases, revealing important differences in their volume and geometry. Finally, the subcellular location of the two enzymes was evaluated and while both possess an N-terminal plastid transit peptide, only in FatB contains a hydrophobic sequence that could potentially serve as a transmembrane domain. Indeed, using in vivo imaging and organelle fractionation, H. annuus thioesterases, HaFatA and HaFatB, appear to be differentially localized in the plastid stroma and membrane envelope, respectively. The divergent roles fulfilled by HaFatA and HaFatB in oil biosynthesis are discussed in the light of our data.Sunflower seeds (Helianthus annuus L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal acyl-acyl carrier protein (acyl-ACP) thioesterase activity in vitro, the enzymes that terminate the process of de novo fatty acid synthesis by catalyzing the hydrolysis of the acyl-ACPs synthesized by fatty acid synthase. Fatty acid thioesterases can be classified into two families with distinct substrate specificities, namely FatA and FatB. Here, some new aspects of these enzymes have been studied, assessing how both enzymes contribute to the acyl composition of sunflower oil, not least through the changes in their expression during the process of seed filling. Moreover, the binding pockets of these enzymes were modeled based on new data from plant thioesterases, revealing important differences in their volume and geometry. Finally, the subcellular location of the two enzymes was evaluated and while both possess an N-terminal plastid transit peptide, only in FatB contains a hydrophobic sequence that could potentially serve as a transmembrane domain. Indeed, using in vivo imaging and organelle fractionation, H. annuus thioesterases, HaFatA and HaFatB, appear to be differentially localized in the plastid stroma and membrane envelope, respectively. The divergent roles fulfilled by HaFatA and HaFatB in oil biosynthesis are discussed in the light of our data.
Author Garcés, Rafael
Aznar-Moreno, Jose A.
Moreno-Pérez, Antonio J.
Venegas Calerón, Mónica
Gidda, Satinder K.
Sánchez, Rosario
Salas, Joaquín J.
Martínez-Force, Enrique
Mullen, Robert T.
AuthorAffiliation 1 Department of Biochemistry and Molecular Biophysics, Kansas State University , Manhattan, KS , United States
4 Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville , Spain
3 Department of Molecular and Cellular Biology, University of Guelph , Guelph, ON , Canada
2 Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide , Seville , Spain
AuthorAffiliation_xml – name: 2 Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide , Seville , Spain
– name: 1 Department of Biochemistry and Molecular Biophysics, Kansas State University , Manhattan, KS , United States
– name: 4 Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville , Spain
– name: 3 Department of Molecular and Cellular Biology, University of Guelph , Guelph, ON , Canada
Author_xml – sequence: 1
  givenname: Jose A.
  surname: Aznar-Moreno
  fullname: Aznar-Moreno, Jose A.
– sequence: 2
  givenname: Rosario
  surname: Sánchez
  fullname: Sánchez, Rosario
– sequence: 3
  givenname: Satinder K.
  surname: Gidda
  fullname: Gidda, Satinder K.
– sequence: 4
  givenname: Enrique
  surname: Martínez-Force
  fullname: Martínez-Force, Enrique
– sequence: 5
  givenname: Antonio J.
  surname: Moreno-Pérez
  fullname: Moreno-Pérez, Antonio J.
– sequence: 6
  givenname: Mónica
  surname: Venegas Calerón
  fullname: Venegas Calerón, Mónica
– sequence: 7
  givenname: Rafael
  surname: Garcés
  fullname: Garcés, Rafael
– sequence: 8
  givenname: Robert T.
  surname: Mullen
  fullname: Mullen, Robert T.
– sequence: 9
  givenname: Joaquín J.
  surname: Salas
  fullname: Salas, Joaquín J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30459777$$D View this record in MEDLINE/PubMed
BookMark eNp1Ut9rFDEQXqRif9hn32QfK_SuSTabXF6E2lp7cCjYCr6FbHZyl5JLziRrEfzjzd7V0grmZWYy3_fNJDOH1Z4PHqrqDUbTppmJM7NxaUoQnk0RpoK9qA4wY3RCGfm-98Tfr45TukPltAgJwV9V-w2ireCcH1S_P8N9PffJLlc5FSeH-mbwxoV7iPXJNTirfF4NqVbeD8Uspu_qK5XPS9yPzof6dmUDpAxRJUinJQQb66-wHJzKNvjT-ibHQechwpZzaVOOthvG3OvqpVEuwfGDPaq-XX28vbieLL58ml-cLya6tJknusW8hbFl01HdGkxnrBOd5qI8nlBDemJ6IXADjCFDO8x7oYGKdsZA65lpjqr5TrcP6k5uol2r-EsGZeX2IsSlVDFb7UD2xhjWGVAgOCXcdF3PSI8aoIoyxWnRer_T2gzdGnoNPkflnok-z3i7ksvwUzLSEM6aInDyIBDDj6H8nFzbpME55SEMSRLcsLaliLQF-vZprccif8dXAGc7gI4hpQjmEYKRHHdEjjsixx2R2x0pjPYfhrZ5O6jSrHX_5f0BQbXDTw
CitedBy_id crossref_primary_10_3390_ijms23084209
crossref_primary_10_1016_j_jplph_2024_154263
crossref_primary_10_1007_s00253_020_10958_5
crossref_primary_10_1016_j_heliyon_2020_e05237
crossref_primary_10_1007_s12257_022_0295_2
crossref_primary_10_1111_tpj_16638
crossref_primary_10_1186_s12870_022_03882_5
crossref_primary_10_3389_fnut_2022_845255
crossref_primary_10_3390_genes15091125
crossref_primary_10_1016_j_fshw_2022_04_020
crossref_primary_10_1016_j_scienta_2020_109717
crossref_primary_10_3390_ijms23063054
crossref_primary_10_1186_s13068_024_02478_5
crossref_primary_10_3389_fpls_2020_00403
crossref_primary_10_3390_agriculture13071286
crossref_primary_10_3390_plants11070972
crossref_primary_10_1051_ocl_2021022
crossref_primary_10_3390_ijms232112805
Cites_doi 10.1007/s00425-005-1502-z
10.1038/nprot.2007.360
10.1007/978-1-4899-1766-9-8
10.1111/ppl.12107
10.1038/nmeth.3213
10.1105/tpc.17.00397
10.1006/jmbi.2000.3903
10.1199/tab.0133
10.1093/emboj/21.11.2616
10.1371/journal.pone.0024699
10.1016/j.phytochem.2010.03.015
10.1146/annurev.arplant.48.1.109
10.1002/pmic.200700810
10.1074/jbc.M510945200
10.1007/s11103-008-9392-7
10.1016/0003-2697(76)90527-3
10.1007/BF00201039
10.1007/s00253-018-8770-6
10.1105/tpc.107.057679
10.3389/fpls.2012.00007
10.1105/tpc.008946
10.1002/jcc.21797
10.1038/76776
10.1006/jmbi.2000.4315
10.1111/j.1365-313X.2010.04396.x
10.1110/ps.8.5.978
10.1074/jbc.M311305200
10.1002/0471143030.cb0107s19
10.1007/BF00197585
10.1016/j.plaphy.2010.10.002
10.1093/nar/gkr366
10.1016/j.plaphy.2006.09.017
10.1104/pp.123.2.637
10.1007/s00425-013-2003-0
10.1074/jbc.M411351200
10.1074/jbc.271.7.3417
10.3389/fpls.2011.00118
10.1016/S0981-9428(00)00758-0
10.1111/j.1399-3054.1997.tb01066.x
10.1007/s00425-016-2521-7
10.1016/S0003-9861(02)00017-6
10.1093/bioinformatics/btn221
10.1021/bi00198a003
10.1016/S0981-9428(02)01386-4
10.1006/meth.2001.1262
10.1038/nprot.2007.132
10.1006/abbi.1995.1081
10.1105/tpc.7.3.359
10.1186/1471-2229-7-1
10.1002/jcc.20084
10.1016/S0981-9428(01)01337-7
10.1021/acschembio.7b00641
10.1002/elps.1150181505
10.1016/j.plaphy.2007.09.003
10.1105/tpc.107.057851
10.1016/j.phytochem.2014.08.014
10.1371/journal.pone.0010098
10.1016/S1570-0232(02)00767-5
10.1038/s41467-018-03310-z
10.1016/0003-2697(78)90046-5
10.1007/BF00196575
10.1385/1-59259-890-0:571
10.1007/s00425-014-2162-7
ContentType Journal Article
Copyright Copyright © 2018 Aznar-Moreno, Sánchez, Gidda, Martínez-Force, Moreno-Pérez, Venegas Calerón, Garcés, Mullen and Salas. 2018 Aznar-Moreno, Sánchez, Gidda, Martínez-Force, Moreno-Pérez, Venegas Calerón, Garcés, Mullen and Salas
Copyright_xml – notice: Copyright © 2018 Aznar-Moreno, Sánchez, Gidda, Martínez-Force, Moreno-Pérez, Venegas Calerón, Garcés, Mullen and Salas. 2018 Aznar-Moreno, Sánchez, Gidda, Martínez-Force, Moreno-Pérez, Venegas Calerón, Garcés, Mullen and Salas
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2018.01496
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_dfff6bfeae97427fbbd62d03e4a46a74
PMC6232763
30459777
10_3389_fpls_2018_01496
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-c5175e0459fb4c5f1486b9bc7920124f2d2fd9913e660f4b17d9ce49586ecc8f3
IEDL.DBID DOA
ISSN 1664-462X
IngestDate Wed Aug 27 01:29:59 EDT 2025
Thu Aug 21 18:22:55 EDT 2025
Fri Sep 05 00:40:36 EDT 2025
Wed Feb 19 02:42:28 EST 2025
Tue Jul 01 02:06:02 EDT 2025
Thu Apr 24 22:56:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords FatB
FatA
acyl-ACP thioesterase
Helianthus annuus
protein location
sunflower
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-c5175e0459fb4c5f1486b9bc7920124f2d2fd9913e660f4b17d9ce49586ecc8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Edgar B. Cahoon, University of Nebraska–Lincoln, United States; Kun Wang, Harvard T.H. Chan School of Public Health, United States
Edited by: Ján A. Miernyk, Agricultural Research Service (USDA), United States
This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science
OpenAccessLink https://doaj.org/article/dfff6bfeae97427fbbd62d03e4a46a74
PMID 30459777
PQID 2136554025
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_dfff6bfeae97427fbbd62d03e4a46a74
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6232763
proquest_miscellaneous_2136554025
pubmed_primary_30459777
crossref_primary_10_3389_fpls_2018_01496
crossref_citationtrail_10_3389_fpls_2018_01496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-16
PublicationDateYYYYMMDD 2018-10-16
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-16
  day: 16
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Serrano-Vega (B56) 2003; 786
Feng (B18) 2017; 12
Jing (B32) 2018; 9
Heckman (B27) 2007; 4
Mayer (B46) 2007; 7
Moreno-Pérez (B49) 2014; 239
González-Thuillier (B22) 2015; 241
Hara (B26) 1978; 90
Dörmann (B12) 1995; 1
Brandizzi (B5) 2003; 19
Koo (B36) 2004; 279
Miao (B47) 2007; 2
Ghosh (B21) 2007; 45
Breuers (B6) 2012; 3
Cantisán (B8) 2000; 38
Kang (B34) 1996; 199
Krogh (B37) 2001; 305
Eccleston (B14) 1996; 198
Jain (B30) 2008; 8
Bonaventure (B3) 2003; 15
Guex (B25) 1997; 18
Heins (B28) 2002; 21
Jones (B33) 1995; 7
Ohlrogge (B50) 1997; 48
Li (B39) 2000; 7
Lawson (B38) 1994; 33
Mayer (B45) 2005; 280
Emanuelsson (B16) 1999; 8
Jha (B31) 2006; 44
Grosdidier (B23); 32
Salas (B53) 2002; 403
Yuan (B63) 1996; 271
Facciotti (B17) 1998; 100
Sánchez-García (B54) 2010; 71
Voelker (B59) 1996; 18
Machettira (B43) 2012; 2
Gasteiger (B20) 2005
Lingard (B41) 2008; 20
Rodríguez-Rodríguez (B52) 2014; 107
Schaffer (B55) 1997; 4
Xiao (B61) 2008; 68
Aznar-Moreno (B2) 2016; 244
Dhanoa (B11) 2010; 5
Zhao (B64) 2010; 64
Livak (B42) 2001; 25
Martínez-Force (B44) 2002; 40
Yang (B62) 2015; 12
Emanuelsson (B15) 2000; 300
Feng (B19) 2018; 102
Li-Beisson (B40) 2010
Viklund (B58) 2008; 24
Kato (B35) 1972
Grosdidier (B24); 39
Burrell (B7) 1994; 194
Moreno-Pérez (B48) 2011; 49
Dörmann (B13) 2000; 123
Wang (B60) 2017; 29
Chen (B9) 2008; 20
Pettersen (B51) 2004; 25
Chen (B10) 2006; 281
Aznar-Moreno (B1) 2014; 3
Serrano-Vega (B57) 2005; 221
Bradford (B4) 1976; 72
Huynh (B29) 2002; 40
References_xml – volume: 221
  start-page: 868
  year: 2005
  ident: B57
  article-title: Cloning, characterization and structural model of FatA-type thioesterase from sunflower seeds (Helianthus annuus L.).
  publication-title: Planta
  doi: 10.1007/s00425-005-1502-z
– volume: 2
  start-page: 2348
  year: 2007
  ident: B47
  article-title: Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells.
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.360
– volume: 18
  start-page: 111
  year: 1996
  ident: B59
  article-title: Plant acyl-ACP thioesterases: chain-length determining enzymes in plant fatty acid biosynthesis.
  publication-title: Genet. Eng.
  doi: 10.1007/978-1-4899-1766-9-8
– volume: 3
  start-page: 363
  year: 2014
  ident: B1
  article-title: Sunflower (Helianthus annuus) long-chain- acyl-coenzyme A synthetases expressed at high levels in developing seeds.
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12107
– volume: 12
  start-page: 7
  year: 2015
  ident: B62
  article-title: The I-TASSER suite: protein structure and function prediction.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3213
– volume: 29
  start-page: 1678
  year: 2017
  ident: B60
  article-title: A plastid phosphatidylglycerol lipase contributes to the export of acyl groups from plastids for seed oil biosynthesis.
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00397
– volume: 300
  start-page: 1005
  year: 2000
  ident: B15
  article-title: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3903
– year: 2010
  ident: B40
  article-title: “Acyl-lipid metabolism,”
  publication-title: The Arabidopsis Book
  doi: 10.1199/tab.0133
– volume: 21
  start-page: 2616
  year: 2002
  ident: B28
  article-title: The preprotein conducting channel at the inner envelope membrane of plastids.
  publication-title: EMBO J.
  doi: 10.1093/emboj/21.11.2616
– volume: 100
  start-page: 167
  year: 1998
  ident: B17
  article-title: Molecular dissection of the plant acyl-acyl carrier protein thioesterases.
  publication-title: Fett Lipid
  doi: 10.1371/journal.pone.0024699
– volume: 71
  start-page: 860
  year: 2010
  ident: B54
  article-title: Acyl-ACP thioesterase from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation.
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.03.015
– volume: 48
  start-page: 109
  year: 1997
  ident: B50
  article-title: Regulation of fatty acid synthesis.
  publication-title: Ann. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.48.1.109
– volume: 8
  start-page: 3397
  year: 2008
  ident: B30
  article-title: Purification and proteomic characterization of plastids from Brassica napus developing embryos.
  publication-title: Proteomics
  doi: 10.1002/pmic.200700810
– volume: 281
  start-page: 5726
  year: 2006
  ident: B10
  article-title: The PII signal transduction protein of Arabidopsis thaliana forms an arginine-regulated complex with plastid N-acetyl glutamate Kinase.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M510945200
– volume: 68
  start-page: 571
  year: 2008
  ident: B61
  article-title: Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-008-9392-7
– volume: 72
  start-page: 248
  year: 1976
  ident: B4
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
– volume: 194
  start-page: 95
  year: 1994
  ident: B7
  article-title: Genetic manipulation of 6 phosphofructokinase in potato tubers.
  publication-title: Planta
  doi: 10.1007/BF00201039
– volume: 102
  start-page: 3173
  year: 2018
  ident: B19
  article-title: Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-018-8770-6
– volume: 20
  start-page: 1567
  year: 2008
  ident: B41
  article-title: Arabidopsis PEROXIN11c-e, FISSION1b, and DYNAMIN-RELATED PROTEIN3A cooperate in cell cycle-associated replication of peroxisomes.
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.057679
– volume: 3
  year: 2012
  ident: B6
  article-title: Dynamic remodeling of the plastid envelope membranes–a tool for chloroplast envelope in vivo localizations.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2012.00007
– volume: 15
  start-page: 1020
  year: 2003
  ident: B3
  article-title: Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth.
  publication-title: Plant Cell
  doi: 10.1105/tpc.008946
– volume: 32
  start-page: 2149
  ident: B23
  article-title: Fast docking using the CHARMM force field with EADock DSS.
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21797
– volume: 7
  start-page: 555
  year: 2000
  ident: B39
  article-title: Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme.
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/76776
– volume: 305
  start-page: 567
  year: 2001
  ident: B37
  article-title: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.4315
– volume: 64
  start-page: 1048
  year: 2010
  ident: B64
  article-title: Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1) but not LACS8, functionally overlaps with LACSp in Arabidopsis seed oil biosynthesis.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04396.x
– volume: 8
  start-page: 978
  year: 1999
  ident: B16
  article-title: ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites.
  publication-title: Protein Sci.
  doi: 10.1110/ps.8.5.978
– volume: 279
  start-page: 16101
  year: 2004
  ident: B36
  article-title: On the export of fatty acids from the chloroplast.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M311305200
– volume: 19
  start-page: 1
  year: 2003
  ident: B5
  article-title: BY-2 cells: culture and transformation for live cell imaging.
  publication-title: Curr. Prot. Cell Biol.
  doi: 10.1002/0471143030.cb0107s19
– volume: 198
  start-page: 46
  year: 1996
  ident: B14
  article-title: Medium-chain fatty acid biosynthesis and utilization in Brassica napus plants expressing lauroyl-acyl carrier protein thioesterase.
  publication-title: Planta
  doi: 10.1007/BF00197585
– volume: 49
  start-page: 82
  year: 2011
  ident: B48
  article-title: Acyl-ACP thioesterase from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2010.10.002
– volume: 39
  start-page: W270
  ident: B24
  article-title: SwissDock, a protein-small molecule docking web service based on EADock DSS.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr366
– volume: 44
  start-page: 645
  year: 2006
  ident: B31
  article-title: Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema butyracea (Madhuca) seeds in Escherichia coli.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2006.09.017
– volume: 123
  start-page: 637
  year: 2000
  ident: B13
  article-title: Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.123.2.637
– volume: 239
  start-page: 667
  year: 2014
  ident: B49
  article-title: Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds.
  publication-title: Planta
  doi: 10.1007/s00425-013-2003-0
– volume: 280
  start-page: 3621
  year: 2005
  ident: B45
  article-title: A structure model of the plant acyl-acyl carrier protein thioesterase FatB comprises two helix/4-stranted sheet domains, the N-terminal domain containing residues that affect specificity and the C-terminal domain containing catalytic residues.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M411351200
– volume: 271
  start-page: 3417
  year: 1996
  ident: B63
  article-title: The catalytic cysteine and histidine in the plant acyl-acyl carrier protein thioesterases.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.7.3417
– volume: 2
  year: 2012
  ident: B43
  article-title: Protein-induced modulation of chloroplast membrane morphology.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2011.00118
– volume: 38
  start-page: 377
  year: 2000
  ident: B8
  article-title: Enzymatic studies of high stearic acid sunflower seed mutants.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/S0981-9428(00)00758-0
– volume: 4
  start-page: 800
  year: 1997
  ident: B55
  article-title: Inhibition of fructokinase and sucrose synthase by cytosolic levels of fructose in young tomato fruit undergoing transient starch synthesis.
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1997.tb01066.x
– volume: 244
  start-page: 479
  year: 2016
  ident: B2
  article-title: Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.
  publication-title: Planta
  doi: 10.1007/s00425-016-2521-7
– volume: 403
  start-page: 25
  year: 2002
  ident: B53
  article-title: Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases.
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/S0003-9861(02)00017-6
– volume: 24
  start-page: 1662
  year: 2008
  ident: B58
  article-title: Improving topology prediction by two-track ANN-based preference scores and an extended topological grammar.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn221
– volume: 33
  start-page: 9382
  year: 1994
  ident: B38
  article-title: Structure of a myristoyl-ACP-specific thioesterase from Vibrio harveyi.
  publication-title: Biochemistry
  doi: 10.1021/bi00198a003
– volume: 40
  start-page: 383
  year: 2002
  ident: B44
  article-title: Dynamic channelling during de novo fatty acid biosynthesis in Helianthus annuus seeds.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/S0981-9428(02)01386-4
– volume: 25
  start-page: 402
  year: 2001
  ident: B42
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 4
  start-page: 924
  year: 2007
  ident: B27
  article-title: Gene splicing and mutagenesis by PCR-driven overlap extension.
  publication-title: Nat. Prot.
  doi: 10.1038/nprot.2007.132
– volume: 1
  start-page: 612
  year: 1995
  ident: B12
  article-title: Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long-chain acyl-acyl carrier proteins.
  publication-title: Biochem. Biophys.
  doi: 10.1006/abbi.1995.1081
– volume: 7
  start-page: 359
  year: 1995
  ident: B33
  article-title: Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.
  publication-title: Plant Cell
  doi: 10.1105/tpc.7.3.359
– volume: 7
  year: 2007
  ident: B46
  article-title: Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-7-1
– volume: 25
  start-page: 1605
  year: 2004
  ident: B51
  article-title: UCSF Chimera: a visualization system for exploratory research and analysis.
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 40
  start-page: 1
  year: 2002
  ident: B29
  article-title: Expression of a Gossypium hirsutum cDNA encoding a FatB palmitoyl-acyl carrier protein thioesterase in Escherichia coli.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/S0981-9428(01)01337-7
– volume: 12
  start-page: 2830
  year: 2017
  ident: B18
  article-title: Structural insight into acyl-ACP thioesterase toward substrate specificity design.
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.7b00641
– volume: 18
  start-page: 2714
  year: 1997
  ident: B25
  article-title: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling.
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150181505
– volume: 45
  start-page: 887
  year: 2007
  ident: B21
  article-title: Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia).
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2007.09.003
– volume: 20
  start-page: 1862
  year: 2008
  ident: B9
  article-title: Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis.
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.057851
– volume: 107
  start-page: 7
  year: 2014
  ident: B52
  article-title: Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition.
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2014.08.014
– volume: 5
  year: 2010
  ident: B11
  article-title: Distinct pathways mediate the sorting of tail-anchored proteins to the plastid outer envelope.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010098
– volume: 786
  start-page: 221
  year: 2003
  ident: B56
  article-title: Cloning and expression of fatty acids biosynthesis key enzymes from sunflower (Helianthus annuus L.) in Escherichia coli.
  publication-title: J. Chromatogr. B
  doi: 10.1016/S1570-0232(02)00767-5
– volume: 9
  year: 2018
  ident: B32
  article-title: Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03310-z
– volume: 90
  start-page: 420
  year: 1978
  ident: B26
  article-title: Lipid extraction of tissues with a low-toxicity solvent.
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(78)90046-5
– volume: 199
  start-page: 321
  year: 1996
  ident: B34
  article-title: Metabolism of glucose-6-phosphate and utilization of multiple metabolites for fatty acid synthesis by plastids from developing oilseed rape embryos.
  publication-title: Planta
  doi: 10.1007/BF00196575
– start-page: 689
  year: 1972
  ident: B35
  article-title: “Liquid suspension culture of tobacco cells,”
  publication-title: Ferment Technology Today
– start-page: 571
  year: 2005
  ident: B20
  article-title: “Protein identification and analysis tools on the ExPASy Server,”
  publication-title: The Proteomics Protocols Handbook
  doi: 10.1385/1-59259-890-0:571
– volume: 241
  start-page: 43
  year: 2015
  ident: B22
  article-title: Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.
  publication-title: Planta
  doi: 10.1007/s00425-014-2162-7
SSID ssj0000500997
Score 2.2870398
Snippet Sunflower seeds ( L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal...
Sunflower seeds (Helianthus annuus L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period...
Sunflower seeds ( Helianthus annuus L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1496
SubjectTerms acyl-ACP thioesterase
FatA
FatB
Helianthus annuus
Plant Science
protein location
sunflower
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgcOCCNn4GNmQkDkNayuo4dnKYphWoBkIc2CrtFsU_3lqpSkaTSkzaH7_3nKxQVG6cYie2bPmz_b4nO99j7B2kuXVSQGx1WsYykTbOfGZjtK1ee6lkaYLa53d1OpFfL9KL3-GA-gFsNrp2FE9qspgPfv28PsYFf0QeJ9rbD3A1J-HtYTYgvq_uswfhsIju8fVcvxP6JjakO3mfTfXWLFMQ8N_EOv--PPmHNRpvs8c9jeQnHe477J6vnrCHoxqp3vVTdoNbF_9SNeR4N5hoa362rGBOEdH4PloanBPtdNlw-k8YH98G7_m4bE8w7ygx4ufTWR00FNDINQeY9bMF_9HFrUckD_hZ0J1dLnyo84nkd_vIWc_YZPz5_ONp3IdZiK1M8za2KVIIj9QuByNtCuggKZMbq3McGyFBOAEOaWTilToEaYba5dajY5UpxD-D5DnbqurKv2Q8SRTkHrRHIiNdInJZJuhPWamcASRyERvcDXFhew1yCoUxL9AXIUwKwqQgTIqAScT2VxWuOvmNfxcdEWarYqSbHV7Ui8uiX4aFAwBlwJce_SihwRinhDtMvCylKrWM2Ns7xAtcZ3R4Ula-XmJDdB8Q6a1II_aimwGrpui0GXm0jphemxtrfVn_Us2mQcsb2afALf7V_-j8a_aIhoMs61Dtsi2cCH4PKVNr3oSlcAvZmBkV
  priority: 102
  providerName: Scholars Portal
Title New Insights Into Sunflower (Helianthus annuus L.) FatA and FatB Thioesterases, Their Regulation, Structure and Distribution
URI https://www.ncbi.nlm.nih.gov/pubmed/30459777
https://www.proquest.com/docview/2136554025
https://pubmed.ncbi.nlm.nih.gov/PMC6232763
https://doaj.org/article/dfff6bfeae97427fbbd62d03e4a46a74
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBej7LDL2Fc3b93QoIcW6jSRZck6NuvSbqw9rC3kZqyPRwLBLo1zGPSP33uyG5KyscsusmRLSOg96f0ekn-PsX3IjfNSQOp0XqUyky4tQuFStK1BB6lkZSPb56U6v5Hfp_l0I9QX3Qnr6IG7iTv2AKAshCog8hUarPVK-GEWZCVVpSMT6NAMN5ypjtWboI_uuHzQCzPHcLsgdu5RMSCnQG2ZocjW_yeI-fim5Ibpmbxgz3vMyE-6sb5kT0L9ij0dN4jrfr1m97hP8W_1krzsJWbahl-talhQ-DN-gGYFFaCdrZacfgrGx4_BIZ9U7QmWPWXG_Ho2byJhAlq05REWw_yO_-yC1KPYjvhVJJld3YXY5pS4dvswWW_YzeTr9ZfztI-pkDqZmzZ1OeKFgDjOgJUuB_SGlDXWaYNzIyQIL8AjZsyCUkOQdqS9cQG9qEKhsAvIdtlO3dThHeNZpsAE0AFRi_SZMLLK0HlyUnkLiNoSNniY4tL1hOMU92JRouNBMilJJiXJpIwySdjBusFtx7Xx96pjktm6GpFkxxeoOmWvOuW_VCdhnx8kXuKiopOSqg7NCjuiy3-IZUWesLedBqy7oqNlBM06YXpLN7bGsv2lns8icTdCTYH7-fv_MfgP7BlNB5nRkdpjO6gI4SPio9Z-iksB07PpCNMLWfwGjgYUHg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Insights+Into+Sunflower+%28Helianthus+annuus+L.%29+FatA+and+FatB+Thioesterases%2C+Their+Regulation%2C+Structure+and+Distribution&rft.jtitle=Frontiers+in+plant+science&rft.au=Jose+A.+Aznar-Moreno&rft.au=Rosario+S%C3%A1nchez&rft.au=Satinder+K.+Gidda&rft.au=Enrique+Mart%C3%ADnez-Force&rft.date=2018-10-16&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=9&rft_id=info:doi/10.3389%2Ffpls.2018.01496&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dfff6bfeae97427fbbd62d03e4a46a74
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon