Artificial Intelligence: Practical Primer for Clinical Research in Cardiovascular Disease
Saved in:
Published in | Journal of the American Heart Association Vol. 8; no. 17; p. e012788 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley and Sons Inc
03.09.2019
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2047-9980 2047-9980 |
DOI | 10.1161/JAHA.119.012788 |
Cover
Author | Shrestha, Sirish Farjo, Peter D. Kagiyama, Nobuyuki Sengupta, Partho P. |
---|---|
AuthorAffiliation | 1 West Virginia University Heart and Vascular Institute Morgantown WV |
AuthorAffiliation_xml | – name: 1 West Virginia University Heart and Vascular Institute Morgantown WV |
Author_xml | – sequence: 1 givenname: Nobuyuki surname: Kagiyama fullname: Kagiyama, Nobuyuki organization: West Virginia University Heart and Vascular Institute Morgantown WV – sequence: 2 givenname: Sirish surname: Shrestha fullname: Shrestha, Sirish organization: West Virginia University Heart and Vascular Institute Morgantown WV – sequence: 3 givenname: Peter D. surname: Farjo fullname: Farjo, Peter D. organization: West Virginia University Heart and Vascular Institute Morgantown WV – sequence: 4 givenname: Partho P. surname: Sengupta fullname: Sengupta, Partho P. organization: West Virginia University Heart and Vascular Institute Morgantown WV |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31450991$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9PVDEQxxuDEUTO3sw7elloX3-81oPJZkVZQyIxcPDUzGvnLSVvW2zfkvjf02WRgIm99Jv58ZmZdt6SvZgiEvKe0WPGFDv5Pj-bV2WOKWs7rV-Rg5aKbmaMpnvP9D45KuWG1qPajkvzhuxzJiQ1hh2QX_M8hSG4AGOzjBOOY1hhdPipucjgpuCq_SKHNeZmSLlZjCE-2H5iQcjuugmxWUD2Id1BcZsRcvMlVFfBd-T1AGPBo8f7kFx9Pb1cnM3Of3xbLubnMyekmWage6m1p52i6FvtAb10UkqQgusqNCrXGueY6lHRnilE0_Gh51wKKmTPD8lyx_UJbuxt7RXyH5sg2AdDyisLdUY3okXtK7P3g--Y8Iwb2qseqGIGuNSSVdbnHet206_RO4xThvEF9KUnhmu7SndWdbVToSrg4yMgp98bLJNdh-Lqq0LEtCm2bTVjXAi6rfXhea2nIn__pgac7AJcTqVkHJ5CGLXbBbDbBajK2N0C1Az5T4YLE0whbZsN43_z7gGu9rQd |
CitedBy_id | crossref_primary_10_1038_s41598_024_65557_5 crossref_primary_10_1016_j_ctcp_2023_101736 crossref_primary_10_1002_joa3_12461 crossref_primary_10_1007_s40778_022_00216_x crossref_primary_10_1186_s13040_021_00255_w crossref_primary_10_1017_S1047951121004212 crossref_primary_10_1161_CIRCIMAGING_121_012837 crossref_primary_10_1016_j_aej_2023_03_036 crossref_primary_10_1080_10255842_2024_2319706 crossref_primary_10_3390_biomedicines10092157 crossref_primary_10_1016_S2589_7500_20_30249_1 crossref_primary_10_1155_2021_3729379 crossref_primary_10_3390_risks12020019 crossref_primary_10_1016_j_jjcc_2023_12_002 crossref_primary_10_1161_JAHA_124_036946 crossref_primary_10_1111_anec_12795 crossref_primary_10_2217_pme_2022_0065 crossref_primary_10_1016_j_jjcc_2024_11_009 crossref_primary_10_1161_CIRCEP_120_009204 crossref_primary_10_3390_healthcare9070792 crossref_primary_10_1007_s12350_023_03276_6 crossref_primary_10_3390_diagnostics11061114 crossref_primary_10_1177_0046958021997338 crossref_primary_10_32604_ijmhp_2022_020075 crossref_primary_10_1161_HYPERTENSIONAHA_120_16340 crossref_primary_10_2196_64349 crossref_primary_10_1007_s12170_023_00723_4 crossref_primary_10_3390_bioengineering11040337 crossref_primary_10_34133_cbsystems_0152 crossref_primary_10_1186_s41077_023_00251_6 crossref_primary_10_1007_s11883_023_01174_3 crossref_primary_10_1016_j_cjca_2025_01_037 crossref_primary_10_1136_postgradmedj_2020_139701 crossref_primary_10_29413_ABS_2025_10_1_5 crossref_primary_10_15829_1560_4071_2020_3999 crossref_primary_10_3390_healthcare11060854 crossref_primary_10_3389_fgene_2022_889378 crossref_primary_10_1007_s11517_021_02447_2 crossref_primary_10_1111_joim_13483 crossref_primary_10_1177_03000605211058861 crossref_primary_10_2139_ssrn_4138300 crossref_primary_10_1016_j_matpr_2021_12_016 crossref_primary_10_3390_jcdd10070291 crossref_primary_10_1093_ehjqcco_qcad017 crossref_primary_10_31083_j_rcm_2020_04_236 crossref_primary_10_1007_s11886_020_01329_7 crossref_primary_10_1016_j_ahjo_2022_100192 crossref_primary_10_1016_j_xphs_2021_01_032 crossref_primary_10_2174_1566523221666210622164133 crossref_primary_10_1097_MS9_0000000000002673 crossref_primary_10_32604_iasc_2023_030098 crossref_primary_10_1093_cvr_cvab067 crossref_primary_10_1097_DBP_0000000000001149 crossref_primary_10_2196_49022 crossref_primary_10_1093_jamia_ocac070 crossref_primary_10_4330_wjc_v13_i10_546 crossref_primary_10_7759_cureus_59661 crossref_primary_10_3389_fcvm_2021_765693 crossref_primary_10_1253_jjcsc_30_0_29 crossref_primary_10_1016_j_cpcardiol_2023_102143 crossref_primary_10_1186_s12889_024_17769_7 crossref_primary_10_2196_47951 crossref_primary_10_1007_s11936_020_0805_5 crossref_primary_10_1007_s44206_023_00068_w crossref_primary_10_1016_j_tcm_2021_02_007 crossref_primary_10_1371_journal_pone_0281127 crossref_primary_10_3390_biomedinformatics3020033 crossref_primary_10_47899_ijss_1591168 crossref_primary_10_1016_j_imu_2020_100390 crossref_primary_10_1016_j_susoc_2021_04_003 crossref_primary_10_1093_cvr_cvz307 crossref_primary_10_1016_j_heliyon_2024_e36691 crossref_primary_10_1093_ehjdh_ztab001 crossref_primary_10_1016_j_ccep_2021_10_007 crossref_primary_10_1093_ehjdh_ztac016 crossref_primary_10_3346_jkms_2023_38_e395 crossref_primary_10_1016_j_ahj_2020_03_007 crossref_primary_10_3389_fcvm_2022_945726 crossref_primary_10_3390_electronics12234835 crossref_primary_10_1016_j_compbiomed_2023_106707 crossref_primary_10_1016_j_cvdhj_2020_11_004 crossref_primary_10_3390_jcdd11040118 crossref_primary_10_3390_e26010067 crossref_primary_10_1111_echo_15417 crossref_primary_10_3389_fcvm_2020_618849 crossref_primary_10_3389_fcvm_2022_829553 crossref_primary_10_35940_ijrte_D6632_0511122 crossref_primary_10_1007_s40119_022_00273_7 crossref_primary_10_1093_ehjdh_ztae074 crossref_primary_10_2217_pme_2022_0014 crossref_primary_10_1002_nur_22199 crossref_primary_10_1002_ehf2_14282 crossref_primary_10_1016_j_carrev_2023_05_013 crossref_primary_10_24017_science_2023_2_5 |
Cites_doi | 10.1038/s41569-018-0104-y 10.1093/bioinformatics/bti499 10.1161/CIRCULATIONAHA.118.034338 10.1038/nature14539 10.1016/j.jacc.2016.08.062 10.1136/heartjnl-2017-311198 10.1016/j.jacbts.2016.11.010 10.1016/j.media.2016.04.004 10.1016/j.diii.2018.10.003 10.1001/jamacardio.2016.3956 10.1161/CIR.0000000000000475 10.1111/echo.14086 10.1016/j.jcmg.2018.06.030 10.1016/j.jcmg.2018.11.025 10.1038/s41591-018-0268-3 10.1038/nature16961 10.1016/j.jcmg.2018.02.005 10.1007/s11936-019-0728-1 10.1148/radiol.2019182304 10.1093/eurheartj/ehy915 10.3414/ME13-01-0122 10.1016/j.eswa.2010.06.048 10.1609/aaai.v31i1.11231 10.1186/s12967-019-1918-z 10.1161/CIR.0000000000000366 10.1161/JAHA.114.001650 10.1016/j.diii.2019.03.015 10.1056/NEJMra1814259 10.1530/ERP-18-0081 10.1093/jamia/ocx079 10.1016/j.ijinfomgt.2014.10.007 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. |
Copyright_xml | – notice: 2019 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1161/JAHA.119.012788 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics |
DocumentTitleAlternate | Kagiyama et al |
EISSN | 2047-9980 |
ExternalDocumentID | oai_doaj_org_article_e8d38cbdfd714d1390b6ba0619a35851 PMC6755846 31450991 10_1161_JAHA_119_012788 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: U54 GM104942 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 8-1 AAYXX AAZKR ACCMX ACGFO ACXQS ADBBV ADKYN ADZMN AEGXH AENEX AIAGR ALAGY ALMA_UNASSIGNED_HOLDINGS AOIJS AVUZU BAWUL BCNDV CITATION DIK EBS EMOBN GODZA GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 RAH RNS RPM AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 WIN 5PM |
ID | FETCH-LOGICAL-c459t-a8b588d0760ed28daed5c555a5438c558e6c29cc16be60b16ee973fb3354045b3 |
IEDL.DBID | M48 |
ISSN | 2047-9980 |
IngestDate | Wed Aug 27 01:31:28 EDT 2025 Thu Aug 21 18:01:52 EDT 2025 Fri Sep 05 13:29:42 EDT 2025 Mon Jul 21 06:05:04 EDT 2025 Tue Jul 01 04:01:45 EDT 2025 Thu Apr 24 23:02:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | deep learning telemedicine risk prediction machine learning artificial intelligence risk model statistics |
Language | English |
License | This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-a8b588d0760ed28daed5c555a5438c558e6c29cc16be60b16ee973fb3354045b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1161/JAHA.119.012788 |
PMID | 31450991 |
PQID | 2281134401 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e8d38cbdfd714d1390b6ba0619a35851 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6755846 proquest_miscellaneous_2281134401 pubmed_primary_31450991 crossref_primary_10_1161_JAHA_119_012788 crossref_citationtrail_10_1161_JAHA_119_012788 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-03 |
PublicationDateYYYYMMDD | 2019-09-03 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hoboken |
PublicationTitle | Journal of the American Heart Association |
PublicationTitleAlternate | J Am Heart Assoc |
PublicationYear | 2019 |
Publisher | John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley and Sons Inc – name: Wiley |
References | e_1_3_1_21_2 e_1_3_1_22_2 e_1_3_1_23_2 e_1_3_1_24_2 e_1_3_1_8_2 e_1_3_1_7_2 e_1_3_1_40_2 e_1_3_1_41_2 e_1_3_1_9_2 e_1_3_1_20_2 Potes C (e_1_3_1_28_2) 2016; 2016 e_1_3_1_42_2 e_1_3_1_4_2 e_1_3_1_29_2 e_1_3_1_3_2 e_1_3_1_6_2 e_1_3_1_5_2 e_1_3_1_25_2 e_1_3_1_26_2 e_1_3_1_2_2 e_1_3_1_32_2 e_1_3_1_33_2 e_1_3_1_34_2 e_1_3_1_35_2 e_1_3_1_13_2 e_1_3_1_12_2 e_1_3_1_11_2 e_1_3_1_30_2 e_1_3_1_10_2 Motwani M (e_1_3_1_17_2) 2017; 38 e_1_3_1_31_2 e_1_3_1_16_2 e_1_3_1_14_2 Clifford GD (e_1_3_1_27_2) 2016; 43 e_1_3_1_36_2 Krizhevsky A (e_1_3_1_15_2) 2012 e_1_3_1_37_2 e_1_3_1_19_2 e_1_3_1_38_2 e_1_3_1_18_2 e_1_3_1_39_2 |
References_xml | – start-page: 1097 year: 2012 ident: e_1_3_1_15_2 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – ident: e_1_3_1_36_2 doi: 10.1038/s41569-018-0104-y – ident: e_1_3_1_32_2 – ident: e_1_3_1_31_2 doi: 10.1093/bioinformatics/bti499 – ident: e_1_3_1_40_2 – ident: e_1_3_1_25_2 doi: 10.1161/CIRCULATIONAHA.118.034338 – volume: 43 start-page: 609 year: 2016 ident: e_1_3_1_27_2 article-title: Classification of normal/abnormal heart sound recordings: the physionet/computing in cardiology challenge 2016 publication-title: 2016 Comput Cardiol Conf (CinC) – ident: e_1_3_1_14_2 doi: 10.1038/nature14539 – ident: e_1_3_1_4_2 doi: 10.1016/j.jacc.2016.08.062 – ident: e_1_3_1_7_2 doi: 10.1136/heartjnl-2017-311198 – ident: e_1_3_1_6_2 doi: 10.1016/j.jacbts.2016.11.010 – ident: e_1_3_1_24_2 doi: 10.1016/j.media.2016.04.004 – ident: e_1_3_1_37_2 – ident: e_1_3_1_34_2 doi: 10.1016/j.diii.2018.10.003 – ident: e_1_3_1_21_2 doi: 10.1001/jamacardio.2016.3956 – ident: e_1_3_1_42_2 doi: 10.1161/CIR.0000000000000475 – ident: e_1_3_1_10_2 doi: 10.1111/echo.14086 – ident: e_1_3_1_29_2 – ident: e_1_3_1_8_2 doi: 10.1016/j.jcmg.2018.06.030 – ident: e_1_3_1_20_2 doi: 10.1016/j.jcmg.2018.11.025 – ident: e_1_3_1_26_2 doi: 10.1038/s41591-018-0268-3 – ident: e_1_3_1_18_2 doi: 10.1038/nature16961 – ident: e_1_3_1_9_2 doi: 10.1016/j.jcmg.2018.02.005 – ident: e_1_3_1_12_2 doi: 10.1007/s11936-019-0728-1 – ident: e_1_3_1_23_2 doi: 10.1148/radiol.2019182304 – volume: 2016 start-page: 621 year: 2016 ident: e_1_3_1_28_2 article-title: Ensemble of feature‐based and deep learning‐based classifiers for detection of abnormal heart sounds publication-title: 2016 Comput Cardiol Conf (CinC) – ident: e_1_3_1_11_2 – volume: 38 start-page: 500 year: 2017 ident: e_1_3_1_17_2 article-title: Machine learning for prediction of all‐cause mortality in patients with suspected coronary artery disease: a 5‐year multicentre prospective registry analysis publication-title: Eur Heart J – ident: e_1_3_1_30_2 doi: 10.1093/eurheartj/ehy915 – ident: e_1_3_1_5_2 doi: 10.3414/ME13-01-0122 – ident: e_1_3_1_19_2 doi: 10.1016/j.eswa.2010.06.048 – ident: e_1_3_1_33_2 – ident: e_1_3_1_16_2 doi: 10.1609/aaai.v31i1.11231 – ident: e_1_3_1_38_2 doi: 10.1186/s12967-019-1918-z – ident: e_1_3_1_2_2 doi: 10.1161/CIR.0000000000000366 – ident: e_1_3_1_3_2 doi: 10.1161/JAHA.114.001650 – ident: e_1_3_1_35_2 doi: 10.1016/j.diii.2019.03.015 – ident: e_1_3_1_13_2 doi: 10.1056/NEJMra1814259 – ident: e_1_3_1_41_2 doi: 10.1530/ERP-18-0081 – ident: e_1_3_1_39_2 doi: 10.1093/jamia/ocx079 – ident: e_1_3_1_22_2 doi: 10.1016/j.ijinfomgt.2014.10.007 |
SSID | ssj0000627359 |
Score | 2.5259175 |
SecondaryResourceType | review_article |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e012788 |
SubjectTerms | artificial intelligence Artificial Intelligence - trends Biomedical Research - trends Cardiovascular Diseases - diagnosis Cardiovascular Diseases - physiopathology Cardiovascular Diseases - therapy Contemporary Review deep learning Diagnosis, Computer-Assisted - trends Diffusion of Innovation Humans machine learning Precision Medicine - trends risk model risk prediction statistics Telemedicine - trends Therapy, Computer-Assisted - trends |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqDohLxaO0W6AyEodeAkn8iM1toaAFiZ6KBKfIE8-KlSBUsPx_ZuLsdhe16oWbEzuKMzOJv8mMvxHiACreMAmQjcsGM12VLgOr6BAtAdQQUQHvRr76aUfX-vLG3CyU-uKcsEQPnAR3hC4q10Acx6rQkfBKDhYCrUI-KA5p8dc39_mCM5W-wbQsG99z-RCqObocjobU8occa-3qrPxZhjq2_r9BzLeZkgtLz_m6-NhjRjlMc90QH7DdFKtXfVR8U6wxYkyEy1viloclWgh5scC3eSwTNRHphFqTB3yShFdlzwt6L2cpeHLSytOlJFX5IwVxPonr87Nfp6Osr5-QNdr4aRYcGOcix94wli4GjKYxxgSjSaTGOLRN6ZumsIA2h8Ii-kqNQfG_IG1AbYuV9rHFL0J6Bx6UQ6b51QEcADoCDmWAslA2rwbicCbOuunJxbnGxX3dORm2qFn-1PJ1kv9AfJ9f8Dvxavx76AnrZz6MCbG7E2QmdW8m9f_MZCD2Z9qt6QXiqEho8fHluS5LehKlyc8ciM9J2_NbqUIToPLUUy3ZwdJclnvayV1H0k2OGGO7r-8x-R2xRjgtpbapXbEyfXrBPcJCU_jWmf0rWogGpQ priority: 102 providerName: Directory of Open Access Journals |
Title | Artificial Intelligence: Practical Primer for Clinical Research in Cardiovascular Disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31450991 https://www.proquest.com/docview/2281134401 https://pubmed.ncbi.nlm.nih.gov/PMC6755846 https://doaj.org/article/e8d38cbdfd714d1390b6ba0619a35851 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZKKyEuCMqj4VG5EgcuG7J-rV0JodCHQqVyIlI5rTxrByKlG0hTCf59x4-EbhWk3rxr73rtsdffeMbfEPIOqnBgEqCYsMYXomK6AMXx0isEqNZ5DuE08vlXNRqLswt58S8cUO7Aq42qXYgnNV7M-n9-__2EE_5jnPCq_HA2HA0xZfrBjKr1A7ITjUXBjy9j_fRbxpU6Bk9jgZ0A1YxBpvrZ8I7OKhXJ_Dch0LuOlLdWptMn5HGGlHSYxsBTsuXbXfLwPBvNn5HvIScRRdAvtxg4D2kiK0IpYWp66RcUESzNTKEzunLKo9OWHnXcVulxMus8J-PTk29HoyJHVCgaIc2ysBqk1i5Y47xj2lnvZCOltFJwjQntVcNM05QKvBpAqbw3FZ8AD7tDQgJ_Qbbbeev3CDUaDHDtA_GvsKABvEYowSywkqtB1SP9VQ_WTaYbD1EvZnVUO1RZhy7HlKlTl_fI-_UDvxLTxv-Lfg4iWRcLFNnxxnzxo84zrvbaYZvATVxVCodAdwAKLMIXY3mwhfbIwUqgNU6pYCexrZ9fX9WMYUu4QM2zR14mAa-r4qVAiGUwp-qIvvMt3Zx2-jPSdqNqFtDeq3vU-5o8QmCWfNn4G7K9XFz7twh-lrAfNw3249C-AedpATo |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence%3A+Practical+Primer+for+Clinical+Research+in+Cardiovascular+Disease&rft.jtitle=Journal+of+the+American+Heart+Association&rft.au=Kagiyama%2C+Nobuyuki&rft.au=Shrestha%2C+Sirish&rft.au=Farjo%2C+Peter+D&rft.au=Sengupta%2C+Partho+P&rft.date=2019-09-03&rft.issn=2047-9980&rft.eissn=2047-9980&rft.volume=8&rft.issue=17&rft.spage=e012788&rft_id=info:doi/10.1161%2FJAHA.119.012788&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-9980&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-9980&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-9980&client=summon |