Reconstructing subject-specific effect maps
Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be made at two levels: global, i.e. identifiying condition presence for the subject, and local, i.e. detecting condition effect on each indiv...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 181; pp. 521 - 538 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.11.2018
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2018.07.032 |
Cover
| Abstract | Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be made at two levels: global, i.e. identifiying condition presence for the subject, and local, i.e. detecting condition effect on each individual measurement extracted from the subject's data. While global inference is widely used, local inference, which can be used to form subject-specific effect maps, is rarely used because existing models often yield noisy detections composed of dispersed isolated islands. In this article, we propose a reconstruction method, named RSM, to improve subject-specific detections of predictive modeling approaches and in particular, binary classifiers. RSM specifically aims to reduce noise due to sampling error associated with using a finite sample of examples to train classifiers. The proposed method is a wrapper-type algorithm that can be used with different binary classifiers in a diagnostic manner, i.e. without information on condition presence. Reconstruction is posed as a Maximum-A-Posteriori problem with a prior model whose parameters are estimated from training data in a classifier-specific fashion. Experimental evaluation is performed on synthetically generated data and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results on synthetic data demonstrate that using RSM yields higher detection accuracy compared to using models directly or with bootstrap averaging. Analyses on the ADNI dataset show that RSM can also improve correlation between subject-specific detections in cortical thickness data and non-imaging markers of Alzheimer's Disease (AD), such as the Mini Mental State Examination Score and Cerebrospinal Fluid amyloid-β levels. Further reliability studies on the longitudinal ADNI dataset show improvement on detection reliability when RSM is used. |
|---|---|
| AbstractList | Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be made at two levels: global, i.e. identifiying condition presence for the subject, and local, i.e. detecting condition effect on each individual measurement extracted from the subject's data. While global inference is widely used, local inference, which can be used to form subject-specific effect maps, is rarely used because existing models often yield noisy detections composed of dispersed isolated islands. In this article, we propose a reconstruction method, named RSM, to improve subject-specific detections of predictive modeling approaches and in particular, binary classifiers. RSM specifically aims to reduce noise due to sampling error associated with using a finite sample of examples to train classifiers. The proposed method is a wrapper-type algorithm that can be used with different binary classifiers in a diagnostic manner, i.e. without information on condition presence. Reconstruction is posed as a Maximum-A-Posteriori problem with a prior model whose parameters are estimated from training data in a classifier-specific fashion. Experimental evaluation is performed on synthetically generated data and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results on synthetic data demonstrate that using RSM yields higher detection accuracy compared to using models directly or with bootstrap averaging. Analyses on the ADNI dataset show that RSM can also improve correlation between subject-specific detections in cortical thickness data and non-imaging markers of Alzheimer's Disease (AD), such as the Mini Mental State Examination Score and Cerebrospinal Fluid amyloid-β levels. Further reliability studies on the longitudinal ADNI dataset show improvement on detection reliability when RSM is used. Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be made at two levels: global, i.e. identifiying condition presence for the subject, and local, i.e. detecting condition effect on each individual measurement extracted from the subject's data. While global inference is widely used, local inference, which can be used to form subject-specific effect maps, is rarely used because existing models often yield noisy detections composed of dispersed isolated islands. In this article, we propose a reconstruction method, named RSM, to improve subject-specific detections of predictive modeling approaches and in particular, binary classifiers. RSM specifically aims to reduce noise due to sampling error associated with using a finite sample of examples to train classifiers. The proposed method is a wrapper-type algorithm that can be used with different binary classifiers in a diagnostic manner, i.e. without information on condition presence. Reconstruction is posed as a Maximum-A-Posteriori problem with a prior model whose parameters are estimated from training data in a classifier-specific fashion. Experimental evaluation is performed on synthetically generated data and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results on synthetic data demonstrate that using RSM yields higher detection accuracy compared to using models directly or with bootstrap averaging. Analyses on the ADNI dataset show that RSM can also improve correlation between subject-specific detections in cortical thickness data and non-imaging markers of Alzheimer's Disease (AD), such as the Mini Mental State Examination Score and Cerebrospinal Fluid amyloid-β levels. Further reliability studies on the longitudinal ADNI dataset show improvement on detection reliability when RSM is used.Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be made at two levels: global, i.e. identifiying condition presence for the subject, and local, i.e. detecting condition effect on each individual measurement extracted from the subject's data. While global inference is widely used, local inference, which can be used to form subject-specific effect maps, is rarely used because existing models often yield noisy detections composed of dispersed isolated islands. In this article, we propose a reconstruction method, named RSM, to improve subject-specific detections of predictive modeling approaches and in particular, binary classifiers. RSM specifically aims to reduce noise due to sampling error associated with using a finite sample of examples to train classifiers. The proposed method is a wrapper-type algorithm that can be used with different binary classifiers in a diagnostic manner, i.e. without information on condition presence. Reconstruction is posed as a Maximum-A-Posteriori problem with a prior model whose parameters are estimated from training data in a classifier-specific fashion. Experimental evaluation is performed on synthetically generated data and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results on synthetic data demonstrate that using RSM yields higher detection accuracy compared to using models directly or with bootstrap averaging. Analyses on the ADNI dataset show that RSM can also improve correlation between subject-specific detections in cortical thickness data and non-imaging markers of Alzheimer's Disease (AD), such as the Mini Mental State Examination Score and Cerebrospinal Fluid amyloid-β levels. Further reliability studies on the longitudinal ADNI dataset show improvement on detection reliability when RSM is used. |
| Author | Konukoglu, Ender Glocker, Ben |
| Author_xml | – sequence: 1 givenname: Ender surname: Konukoglu fullname: Konukoglu, Ender email: ender.konukoglu@vision.ee.ethz.ch organization: Computer Vision Lab, ETH Zurich, Zurich, Switzerland – sequence: 2 givenname: Ben surname: Glocker fullname: Glocker, Ben email: b.glocker@imperial.ac.uk organization: Department of Computing, Imperial College London, London, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30048747$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkF2L1DAUQIOsuB_6F2TAF0Fab5KmTV5EXfyCBUH0OaS3t0tqJxmTdmH_vRlml4V5mqckcO7J5VyysxADMbbhUHPg7fupDrSm6LfulmoBXNfQ1SDFM3bBwajKqE6c7e9KVppzc84uc54AwPBGv2DnEqDRXdNdsHe_CGPIS1px8eF2k9d-IlyqvCP0o8cNjWN5b7Zul1-y56ObM716OK_Yn69ffl9_r25-fvtx_emmwkaZpXKcRkO9aUTnDBihUA1auQYMkJToYICRO6Gx6XXr2rHHriymekAgxVspr9jbg3eX4r-V8mK3PiPNswsU12wFdFppWY6CvjlCp7imULazgoOQjTSyLdTrB2rttzTYXSrl0r19zFCADwcAU8w50WjRL27xMSzJ-dlysPvudrJP3e2-u4XOlu5FoI8Ej3-cMPr5MEol6Z2nZDN6CkiDT6W8HaI_RfLxSIKzDx7d_JfuT1P8B0mit8s |
| CitedBy_id | crossref_primary_10_1016_j_media_2021_102208 crossref_primary_10_1038_s42256_022_00515_2 crossref_primary_10_1016_j_media_2020_101713 |
| Cites_doi | 10.1109/TMI.2015.2393853 10.1016/j.neuroimage.2015.08.006 10.1016/S0026-0495(03)00296-8 10.1109/42.938237 10.1007/s12021-013-9204-3 10.1038/nrn3000 10.1093/brain/awh088 10.1023/A:1022627411411 10.1023/A:1010933404324 10.1002/hbm.20398 10.25080/Majora-92bf1922-011 10.1212/WNL.58.5.695 10.1016/j.neuroimage.2014.05.044 10.1090/S0002-9939-1953-0055639-3 10.1093/cercor/11.1.1 10.1016/j.neuroimage.2012.01.021 10.1016/j.neuroimage.2009.02.010 10.1016/j.neuroimage.2013.04.079 10.1016/j.neuroimage.2016.03.054 10.1007/BF00308809 10.1016/j.neuroimage.2013.03.066 10.1055/s-2007-1021169 10.1093/brain/awf057 10.1186/1471-2202-10-67 10.1006/nimg.1997.0294 10.1016/j.media.2004.06.007 10.1016/j.neuroimage.2010.07.034 10.1038/nn758 10.1006/nimg.1995.1019 10.1006/nimg.2001.0961 10.1002/ana.20639 10.1093/cercor/bhn113 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. 2018. Elsevier Inc. |
| Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: 2018. Elsevier Inc. |
| CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: for the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
| DOI | 10.1016/j.neuroimage.2018.07.032 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological science database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 538 |
| ExternalDocumentID | 30048747 10_1016_j_neuroimage_2018_07_032 S1053811918306475 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | Southern California United States--US |
| GeographicLocations_xml | – name: Southern California – name: United States--US |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c459t-a1ef9eb9427a90925c5d85a4090e33ca0d0f1a28c4b86a6fbc70095b0c0e51633 |
| IEDL.DBID | BENPR |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Thu Oct 02 06:30:49 EDT 2025 Tue Oct 07 07:04:13 EDT 2025 Mon Jul 21 05:59:15 EDT 2025 Sat Oct 25 05:25:31 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Fri Feb 23 02:45:24 EST 2024 Tue Oct 14 19:31:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | Copyright © 2018 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-a1ef9eb9427a90925c5d85a4090e33ca0d0f1a28c4b86a6fbc70095b0c0e51633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 30048747 |
| PQID | 2102343936 |
| PQPubID | 2031077 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2078583207 proquest_journals_2102343936 pubmed_primary_30048747 crossref_citationtrail_10_1016_j_neuroimage_2018_07_032 crossref_primary_10_1016_j_neuroimage_2018_07_032 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_07_032 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_07_032 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 2018-11-00 20181101 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Worsley (bib39) 1997; 6 Fischl (bib10) 2012; 62 Good (bib15) 2005 Braak, Braak (bib5) 1991; 82 Mwangi, Tian, Soares (bib25) 2014; 12 Prastawa (bib29) 2004; 8 Greve (bib16) 2011; vol. 19 Krishnan (bib21) 2011; 56 Gaonkar, Davatzikos (bib13) 2013; 78 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib26) 2011; 12 Maumet, Maurel, Ferré, Carsin, Barillot (bib22) 2013; 81 Friston, Frith, Frackowiak, Turner (bib11) 1995; 2 Garrido, Castello, Ventura, Capdevila, Rodriguez (bib14) 1993; 14 Peper, Brouwer, Boomsma, Kahn, Pol, Hilleke (bib27) 2007; 28 Van Leemput, Maes, Vandermeulen, Colchester, Suetens (bib37) 2001; 20 Baumgartner, Koch, Tezcan, Ang, Konukoglu (bib3) 2018 Miller, OCallaghan (bib24) 2003; 52 M. R. Arbabshirani, S. Plis, J. Sui, V. D. Calhoun, Single subject prediction of brain disorders in neuroimaging: promises and pitfalls, Neuroimage. Ashburner, Friston (bib2) 2001; 14 Kanai, Rees (bib19) 2011; 12 Jovicich, Czanner, Han, Salat, van der Kouwe, Quinn, Pacheco, Albert, Killiany, Blacker (bib18) 2009; 46 Iqbal (bib17) 2005; 58 Rosas (bib31) 2002; 58 Thompson, Cannon, Narr, Van Erp, Poutanen, Huttunen, Lönnqvist, Standertskjöld-Nordenstam, Kaprio, Khaledy (bib34) 2001; 4 Thompson (bib33) 2001; 11 Tustison, Cook, Klein, Song, Das, Duda, Kandel, van Strien, Stone, Gee (bib36) 2014; 99 Zeng, Erus, Sotiras, Shinohara, Davatzikos (bib40) 2016; PP Watkins, Vargha-Khadem, Ashburner, Passingham, Connelly, Friston, Frackowiak, Mishkin, Gadian (bib38) 2002; 125 Kiefer (bib20) 1953; 4 Cortes, Vapnik (bib8) 1995; 20 Rahim (bib30) 2015 Ganz (bib12) 2015; 122 Breiman (bib6) 2001; 45 Tomas-Fernandez, Warfield (bib35) 2015; 34 Burton (bib7) 2004; 127 Pernet, Poline, Demonet, Rousselet (bib28) 2009; 10 Bonferroni (bib4) 1935 Maumet, Maurel, Ferré, Barillot (bib23) 2016; 134 Dickerson (bib9) 2009; 19 Seabold, Perktold (bib32) 2010 Braak (10.1016/j.neuroimage.2018.07.032_bib5) 1991; 82 Breiman (10.1016/j.neuroimage.2018.07.032_bib6) 2001; 45 Seabold (10.1016/j.neuroimage.2018.07.032_bib32) 2010 Krishnan (10.1016/j.neuroimage.2018.07.032_bib21) 2011; 56 Thompson (10.1016/j.neuroimage.2018.07.032_bib34) 2001; 4 Garrido (10.1016/j.neuroimage.2018.07.032_bib14) 1993; 14 Greve (10.1016/j.neuroimage.2018.07.032_bib16) 2011; vol. 19 Kiefer (10.1016/j.neuroimage.2018.07.032_bib20) 1953; 4 Watkins (10.1016/j.neuroimage.2018.07.032_bib38) 2002; 125 Ganz (10.1016/j.neuroimage.2018.07.032_bib12) 2015; 122 Jovicich (10.1016/j.neuroimage.2018.07.032_bib18) 2009; 46 Bonferroni (10.1016/j.neuroimage.2018.07.032_bib4) 1935 Peper (10.1016/j.neuroimage.2018.07.032_bib27) 2007; 28 Tomas-Fernandez (10.1016/j.neuroimage.2018.07.032_bib35) 2015; 34 Tustison (10.1016/j.neuroimage.2018.07.032_bib36) 2014; 99 Burton (10.1016/j.neuroimage.2018.07.032_bib7) 2004; 127 Kanai (10.1016/j.neuroimage.2018.07.032_bib19) 2011; 12 Pedregosa (10.1016/j.neuroimage.2018.07.032_bib26) 2011; 12 Good (10.1016/j.neuroimage.2018.07.032_bib15) 2005 Miller (10.1016/j.neuroimage.2018.07.032_bib24) 2003; 52 Dickerson (10.1016/j.neuroimage.2018.07.032_bib9) 2009; 19 Rosas (10.1016/j.neuroimage.2018.07.032_bib31) 2002; 58 Zeng (10.1016/j.neuroimage.2018.07.032_bib40) 2016; PP Gaonkar (10.1016/j.neuroimage.2018.07.032_bib13) 2013; 78 Prastawa (10.1016/j.neuroimage.2018.07.032_bib29) 2004; 8 Rahim (10.1016/j.neuroimage.2018.07.032_bib30) 2015 Mwangi (10.1016/j.neuroimage.2018.07.032_bib25) 2014; 12 Iqbal (10.1016/j.neuroimage.2018.07.032_bib17) 2005; 58 Maumet (10.1016/j.neuroimage.2018.07.032_bib22) 2013; 81 10.1016/j.neuroimage.2018.07.032_bib1 Baumgartner (10.1016/j.neuroimage.2018.07.032_bib3) 2018 Thompson (10.1016/j.neuroimage.2018.07.032_bib33) 2001; 11 Van Leemput (10.1016/j.neuroimage.2018.07.032_bib37) 2001; 20 Worsley (10.1016/j.neuroimage.2018.07.032_bib39) 1997; 6 Cortes (10.1016/j.neuroimage.2018.07.032_bib8) 1995; 20 Ashburner (10.1016/j.neuroimage.2018.07.032_bib2) 2001; 14 Maumet (10.1016/j.neuroimage.2018.07.032_bib23) 2016; 134 Pernet (10.1016/j.neuroimage.2018.07.032_bib28) 2009; 10 Fischl (10.1016/j.neuroimage.2018.07.032_bib10) 2012; 62 Friston (10.1016/j.neuroimage.2018.07.032_bib11) 1995; 2 |
| References_xml | – volume: 11 start-page: 1 year: 2001 end-page: 16 ident: bib33 article-title: Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas publication-title: Cerebr. Cortex – volume: 127 start-page: 791 year: 2004 end-page: 800 ident: bib7 article-title: Cerebral atrophy in Parkinsons disease with and without dementia: a comparison with Alzheimers disease, dementia with Lewy bodies and controls publication-title: Brain – volume: 20 start-page: 677 year: 2001 end-page: 688 ident: bib37 article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection publication-title: IEEE Trans. Med. Imag. – volume: 4 start-page: 502 year: 1953 end-page: 506 ident: bib20 article-title: Sequential minimax search for a maximum publication-title: Proc. Am. Math. Soc. – volume: 10 start-page: 67 year: 2009 ident: bib28 article-title: Brain classification reveals the right cerebellum as the best biomarker of dyslexia publication-title: BMC Neurosci. – start-page: 207 year: 2015 end-page: 214 ident: bib30 article-title: Integrating multimodal priors in predictive models for the functional characterization of Alzheimers disease publication-title: Medical Image Computing and Computer-assisted Intervention–MICCAI 2015 – volume: 134 start-page: 424 year: 2016 end-page: 433 ident: bib23 article-title: An a contrario approach for the detection of patient-specific brain perfusion abnormalities with arterial spin labelling publication-title: Neuroimage – year: 2010 ident: bib32 article-title: Statsmodels: econometric and statistical modeling with python publication-title: 9th Python in Science Conference – volume: 2 start-page: 166 year: 1995 end-page: 172 ident: bib11 article-title: Characterizing dynamic brain responses with fMRI: a multivariate approach publication-title: Neuroimage – year: 1935 ident: bib4 article-title: Il calcolo delle assicurazioni su gruppi di teste, Tipografia del Senato – volume: vol. 19 year: 2011 ident: bib16 article-title: An absolute beginner's guide to surface-and voxel-based morphometric analysis publication-title: Proc Intl Soc Mag Reson Med – volume: 82 start-page: 239 year: 1991 end-page: 259 ident: bib5 article-title: Neuropathological stageing of Alzheimer-related changes publication-title: Acta Neuropathol. – volume: 52 start-page: 17 year: 2003 end-page: 21 ident: bib24 article-title: Effects of aging and stress on hippocampal structure and function publication-title: Metabolism – volume: 14 start-page: 1238 year: 2001 end-page: 1243 ident: bib2 article-title: Why voxel-based morphometry should be used publication-title: Neuroimage – reference: M. R. Arbabshirani, S. Plis, J. Sui, V. D. Calhoun, Single subject prediction of brain disorders in neuroimaging: promises and pitfalls, Neuroimage. – volume: 4 start-page: 1253 year: 2001 end-page: 1258 ident: bib34 article-title: Genetic influences on brain structure publication-title: Nat. Neurosci. – volume: PP year: 2016 ident: bib40 article-title: Abnormality detection via iterative deformable registration and basis-pursuit decomposition publication-title: Med. Imag., IEEE Transact. on – volume: 122 start-page: 131 year: 2015 end-page: 148 ident: bib12 article-title: Relevant feature set estimation with a knock-out strategy and random forests publication-title: Neuroimage – volume: 99 start-page: 166 year: 2014 end-page: 179 ident: bib36 article-title: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements publication-title: Neuroimage – volume: 12 start-page: 229 year: 2014 end-page: 244 ident: bib25 article-title: A review of feature reduction techniques in neuroimaging publication-title: Neuroinformatics – volume: 125 start-page: 465 year: 2002 end-page: 478 ident: bib38 article-title: MRI analysis of an inherited speech and language disorder: structural brain abnormalities publication-title: Brain – volume: 19 start-page: 497 year: 2009 end-page: 510 ident: bib9 article-title: The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals publication-title: Cerebr. Cortex – volume: 58 start-page: 748 year: 2005 end-page: 757 ident: bib17 article-title: Subgroups of Alzheimer's disease based on cerebrospinal fluid molecular markers publication-title: Ann. Neurol. – volume: 8 start-page: 275 year: 2004 end-page: 283 ident: bib29 article-title: A brain tumor segmentation framework based on outlier detection*1 publication-title: Med. Image Anal. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib26 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib6 article-title: Random forests publication-title: Mach. Learn. – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bib10 article-title: FreeSurfer publication-title: Neuroimage – volume: 34 start-page: 1349 year: 2015 end-page: 1361 ident: bib35 article-title: A model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation publication-title: Med. Imag., IEEE Transact. on – volume: 6 start-page: 305 year: 1997 end-page: 319 ident: bib39 article-title: Characterizing the response of PET and fMRI data using multivariate linear models publication-title: Neuroimage – volume: 46 start-page: 177 year: 2009 end-page: 192 ident: bib18 article-title: MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths publication-title: Neuroimage – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib8 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 14 start-page: 232 year: 1993 end-page: 234 ident: bib14 article-title: Cortical atrophy and other brain magnetic resonance imaging (MRI) changes after extremely high-altitude climbs without oxygen publication-title: Int. J. Sports Med. – volume: 78 start-page: 270 year: 2013 end-page: 283 ident: bib13 article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification publication-title: Neuroimage – volume: 28 start-page: 464 year: 2007 end-page: 473 ident: bib27 article-title: Genetic influences on human brain structure: a review of brain imaging studies in twins publication-title: Hum. Brain Mapp. – year: 2005 ident: bib15 article-title: Permutation, Parametric and Bootstrap Tests of Hypotheses – volume: 56 start-page: 455 year: 2011 end-page: 475 ident: bib21 article-title: Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review publication-title: Neuroimage – volume: 81 start-page: 121 year: 2013 end-page: 130 ident: bib22 article-title: Patient-specific detection of perfusion abnormalities combining within-subject and between-subject variances in Arterial Spin Labeling publication-title: Neuroimage – volume: 58 start-page: 695 year: 2002 end-page: 701 ident: bib31 article-title: Regional and progressive thinning of the cortical ribbon in Huntingtons disease publication-title: Neurology – year: 2018 ident: bib3 article-title: Visual feature attribution using wasserstein GANs publication-title: Computer Vision and Pattern Recognition – volume: 12 start-page: 231 year: 2011 end-page: 242 ident: bib19 article-title: The structural basis of inter-individual differences in human behaviour and cognition publication-title: Nat. Rev. Neurosci. – volume: 34 start-page: 1349 issue: 6 year: 2015 ident: 10.1016/j.neuroimage.2018.07.032_bib35 article-title: A model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation publication-title: Med. Imag., IEEE Transact. on doi: 10.1109/TMI.2015.2393853 – volume: 122 start-page: 131 year: 2015 ident: 10.1016/j.neuroimage.2018.07.032_bib12 article-title: Relevant feature set estimation with a knock-out strategy and random forests publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.08.006 – volume: 52 start-page: 17 year: 2003 ident: 10.1016/j.neuroimage.2018.07.032_bib24 article-title: Effects of aging and stress on hippocampal structure and function publication-title: Metabolism doi: 10.1016/S0026-0495(03)00296-8 – volume: 20 start-page: 677 issue: 8 year: 2001 ident: 10.1016/j.neuroimage.2018.07.032_bib37 article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection publication-title: IEEE Trans. Med. Imag. doi: 10.1109/42.938237 – year: 1935 ident: 10.1016/j.neuroimage.2018.07.032_bib4 – volume: 12 start-page: 229 issue: 2 year: 2014 ident: 10.1016/j.neuroimage.2018.07.032_bib25 article-title: A review of feature reduction techniques in neuroimaging publication-title: Neuroinformatics doi: 10.1007/s12021-013-9204-3 – volume: 12 start-page: 231 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2018.07.032_bib19 article-title: The structural basis of inter-individual differences in human behaviour and cognition publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3000 – volume: PP issue: 99 year: 2016 ident: 10.1016/j.neuroimage.2018.07.032_bib40 article-title: Abnormality detection via iterative deformable registration and basis-pursuit decomposition publication-title: Med. Imag., IEEE Transact. on – volume: 127 start-page: 791 issue: 4 year: 2004 ident: 10.1016/j.neuroimage.2018.07.032_bib7 article-title: Cerebral atrophy in Parkinsons disease with and without dementia: a comparison with Alzheimers disease, dementia with Lewy bodies and controls publication-title: Brain doi: 10.1093/brain/awh088 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.neuroimage.2018.07.032_bib8 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2018.07.032_bib6 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 28 start-page: 464 issue: 6 year: 2007 ident: 10.1016/j.neuroimage.2018.07.032_bib27 article-title: Genetic influences on human brain structure: a review of brain imaging studies in twins publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20398 – year: 2010 ident: 10.1016/j.neuroimage.2018.07.032_bib32 article-title: Statsmodels: econometric and statistical modeling with python doi: 10.25080/Majora-92bf1922-011 – ident: 10.1016/j.neuroimage.2018.07.032_bib1 – volume: 58 start-page: 695 issue: 5 year: 2002 ident: 10.1016/j.neuroimage.2018.07.032_bib31 article-title: Regional and progressive thinning of the cortical ribbon in Huntingtons disease publication-title: Neurology doi: 10.1212/WNL.58.5.695 – volume: 99 start-page: 166 year: 2014 ident: 10.1016/j.neuroimage.2018.07.032_bib36 article-title: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.05.044 – volume: 4 start-page: 502 issue: 3 year: 1953 ident: 10.1016/j.neuroimage.2018.07.032_bib20 article-title: Sequential minimax search for a maximum publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1953-0055639-3 – volume: 11 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2018.07.032_bib33 article-title: Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas publication-title: Cerebr. Cortex doi: 10.1093/cercor/11.1.1 – volume: 62 start-page: 774 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2018.07.032_bib10 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 46 start-page: 177 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2018.07.032_bib18 article-title: MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.02.010 – volume: vol. 19 year: 2011 ident: 10.1016/j.neuroimage.2018.07.032_bib16 article-title: An absolute beginner's guide to surface-and voxel-based morphometric analysis – volume: 81 start-page: 121 year: 2013 ident: 10.1016/j.neuroimage.2018.07.032_bib22 article-title: Patient-specific detection of perfusion abnormalities combining within-subject and between-subject variances in Arterial Spin Labeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.079 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.neuroimage.2018.07.032_bib26 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 134 start-page: 424 year: 2016 ident: 10.1016/j.neuroimage.2018.07.032_bib23 article-title: An a contrario approach for the detection of patient-specific brain perfusion abnormalities with arterial spin labelling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.03.054 – year: 2018 ident: 10.1016/j.neuroimage.2018.07.032_bib3 article-title: Visual feature attribution using wasserstein GANs – volume: 82 start-page: 239 issue: 4 year: 1991 ident: 10.1016/j.neuroimage.2018.07.032_bib5 article-title: Neuropathological stageing of Alzheimer-related changes publication-title: Acta Neuropathol. doi: 10.1007/BF00308809 – volume: 78 start-page: 270 year: 2013 ident: 10.1016/j.neuroimage.2018.07.032_bib13 article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.066 – volume: 14 start-page: 232 issue: 04 year: 1993 ident: 10.1016/j.neuroimage.2018.07.032_bib14 article-title: Cortical atrophy and other brain magnetic resonance imaging (MRI) changes after extremely high-altitude climbs without oxygen publication-title: Int. J. Sports Med. doi: 10.1055/s-2007-1021169 – volume: 125 start-page: 465 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2018.07.032_bib38 article-title: MRI analysis of an inherited speech and language disorder: structural brain abnormalities publication-title: Brain doi: 10.1093/brain/awf057 – volume: 10 start-page: 67 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2018.07.032_bib28 article-title: Brain classification reveals the right cerebellum as the best biomarker of dyslexia publication-title: BMC Neurosci. doi: 10.1186/1471-2202-10-67 – volume: 6 start-page: 305 issue: 4 year: 1997 ident: 10.1016/j.neuroimage.2018.07.032_bib39 article-title: Characterizing the response of PET and fMRI data using multivariate linear models publication-title: Neuroimage doi: 10.1006/nimg.1997.0294 – volume: 8 start-page: 275 issue: 3 year: 2004 ident: 10.1016/j.neuroimage.2018.07.032_bib29 article-title: A brain tumor segmentation framework based on outlier detection*1 publication-title: Med. Image Anal. doi: 10.1016/j.media.2004.06.007 – volume: 56 start-page: 455 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2018.07.032_bib21 article-title: Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.034 – start-page: 207 year: 2015 ident: 10.1016/j.neuroimage.2018.07.032_bib30 article-title: Integrating multimodal priors in predictive models for the functional characterization of Alzheimers disease – volume: 4 start-page: 1253 issue: 12 year: 2001 ident: 10.1016/j.neuroimage.2018.07.032_bib34 article-title: Genetic influences on brain structure publication-title: Nat. Neurosci. doi: 10.1038/nn758 – volume: 2 start-page: 166 issue: 2, Part A year: 1995 ident: 10.1016/j.neuroimage.2018.07.032_bib11 article-title: Characterizing dynamic brain responses with fMRI: a multivariate approach publication-title: Neuroimage doi: 10.1006/nimg.1995.1019 – volume: 14 start-page: 1238 issue: 6 year: 2001 ident: 10.1016/j.neuroimage.2018.07.032_bib2 article-title: Why voxel-based morphometry should be used publication-title: Neuroimage doi: 10.1006/nimg.2001.0961 – volume: 58 start-page: 748 issue: 5 year: 2005 ident: 10.1016/j.neuroimage.2018.07.032_bib17 article-title: Subgroups of Alzheimer's disease based on cerebrospinal fluid molecular markers publication-title: Ann. Neurol. doi: 10.1002/ana.20639 – volume: 19 start-page: 497 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2018.07.032_bib9 article-title: The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhn113 – year: 2005 ident: 10.1016/j.neuroimage.2018.07.032_bib15 |
| SSID | ssj0009148 |
| Score | 2.3260334 |
| Snippet | Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 521 |
| SubjectTerms | Algorithms Alzheimer Disease - cerebrospinal fluid Alzheimer Disease - diagnostic imaging Alzheimer Disease - physiopathology Alzheimer's disease Amyloid Amyloid beta-Peptides - cerebrospinal fluid Artificial intelligence Brain mapping Cerebrospinal fluid Computer Simulation Cortex Datasets Datasets as Topic Humans Image Processing, Computer-Assisted - methods Medical imaging Mental Status and Dementia Tests Methods Models, Theoretical Neurodegenerative diseases Neuroimaging Neuroimaging - methods Noise Noise reduction Pharmaceutical industry Population R&D Registration Research & development Sampling error |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7LHsSL-HZ9UcFr3LRJmgRPIooIetEFbyHJprKi3YXVq7_dmTbdxYOw4LFtBtLpZPJN55sJIeeaVdjnLqc5FxUVvuDUSOdoMRaRRR1KUWFG9-GxvBuJ-xf50iPXXS0M0iqT7299euOt051h0uZwNpkMnwAZwHYD8YZGFK2w0FwIhacYXHwvaR4mF205nOQURyc2T8vxanpGTj5g5SLJSzdtPHnx1xb1FwRttqLbTbKRMGR21U5zi_RivU3WHlKWfIcgFpx2nWHr12z-5fFvC8WqSmQGZS2JI_tws_kuGd3ePF_f0XQoAg1Cmk_q8liZ6I0olDPMFDLIsZYOwjQWOQ-OjVmVu0IH4XXpysoHhTDKs8CiBPDF90i_ntbxgGTYWkYqU-W5lyJ45lwZAT0qp8eYoC0HRHV6sCF1DMeDK95tRw17s0sNWtSgZcqCBgckX0jO2q4ZK8iYTtW2qwoFP2bBta8ge7mQ_WU9K0ofd1_WphU8txgKc0BrHNRwtngMaw8TKq6O0y8YA_hKgktkakD2W4tYvC52MtMQqx3-a2pHZB2v2uLHY9IHy4kngII-_Wlj5j92hQQR priority: 102 providerName: Elsevier |
| Title | Reconstructing subject-specific effect maps |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918306475 https://dx.doi.org/10.1016/j.neuroimage.2018.07.032 https://www.ncbi.nlm.nih.gov/pubmed/30048747 https://www.proquest.com/docview/2102343936 https://www.proquest.com/docview/2078583207 |
| Volume | 181 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health Medical collection customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_aBMZeyr6XrQse7FWbZEmWxBijKy3ZR0MpK-RNyLJcNlYnJe3r_vbpbCl56siL_WCfsc-n00-6u98BvNO0RZ47RhgXLRF1yYmRzpGyEYEG7SvRYkT3bF7NLsW3hVzswTzXwmBaZfaJvaNulh73yD_g0oTH2ZNXn1c3BLtGYXQ1t9BwqbVC86mnGNuHcYnMWCMYfzmZn19saXiZGIrjJCeaMZNye4aMr55B8td1HMeY8qV7Uk9e3jdh3QdI-4np9BEcJERZHA0m8Bj2QvcEHpylmPlTQGS4zDyx3VWxvqtx74VgjSXmCRVDSkdx7VbrZ3B5evLzeEZSiwTihTS3xLHQmlAbUSpnqCmll42WLi7aaODcO9rQlrlSe1HrylVt7RWCqpp6GmSEYvw5jLplF15CgUQzUpmWsVoKX1PnqhCxpHK6wXBtNQGV9WB94g_HNhZ_bE4U-223GrSoQUuVjRqcANtIrgYOjR1kTFa1zTWi0avZ6Oh3kP24kU04YsAHO0of5j9r03he2631TeDt5nIciRhecV1Y3sV7ItqS0UFSNYEXg0VsPhd5zXRcub36_8Nfw0N8k6HW8RBG0TTCmwh6busp7L__y-JRLdQUxkfHFz_O8fz1-2w-TVb-DxZTBCc |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVoJeEG8WCgQJjhZ2bCexUIV4tNrS7gqhVurN2I6DqGh20bZC_Dl-GzOJs3sq2kvPyUTJZDz-xjPzDcCrijfEcyeYkKphyueSGe0cy2sVeaxCoRrK6E6mxfhEfT7Vpxvwd-iFobLKwSd2jrqeBTojf0OhicTdUxbv5r8YTY2i7OowQsOl0Qr1bkcxlho7DuOf3xjCLXYPPuH_fp3n-3vHH8csTRlgQWlzwZyIjYneqLx0hptcB11X2mHcw6OUwfGaN8LlVVC-KlzR-FASLvE88KgRzUh87g3YUlIZDP62PuxNv3xd0f4K1TfjackqIUyqJeorzDrGyh_n6DeoxKzqSERlftUGeRUA7jbC_TtwOyHY7H1vcndhI7b34OYk5ejvAyHR2cBL237PFpeeznoY9XRSXVLWl5Bk526-eAAn16Ksh7DZztr4GDIittGlaYTwWgXPnSsiYtfSVTWlh4sRlIMebEh85TQ246cdCtPO7EqDljRoeWlRgyMQS8l5z9mxhowZVG2HnlT0ohY3ljVk3y5lE27p8cia0jvDn7XJfyzsytpH8HJ5GVc-pXNcG2eXeA-iO40OmZcjeNRbxPJziUetwkjxyf8f_gJujY8nR_boYHr4FLbprfo-yx3YRDOJzxBwXfjnyaoz-HbdC-kf0xc7vw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlVcEN8sFAgSHK3asR3HQgghyqqltOJApb0Z23EqEM0u2laIv8avYyaJd09Fe-k5mSgZj8fPmTfPAK9q3pLOnWBCqpapUEpmtfesbFTiqY6Vaqmie3xSHZyqTzM924K_uReGaJU5J_aJuplH-ke-R1sTiaunrPbakRbxZX_6bvGL0QlSVGnNx2kMIXKU_vzG7dvy7eE-jvXrspx-_PrhgI0nDLCotL1gXqTWpmBVabzlttRRN7X2uOfhScroecNb4cs6qlBXvmpDNIRJAo88aUQyEp97A24aKS3RCc3MrAV_hRra8LRktRB2ZBEN3LJeq_L7OWYMIpfVvXyoLK9aGq-Cvv0SOL0Dt0fsWrwfgu0ubKXuHuwcj9X5-0AYdJ4VabuzYnkZ6C8Po25OYiQVA3mkOPeL5QM4vRZXPYTtbt6lx1CQpI02thUiaBUD975KiFqNrxsqDFcTMNkPLo5K5XRgxk-XKWk_3NqDjjzouHHowQmIleViUOvYwMZmV7vcjYr50-GSsoHtm5XtiFgGJLKh9W4eWTdmjqVbx_kEXq4u45ynQo7v0vwS70FcpzEVczOBR0NErD6XFNRq3CM--f_DX8AOTh_3-fDk6CncopcaGix3YRujJD1DpHURnvchXcC3655D_wApPTlZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstructing+subject-specific+effect+maps&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Konukoglu%2C+Ender&rft.au=Glocker%2C+Ben&rft.date=2018-11-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=181&rft.spage=521&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.07.032&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |