Thermal stress management of a solid oxide fuel cell using neural network predictive control
In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical mod...
Saved in:
Published in | Energy (Oxford) Vol. 62; pp. 320 - 329 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5442 |
DOI | 10.1016/j.energy.2013.08.031 |
Cover
Abstract | In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical model based on first principles is presented to avert such temperature fluctuations. The fuel cell running on ammonia is divided into five subsystems and factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical reactions, and polarization losses inside the subsystems are presented. Dynamic cell-tube temperature responses of the cell to step changes in conditions of the feed streams is investigated. The results of simulation indicate that the transient response of the SOFC is mainly influenced by the temperature dynamics. It is also shown that the inlet stream temperatures are associated with the highest long term start-up time (467 s) among other parameters in terms of step changes. In contrast the step change in fuel velocity has the lowest influence on the start-up time (about 190 s from initial steady state to the new steady state) among other parameters. A NNPC (neural network predictive controller) is then implemented for thermal stress management by controlling the cell tube temperature to avoid performance degradation by manipulating the temperature of the inlet air stream. The regulatory performance of the NNPC is compared with a PI (proportional–integral) controller. The performance of the control system confirms that NNPC is a non-linear-model-based strategy which can assure less oscillating control responses with shorter settling times in comparison to the PI controller.
•Effect of the operating parameters on the fuel cell temperature is analysed.•A neural network predictive controller (NNPC) is implemented.•The performance of NNPC is compared with the PI controller.•A detailed model is used for the NNPC for the first time in the literature. |
---|---|
AbstractList | In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical model based on first principles is presented to avert such temperature fluctuations. The fuel cell running on ammonia is divided into five subsystems and factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical reactions, and polarization losses inside the subsystems are presented. Dynamic cell-tube temperature responses of the cell to step changes in conditions of the feed streams is investigated. The results of simulation indicate that the transient response of the SOFC is mainly influenced by the temperature dynamics. It is also shown that the inlet stream temperatures are associated with the highest long term start-up time (467 s) among other parameters in terms of step changes. In contrast the step change in fuel velocity has the lowest influence on the start-up time (about 190 s from initial steady state to the new steady state) among other parameters. A NNPC (neural network predictive controller) is then implemented for thermal stress management by controlling the cell tube temperature to avoid performance degradation by manipulating the temperature of the inlet air stream. The regulatory performance of the NNPC is compared with a PI (proportional–integral) controller. The performance of the control system confirms that NNPC is a non-linear-model-based strategy which can assure less oscillating control responses with shorter settling times in comparison to the PI controller. In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical model based on first principles is presented to avert such temperature fluctuations. The fuel cell running on ammonia is divided into five subsystems and factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical reactions, and polarization losses inside the subsystems are presented. Dynamic cell-tube temperature responses of the cell to step changes in conditions of the feed streams is investigated. The results of simulation indicate that the transient response of the SOFC is mainly influenced by the temperature dynamics. It is also shown that the inlet stream temperatures are associated with the highest long term start-up time (467 s) among other parameters in terms of step changes. In contrast the step change in fuel velocity has the lowest influence on the start-up time (about 190 s from initial steady state to the new steady state) among other parameters. A NNPC (neural network predictive controller) is then implemented for thermal stress management by controlling the cell tube temperature to avoid performance degradation by manipulating the temperature of the inlet air stream. The regulatory performance of the NNPC is compared with a PI (proportional-integral) controller. The performance of the control system confirms that NNPC is a non-linear-model-based strategy which can assure less oscillating control responses with shorter settling times in comparison to the PI controller. In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical model based on first principles is presented to avert such temperature fluctuations. The fuel cell running on ammonia is divided into five subsystems and factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical reactions, and polarization losses inside the subsystems are presented. Dynamic cell-tube temperature responses of the cell to step changes in conditions of the feed streams is investigated. The results of simulation indicate that the transient response of the SOFC is mainly influenced by the temperature dynamics. It is also shown that the inlet stream temperatures are associated with the highest long term start-up time (467 s) among other parameters in terms of step changes. In contrast the step change in fuel velocity has the lowest influence on the start-up time (about 190 s from initial steady state to the new steady state) among other parameters. A NNPC (neural network predictive controller) is then implemented for thermal stress management by controlling the cell tube temperature to avoid performance degradation by manipulating the temperature of the inlet air stream. The regulatory performance of the NNPC is compared with a PI (proportional–integral) controller. The performance of the control system confirms that NNPC is a non-linear-model-based strategy which can assure less oscillating control responses with shorter settling times in comparison to the PI controller. •Effect of the operating parameters on the fuel cell temperature is analysed.•A neural network predictive controller (NNPC) is implemented.•The performance of NNPC is compared with the PI controller.•A detailed model is used for the NNPC for the first time in the literature. |
Author | Tonekabonimoghadam, S.M. Hajimolana, S.A. Hashim, M.A. Hussain, M.A. Chakrabarti, M.H. Jayakumar, N.S. |
Author_xml | – sequence: 1 givenname: S.A. surname: Hajimolana fullname: Hajimolana, S.A. organization: Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia – sequence: 2 givenname: S.M. surname: Tonekabonimoghadam fullname: Tonekabonimoghadam, S.M. organization: Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia – sequence: 3 givenname: M.A. surname: Hussain fullname: Hussain, M.A. email: mohd_azlan@um.edu.my, yashar_molana1@yahoo.com organization: Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia – sequence: 4 givenname: M.H. surname: Chakrabarti fullname: Chakrabarti, M.H. organization: Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia – sequence: 5 givenname: N.S. surname: Jayakumar fullname: Jayakumar, N.S. organization: Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia – sequence: 6 givenname: M.A. surname: Hashim fullname: Hashim, M.A. organization: Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27933415$$DView record in Pascal Francis |
BookMark | eNqNkT1vFDEQhl0EieTgHyDhBonmFnvt8e5SIKGILykSBUmHZPns2cPHnn3Y3kD-PV5taCgIlZvnnRm_zwU5CzEgIc84azjj6tWhwYBpf9e0jIuG9Q0T_IycM6HYFqRsH5OLnA-MMeiH4Zx8vf6G6WgmmkvCnOnRBLPHI4ZC40gNzXHyjsZf3iEdZ5yoxWmic_ZhTwPOqSYDlp8xfaenhM7b4m-R2hhKitMT8mg0U8an9--G3Lx_d335cXv1-cOny7dXWythKFuDvXPSuR200AlAbnZC9ND2rmP9IFvYgQIYsbOWKYujlMwKxEG6dhgVcLEhL9e5pxR_zJiLPvq8HGoCxjnrtn6XKdmDfBDlquOgOoD2_1AQaoCKvrhHTbZmGpMJ1md9Sv5o0p1uu0EIyRfu9crZFHNOOGrriyl-qcv4SXOmF4n6oFeJepGoWa-rxBqWf4X_zH8g9nyNjSZqs0_1rpsvFVBLJ8Br4xvyZiWwOrr1mHS2HoOtOhPaol30_17xGwItxZ8 |
CODEN | ENEYDS |
CitedBy_id | crossref_primary_10_3390_en8031896 crossref_primary_10_1016_j_jpowsour_2017_10_070 crossref_primary_10_1016_j_ijhydene_2018_08_076 crossref_primary_10_1631_jzus_A1400011 crossref_primary_10_1016_j_energy_2014_11_070 crossref_primary_10_1016_j_egyai_2022_100187 crossref_primary_10_1016_j_energy_2016_08_107 crossref_primary_10_1016_j_jpowsour_2021_230058 crossref_primary_10_1016_j_ieri_2014_09_045 crossref_primary_10_1016_j_energy_2018_02_101 crossref_primary_10_1016_j_egyr_2022_03_071 crossref_primary_10_1016_j_energy_2018_02_100 crossref_primary_10_1016_j_jpowsour_2017_02_029 crossref_primary_10_1016_j_apenergy_2024_123142 crossref_primary_10_1115_1_4036805 crossref_primary_10_1016_j_apenergy_2019_05_053 crossref_primary_10_1016_j_rser_2017_03_052 crossref_primary_10_1002_chin_201430292 crossref_primary_10_1016_j_applthermaleng_2019_01_010 crossref_primary_10_1016_j_jpowsour_2020_229102 crossref_primary_10_3390_s16091329 crossref_primary_10_1016_j_asoc_2017_09_019 crossref_primary_10_1016_j_powtec_2023_118551 crossref_primary_10_1109_ACCESS_2019_2950107 crossref_primary_10_1109_TTE_2024_3470240 crossref_primary_10_1115_1_4038321 crossref_primary_10_3389_fenrg_2022_953082 crossref_primary_10_1080_13873954_2021_1990966 crossref_primary_10_1186_s41601_022_00251_0 crossref_primary_10_1016_j_energy_2019_02_016 crossref_primary_10_1016_j_jpowsour_2018_01_011 crossref_primary_10_1016_j_egyr_2022_08_185 crossref_primary_10_1016_j_ijhydene_2014_05_151 crossref_primary_10_1016_j_rser_2021_110863 crossref_primary_10_1016_j_ijhydene_2019_03_079 crossref_primary_10_1016_j_ijhydene_2016_01_065 crossref_primary_10_1016_j_enconman_2021_114353 crossref_primary_10_1016_j_apenergy_2024_122804 crossref_primary_10_1016_j_energy_2014_04_021 crossref_primary_10_1371_journal_pone_0183750 crossref_primary_10_1016_j_egyr_2021_09_015 crossref_primary_10_1016_j_energy_2015_09_030 crossref_primary_10_1016_j_apenergy_2016_10_098 crossref_primary_10_1016_j_enconman_2019_03_012 crossref_primary_10_1016_j_energy_2016_09_094 crossref_primary_10_1016_j_applthermaleng_2022_119856 crossref_primary_10_1016_j_ijhydene_2018_04_205 crossref_primary_10_1016_j_enconman_2021_115154 crossref_primary_10_1109_TEC_2015_2510030 crossref_primary_10_1039_D2SE01559E crossref_primary_10_1016_j_jpowsour_2017_08_017 crossref_primary_10_1049_rpg2_12240 |
Cites_doi | 10.1016/j.energy.2006.03.006 10.1016/j.jpowsour.2009.04.022 10.1016/S0016-0032(99)00043-5 10.1016/j.jpowsour.2007.12.036 10.1016/0005-1098(89)90002-2 10.1016/j.energy.2009.06.012 10.1109/TNN.2002.1031951 10.1016/j.energy.2006.06.016 10.1016/j.jprocont.2011.06.017 10.1016/j.ijhydene.2008.07.021 10.1016/S0954-1810(98)00011-9 10.1016/j.energy.2011.04.022 10.1016/j.compchemeng.2012.06.027 10.1016/j.enconman.2005.11.007 10.1016/S0378-7753(02)00487-1 10.1016/j.energy.2009.09.029 10.1016/j.jpowsour.2010.06.075 10.1016/j.ijhydene.2009.04.068 10.1016/j.jpowsour.2009.04.077 10.1016/j.advengsoft.2006.02.002 10.1016/j.enpol.2011.01.006 10.1016/j.simpat.2008.02.004 10.1016/j.jpowsour.2004.01.043 10.1016/j.ijhydene.2008.02.063 10.1016/S0165-0114(96)00384-3 10.1016/S0378-7753(03)00109-5 10.1016/j.jpowsour.2008.12.039 10.1016/0893-6080(89)90020-8 10.1016/j.jpowsour.2008.05.044 10.1021/i200033a010 10.1016/j.energy.2011.12.037 10.1016/j.jprocont.2006.06.001 10.1016/S0167-2738(00)00452-5 10.1016/j.ijhydene.2007.11.008 10.1016/j.jpowsour.2008.12.012 10.1016/j.ijhydene.2011.10.051 10.1016/j.jpowsour.2009.02.085 10.1016/j.mechatronics.2008.11.016 10.1016/S0098-1354(98)00263-4 10.1016/j.cherd.2012.03.004 10.1016/j.jpowsour.2009.03.010 10.1016/j.jprocont.2006.09.004 10.1016/S0956-5663(97)00093-6 10.1016/j.jpowsour.2009.12.111 10.1021/ie100032c 10.1016/j.jpowsour.2007.09.059 10.1016/j.advengsoft.2007.03.012 |
ContentType | Journal Article |
Copyright | 2013 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7QQ 7SC 7SP 7SR 7TB 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
DOI | 10.1016/j.energy.2013.08.031 |
DatabaseName | AGRIS CrossRef Pascal-Francis Ceramic Abstracts Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences Applied Sciences |
EndPage | 329 |
ExternalDocumentID | 27933415 10_1016_j_energy_2013_08_031 US201600065157 S0360544213007068 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI ABDPE ABFNM ABWVN ACRPL ADMUD ADNMO AEIPS AFJKZ AHHHB AKRWK ANKPU ASPBG AVWKF AZFZN BNPGV FBQ FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION IQODW 7QQ 7SC 7SP 7SR 7TB 8FD EFKBS F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
ID | FETCH-LOGICAL-c459t-ae8dd4ddb525735e1ab338528d7089425b5655fe7cc06cef440c3ee94d29f6513 |
IEDL.DBID | AIKHN |
ISSN | 0360-5442 |
IngestDate | Fri Sep 05 05:33:39 EDT 2025 Fri Sep 05 05:54:05 EDT 2025 Fri Sep 05 08:08:16 EDT 2025 Wed Apr 02 07:25:08 EDT 2025 Thu Apr 24 22:54:34 EDT 2025 Tue Jul 01 00:52:38 EDT 2025 Thu Apr 03 09:44:46 EDT 2025 Fri Feb 23 02:20:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal stress Solid oxide fuel cell Cell-tube temperature Neural network predictive control Neural network Fuel cell Predictive control |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-ae8dd4ddb525735e1ab338528d7089425b5655fe7cc06cef440c3ee94d29f6513 |
Notes | http://dx.doi.org/10.1016/j.energy.2013.08.031 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671553695 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000064854 proquest_miscellaneous_1671567552 proquest_miscellaneous_1671553695 pascalfrancis_primary_27933415 crossref_citationtrail_10_1016_j_energy_2013_08_031 crossref_primary_10_1016_j_energy_2013_08_031 fao_agris_US201600065157 elsevier_sciencedirect_doi_10_1016_j_energy_2013_08_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zhang, Chan, Ho, Li, Li, Feng (bib25) 2008; 33 Lin, Huang, Chiang, Chyou (bib13) 2009; 192 García, Prett, Morari (bib50) 1989; 25 Knyazkin, Soder, Canizares (bib16) 2003 Bavarian, Soroush, Kevrekidis, Benziger (bib17) 2010; 49 Hornik, Stinchombe, White (bib44) 1990; 2 Calise, Dentice d'Accadia, Palombo, Vanoli (bib4) 2006; 31 Heny, Simanca, Delgado (bib30) 2000; 337 Jian-Qin, Yu-Geng, Zhong-Jun (bib27) 1998; 98 Constanting, Economou, Moral (bib46) 1986; 25 Huang, Qi, Murshed (bib18) 2011; 21 Wu, Zhu, Cao, Tu (bib24) 2008; 179 Akesson, Toivonen (bib40) 2006; 16 Nakanishi, Hattori, Sakaki, Kimura, Kanehira, Takenobu (bib15) 2003 Chaichana, Patcharavorachot, Chutichai, Saebea, Assabumrungrat, Arpornwichanop (bib34) 2012; 37 Singhal (bib48) 2000; 135 Campanari, Iora (bib51) 2004; 132 Ni, Leung, Leung (bib53) 2008; 33 Olabi (bib1) 2012; 39 Offer, Contestabile, Howey, Clague, Brandon (bib2) 2011; 39 Fardadi, Mueller, Jabbari (bib33) 2010; 195 Wakui, Yokoyama, Shimizu (bib3) 2010; 35 Weil, Koeppel (bib11) 2008; 33 Olabi, Casalino, Benyounis, Hashmi (bib37) 2006; 37 Wang, Huang, Chen (bib21) 2007; 17 Benyounis, Olabi (bib36) 2008; 39 Vijay, Samantaray, Mukherjee (bib29) 2009; 19 Liso, Olesen, Nielsen, Kær (bib5) 2011; 36 Huo, Zhong, Zhu, Tu (bib20) 2008; 175 Nagel, Schildhauer, Biollaz, Stucki (bib9) 2008; 184 Calise, Dentice d' Accadia, Vanoli, von Spakovsky (bib7) 2007; 32 Soloway, Haley (bib42) 1996 Hussain (bib39) 1999; 13 Ziegler, Göpel, Hämmerle, Hatt, Jung, Laxhuber (bib45) 1998; 13 Ota, Koyama, Wen, Yamada, Takahashi (bib49) 2003; 118 Hornik, Stinchcombe, White (bib38) 1989; 2 Lawlor, Griesser, Buchinger, Olabi, Cordiner, Meissner (bib8) 2009; 193 Recknagle, Williford, Chick, Rector, Khaleel (bib10) 2003; 113 Minh, Takahashi (bib14) 1995 Yang, Li, Mou, Jian (bib23) 2009; 188 Milewski, Åšwirski (bib35) 2009; 34 Lera, Pinzolas (bib43) 2002; 13 Sanandaji, Vincent, Colclasure, Kee (bib31) 2004; 196 Hajimolana, Hussain, Daud, Chakrabarti (bib41) 2012; 90 Yang, Li, Mou, Jian (bib22) 2009; 193 Hall (bib52) 1997 Inui, Ito, Nakajima, Urata (bib32) 2006; 47 Soroush (bib47) 1998; 23 Soroush, Chmielewski (bib19) 2013; 51 Wu, Zhu, Cao, Tu (bib26) 2008; 16 Li, Chen, Wang, Jia, Han (bib28) 2009; 194 Nakajo, Wuillemin, Van herle, Favrat (bib12) 2009; 193 Santin, Traverso, Magistri, Massardo (bib6) 2010; 35 Yang (10.1016/j.energy.2013.08.031_bib22) 2009; 193 Soroush (10.1016/j.energy.2013.08.031_bib19) 2013; 51 Wakui (10.1016/j.energy.2013.08.031_bib3) 2010; 35 Minh (10.1016/j.energy.2013.08.031_bib14) 1995 Weil (10.1016/j.energy.2013.08.031_bib11) 2008; 33 Zhang (10.1016/j.energy.2013.08.031_bib25) 2008; 33 Olabi (10.1016/j.energy.2013.08.031_bib1) 2012; 39 Ni (10.1016/j.energy.2013.08.031_bib53) 2008; 33 Yang (10.1016/j.energy.2013.08.031_bib23) 2009; 188 Heny (10.1016/j.energy.2013.08.031_bib30) 2000; 337 Nakajo (10.1016/j.energy.2013.08.031_bib12) 2009; 193 Soloway (10.1016/j.energy.2013.08.031_bib42) 1996 Hornik (10.1016/j.energy.2013.08.031_bib38) 1989; 2 Constanting (10.1016/j.energy.2013.08.031_bib46) 1986; 25 Olabi (10.1016/j.energy.2013.08.031_bib37) 2006; 37 Lin (10.1016/j.energy.2013.08.031_bib13) 2009; 192 Hajimolana (10.1016/j.energy.2013.08.031_bib41) 2012; 90 Benyounis (10.1016/j.energy.2013.08.031_bib36) 2008; 39 Inui (10.1016/j.energy.2013.08.031_bib32) 2006; 47 Campanari (10.1016/j.energy.2013.08.031_bib51) 2004; 132 Nakanishi (10.1016/j.energy.2013.08.031_bib15) 2003 Huang (10.1016/j.energy.2013.08.031_bib18) 2011; 21 Hornik (10.1016/j.energy.2013.08.031_bib44) 1990; 2 Knyazkin (10.1016/j.energy.2013.08.031_bib16) 2003 Singhal (10.1016/j.energy.2013.08.031_bib48) 2000; 135 Bavarian (10.1016/j.energy.2013.08.031_bib17) 2010; 49 Wu (10.1016/j.energy.2013.08.031_bib26) 2008; 16 Liso (10.1016/j.energy.2013.08.031_bib5) 2011; 36 Ziegler (10.1016/j.energy.2013.08.031_bib45) 1998; 13 Akesson (10.1016/j.energy.2013.08.031_bib40) 2006; 16 Hussain (10.1016/j.energy.2013.08.031_bib39) 1999; 13 García (10.1016/j.energy.2013.08.031_bib50) 1989; 25 Soroush (10.1016/j.energy.2013.08.031_bib47) 1998; 23 Sanandaji (10.1016/j.energy.2013.08.031_bib31) 2004; 196 Calise (10.1016/j.energy.2013.08.031_bib7) 2007; 32 Ota (10.1016/j.energy.2013.08.031_bib49) 2003; 118 Milewski (10.1016/j.energy.2013.08.031_bib35) 2009; 34 Wang (10.1016/j.energy.2013.08.031_bib21) 2007; 17 Santin (10.1016/j.energy.2013.08.031_bib6) 2010; 35 Calise (10.1016/j.energy.2013.08.031_bib4) 2006; 31 Hall (10.1016/j.energy.2013.08.031_bib52) 1997 Wu (10.1016/j.energy.2013.08.031_bib24) 2008; 179 Recknagle (10.1016/j.energy.2013.08.031_bib10) 2003; 113 Fardadi (10.1016/j.energy.2013.08.031_bib33) 2010; 195 Lera (10.1016/j.energy.2013.08.031_bib43) 2002; 13 Offer (10.1016/j.energy.2013.08.031_bib2) 2011; 39 Li (10.1016/j.energy.2013.08.031_bib28) 2009; 194 Chaichana (10.1016/j.energy.2013.08.031_bib34) 2012; 37 Jian-Qin (10.1016/j.energy.2013.08.031_bib27) 1998; 98 Huo (10.1016/j.energy.2013.08.031_bib20) 2008; 175 Vijay (10.1016/j.energy.2013.08.031_bib29) 2009; 19 Lawlor (10.1016/j.energy.2013.08.031_bib8) 2009; 193 Nagel (10.1016/j.energy.2013.08.031_bib9) 2008; 184 |
References_xml | – volume: 184 start-page: 129 year: 2008 end-page: 142 ident: bib9 article-title: Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases – a sensitivity analysis publication-title: J Power Sources – volume: 37 start-page: 2498 year: 2012 end-page: 2508 ident: bib34 article-title: Neural network hybrid model of a direct internal reforming solid oxide fuel cell publication-title: Int J Hydrogen Energy – volume: 192 start-page: 515 year: 2009 end-page: 524 ident: bib13 article-title: Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design publication-title: J Power Sources – volume: 135 start-page: 305 year: 2000 end-page: 313 ident: bib48 article-title: Advances in solid oxide fuel cell technology publication-title: Solid State Ionics – volume: 32 start-page: 446 year: 2007 end-page: 458 ident: bib7 article-title: Full load synthesis/design optimization of a hybrid SOFC – GT power plant publication-title: Energy – volume: 13 start-page: 1200 year: 2002 end-page: 1203 ident: bib43 article-title: Neighborhood based Levenberg-Marquardt algorithm for neural network training publication-title: Neural Netw IEEE Trans – volume: 195 start-page: 4222 year: 2010 end-page: 4233 ident: bib33 article-title: Feedback control of solid oxide fuel cell spatial temperature variation publication-title: J Power Sources – volume: 31 start-page: 3278 year: 2006 end-page: 3299 ident: bib4 article-title: Simulation and exergy analysis of a hybrid solid oxide fuel cell (SOFC) – gas turbine system publication-title: Energy – volume: 47 start-page: 2319 year: 2006 end-page: 2328 ident: bib32 article-title: Analytical investigation on cell temperature control method of planar solid oxide fuel cell publication-title: Energy Convers Manag – volume: 33 start-page: 2355 year: 2008 end-page: 2366 ident: bib25 article-title: Nonlinear model predictive control based on the moving horizon state estimation for the solid oxide fuel cell publication-title: Int J Hydrogen Energy – volume: 25 start-page: 403 year: 1986 end-page: 411 ident: bib46 article-title: Internal model control. 5. Extension to nonlinear systems publication-title: Ind Eng Chem Process Des Dev – volume: 16 start-page: 937 year: 2006 end-page: 946 ident: bib40 article-title: A neural network model predictive controller publication-title: J Process Control – volume: 49 start-page: 7922 year: 2010 end-page: 7950 ident: bib17 article-title: Mathematical modeling, steady-state and dynamic behavior, and control of fuel cells: a review publication-title: Ind Eng Chem Res – volume: 25 start-page: 335 year: 1989 end-page: 348 ident: bib50 article-title: Model predictive control: theory and practice – a survey publication-title: Automatica – volume: 90 start-page: 1871 year: 2012 end-page: 1882 ident: bib41 article-title: Dynamic modelling and sensitivity analysis of a tubular SOFC fuelled with NH publication-title: Chem Eng Res Des – volume: 33 start-page: 3976 year: 2008 end-page: 3990 ident: bib11 article-title: Thermal stress analysis of the planar SOFC bonded compliant seal design publication-title: Int J Hydrogen Energy – volume: 21 start-page: 1426 year: 2011 end-page: 1437 ident: bib18 article-title: Solid oxide fuel cell: perspective of dynamic modeling and control publication-title: J Process Control – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bib38 article-title: Multilayer feed forward networks are universal approximators publication-title: Neural Netw – volume: 39 start-page: 2 year: 2012 end-page: 5 ident: bib1 article-title: Developments in sustainable energy and environmental protection publication-title: Energy – start-page: 16 year: 2003 end-page: 19 ident: bib15 article-title: Development of MOLB type SOFC publication-title: 12th symposium on solid oxide fuel cells in Japan – start-page: 328 year: 2003 end-page: 333 ident: bib16 article-title: Control challenges of fuel celldriven distributed generation publication-title: IEEE Bologna power-tech conference – volume: 13 start-page: 539 year: 1998 end-page: 571 ident: bib45 article-title: Bioelectronic noses: a status report. Part II publication-title: Biosens Bioelectron – volume: 194 start-page: 338 year: 2009 end-page: 348 ident: bib28 article-title: Nonlinear robust control of proton exchange membrane fuel cell by state feedback exact linearization publication-title: J Power Sources – volume: 51 start-page: 86 year: 2013 end-page: 95 ident: bib19 article-title: Process systems opportunities in power generation, storage and distribution publication-title: Comput Chem Eng – volume: 39 start-page: 1939 year: 2011 end-page: 1950 ident: bib2 article-title: Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK publication-title: Energy Policy – year: 1995 ident: bib14 article-title: Science and technology of ceramic fuel cells – volume: 35 start-page: 1077 year: 2010 end-page: 1083 ident: bib6 article-title: Thermoeconomic analysis of SOFC-GT hybrid systems fed by liquid fuels publication-title: Energy – start-page: 277 year: 1996 end-page: 282 ident: bib42 article-title: Neural/generalized predictive control, a Newton-Raphson implementation publication-title: Proc. 11th IEEE int. symp. on intelligent control – volume: 179 start-page: 232 year: 2008 end-page: 239 ident: bib24 article-title: Predictive control of SOFC based on a GA-RBF neural network model publication-title: J Power Sources – volume: 196 start-page: 208 year: 2004 end-page: 217 ident: bib31 article-title: Modeling and control of tubular solid-oxide fuel cell systems: II. Nonlinear model reduction and model predictive control publication-title: J Power Sources – volume: 36 start-page: 4216 year: 2011 end-page: 4226 ident: bib5 article-title: Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system publication-title: Energy – volume: 13 start-page: 55 year: 1999 end-page: 68 ident: bib39 article-title: Review of the applications of neural networks in chemical process control—simulation and online implementation publication-title: Artif Intell Eng – volume: 37 start-page: 643 year: 2006 end-page: 648 ident: bib37 article-title: An ANN and Taguchi algorithms integrated approach to the optimization of CO publication-title: Adv Eng Softw – volume: 2 start-page: 359 year: 1990 end-page: 372 ident: bib44 publication-title: Neural Netw – volume: 17 start-page: 103 year: 2007 end-page: 114 ident: bib21 article-title: Data-driven predictive control for solid oxide fuel cells publication-title: J Process Control – volume: 337 start-page: 21 year: 2000 end-page: 42 ident: bib30 article-title: Pseudo-bond graph model and simulation of a continuous stirred tank reactor publication-title: J Franklin Inst – volume: 16 start-page: 494 year: 2008 end-page: 504 ident: bib26 article-title: Dynamic modeling of SOFC based on a T-S fuzzy model publication-title: Simul Model Pract Theory – volume: 35 start-page: 740 year: 2010 end-page: 750 ident: bib3 article-title: Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems publication-title: Energy – volume: 33 start-page: 5765 year: 2008 end-page: 5772 ident: bib53 article-title: Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes publication-title: Int J Hydrogen Energy – volume: 193 start-page: 699 year: 2009 end-page: 705 ident: bib22 article-title: Predictive control of solid oxide fuel cell based on an improved Takagi–Sugeno fuzzy model publication-title: J Power Sources – volume: 98 start-page: 319 year: 1998 end-page: 329 ident: bib27 article-title: A clustering algorithm for fuzzy model identification publication-title: Fuzzy Sets System – volume: 113 start-page: 109 year: 2003 end-page: 114 ident: bib10 article-title: Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks publication-title: J Power Sources – volume: 193 start-page: 216 year: 2009 end-page: 226 ident: bib12 article-title: Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: loss of gas-tightness, electrical contact and thermal buckling publication-title: J Power Sources – volume: 39 start-page: 483 year: 2008 end-page: 496 ident: bib36 article-title: Optimization of different welding processes using statistical and numerical approaches – a reference guide publication-title: Adv Eng Softw – volume: 23 start-page: 229 year: 1998 end-page: 245 ident: bib47 article-title: State and parameter estimations and their applications in process control publication-title: Comput Chem Eng – year: 1997 ident: bib52 article-title: Transient modeling and simulation of a solid oxide fuel cell – volume: 34 start-page: 5546 year: 2009 end-page: 5553 ident: bib35 article-title: Modelling the SOFC behaviours by artificial neural network publication-title: Int J Hydrogen Energy – volume: 193 start-page: 387 year: 2009 end-page: 399 ident: bib8 article-title: Review of the micro-tubular solid oxide fuel cell: part I. Stack design issues and research activities publication-title: J Power Sources – volume: 175 start-page: 441 year: 2008 end-page: 446 ident: bib20 article-title: Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model publication-title: J Power Sources – volume: 188 start-page: 475 year: 2009 end-page: 482 ident: bib23 article-title: Control-oriented thermal management of solid oxide fuel cells based on a modified Takagi-Sugeno fuzzy model publication-title: J Power Sources – volume: 118 start-page: 430 year: 2003 end-page: 439 ident: bib49 article-title: Object-based modeling of SOFC system: dynamic behavior of micro-tube SOFC publication-title: J Power Sources – volume: 19 start-page: 489 year: 2009 end-page: 502 ident: bib29 article-title: A bond graph model-based evaluation of a control scheme to improve the dynamic performance of a solid oxide fuel cell publication-title: Mechatronics – volume: 132 start-page: 113 year: 2004 end-page: 126 ident: bib51 article-title: Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry publication-title: J Power Sources – volume: 31 start-page: 3278 issue: 15 year: 2006 ident: 10.1016/j.energy.2013.08.031_bib4 article-title: Simulation and exergy analysis of a hybrid solid oxide fuel cell (SOFC) – gas turbine system publication-title: Energy doi: 10.1016/j.energy.2006.03.006 – volume: 193 start-page: 699 issue: 2 year: 2009 ident: 10.1016/j.energy.2013.08.031_bib22 article-title: Predictive control of solid oxide fuel cell based on an improved Takagi–Sugeno fuzzy model publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.04.022 – volume: 337 start-page: 21 year: 2000 ident: 10.1016/j.energy.2013.08.031_bib30 article-title: Pseudo-bond graph model and simulation of a continuous stirred tank reactor publication-title: J Franklin Inst doi: 10.1016/S0016-0032(99)00043-5 – volume: 179 start-page: 232 issue: 1 year: 2008 ident: 10.1016/j.energy.2013.08.031_bib24 article-title: Predictive control of SOFC based on a GA-RBF neural network model publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.12.036 – volume: 25 start-page: 335 issue: 3 year: 1989 ident: 10.1016/j.energy.2013.08.031_bib50 article-title: Model predictive control: theory and practice – a survey publication-title: Automatica doi: 10.1016/0005-1098(89)90002-2 – volume: 35 start-page: 1077 issue: 2 year: 2010 ident: 10.1016/j.energy.2013.08.031_bib6 article-title: Thermoeconomic analysis of SOFC-GT hybrid systems fed by liquid fuels publication-title: Energy doi: 10.1016/j.energy.2009.06.012 – volume: 13 start-page: 1200 issue: 5 year: 2002 ident: 10.1016/j.energy.2013.08.031_bib43 article-title: Neighborhood based Levenberg-Marquardt algorithm for neural network training publication-title: Neural Netw IEEE Trans doi: 10.1109/TNN.2002.1031951 – volume: 32 start-page: 446 issue: 4 year: 2007 ident: 10.1016/j.energy.2013.08.031_bib7 article-title: Full load synthesis/design optimization of a hybrid SOFC – GT power plant publication-title: Energy doi: 10.1016/j.energy.2006.06.016 – volume: 21 start-page: 1426 issue: 10 year: 2011 ident: 10.1016/j.energy.2013.08.031_bib18 article-title: Solid oxide fuel cell: perspective of dynamic modeling and control publication-title: J Process Control doi: 10.1016/j.jprocont.2011.06.017 – volume: 33 start-page: 5765 issue: 20 year: 2008 ident: 10.1016/j.energy.2013.08.031_bib53 article-title: Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.07.021 – volume: 13 start-page: 55 year: 1999 ident: 10.1016/j.energy.2013.08.031_bib39 article-title: Review of the applications of neural networks in chemical process control—simulation and online implementation publication-title: Artif Intell Eng doi: 10.1016/S0954-1810(98)00011-9 – volume: 36 start-page: 4216 issue: 7 year: 2011 ident: 10.1016/j.energy.2013.08.031_bib5 article-title: Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system publication-title: Energy doi: 10.1016/j.energy.2011.04.022 – start-page: 277 year: 1996 ident: 10.1016/j.energy.2013.08.031_bib42 article-title: Neural/generalized predictive control, a Newton-Raphson implementation – volume: 51 start-page: 86 year: 2013 ident: 10.1016/j.energy.2013.08.031_bib19 article-title: Process systems opportunities in power generation, storage and distribution publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2012.06.027 – volume: 47 start-page: 2319 issue: 15–16 year: 2006 ident: 10.1016/j.energy.2013.08.031_bib32 article-title: Analytical investigation on cell temperature control method of planar solid oxide fuel cell publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2005.11.007 – volume: 113 start-page: 109 issue: 1 year: 2003 ident: 10.1016/j.energy.2013.08.031_bib10 article-title: Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks publication-title: J Power Sources doi: 10.1016/S0378-7753(02)00487-1 – volume: 35 start-page: 740 issue: 2 year: 2010 ident: 10.1016/j.energy.2013.08.031_bib3 article-title: Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems publication-title: Energy doi: 10.1016/j.energy.2009.09.029 – volume: 196 start-page: 208 issue: 1 year: 2004 ident: 10.1016/j.energy.2013.08.031_bib31 article-title: Modeling and control of tubular solid-oxide fuel cell systems: II. Nonlinear model reduction and model predictive control publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.06.075 – volume: 34 start-page: 5546 issue: 13 year: 2009 ident: 10.1016/j.energy.2013.08.031_bib35 article-title: Modelling the SOFC behaviours by artificial neural network publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.04.068 – volume: 194 start-page: 338 issue: 1 year: 2009 ident: 10.1016/j.energy.2013.08.031_bib28 article-title: Nonlinear robust control of proton exchange membrane fuel cell by state feedback exact linearization publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.04.077 – volume: 37 start-page: 643 issue: 10 year: 2006 ident: 10.1016/j.energy.2013.08.031_bib37 article-title: An ANN and Taguchi algorithms integrated approach to the optimization of CO2 laser welding publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2006.02.002 – volume: 39 start-page: 1939 issue: 4 year: 2011 ident: 10.1016/j.energy.2013.08.031_bib2 article-title: Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK publication-title: Energy Policy doi: 10.1016/j.enpol.2011.01.006 – volume: 16 start-page: 494 issue: 5 year: 2008 ident: 10.1016/j.energy.2013.08.031_bib26 article-title: Dynamic modeling of SOFC based on a T-S fuzzy model publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2008.02.004 – volume: 132 start-page: 113 issue: 1–2 year: 2004 ident: 10.1016/j.energy.2013.08.031_bib51 article-title: Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.01.043 – volume: 33 start-page: 2355 issue: 9 year: 2008 ident: 10.1016/j.energy.2013.08.031_bib25 article-title: Nonlinear model predictive control based on the moving horizon state estimation for the solid oxide fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.02.063 – volume: 98 start-page: 319 year: 1998 ident: 10.1016/j.energy.2013.08.031_bib27 article-title: A clustering algorithm for fuzzy model identification publication-title: Fuzzy Sets System doi: 10.1016/S0165-0114(96)00384-3 – volume: 118 start-page: 430 issue: 1–2 year: 2003 ident: 10.1016/j.energy.2013.08.031_bib49 article-title: Object-based modeling of SOFC system: dynamic behavior of micro-tube SOFC publication-title: J Power Sources doi: 10.1016/S0378-7753(03)00109-5 – volume: 193 start-page: 216 issue: 1 year: 2009 ident: 10.1016/j.energy.2013.08.031_bib12 article-title: Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: loss of gas-tightness, electrical contact and thermal buckling publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.12.039 – volume: 2 start-page: 359 year: 1989 ident: 10.1016/j.energy.2013.08.031_bib38 article-title: Multilayer feed forward networks are universal approximators publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 2 start-page: 359 year: 1990 ident: 10.1016/j.energy.2013.08.031_bib44 publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 184 start-page: 129 issue: 1 year: 2008 ident: 10.1016/j.energy.2013.08.031_bib9 article-title: Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases – a sensitivity analysis publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.05.044 – volume: 25 start-page: 403 year: 1986 ident: 10.1016/j.energy.2013.08.031_bib46 article-title: Internal model control. 5. Extension to nonlinear systems publication-title: Ind Eng Chem Process Des Dev doi: 10.1021/i200033a010 – volume: 39 start-page: 2 issue: 1 year: 2012 ident: 10.1016/j.energy.2013.08.031_bib1 article-title: Developments in sustainable energy and environmental protection publication-title: Energy doi: 10.1016/j.energy.2011.12.037 – volume: 16 start-page: 937 issue: 9 year: 2006 ident: 10.1016/j.energy.2013.08.031_bib40 article-title: A neural network model predictive controller publication-title: J Process Control doi: 10.1016/j.jprocont.2006.06.001 – volume: 135 start-page: 305 issue: 1 year: 2000 ident: 10.1016/j.energy.2013.08.031_bib48 article-title: Advances in solid oxide fuel cell technology publication-title: Solid State Ionics doi: 10.1016/S0167-2738(00)00452-5 – year: 1997 ident: 10.1016/j.energy.2013.08.031_bib52 – start-page: 328 year: 2003 ident: 10.1016/j.energy.2013.08.031_bib16 article-title: Control challenges of fuel celldriven distributed generation – volume: 33 start-page: 3976 issue: 14 year: 2008 ident: 10.1016/j.energy.2013.08.031_bib11 article-title: Thermal stress analysis of the planar SOFC bonded compliant seal design publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2007.11.008 – volume: 188 start-page: 475 issue: 2 year: 2009 ident: 10.1016/j.energy.2013.08.031_bib23 article-title: Control-oriented thermal management of solid oxide fuel cells based on a modified Takagi-Sugeno fuzzy model publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.12.012 – volume: 37 start-page: 2498 issue: 3 year: 2012 ident: 10.1016/j.energy.2013.08.031_bib34 article-title: Neural network hybrid model of a direct internal reforming solid oxide fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.10.051 – volume: 193 start-page: 387 issue: 2 year: 2009 ident: 10.1016/j.energy.2013.08.031_bib8 article-title: Review of the micro-tubular solid oxide fuel cell: part I. Stack design issues and research activities publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.02.085 – volume: 19 start-page: 489 issue: 4 year: 2009 ident: 10.1016/j.energy.2013.08.031_bib29 article-title: A bond graph model-based evaluation of a control scheme to improve the dynamic performance of a solid oxide fuel cell publication-title: Mechatronics doi: 10.1016/j.mechatronics.2008.11.016 – volume: 23 start-page: 229 issue: 2 year: 1998 ident: 10.1016/j.energy.2013.08.031_bib47 article-title: State and parameter estimations and their applications in process control publication-title: Comput Chem Eng doi: 10.1016/S0098-1354(98)00263-4 – volume: 90 start-page: 1871 issue: 11 year: 2012 ident: 10.1016/j.energy.2013.08.031_bib41 article-title: Dynamic modelling and sensitivity analysis of a tubular SOFC fuelled with NH3 as a possible replacement for H2 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2012.03.004 – volume: 192 start-page: 515 issue: 2 year: 2009 ident: 10.1016/j.energy.2013.08.031_bib13 article-title: Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.03.010 – start-page: 16 year: 2003 ident: 10.1016/j.energy.2013.08.031_bib15 article-title: Development of MOLB type SOFC – year: 1995 ident: 10.1016/j.energy.2013.08.031_bib14 – volume: 17 start-page: 103 issue: 2 year: 2007 ident: 10.1016/j.energy.2013.08.031_bib21 article-title: Data-driven predictive control for solid oxide fuel cells publication-title: J Process Control doi: 10.1016/j.jprocont.2006.09.004 – volume: 13 start-page: 539 year: 1998 ident: 10.1016/j.energy.2013.08.031_bib45 article-title: Bioelectronic noses: a status report. Part II publication-title: Biosens Bioelectron doi: 10.1016/S0956-5663(97)00093-6 – volume: 195 start-page: 4222 issue: 13 year: 2010 ident: 10.1016/j.energy.2013.08.031_bib33 article-title: Feedback control of solid oxide fuel cell spatial temperature variation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.12.111 – volume: 49 start-page: 7922 year: 2010 ident: 10.1016/j.energy.2013.08.031_bib17 article-title: Mathematical modeling, steady-state and dynamic behavior, and control of fuel cells: a review publication-title: Ind Eng Chem Res doi: 10.1021/ie100032c – volume: 175 start-page: 441 issue: 1 year: 2008 ident: 10.1016/j.energy.2013.08.031_bib20 article-title: Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.09.059 – volume: 39 start-page: 483 issue: 6 year: 2008 ident: 10.1016/j.energy.2013.08.031_bib36 article-title: Optimization of different welding processes using statistical and numerical approaches – a reference guide publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2007.03.012 |
SSID | ssj0005899 |
Score | 2.352281 |
Snippet | In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 320 |
SubjectTerms | air flow ammonia Applied sciences Cell-tube temperature ceramics Computer simulation Control systems electrochemistry electrodes electrolytes Electrolytic cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells fuels Inlets Mathematical models momentum Neural network predictive control Neural networks porous media Solid oxide fuel cell Solid oxide fuel cells Streams stress management Thermal stress Thermal stresses water temperature |
Title | Thermal stress management of a solid oxide fuel cell using neural network predictive control |
URI | https://dx.doi.org/10.1016/j.energy.2013.08.031 https://www.proquest.com/docview/1671553695 https://www.proquest.com/docview/1671567552 https://www.proquest.com/docview/2000064854 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH406WG7jK1bafYjaLCrF1uWbPlYSku2sB7WhfUwELZ-lIzMDk0CPfVv33u2nFJGCexkbJ5A1pM-fbK_9x7AJ-GsKHFfQ-ZmZCSKTESqoPom3Jik8tbHbeL5b5fZdC6-XsvrAzjrY2FIVhmwv8P0Fq3Dk0kYzclqsZhcIfYi3xCcfsjkcaYGcMjTIpNDODz9MptePig9VFtGkuwjatBH0LUyL9eG2JHGK21zeabJUzvUwJcNSSfLNY6e78pe_IPg7bZ08RJeBD7JTrsuv4IDVx_Bsz7ceH0Ex-cPoWxoGNby-jX8whmCqLxkXbgI-7MTwrDGs5LhpFxY1twtrGN-65aMvvEz0snfMMqCiS3rTkPOVrf0u4eAkwXp-xuYX5z_OJtGodZCZIQsNlHplLXC2oqyo6bSJWWFh1fJlc1jVeDCrpD5Se9yY-LMOC9EbFLnCmF54TOZpMcwrJvanQATMi-8y6pKVVwYlSojqxxZprV4ODMuH0Haj682IRE51cNY6l5x9lt3XtHkFU1lMtNkBNGu1apLxLHHPu9dpx9NKI17xZ6WJ-hpXd4gyur5FaccfMTUEoldHz9y_64nHGEO-YAcwcd-Pmhcp-SYsnbNdq2TLKcSTVmxzwZPcJI_bcNbhiGUFG__-w3fwXO661Q572G4ud26D8itNtUYBp_vk3FYQXSdff85-wsPHiRE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJekgvpU0bsn2kKvTqrq2HJR9LSNi2SS7JQg4FYb3Chq29ZHehp_72zsj2tqGEhV7tEcga6dMn65sZQj6K4EUN-xowNyczUZUi0xXWN2HOFTb6mKfE8xeX5WQqvt7Imx1yMsTCoKyyx_4O0xNa90_G_WiOF7PZ-AqwF_iGYHgho_JS75InQnKFCfQ__fpL56FTEUm0ztB8iJ9LIq-QAuxQ4cVTJk9ePLY_7ca6ReFkvYSxi13Ri3_wO21KZ8_Js55N0s9dh1-QndAckP0h2Hh5QA5P_wSygWG_kpcvyXeYH4DJc9oFi9AfGxkMbSOtKUzJmaftz5kPNK7DnOIffooq-VuKOTChZdMpyOniHi97EDZpL3x_RaZnp9cnk6yvtJA5IatVVgftvfDeYm5ULkNRWzi6Sqa9ynUFy9oC75MxKOfy0oUoRO54CJXwrIqlLPgh2WvaJhwRKqSqYiit1ZYJp7l20irgmN7D0cwFNSJ8GF_j-jTkWA1jbga92Z3pvGLQKwaLZPJiRLJNq0WXhmOLvRpcZx5MJwM7xZaWR-BpU98CxprpFcMMfMjTCgldP37g_k1PGIAcsAE5Ih-G-WBglaJj6ia066UpSoUFmspqmw2c3yR73IYlfiG0FK__-wvfk_3J9cW5Of9y-e0NeYpvOn3OW7K3ul-Hd8CyVvY4raLfbG8jaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+stress+management+of+a+solid+oxide+fuel+cell+using+neural+network+predictive+control&rft.jtitle=Energy+%28Oxford%29&rft.au=Hajimolana%2C+S.A.&rft.au=Tonekabonimoghadam%2C+S.M.&rft.au=Hussain%2C+M.A.&rft.au=Chakrabarti%2C+M.H.&rft.date=2013-12-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=62&rft.spage=320&rft.epage=329&rft_id=info:doi/10.1016%2Fj.energy.2013.08.031&rft.externalDocID=S0360544213007068 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |