Thermal stress management of a solid oxide fuel cell using neural network predictive control

In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical mod...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 62; pp. 320 - 329
Main Authors Hajimolana, S.A., Tonekabonimoghadam, S.M., Hussain, M.A., Chakrabarti, M.H., Jayakumar, N.S., Hashim, M.A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0360-5442
DOI10.1016/j.energy.2013.08.031

Cover

Abstract In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical model based on first principles is presented to avert such temperature fluctuations. The fuel cell running on ammonia is divided into five subsystems and factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical reactions, and polarization losses inside the subsystems are presented. Dynamic cell-tube temperature responses of the cell to step changes in conditions of the feed streams is investigated. The results of simulation indicate that the transient response of the SOFC is mainly influenced by the temperature dynamics. It is also shown that the inlet stream temperatures are associated with the highest long term start-up time (467 s) among other parameters in terms of step changes. In contrast the step change in fuel velocity has the lowest influence on the start-up time (about 190 s from initial steady state to the new steady state) among other parameters. A NNPC (neural network predictive controller) is then implemented for thermal stress management by controlling the cell tube temperature to avoid performance degradation by manipulating the temperature of the inlet air stream. The regulatory performance of the NNPC is compared with a PI (proportional–integral) controller. The performance of the control system confirms that NNPC is a non-linear-model-based strategy which can assure less oscillating control responses with shorter settling times in comparison to the PI controller. •Effect of the operating parameters on the fuel cell temperature is analysed.•A neural network predictive controller (NNPC) is implemented.•The performance of NNPC is compared with the PI controller.•A detailed model is used for the NNPC for the first time in the literature.
AbstractList In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical model based on first principles is presented to avert such temperature fluctuations. The fuel cell running on ammonia is divided into five subsystems and factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical reactions, and polarization losses inside the subsystems are presented. Dynamic cell-tube temperature responses of the cell to step changes in conditions of the feed streams is investigated. The results of simulation indicate that the transient response of the SOFC is mainly influenced by the temperature dynamics. It is also shown that the inlet stream temperatures are associated with the highest long term start-up time (467 s) among other parameters in terms of step changes. In contrast the step change in fuel velocity has the lowest influence on the start-up time (about 190 s from initial steady state to the new steady state) among other parameters. A NNPC (neural network predictive controller) is then implemented for thermal stress management by controlling the cell tube temperature to avoid performance degradation by manipulating the temperature of the inlet air stream. The regulatory performance of the NNPC is compared with a PI (proportional–integral) controller. The performance of the control system confirms that NNPC is a non-linear-model-based strategy which can assure less oscillating control responses with shorter settling times in comparison to the PI controller.
In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical model based on first principles is presented to avert such temperature fluctuations. The fuel cell running on ammonia is divided into five subsystems and factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical reactions, and polarization losses inside the subsystems are presented. Dynamic cell-tube temperature responses of the cell to step changes in conditions of the feed streams is investigated. The results of simulation indicate that the transient response of the SOFC is mainly influenced by the temperature dynamics. It is also shown that the inlet stream temperatures are associated with the highest long term start-up time (467 s) among other parameters in terms of step changes. In contrast the step change in fuel velocity has the lowest influence on the start-up time (about 190 s from initial steady state to the new steady state) among other parameters. A NNPC (neural network predictive controller) is then implemented for thermal stress management by controlling the cell tube temperature to avoid performance degradation by manipulating the temperature of the inlet air stream. The regulatory performance of the NNPC is compared with a PI (proportional-integral) controller. The performance of the control system confirms that NNPC is a non-linear-model-based strategy which can assure less oscillating control responses with shorter settling times in comparison to the PI controller.
In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical model based on first principles is presented to avert such temperature fluctuations. The fuel cell running on ammonia is divided into five subsystems and factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical reactions, and polarization losses inside the subsystems are presented. Dynamic cell-tube temperature responses of the cell to step changes in conditions of the feed streams is investigated. The results of simulation indicate that the transient response of the SOFC is mainly influenced by the temperature dynamics. It is also shown that the inlet stream temperatures are associated with the highest long term start-up time (467 s) among other parameters in terms of step changes. In contrast the step change in fuel velocity has the lowest influence on the start-up time (about 190 s from initial steady state to the new steady state) among other parameters. A NNPC (neural network predictive controller) is then implemented for thermal stress management by controlling the cell tube temperature to avoid performance degradation by manipulating the temperature of the inlet air stream. The regulatory performance of the NNPC is compared with a PI (proportional–integral) controller. The performance of the control system confirms that NNPC is a non-linear-model-based strategy which can assure less oscillating control responses with shorter settling times in comparison to the PI controller. •Effect of the operating parameters on the fuel cell temperature is analysed.•A neural network predictive controller (NNPC) is implemented.•The performance of NNPC is compared with the PI controller.•A detailed model is used for the NNPC for the first time in the literature.
Author Tonekabonimoghadam, S.M.
Hajimolana, S.A.
Hashim, M.A.
Hussain, M.A.
Chakrabarti, M.H.
Jayakumar, N.S.
Author_xml – sequence: 1
  givenname: S.A.
  surname: Hajimolana
  fullname: Hajimolana, S.A.
  organization: Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
– sequence: 2
  givenname: S.M.
  surname: Tonekabonimoghadam
  fullname: Tonekabonimoghadam, S.M.
  organization: Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
– sequence: 3
  givenname: M.A.
  surname: Hussain
  fullname: Hussain, M.A.
  email: mohd_azlan@um.edu.my, yashar_molana1@yahoo.com
  organization: Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
– sequence: 4
  givenname: M.H.
  surname: Chakrabarti
  fullname: Chakrabarti, M.H.
  organization: Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
– sequence: 5
  givenname: N.S.
  surname: Jayakumar
  fullname: Jayakumar, N.S.
  organization: Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
– sequence: 6
  givenname: M.A.
  surname: Hashim
  fullname: Hashim, M.A.
  organization: Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27933415$$DView record in Pascal Francis
BookMark eNqNkT1vFDEQhl0EieTgHyDhBonmFnvt8e5SIKGILykSBUmHZPns2cPHnn3Y3kD-PV5taCgIlZvnnRm_zwU5CzEgIc84azjj6tWhwYBpf9e0jIuG9Q0T_IycM6HYFqRsH5OLnA-MMeiH4Zx8vf6G6WgmmkvCnOnRBLPHI4ZC40gNzXHyjsZf3iEdZ5yoxWmic_ZhTwPOqSYDlp8xfaenhM7b4m-R2hhKitMT8mg0U8an9--G3Lx_d335cXv1-cOny7dXWythKFuDvXPSuR200AlAbnZC9ND2rmP9IFvYgQIYsbOWKYujlMwKxEG6dhgVcLEhL9e5pxR_zJiLPvq8HGoCxjnrtn6XKdmDfBDlquOgOoD2_1AQaoCKvrhHTbZmGpMJ1md9Sv5o0p1uu0EIyRfu9crZFHNOOGrriyl-qcv4SXOmF4n6oFeJepGoWa-rxBqWf4X_zH8g9nyNjSZqs0_1rpsvFVBLJ8Br4xvyZiWwOrr1mHS2HoOtOhPaol30_17xGwItxZ8
CODEN ENEYDS
CitedBy_id crossref_primary_10_3390_en8031896
crossref_primary_10_1016_j_jpowsour_2017_10_070
crossref_primary_10_1016_j_ijhydene_2018_08_076
crossref_primary_10_1631_jzus_A1400011
crossref_primary_10_1016_j_energy_2014_11_070
crossref_primary_10_1016_j_egyai_2022_100187
crossref_primary_10_1016_j_energy_2016_08_107
crossref_primary_10_1016_j_jpowsour_2021_230058
crossref_primary_10_1016_j_ieri_2014_09_045
crossref_primary_10_1016_j_energy_2018_02_101
crossref_primary_10_1016_j_egyr_2022_03_071
crossref_primary_10_1016_j_energy_2018_02_100
crossref_primary_10_1016_j_jpowsour_2017_02_029
crossref_primary_10_1016_j_apenergy_2024_123142
crossref_primary_10_1115_1_4036805
crossref_primary_10_1016_j_apenergy_2019_05_053
crossref_primary_10_1016_j_rser_2017_03_052
crossref_primary_10_1002_chin_201430292
crossref_primary_10_1016_j_applthermaleng_2019_01_010
crossref_primary_10_1016_j_jpowsour_2020_229102
crossref_primary_10_3390_s16091329
crossref_primary_10_1016_j_asoc_2017_09_019
crossref_primary_10_1016_j_powtec_2023_118551
crossref_primary_10_1109_ACCESS_2019_2950107
crossref_primary_10_1109_TTE_2024_3470240
crossref_primary_10_1115_1_4038321
crossref_primary_10_3389_fenrg_2022_953082
crossref_primary_10_1080_13873954_2021_1990966
crossref_primary_10_1186_s41601_022_00251_0
crossref_primary_10_1016_j_energy_2019_02_016
crossref_primary_10_1016_j_jpowsour_2018_01_011
crossref_primary_10_1016_j_egyr_2022_08_185
crossref_primary_10_1016_j_ijhydene_2014_05_151
crossref_primary_10_1016_j_rser_2021_110863
crossref_primary_10_1016_j_ijhydene_2019_03_079
crossref_primary_10_1016_j_ijhydene_2016_01_065
crossref_primary_10_1016_j_enconman_2021_114353
crossref_primary_10_1016_j_apenergy_2024_122804
crossref_primary_10_1016_j_energy_2014_04_021
crossref_primary_10_1371_journal_pone_0183750
crossref_primary_10_1016_j_egyr_2021_09_015
crossref_primary_10_1016_j_energy_2015_09_030
crossref_primary_10_1016_j_apenergy_2016_10_098
crossref_primary_10_1016_j_enconman_2019_03_012
crossref_primary_10_1016_j_energy_2016_09_094
crossref_primary_10_1016_j_applthermaleng_2022_119856
crossref_primary_10_1016_j_ijhydene_2018_04_205
crossref_primary_10_1016_j_enconman_2021_115154
crossref_primary_10_1109_TEC_2015_2510030
crossref_primary_10_1039_D2SE01559E
crossref_primary_10_1016_j_jpowsour_2017_08_017
crossref_primary_10_1049_rpg2_12240
Cites_doi 10.1016/j.energy.2006.03.006
10.1016/j.jpowsour.2009.04.022
10.1016/S0016-0032(99)00043-5
10.1016/j.jpowsour.2007.12.036
10.1016/0005-1098(89)90002-2
10.1016/j.energy.2009.06.012
10.1109/TNN.2002.1031951
10.1016/j.energy.2006.06.016
10.1016/j.jprocont.2011.06.017
10.1016/j.ijhydene.2008.07.021
10.1016/S0954-1810(98)00011-9
10.1016/j.energy.2011.04.022
10.1016/j.compchemeng.2012.06.027
10.1016/j.enconman.2005.11.007
10.1016/S0378-7753(02)00487-1
10.1016/j.energy.2009.09.029
10.1016/j.jpowsour.2010.06.075
10.1016/j.ijhydene.2009.04.068
10.1016/j.jpowsour.2009.04.077
10.1016/j.advengsoft.2006.02.002
10.1016/j.enpol.2011.01.006
10.1016/j.simpat.2008.02.004
10.1016/j.jpowsour.2004.01.043
10.1016/j.ijhydene.2008.02.063
10.1016/S0165-0114(96)00384-3
10.1016/S0378-7753(03)00109-5
10.1016/j.jpowsour.2008.12.039
10.1016/0893-6080(89)90020-8
10.1016/j.jpowsour.2008.05.044
10.1021/i200033a010
10.1016/j.energy.2011.12.037
10.1016/j.jprocont.2006.06.001
10.1016/S0167-2738(00)00452-5
10.1016/j.ijhydene.2007.11.008
10.1016/j.jpowsour.2008.12.012
10.1016/j.ijhydene.2011.10.051
10.1016/j.jpowsour.2009.02.085
10.1016/j.mechatronics.2008.11.016
10.1016/S0098-1354(98)00263-4
10.1016/j.cherd.2012.03.004
10.1016/j.jpowsour.2009.03.010
10.1016/j.jprocont.2006.09.004
10.1016/S0956-5663(97)00093-6
10.1016/j.jpowsour.2009.12.111
10.1021/ie100032c
10.1016/j.jpowsour.2007.09.059
10.1016/j.advengsoft.2007.03.012
ContentType Journal Article
Copyright 2013
2015 INIST-CNRS
Copyright_xml – notice: 2013
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7QQ
7SC
7SP
7SR
7TB
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.energy.2013.08.031
DatabaseName AGRIS
CrossRef
Pascal-Francis
Ceramic Abstracts
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database

Materials Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
Applied Sciences
EndPage 329
ExternalDocumentID 27933415
10_1016_j_energy_2013_08_031
US201600065157
S0360544213007068
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
ABDPE
ABFNM
ABWVN
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AHHHB
AKRWK
ANKPU
ASPBG
AVWKF
AZFZN
BNPGV
FBQ
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
IQODW
7QQ
7SC
7SP
7SR
7TB
8FD
EFKBS
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c459t-ae8dd4ddb525735e1ab338528d7089425b5655fe7cc06cef440c3ee94d29f6513
IEDL.DBID AIKHN
ISSN 0360-5442
IngestDate Fri Sep 05 05:33:39 EDT 2025
Fri Sep 05 05:54:05 EDT 2025
Fri Sep 05 08:08:16 EDT 2025
Wed Apr 02 07:25:08 EDT 2025
Thu Apr 24 22:54:34 EDT 2025
Tue Jul 01 00:52:38 EDT 2025
Thu Apr 03 09:44:46 EDT 2025
Fri Feb 23 02:20:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal stress
Solid oxide fuel cell
Cell-tube temperature
Neural network predictive control
Neural network
Fuel cell
Predictive control
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-ae8dd4ddb525735e1ab338528d7089425b5655fe7cc06cef440c3ee94d29f6513
Notes http://dx.doi.org/10.1016/j.energy.2013.08.031
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671553695
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_2000064854
proquest_miscellaneous_1671567552
proquest_miscellaneous_1671553695
pascalfrancis_primary_27933415
crossref_citationtrail_10_1016_j_energy_2013_08_031
crossref_primary_10_1016_j_energy_2013_08_031
fao_agris_US201600065157
elsevier_sciencedirect_doi_10_1016_j_energy_2013_08_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy (Oxford)
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhang, Chan, Ho, Li, Li, Feng (bib25) 2008; 33
Lin, Huang, Chiang, Chyou (bib13) 2009; 192
García, Prett, Morari (bib50) 1989; 25
Knyazkin, Soder, Canizares (bib16) 2003
Bavarian, Soroush, Kevrekidis, Benziger (bib17) 2010; 49
Hornik, Stinchombe, White (bib44) 1990; 2
Calise, Dentice d'Accadia, Palombo, Vanoli (bib4) 2006; 31
Heny, Simanca, Delgado (bib30) 2000; 337
Jian-Qin, Yu-Geng, Zhong-Jun (bib27) 1998; 98
Constanting, Economou, Moral (bib46) 1986; 25
Huang, Qi, Murshed (bib18) 2011; 21
Wu, Zhu, Cao, Tu (bib24) 2008; 179
Akesson, Toivonen (bib40) 2006; 16
Nakanishi, Hattori, Sakaki, Kimura, Kanehira, Takenobu (bib15) 2003
Chaichana, Patcharavorachot, Chutichai, Saebea, Assabumrungrat, Arpornwichanop (bib34) 2012; 37
Singhal (bib48) 2000; 135
Campanari, Iora (bib51) 2004; 132
Ni, Leung, Leung (bib53) 2008; 33
Olabi (bib1) 2012; 39
Offer, Contestabile, Howey, Clague, Brandon (bib2) 2011; 39
Fardadi, Mueller, Jabbari (bib33) 2010; 195
Wakui, Yokoyama, Shimizu (bib3) 2010; 35
Weil, Koeppel (bib11) 2008; 33
Olabi, Casalino, Benyounis, Hashmi (bib37) 2006; 37
Wang, Huang, Chen (bib21) 2007; 17
Benyounis, Olabi (bib36) 2008; 39
Vijay, Samantaray, Mukherjee (bib29) 2009; 19
Liso, Olesen, Nielsen, Kær (bib5) 2011; 36
Huo, Zhong, Zhu, Tu (bib20) 2008; 175
Nagel, Schildhauer, Biollaz, Stucki (bib9) 2008; 184
Calise, Dentice d' Accadia, Vanoli, von Spakovsky (bib7) 2007; 32
Soloway, Haley (bib42) 1996
Hussain (bib39) 1999; 13
Ziegler, Göpel, Hämmerle, Hatt, Jung, Laxhuber (bib45) 1998; 13
Ota, Koyama, Wen, Yamada, Takahashi (bib49) 2003; 118
Hornik, Stinchcombe, White (bib38) 1989; 2
Lawlor, Griesser, Buchinger, Olabi, Cordiner, Meissner (bib8) 2009; 193
Recknagle, Williford, Chick, Rector, Khaleel (bib10) 2003; 113
Minh, Takahashi (bib14) 1995
Yang, Li, Mou, Jian (bib23) 2009; 188
Milewski, Åšwirski (bib35) 2009; 34
Lera, Pinzolas (bib43) 2002; 13
Sanandaji, Vincent, Colclasure, Kee (bib31) 2004; 196
Hajimolana, Hussain, Daud, Chakrabarti (bib41) 2012; 90
Yang, Li, Mou, Jian (bib22) 2009; 193
Hall (bib52) 1997
Inui, Ito, Nakajima, Urata (bib32) 2006; 47
Soroush (bib47) 1998; 23
Soroush, Chmielewski (bib19) 2013; 51
Wu, Zhu, Cao, Tu (bib26) 2008; 16
Li, Chen, Wang, Jia, Han (bib28) 2009; 194
Nakajo, Wuillemin, Van herle, Favrat (bib12) 2009; 193
Santin, Traverso, Magistri, Massardo (bib6) 2010; 35
Yang (10.1016/j.energy.2013.08.031_bib22) 2009; 193
Soroush (10.1016/j.energy.2013.08.031_bib19) 2013; 51
Wakui (10.1016/j.energy.2013.08.031_bib3) 2010; 35
Minh (10.1016/j.energy.2013.08.031_bib14) 1995
Weil (10.1016/j.energy.2013.08.031_bib11) 2008; 33
Zhang (10.1016/j.energy.2013.08.031_bib25) 2008; 33
Olabi (10.1016/j.energy.2013.08.031_bib1) 2012; 39
Ni (10.1016/j.energy.2013.08.031_bib53) 2008; 33
Yang (10.1016/j.energy.2013.08.031_bib23) 2009; 188
Heny (10.1016/j.energy.2013.08.031_bib30) 2000; 337
Nakajo (10.1016/j.energy.2013.08.031_bib12) 2009; 193
Soloway (10.1016/j.energy.2013.08.031_bib42) 1996
Hornik (10.1016/j.energy.2013.08.031_bib38) 1989; 2
Constanting (10.1016/j.energy.2013.08.031_bib46) 1986; 25
Olabi (10.1016/j.energy.2013.08.031_bib37) 2006; 37
Lin (10.1016/j.energy.2013.08.031_bib13) 2009; 192
Hajimolana (10.1016/j.energy.2013.08.031_bib41) 2012; 90
Benyounis (10.1016/j.energy.2013.08.031_bib36) 2008; 39
Inui (10.1016/j.energy.2013.08.031_bib32) 2006; 47
Campanari (10.1016/j.energy.2013.08.031_bib51) 2004; 132
Nakanishi (10.1016/j.energy.2013.08.031_bib15) 2003
Huang (10.1016/j.energy.2013.08.031_bib18) 2011; 21
Hornik (10.1016/j.energy.2013.08.031_bib44) 1990; 2
Knyazkin (10.1016/j.energy.2013.08.031_bib16) 2003
Singhal (10.1016/j.energy.2013.08.031_bib48) 2000; 135
Bavarian (10.1016/j.energy.2013.08.031_bib17) 2010; 49
Wu (10.1016/j.energy.2013.08.031_bib26) 2008; 16
Liso (10.1016/j.energy.2013.08.031_bib5) 2011; 36
Ziegler (10.1016/j.energy.2013.08.031_bib45) 1998; 13
Akesson (10.1016/j.energy.2013.08.031_bib40) 2006; 16
Hussain (10.1016/j.energy.2013.08.031_bib39) 1999; 13
García (10.1016/j.energy.2013.08.031_bib50) 1989; 25
Soroush (10.1016/j.energy.2013.08.031_bib47) 1998; 23
Sanandaji (10.1016/j.energy.2013.08.031_bib31) 2004; 196
Calise (10.1016/j.energy.2013.08.031_bib7) 2007; 32
Ota (10.1016/j.energy.2013.08.031_bib49) 2003; 118
Milewski (10.1016/j.energy.2013.08.031_bib35) 2009; 34
Wang (10.1016/j.energy.2013.08.031_bib21) 2007; 17
Santin (10.1016/j.energy.2013.08.031_bib6) 2010; 35
Calise (10.1016/j.energy.2013.08.031_bib4) 2006; 31
Hall (10.1016/j.energy.2013.08.031_bib52) 1997
Wu (10.1016/j.energy.2013.08.031_bib24) 2008; 179
Recknagle (10.1016/j.energy.2013.08.031_bib10) 2003; 113
Fardadi (10.1016/j.energy.2013.08.031_bib33) 2010; 195
Lera (10.1016/j.energy.2013.08.031_bib43) 2002; 13
Offer (10.1016/j.energy.2013.08.031_bib2) 2011; 39
Li (10.1016/j.energy.2013.08.031_bib28) 2009; 194
Chaichana (10.1016/j.energy.2013.08.031_bib34) 2012; 37
Jian-Qin (10.1016/j.energy.2013.08.031_bib27) 1998; 98
Huo (10.1016/j.energy.2013.08.031_bib20) 2008; 175
Vijay (10.1016/j.energy.2013.08.031_bib29) 2009; 19
Lawlor (10.1016/j.energy.2013.08.031_bib8) 2009; 193
Nagel (10.1016/j.energy.2013.08.031_bib9) 2008; 184
References_xml – volume: 184
  start-page: 129
  year: 2008
  end-page: 142
  ident: bib9
  article-title: Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases – a sensitivity analysis
  publication-title: J Power Sources
– volume: 37
  start-page: 2498
  year: 2012
  end-page: 2508
  ident: bib34
  article-title: Neural network hybrid model of a direct internal reforming solid oxide fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 192
  start-page: 515
  year: 2009
  end-page: 524
  ident: bib13
  article-title: Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design
  publication-title: J Power Sources
– volume: 135
  start-page: 305
  year: 2000
  end-page: 313
  ident: bib48
  article-title: Advances in solid oxide fuel cell technology
  publication-title: Solid State Ionics
– volume: 32
  start-page: 446
  year: 2007
  end-page: 458
  ident: bib7
  article-title: Full load synthesis/design optimization of a hybrid SOFC – GT power plant
  publication-title: Energy
– volume: 13
  start-page: 1200
  year: 2002
  end-page: 1203
  ident: bib43
  article-title: Neighborhood based Levenberg-Marquardt algorithm for neural network training
  publication-title: Neural Netw IEEE Trans
– volume: 195
  start-page: 4222
  year: 2010
  end-page: 4233
  ident: bib33
  article-title: Feedback control of solid oxide fuel cell spatial temperature variation
  publication-title: J Power Sources
– volume: 31
  start-page: 3278
  year: 2006
  end-page: 3299
  ident: bib4
  article-title: Simulation and exergy analysis of a hybrid solid oxide fuel cell (SOFC) – gas turbine system
  publication-title: Energy
– volume: 47
  start-page: 2319
  year: 2006
  end-page: 2328
  ident: bib32
  article-title: Analytical investigation on cell temperature control method of planar solid oxide fuel cell
  publication-title: Energy Convers Manag
– volume: 33
  start-page: 2355
  year: 2008
  end-page: 2366
  ident: bib25
  article-title: Nonlinear model predictive control based on the moving horizon state estimation for the solid oxide fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 25
  start-page: 403
  year: 1986
  end-page: 411
  ident: bib46
  article-title: Internal model control. 5. Extension to nonlinear systems
  publication-title: Ind Eng Chem Process Des Dev
– volume: 16
  start-page: 937
  year: 2006
  end-page: 946
  ident: bib40
  article-title: A neural network model predictive controller
  publication-title: J Process Control
– volume: 49
  start-page: 7922
  year: 2010
  end-page: 7950
  ident: bib17
  article-title: Mathematical modeling, steady-state and dynamic behavior, and control of fuel cells: a review
  publication-title: Ind Eng Chem Res
– volume: 25
  start-page: 335
  year: 1989
  end-page: 348
  ident: bib50
  article-title: Model predictive control: theory and practice – a survey
  publication-title: Automatica
– volume: 90
  start-page: 1871
  year: 2012
  end-page: 1882
  ident: bib41
  article-title: Dynamic modelling and sensitivity analysis of a tubular SOFC fuelled with NH
  publication-title: Chem Eng Res Des
– volume: 33
  start-page: 3976
  year: 2008
  end-page: 3990
  ident: bib11
  article-title: Thermal stress analysis of the planar SOFC bonded compliant seal design
  publication-title: Int J Hydrogen Energy
– volume: 21
  start-page: 1426
  year: 2011
  end-page: 1437
  ident: bib18
  article-title: Solid oxide fuel cell: perspective of dynamic modeling and control
  publication-title: J Process Control
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib38
  article-title: Multilayer feed forward networks are universal approximators
  publication-title: Neural Netw
– volume: 39
  start-page: 2
  year: 2012
  end-page: 5
  ident: bib1
  article-title: Developments in sustainable energy and environmental protection
  publication-title: Energy
– start-page: 16
  year: 2003
  end-page: 19
  ident: bib15
  article-title: Development of MOLB type SOFC
  publication-title: 12th symposium on solid oxide fuel cells in Japan
– start-page: 328
  year: 2003
  end-page: 333
  ident: bib16
  article-title: Control challenges of fuel celldriven distributed generation
  publication-title: IEEE Bologna power-tech conference
– volume: 13
  start-page: 539
  year: 1998
  end-page: 571
  ident: bib45
  article-title: Bioelectronic noses: a status report. Part II
  publication-title: Biosens Bioelectron
– volume: 194
  start-page: 338
  year: 2009
  end-page: 348
  ident: bib28
  article-title: Nonlinear robust control of proton exchange membrane fuel cell by state feedback exact linearization
  publication-title: J Power Sources
– volume: 51
  start-page: 86
  year: 2013
  end-page: 95
  ident: bib19
  article-title: Process systems opportunities in power generation, storage and distribution
  publication-title: Comput Chem Eng
– volume: 39
  start-page: 1939
  year: 2011
  end-page: 1950
  ident: bib2
  article-title: Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK
  publication-title: Energy Policy
– year: 1995
  ident: bib14
  article-title: Science and technology of ceramic fuel cells
– volume: 35
  start-page: 1077
  year: 2010
  end-page: 1083
  ident: bib6
  article-title: Thermoeconomic analysis of SOFC-GT hybrid systems fed by liquid fuels
  publication-title: Energy
– start-page: 277
  year: 1996
  end-page: 282
  ident: bib42
  article-title: Neural/generalized predictive control, a Newton-Raphson implementation
  publication-title: Proc. 11th IEEE int. symp. on intelligent control
– volume: 179
  start-page: 232
  year: 2008
  end-page: 239
  ident: bib24
  article-title: Predictive control of SOFC based on a GA-RBF neural network model
  publication-title: J Power Sources
– volume: 196
  start-page: 208
  year: 2004
  end-page: 217
  ident: bib31
  article-title: Modeling and control of tubular solid-oxide fuel cell systems: II. Nonlinear model reduction and model predictive control
  publication-title: J Power Sources
– volume: 36
  start-page: 4216
  year: 2011
  end-page: 4226
  ident: bib5
  article-title: Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system
  publication-title: Energy
– volume: 13
  start-page: 55
  year: 1999
  end-page: 68
  ident: bib39
  article-title: Review of the applications of neural networks in chemical process control—simulation and online implementation
  publication-title: Artif Intell Eng
– volume: 37
  start-page: 643
  year: 2006
  end-page: 648
  ident: bib37
  article-title: An ANN and Taguchi algorithms integrated approach to the optimization of CO
  publication-title: Adv Eng Softw
– volume: 2
  start-page: 359
  year: 1990
  end-page: 372
  ident: bib44
  publication-title: Neural Netw
– volume: 17
  start-page: 103
  year: 2007
  end-page: 114
  ident: bib21
  article-title: Data-driven predictive control for solid oxide fuel cells
  publication-title: J Process Control
– volume: 337
  start-page: 21
  year: 2000
  end-page: 42
  ident: bib30
  article-title: Pseudo-bond graph model and simulation of a continuous stirred tank reactor
  publication-title: J Franklin Inst
– volume: 16
  start-page: 494
  year: 2008
  end-page: 504
  ident: bib26
  article-title: Dynamic modeling of SOFC based on a T-S fuzzy model
  publication-title: Simul Model Pract Theory
– volume: 35
  start-page: 740
  year: 2010
  end-page: 750
  ident: bib3
  article-title: Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems
  publication-title: Energy
– volume: 33
  start-page: 5765
  year: 2008
  end-page: 5772
  ident: bib53
  article-title: Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes
  publication-title: Int J Hydrogen Energy
– volume: 193
  start-page: 699
  year: 2009
  end-page: 705
  ident: bib22
  article-title: Predictive control of solid oxide fuel cell based on an improved Takagi–Sugeno fuzzy model
  publication-title: J Power Sources
– volume: 98
  start-page: 319
  year: 1998
  end-page: 329
  ident: bib27
  article-title: A clustering algorithm for fuzzy model identification
  publication-title: Fuzzy Sets System
– volume: 113
  start-page: 109
  year: 2003
  end-page: 114
  ident: bib10
  article-title: Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks
  publication-title: J Power Sources
– volume: 193
  start-page: 216
  year: 2009
  end-page: 226
  ident: bib12
  article-title: Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: loss of gas-tightness, electrical contact and thermal buckling
  publication-title: J Power Sources
– volume: 39
  start-page: 483
  year: 2008
  end-page: 496
  ident: bib36
  article-title: Optimization of different welding processes using statistical and numerical approaches – a reference guide
  publication-title: Adv Eng Softw
– volume: 23
  start-page: 229
  year: 1998
  end-page: 245
  ident: bib47
  article-title: State and parameter estimations and their applications in process control
  publication-title: Comput Chem Eng
– year: 1997
  ident: bib52
  article-title: Transient modeling and simulation of a solid oxide fuel cell
– volume: 34
  start-page: 5546
  year: 2009
  end-page: 5553
  ident: bib35
  article-title: Modelling the SOFC behaviours by artificial neural network
  publication-title: Int J Hydrogen Energy
– volume: 193
  start-page: 387
  year: 2009
  end-page: 399
  ident: bib8
  article-title: Review of the micro-tubular solid oxide fuel cell: part I. Stack design issues and research activities
  publication-title: J Power Sources
– volume: 175
  start-page: 441
  year: 2008
  end-page: 446
  ident: bib20
  article-title: Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model
  publication-title: J Power Sources
– volume: 188
  start-page: 475
  year: 2009
  end-page: 482
  ident: bib23
  article-title: Control-oriented thermal management of solid oxide fuel cells based on a modified Takagi-Sugeno fuzzy model
  publication-title: J Power Sources
– volume: 118
  start-page: 430
  year: 2003
  end-page: 439
  ident: bib49
  article-title: Object-based modeling of SOFC system: dynamic behavior of micro-tube SOFC
  publication-title: J Power Sources
– volume: 19
  start-page: 489
  year: 2009
  end-page: 502
  ident: bib29
  article-title: A bond graph model-based evaluation of a control scheme to improve the dynamic performance of a solid oxide fuel cell
  publication-title: Mechatronics
– volume: 132
  start-page: 113
  year: 2004
  end-page: 126
  ident: bib51
  article-title: Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry
  publication-title: J Power Sources
– volume: 31
  start-page: 3278
  issue: 15
  year: 2006
  ident: 10.1016/j.energy.2013.08.031_bib4
  article-title: Simulation and exergy analysis of a hybrid solid oxide fuel cell (SOFC) – gas turbine system
  publication-title: Energy
  doi: 10.1016/j.energy.2006.03.006
– volume: 193
  start-page: 699
  issue: 2
  year: 2009
  ident: 10.1016/j.energy.2013.08.031_bib22
  article-title: Predictive control of solid oxide fuel cell based on an improved Takagi–Sugeno fuzzy model
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.04.022
– volume: 337
  start-page: 21
  year: 2000
  ident: 10.1016/j.energy.2013.08.031_bib30
  article-title: Pseudo-bond graph model and simulation of a continuous stirred tank reactor
  publication-title: J Franklin Inst
  doi: 10.1016/S0016-0032(99)00043-5
– volume: 179
  start-page: 232
  issue: 1
  year: 2008
  ident: 10.1016/j.energy.2013.08.031_bib24
  article-title: Predictive control of SOFC based on a GA-RBF neural network model
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.12.036
– volume: 25
  start-page: 335
  issue: 3
  year: 1989
  ident: 10.1016/j.energy.2013.08.031_bib50
  article-title: Model predictive control: theory and practice – a survey
  publication-title: Automatica
  doi: 10.1016/0005-1098(89)90002-2
– volume: 35
  start-page: 1077
  issue: 2
  year: 2010
  ident: 10.1016/j.energy.2013.08.031_bib6
  article-title: Thermoeconomic analysis of SOFC-GT hybrid systems fed by liquid fuels
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.012
– volume: 13
  start-page: 1200
  issue: 5
  year: 2002
  ident: 10.1016/j.energy.2013.08.031_bib43
  article-title: Neighborhood based Levenberg-Marquardt algorithm for neural network training
  publication-title: Neural Netw IEEE Trans
  doi: 10.1109/TNN.2002.1031951
– volume: 32
  start-page: 446
  issue: 4
  year: 2007
  ident: 10.1016/j.energy.2013.08.031_bib7
  article-title: Full load synthesis/design optimization of a hybrid SOFC – GT power plant
  publication-title: Energy
  doi: 10.1016/j.energy.2006.06.016
– volume: 21
  start-page: 1426
  issue: 10
  year: 2011
  ident: 10.1016/j.energy.2013.08.031_bib18
  article-title: Solid oxide fuel cell: perspective of dynamic modeling and control
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2011.06.017
– volume: 33
  start-page: 5765
  issue: 20
  year: 2008
  ident: 10.1016/j.energy.2013.08.031_bib53
  article-title: Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.07.021
– volume: 13
  start-page: 55
  year: 1999
  ident: 10.1016/j.energy.2013.08.031_bib39
  article-title: Review of the applications of neural networks in chemical process control—simulation and online implementation
  publication-title: Artif Intell Eng
  doi: 10.1016/S0954-1810(98)00011-9
– volume: 36
  start-page: 4216
  issue: 7
  year: 2011
  ident: 10.1016/j.energy.2013.08.031_bib5
  article-title: Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system
  publication-title: Energy
  doi: 10.1016/j.energy.2011.04.022
– start-page: 277
  year: 1996
  ident: 10.1016/j.energy.2013.08.031_bib42
  article-title: Neural/generalized predictive control, a Newton-Raphson implementation
– volume: 51
  start-page: 86
  year: 2013
  ident: 10.1016/j.energy.2013.08.031_bib19
  article-title: Process systems opportunities in power generation, storage and distribution
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2012.06.027
– volume: 47
  start-page: 2319
  issue: 15–16
  year: 2006
  ident: 10.1016/j.energy.2013.08.031_bib32
  article-title: Analytical investigation on cell temperature control method of planar solid oxide fuel cell
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2005.11.007
– volume: 113
  start-page: 109
  issue: 1
  year: 2003
  ident: 10.1016/j.energy.2013.08.031_bib10
  article-title: Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(02)00487-1
– volume: 35
  start-page: 740
  issue: 2
  year: 2010
  ident: 10.1016/j.energy.2013.08.031_bib3
  article-title: Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems
  publication-title: Energy
  doi: 10.1016/j.energy.2009.09.029
– volume: 196
  start-page: 208
  issue: 1
  year: 2004
  ident: 10.1016/j.energy.2013.08.031_bib31
  article-title: Modeling and control of tubular solid-oxide fuel cell systems: II. Nonlinear model reduction and model predictive control
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.06.075
– volume: 34
  start-page: 5546
  issue: 13
  year: 2009
  ident: 10.1016/j.energy.2013.08.031_bib35
  article-title: Modelling the SOFC behaviours by artificial neural network
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.04.068
– volume: 194
  start-page: 338
  issue: 1
  year: 2009
  ident: 10.1016/j.energy.2013.08.031_bib28
  article-title: Nonlinear robust control of proton exchange membrane fuel cell by state feedback exact linearization
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.04.077
– volume: 37
  start-page: 643
  issue: 10
  year: 2006
  ident: 10.1016/j.energy.2013.08.031_bib37
  article-title: An ANN and Taguchi algorithms integrated approach to the optimization of CO2 laser welding
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2006.02.002
– volume: 39
  start-page: 1939
  issue: 4
  year: 2011
  ident: 10.1016/j.energy.2013.08.031_bib2
  article-title: Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.01.006
– volume: 16
  start-page: 494
  issue: 5
  year: 2008
  ident: 10.1016/j.energy.2013.08.031_bib26
  article-title: Dynamic modeling of SOFC based on a T-S fuzzy model
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2008.02.004
– volume: 132
  start-page: 113
  issue: 1–2
  year: 2004
  ident: 10.1016/j.energy.2013.08.031_bib51
  article-title: Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.01.043
– volume: 33
  start-page: 2355
  issue: 9
  year: 2008
  ident: 10.1016/j.energy.2013.08.031_bib25
  article-title: Nonlinear model predictive control based on the moving horizon state estimation for the solid oxide fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.02.063
– volume: 98
  start-page: 319
  year: 1998
  ident: 10.1016/j.energy.2013.08.031_bib27
  article-title: A clustering algorithm for fuzzy model identification
  publication-title: Fuzzy Sets System
  doi: 10.1016/S0165-0114(96)00384-3
– volume: 118
  start-page: 430
  issue: 1–2
  year: 2003
  ident: 10.1016/j.energy.2013.08.031_bib49
  article-title: Object-based modeling of SOFC system: dynamic behavior of micro-tube SOFC
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(03)00109-5
– volume: 193
  start-page: 216
  issue: 1
  year: 2009
  ident: 10.1016/j.energy.2013.08.031_bib12
  article-title: Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: loss of gas-tightness, electrical contact and thermal buckling
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.12.039
– volume: 2
  start-page: 359
  year: 1989
  ident: 10.1016/j.energy.2013.08.031_bib38
  article-title: Multilayer feed forward networks are universal approximators
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 2
  start-page: 359
  year: 1990
  ident: 10.1016/j.energy.2013.08.031_bib44
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 184
  start-page: 129
  issue: 1
  year: 2008
  ident: 10.1016/j.energy.2013.08.031_bib9
  article-title: Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases – a sensitivity analysis
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.05.044
– volume: 25
  start-page: 403
  year: 1986
  ident: 10.1016/j.energy.2013.08.031_bib46
  article-title: Internal model control. 5. Extension to nonlinear systems
  publication-title: Ind Eng Chem Process Des Dev
  doi: 10.1021/i200033a010
– volume: 39
  start-page: 2
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2013.08.031_bib1
  article-title: Developments in sustainable energy and environmental protection
  publication-title: Energy
  doi: 10.1016/j.energy.2011.12.037
– volume: 16
  start-page: 937
  issue: 9
  year: 2006
  ident: 10.1016/j.energy.2013.08.031_bib40
  article-title: A neural network model predictive controller
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2006.06.001
– volume: 135
  start-page: 305
  issue: 1
  year: 2000
  ident: 10.1016/j.energy.2013.08.031_bib48
  article-title: Advances in solid oxide fuel cell technology
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(00)00452-5
– year: 1997
  ident: 10.1016/j.energy.2013.08.031_bib52
– start-page: 328
  year: 2003
  ident: 10.1016/j.energy.2013.08.031_bib16
  article-title: Control challenges of fuel celldriven distributed generation
– volume: 33
  start-page: 3976
  issue: 14
  year: 2008
  ident: 10.1016/j.energy.2013.08.031_bib11
  article-title: Thermal stress analysis of the planar SOFC bonded compliant seal design
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.11.008
– volume: 188
  start-page: 475
  issue: 2
  year: 2009
  ident: 10.1016/j.energy.2013.08.031_bib23
  article-title: Control-oriented thermal management of solid oxide fuel cells based on a modified Takagi-Sugeno fuzzy model
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.12.012
– volume: 37
  start-page: 2498
  issue: 3
  year: 2012
  ident: 10.1016/j.energy.2013.08.031_bib34
  article-title: Neural network hybrid model of a direct internal reforming solid oxide fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.10.051
– volume: 193
  start-page: 387
  issue: 2
  year: 2009
  ident: 10.1016/j.energy.2013.08.031_bib8
  article-title: Review of the micro-tubular solid oxide fuel cell: part I. Stack design issues and research activities
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.02.085
– volume: 19
  start-page: 489
  issue: 4
  year: 2009
  ident: 10.1016/j.energy.2013.08.031_bib29
  article-title: A bond graph model-based evaluation of a control scheme to improve the dynamic performance of a solid oxide fuel cell
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2008.11.016
– volume: 23
  start-page: 229
  issue: 2
  year: 1998
  ident: 10.1016/j.energy.2013.08.031_bib47
  article-title: State and parameter estimations and their applications in process control
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(98)00263-4
– volume: 90
  start-page: 1871
  issue: 11
  year: 2012
  ident: 10.1016/j.energy.2013.08.031_bib41
  article-title: Dynamic modelling and sensitivity analysis of a tubular SOFC fuelled with NH3 as a possible replacement for H2
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2012.03.004
– volume: 192
  start-page: 515
  issue: 2
  year: 2009
  ident: 10.1016/j.energy.2013.08.031_bib13
  article-title: Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.03.010
– start-page: 16
  year: 2003
  ident: 10.1016/j.energy.2013.08.031_bib15
  article-title: Development of MOLB type SOFC
– year: 1995
  ident: 10.1016/j.energy.2013.08.031_bib14
– volume: 17
  start-page: 103
  issue: 2
  year: 2007
  ident: 10.1016/j.energy.2013.08.031_bib21
  article-title: Data-driven predictive control for solid oxide fuel cells
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2006.09.004
– volume: 13
  start-page: 539
  year: 1998
  ident: 10.1016/j.energy.2013.08.031_bib45
  article-title: Bioelectronic noses: a status report. Part II
  publication-title: Biosens Bioelectron
  doi: 10.1016/S0956-5663(97)00093-6
– volume: 195
  start-page: 4222
  issue: 13
  year: 2010
  ident: 10.1016/j.energy.2013.08.031_bib33
  article-title: Feedback control of solid oxide fuel cell spatial temperature variation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.12.111
– volume: 49
  start-page: 7922
  year: 2010
  ident: 10.1016/j.energy.2013.08.031_bib17
  article-title: Mathematical modeling, steady-state and dynamic behavior, and control of fuel cells: a review
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie100032c
– volume: 175
  start-page: 441
  issue: 1
  year: 2008
  ident: 10.1016/j.energy.2013.08.031_bib20
  article-title: Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.09.059
– volume: 39
  start-page: 483
  issue: 6
  year: 2008
  ident: 10.1016/j.energy.2013.08.031_bib36
  article-title: Optimization of different welding processes using statistical and numerical approaches – a reference guide
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2007.03.012
SSID ssj0005899
Score 2.352281
Snippet In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 320
SubjectTerms air flow
ammonia
Applied sciences
Cell-tube temperature
ceramics
Computer simulation
Control systems
electrochemistry
electrodes
electrolytes
Electrolytic cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
fuels
Inlets
Mathematical models
momentum
Neural network predictive control
Neural networks
porous media
Solid oxide fuel cell
Solid oxide fuel cells
Streams
stress management
Thermal stress
Thermal stresses
water temperature
Title Thermal stress management of a solid oxide fuel cell using neural network predictive control
URI https://dx.doi.org/10.1016/j.energy.2013.08.031
https://www.proquest.com/docview/1671553695
https://www.proquest.com/docview/1671567552
https://www.proquest.com/docview/2000064854
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH406WG7jK1bafYjaLCrF1uWbPlYSku2sB7WhfUwELZ-lIzMDk0CPfVv33u2nFJGCexkbJ5A1pM-fbK_9x7AJ-GsKHFfQ-ZmZCSKTESqoPom3Jik8tbHbeL5b5fZdC6-XsvrAzjrY2FIVhmwv8P0Fq3Dk0kYzclqsZhcIfYi3xCcfsjkcaYGcMjTIpNDODz9MptePig9VFtGkuwjatBH0LUyL9eG2JHGK21zeabJUzvUwJcNSSfLNY6e78pe_IPg7bZ08RJeBD7JTrsuv4IDVx_Bsz7ceH0Ex-cPoWxoGNby-jX8whmCqLxkXbgI-7MTwrDGs5LhpFxY1twtrGN-65aMvvEz0snfMMqCiS3rTkPOVrf0u4eAkwXp-xuYX5z_OJtGodZCZIQsNlHplLXC2oqyo6bSJWWFh1fJlc1jVeDCrpD5Se9yY-LMOC9EbFLnCmF54TOZpMcwrJvanQATMi-8y6pKVVwYlSojqxxZprV4ODMuH0Haj682IRE51cNY6l5x9lt3XtHkFU1lMtNkBNGu1apLxLHHPu9dpx9NKI17xZ6WJ-hpXd4gyur5FaccfMTUEoldHz9y_64nHGEO-YAcwcd-Pmhcp-SYsnbNdq2TLKcSTVmxzwZPcJI_bcNbhiGUFG__-w3fwXO661Q572G4ud26D8itNtUYBp_vk3FYQXSdff85-wsPHiRE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJekgvpU0bsn2kKvTqrq2HJR9LSNi2SS7JQg4FYb3Chq29ZHehp_72zsj2tqGEhV7tEcga6dMn65sZQj6K4EUN-xowNyczUZUi0xXWN2HOFTb6mKfE8xeX5WQqvt7Imx1yMsTCoKyyx_4O0xNa90_G_WiOF7PZ-AqwF_iGYHgho_JS75InQnKFCfQ__fpL56FTEUm0ztB8iJ9LIq-QAuxQ4cVTJk9ePLY_7ca6ReFkvYSxi13Ri3_wO21KZ8_Js55N0s9dh1-QndAckP0h2Hh5QA5P_wSygWG_kpcvyXeYH4DJc9oFi9AfGxkMbSOtKUzJmaftz5kPNK7DnOIffooq-VuKOTChZdMpyOniHi97EDZpL3x_RaZnp9cnk6yvtJA5IatVVgftvfDeYm5ULkNRWzi6Sqa9ynUFy9oC75MxKOfy0oUoRO54CJXwrIqlLPgh2WvaJhwRKqSqYiit1ZYJp7l20irgmN7D0cwFNSJ8GF_j-jTkWA1jbga92Z3pvGLQKwaLZPJiRLJNq0WXhmOLvRpcZx5MJwM7xZaWR-BpU98CxprpFcMMfMjTCgldP37g_k1PGIAcsAE5Ih-G-WBglaJj6ia066UpSoUFmspqmw2c3yR73IYlfiG0FK__-wvfk_3J9cW5Of9y-e0NeYpvOn3OW7K3ul-Hd8CyVvY4raLfbG8jaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+stress+management+of+a+solid+oxide+fuel+cell+using+neural+network+predictive+control&rft.jtitle=Energy+%28Oxford%29&rft.au=Hajimolana%2C+S.A.&rft.au=Tonekabonimoghadam%2C+S.M.&rft.au=Hussain%2C+M.A.&rft.au=Chakrabarti%2C+M.H.&rft.date=2013-12-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=62&rft.spage=320&rft.epage=329&rft_id=info:doi/10.1016%2Fj.energy.2013.08.031&rft.externalDocID=S0360544213007068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon