Reconstructing subject-specific effect maps

Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be made at two levels: global, i.e. identifiying condition presence for the subject, and local, i.e. detecting condition effect on each indiv...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 181; pp. 521 - 538
Main Authors Konukoglu, Ender, Glocker, Ben
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2018
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2018.07.032

Cover

Abstract Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be made at two levels: global, i.e. identifiying condition presence for the subject, and local, i.e. detecting condition effect on each individual measurement extracted from the subject's data. While global inference is widely used, local inference, which can be used to form subject-specific effect maps, is rarely used because existing models often yield noisy detections composed of dispersed isolated islands. In this article, we propose a reconstruction method, named RSM, to improve subject-specific detections of predictive modeling approaches and in particular, binary classifiers. RSM specifically aims to reduce noise due to sampling error associated with using a finite sample of examples to train classifiers. The proposed method is a wrapper-type algorithm that can be used with different binary classifiers in a diagnostic manner, i.e. without information on condition presence. Reconstruction is posed as a Maximum-A-Posteriori problem with a prior model whose parameters are estimated from training data in a classifier-specific fashion. Experimental evaluation is performed on synthetically generated data and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results on synthetic data demonstrate that using RSM yields higher detection accuracy compared to using models directly or with bootstrap averaging. Analyses on the ADNI dataset show that RSM can also improve correlation between subject-specific detections in cortical thickness data and non-imaging markers of Alzheimer's Disease (AD), such as the Mini Mental State Examination Score and Cerebrospinal Fluid amyloid-β levels. Further reliability studies on the longitudinal ADNI dataset show improvement on detection reliability when RSM is used.
AbstractList Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be made at two levels: global, i.e. identifiying condition presence for the subject, and local, i.e. detecting condition effect on each individual measurement extracted from the subject's data. While global inference is widely used, local inference, which can be used to form subject-specific effect maps, is rarely used because existing models often yield noisy detections composed of dispersed isolated islands. In this article, we propose a reconstruction method, named RSM, to improve subject-specific detections of predictive modeling approaches and in particular, binary classifiers. RSM specifically aims to reduce noise due to sampling error associated with using a finite sample of examples to train classifiers. The proposed method is a wrapper-type algorithm that can be used with different binary classifiers in a diagnostic manner, i.e. without information on condition presence. Reconstruction is posed as a Maximum-A-Posteriori problem with a prior model whose parameters are estimated from training data in a classifier-specific fashion. Experimental evaluation is performed on synthetically generated data and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results on synthetic data demonstrate that using RSM yields higher detection accuracy compared to using models directly or with bootstrap averaging. Analyses on the ADNI dataset show that RSM can also improve correlation between subject-specific detections in cortical thickness data and non-imaging markers of Alzheimer's Disease (AD), such as the Mini Mental State Examination Score and Cerebrospinal Fluid amyloid-β levels. Further reliability studies on the longitudinal ADNI dataset show improvement on detection reliability when RSM is used.
Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be made at two levels: global, i.e. identifiying condition presence for the subject, and local, i.e. detecting condition effect on each individual measurement extracted from the subject's data. While global inference is widely used, local inference, which can be used to form subject-specific effect maps, is rarely used because existing models often yield noisy detections composed of dispersed isolated islands. In this article, we propose a reconstruction method, named RSM, to improve subject-specific detections of predictive modeling approaches and in particular, binary classifiers. RSM specifically aims to reduce noise due to sampling error associated with using a finite sample of examples to train classifiers. The proposed method is a wrapper-type algorithm that can be used with different binary classifiers in a diagnostic manner, i.e. without information on condition presence. Reconstruction is posed as a Maximum-A-Posteriori problem with a prior model whose parameters are estimated from training data in a classifier-specific fashion. Experimental evaluation is performed on synthetically generated data and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results on synthetic data demonstrate that using RSM yields higher detection accuracy compared to using models directly or with bootstrap averaging. Analyses on the ADNI dataset show that RSM can also improve correlation between subject-specific detections in cortical thickness data and non-imaging markers of Alzheimer's Disease (AD), such as the Mini Mental State Examination Score and Cerebrospinal Fluid amyloid-β levels. Further reliability studies on the longitudinal ADNI dataset show improvement on detection reliability when RSM is used.Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be made at two levels: global, i.e. identifiying condition presence for the subject, and local, i.e. detecting condition effect on each individual measurement extracted from the subject's data. While global inference is widely used, local inference, which can be used to form subject-specific effect maps, is rarely used because existing models often yield noisy detections composed of dispersed isolated islands. In this article, we propose a reconstruction method, named RSM, to improve subject-specific detections of predictive modeling approaches and in particular, binary classifiers. RSM specifically aims to reduce noise due to sampling error associated with using a finite sample of examples to train classifiers. The proposed method is a wrapper-type algorithm that can be used with different binary classifiers in a diagnostic manner, i.e. without information on condition presence. Reconstruction is posed as a Maximum-A-Posteriori problem with a prior model whose parameters are estimated from training data in a classifier-specific fashion. Experimental evaluation is performed on synthetically generated data and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results on synthetic data demonstrate that using RSM yields higher detection accuracy compared to using models directly or with bootstrap averaging. Analyses on the ADNI dataset show that RSM can also improve correlation between subject-specific detections in cortical thickness data and non-imaging markers of Alzheimer's Disease (AD), such as the Mini Mental State Examination Score and Cerebrospinal Fluid amyloid-β levels. Further reliability studies on the longitudinal ADNI dataset show improvement on detection reliability when RSM is used.
Author Konukoglu, Ender
Glocker, Ben
Author_xml – sequence: 1
  givenname: Ender
  surname: Konukoglu
  fullname: Konukoglu, Ender
  email: ender.konukoglu@vision.ee.ethz.ch
  organization: Computer Vision Lab, ETH Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Ben
  surname: Glocker
  fullname: Glocker, Ben
  email: b.glocker@imperial.ac.uk
  organization: Department of Computing, Imperial College London, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30048747$$D View this record in MEDLINE/PubMed
BookMark eNqNkF2L1DAUQIOsuB_6F2TAF0Fab5KmTV5EXfyCBUH0OaS3t0tqJxmTdmH_vRlml4V5mqckcO7J5VyysxADMbbhUHPg7fupDrSm6LfulmoBXNfQ1SDFM3bBwajKqE6c7e9KVppzc84uc54AwPBGv2DnEqDRXdNdsHe_CGPIS1px8eF2k9d-IlyqvCP0o8cNjWN5b7Zul1-y56ObM716OK_Yn69ffl9_r25-fvtx_emmwkaZpXKcRkO9aUTnDBihUA1auQYMkJToYICRO6Gx6XXr2rHHriymekAgxVspr9jbg3eX4r-V8mK3PiPNswsU12wFdFppWY6CvjlCp7imULazgoOQjTSyLdTrB2rttzTYXSrl0r19zFCADwcAU8w50WjRL27xMSzJ-dlysPvudrJP3e2-u4XOlu5FoI8Ej3-cMPr5MEol6Z2nZDN6CkiDT6W8HaI_RfLxSIKzDx7d_JfuT1P8B0mit8s
CitedBy_id crossref_primary_10_1016_j_media_2021_102208
crossref_primary_10_1038_s42256_022_00515_2
crossref_primary_10_1016_j_media_2020_101713
Cites_doi 10.1109/TMI.2015.2393853
10.1016/j.neuroimage.2015.08.006
10.1016/S0026-0495(03)00296-8
10.1109/42.938237
10.1007/s12021-013-9204-3
10.1038/nrn3000
10.1093/brain/awh088
10.1023/A:1022627411411
10.1023/A:1010933404324
10.1002/hbm.20398
10.25080/Majora-92bf1922-011
10.1212/WNL.58.5.695
10.1016/j.neuroimage.2014.05.044
10.1090/S0002-9939-1953-0055639-3
10.1093/cercor/11.1.1
10.1016/j.neuroimage.2012.01.021
10.1016/j.neuroimage.2009.02.010
10.1016/j.neuroimage.2013.04.079
10.1016/j.neuroimage.2016.03.054
10.1007/BF00308809
10.1016/j.neuroimage.2013.03.066
10.1055/s-2007-1021169
10.1093/brain/awf057
10.1186/1471-2202-10-67
10.1006/nimg.1997.0294
10.1016/j.media.2004.06.007
10.1016/j.neuroimage.2010.07.034
10.1038/nn758
10.1006/nimg.1995.1019
10.1006/nimg.2001.0961
10.1002/ana.20639
10.1093/cercor/bhn113
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
2018. Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: 2018. Elsevier Inc.
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2018.07.032
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological science database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 538
ExternalDocumentID 30048747
10_1016_j_neuroimage_2018_07_032
S1053811918306475
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Southern California
United States--US
GeographicLocations_xml – name: Southern California
– name: United States--US
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c459t-a1ef9eb9427a90925c5d85a4090e33ca0d0f1a28c4b86a6fbc70095b0c0e51633
IEDL.DBID BENPR
ISSN 1053-8119
1095-9572
IngestDate Thu Oct 02 06:30:49 EDT 2025
Tue Oct 07 07:04:13 EDT 2025
Mon Jul 21 05:59:15 EDT 2025
Sat Oct 25 05:25:31 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Fri Feb 23 02:45:24 EST 2024
Tue Oct 14 19:31:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-a1ef9eb9427a90925c5d85a4090e33ca0d0f1a28c4b86a6fbc70095b0c0e51633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30048747
PQID 2102343936
PQPubID 2031077
PageCount 18
ParticipantIDs proquest_miscellaneous_2078583207
proquest_journals_2102343936
pubmed_primary_30048747
crossref_citationtrail_10_1016_j_neuroimage_2018_07_032
crossref_primary_10_1016_j_neuroimage_2018_07_032
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_07_032
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_07_032
PublicationCentury 2000
PublicationDate 2018-11-01
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Worsley (bib39) 1997; 6
Fischl (bib10) 2012; 62
Good (bib15) 2005
Braak, Braak (bib5) 1991; 82
Mwangi, Tian, Soares (bib25) 2014; 12
Prastawa (bib29) 2004; 8
Greve (bib16) 2011; vol. 19
Krishnan (bib21) 2011; 56
Gaonkar, Davatzikos (bib13) 2013; 78
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib26) 2011; 12
Maumet, Maurel, Ferré, Carsin, Barillot (bib22) 2013; 81
Friston, Frith, Frackowiak, Turner (bib11) 1995; 2
Garrido, Castello, Ventura, Capdevila, Rodriguez (bib14) 1993; 14
Peper, Brouwer, Boomsma, Kahn, Pol, Hilleke (bib27) 2007; 28
Van Leemput, Maes, Vandermeulen, Colchester, Suetens (bib37) 2001; 20
Baumgartner, Koch, Tezcan, Ang, Konukoglu (bib3) 2018
Miller, OCallaghan (bib24) 2003; 52
M. R. Arbabshirani, S. Plis, J. Sui, V. D. Calhoun, Single subject prediction of brain disorders in neuroimaging: promises and pitfalls, Neuroimage.
Ashburner, Friston (bib2) 2001; 14
Kanai, Rees (bib19) 2011; 12
Jovicich, Czanner, Han, Salat, van der Kouwe, Quinn, Pacheco, Albert, Killiany, Blacker (bib18) 2009; 46
Iqbal (bib17) 2005; 58
Rosas (bib31) 2002; 58
Thompson, Cannon, Narr, Van Erp, Poutanen, Huttunen, Lönnqvist, Standertskjöld-Nordenstam, Kaprio, Khaledy (bib34) 2001; 4
Thompson (bib33) 2001; 11
Tustison, Cook, Klein, Song, Das, Duda, Kandel, van Strien, Stone, Gee (bib36) 2014; 99
Zeng, Erus, Sotiras, Shinohara, Davatzikos (bib40) 2016; PP
Watkins, Vargha-Khadem, Ashburner, Passingham, Connelly, Friston, Frackowiak, Mishkin, Gadian (bib38) 2002; 125
Kiefer (bib20) 1953; 4
Cortes, Vapnik (bib8) 1995; 20
Rahim (bib30) 2015
Ganz (bib12) 2015; 122
Breiman (bib6) 2001; 45
Tomas-Fernandez, Warfield (bib35) 2015; 34
Burton (bib7) 2004; 127
Pernet, Poline, Demonet, Rousselet (bib28) 2009; 10
Bonferroni (bib4) 1935
Maumet, Maurel, Ferré, Barillot (bib23) 2016; 134
Dickerson (bib9) 2009; 19
Seabold, Perktold (bib32) 2010
Braak (10.1016/j.neuroimage.2018.07.032_bib5) 1991; 82
Breiman (10.1016/j.neuroimage.2018.07.032_bib6) 2001; 45
Seabold (10.1016/j.neuroimage.2018.07.032_bib32) 2010
Krishnan (10.1016/j.neuroimage.2018.07.032_bib21) 2011; 56
Thompson (10.1016/j.neuroimage.2018.07.032_bib34) 2001; 4
Garrido (10.1016/j.neuroimage.2018.07.032_bib14) 1993; 14
Greve (10.1016/j.neuroimage.2018.07.032_bib16) 2011; vol. 19
Kiefer (10.1016/j.neuroimage.2018.07.032_bib20) 1953; 4
Watkins (10.1016/j.neuroimage.2018.07.032_bib38) 2002; 125
Ganz (10.1016/j.neuroimage.2018.07.032_bib12) 2015; 122
Jovicich (10.1016/j.neuroimage.2018.07.032_bib18) 2009; 46
Bonferroni (10.1016/j.neuroimage.2018.07.032_bib4) 1935
Peper (10.1016/j.neuroimage.2018.07.032_bib27) 2007; 28
Tomas-Fernandez (10.1016/j.neuroimage.2018.07.032_bib35) 2015; 34
Tustison (10.1016/j.neuroimage.2018.07.032_bib36) 2014; 99
Burton (10.1016/j.neuroimage.2018.07.032_bib7) 2004; 127
Kanai (10.1016/j.neuroimage.2018.07.032_bib19) 2011; 12
Pedregosa (10.1016/j.neuroimage.2018.07.032_bib26) 2011; 12
Good (10.1016/j.neuroimage.2018.07.032_bib15) 2005
Miller (10.1016/j.neuroimage.2018.07.032_bib24) 2003; 52
Dickerson (10.1016/j.neuroimage.2018.07.032_bib9) 2009; 19
Rosas (10.1016/j.neuroimage.2018.07.032_bib31) 2002; 58
Zeng (10.1016/j.neuroimage.2018.07.032_bib40) 2016; PP
Gaonkar (10.1016/j.neuroimage.2018.07.032_bib13) 2013; 78
Prastawa (10.1016/j.neuroimage.2018.07.032_bib29) 2004; 8
Rahim (10.1016/j.neuroimage.2018.07.032_bib30) 2015
Mwangi (10.1016/j.neuroimage.2018.07.032_bib25) 2014; 12
Iqbal (10.1016/j.neuroimage.2018.07.032_bib17) 2005; 58
Maumet (10.1016/j.neuroimage.2018.07.032_bib22) 2013; 81
10.1016/j.neuroimage.2018.07.032_bib1
Baumgartner (10.1016/j.neuroimage.2018.07.032_bib3) 2018
Thompson (10.1016/j.neuroimage.2018.07.032_bib33) 2001; 11
Van Leemput (10.1016/j.neuroimage.2018.07.032_bib37) 2001; 20
Worsley (10.1016/j.neuroimage.2018.07.032_bib39) 1997; 6
Cortes (10.1016/j.neuroimage.2018.07.032_bib8) 1995; 20
Ashburner (10.1016/j.neuroimage.2018.07.032_bib2) 2001; 14
Maumet (10.1016/j.neuroimage.2018.07.032_bib23) 2016; 134
Pernet (10.1016/j.neuroimage.2018.07.032_bib28) 2009; 10
Fischl (10.1016/j.neuroimage.2018.07.032_bib10) 2012; 62
Friston (10.1016/j.neuroimage.2018.07.032_bib11) 1995; 2
References_xml – volume: 11
  start-page: 1
  year: 2001
  end-page: 16
  ident: bib33
  article-title: Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas
  publication-title: Cerebr. Cortex
– volume: 127
  start-page: 791
  year: 2004
  end-page: 800
  ident: bib7
  article-title: Cerebral atrophy in Parkinsons disease with and without dementia: a comparison with Alzheimers disease, dementia with Lewy bodies and controls
  publication-title: Brain
– volume: 20
  start-page: 677
  year: 2001
  end-page: 688
  ident: bib37
  article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection
  publication-title: IEEE Trans. Med. Imag.
– volume: 4
  start-page: 502
  year: 1953
  end-page: 506
  ident: bib20
  article-title: Sequential minimax search for a maximum
  publication-title: Proc. Am. Math. Soc.
– volume: 10
  start-page: 67
  year: 2009
  ident: bib28
  article-title: Brain classification reveals the right cerebellum as the best biomarker of dyslexia
  publication-title: BMC Neurosci.
– start-page: 207
  year: 2015
  end-page: 214
  ident: bib30
  article-title: Integrating multimodal priors in predictive models for the functional characterization of Alzheimers disease
  publication-title: Medical Image Computing and Computer-assisted Intervention–MICCAI 2015
– volume: 134
  start-page: 424
  year: 2016
  end-page: 433
  ident: bib23
  article-title: An a contrario approach for the detection of patient-specific brain perfusion abnormalities with arterial spin labelling
  publication-title: Neuroimage
– year: 2010
  ident: bib32
  article-title: Statsmodels: econometric and statistical modeling with python
  publication-title: 9th Python in Science Conference
– volume: 2
  start-page: 166
  year: 1995
  end-page: 172
  ident: bib11
  article-title: Characterizing dynamic brain responses with fMRI: a multivariate approach
  publication-title: Neuroimage
– year: 1935
  ident: bib4
  article-title: Il calcolo delle assicurazioni su gruppi di teste, Tipografia del Senato
– volume: vol. 19
  year: 2011
  ident: bib16
  article-title: An absolute beginner's guide to surface-and voxel-based morphometric analysis
  publication-title: Proc Intl Soc Mag Reson Med
– volume: 82
  start-page: 239
  year: 1991
  end-page: 259
  ident: bib5
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol.
– volume: 52
  start-page: 17
  year: 2003
  end-page: 21
  ident: bib24
  article-title: Effects of aging and stress on hippocampal structure and function
  publication-title: Metabolism
– volume: 14
  start-page: 1238
  year: 2001
  end-page: 1243
  ident: bib2
  article-title: Why voxel-based morphometry should be used
  publication-title: Neuroimage
– reference: M. R. Arbabshirani, S. Plis, J. Sui, V. D. Calhoun, Single subject prediction of brain disorders in neuroimaging: promises and pitfalls, Neuroimage.
– volume: 4
  start-page: 1253
  year: 2001
  end-page: 1258
  ident: bib34
  article-title: Genetic influences on brain structure
  publication-title: Nat. Neurosci.
– volume: PP
  year: 2016
  ident: bib40
  article-title: Abnormality detection via iterative deformable registration and basis-pursuit decomposition
  publication-title: Med. Imag., IEEE Transact. on
– volume: 122
  start-page: 131
  year: 2015
  end-page: 148
  ident: bib12
  article-title: Relevant feature set estimation with a knock-out strategy and random forests
  publication-title: Neuroimage
– volume: 99
  start-page: 166
  year: 2014
  end-page: 179
  ident: bib36
  article-title: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements
  publication-title: Neuroimage
– volume: 12
  start-page: 229
  year: 2014
  end-page: 244
  ident: bib25
  article-title: A review of feature reduction techniques in neuroimaging
  publication-title: Neuroinformatics
– volume: 125
  start-page: 465
  year: 2002
  end-page: 478
  ident: bib38
  article-title: MRI analysis of an inherited speech and language disorder: structural brain abnormalities
  publication-title: Brain
– volume: 19
  start-page: 497
  year: 2009
  end-page: 510
  ident: bib9
  article-title: The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals
  publication-title: Cerebr. Cortex
– volume: 58
  start-page: 748
  year: 2005
  end-page: 757
  ident: bib17
  article-title: Subgroups of Alzheimer's disease based on cerebrospinal fluid molecular markers
  publication-title: Ann. Neurol.
– volume: 8
  start-page: 275
  year: 2004
  end-page: 283
  ident: bib29
  article-title: A brain tumor segmentation framework based on outlier detection*1
  publication-title: Med. Image Anal.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib26
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib6
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib10
  article-title: FreeSurfer
  publication-title: Neuroimage
– volume: 34
  start-page: 1349
  year: 2015
  end-page: 1361
  ident: bib35
  article-title: A model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation
  publication-title: Med. Imag., IEEE Transact. on
– volume: 6
  start-page: 305
  year: 1997
  end-page: 319
  ident: bib39
  article-title: Characterizing the response of PET and fMRI data using multivariate linear models
  publication-title: Neuroimage
– volume: 46
  start-page: 177
  year: 2009
  end-page: 192
  ident: bib18
  article-title: MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths
  publication-title: Neuroimage
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib8
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 14
  start-page: 232
  year: 1993
  end-page: 234
  ident: bib14
  article-title: Cortical atrophy and other brain magnetic resonance imaging (MRI) changes after extremely high-altitude climbs without oxygen
  publication-title: Int. J. Sports Med.
– volume: 78
  start-page: 270
  year: 2013
  end-page: 283
  ident: bib13
  article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
  publication-title: Neuroimage
– volume: 28
  start-page: 464
  year: 2007
  end-page: 473
  ident: bib27
  article-title: Genetic influences on human brain structure: a review of brain imaging studies in twins
  publication-title: Hum. Brain Mapp.
– year: 2005
  ident: bib15
  article-title: Permutation, Parametric and Bootstrap Tests of Hypotheses
– volume: 56
  start-page: 455
  year: 2011
  end-page: 475
  ident: bib21
  article-title: Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review
  publication-title: Neuroimage
– volume: 81
  start-page: 121
  year: 2013
  end-page: 130
  ident: bib22
  article-title: Patient-specific detection of perfusion abnormalities combining within-subject and between-subject variances in Arterial Spin Labeling
  publication-title: Neuroimage
– volume: 58
  start-page: 695
  year: 2002
  end-page: 701
  ident: bib31
  article-title: Regional and progressive thinning of the cortical ribbon in Huntingtons disease
  publication-title: Neurology
– year: 2018
  ident: bib3
  article-title: Visual feature attribution using wasserstein GANs
  publication-title: Computer Vision and Pattern Recognition
– volume: 12
  start-page: 231
  year: 2011
  end-page: 242
  ident: bib19
  article-title: The structural basis of inter-individual differences in human behaviour and cognition
  publication-title: Nat. Rev. Neurosci.
– volume: 34
  start-page: 1349
  issue: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2018.07.032_bib35
  article-title: A model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation
  publication-title: Med. Imag., IEEE Transact. on
  doi: 10.1109/TMI.2015.2393853
– volume: 122
  start-page: 131
  year: 2015
  ident: 10.1016/j.neuroimage.2018.07.032_bib12
  article-title: Relevant feature set estimation with a knock-out strategy and random forests
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.08.006
– volume: 52
  start-page: 17
  year: 2003
  ident: 10.1016/j.neuroimage.2018.07.032_bib24
  article-title: Effects of aging and stress on hippocampal structure and function
  publication-title: Metabolism
  doi: 10.1016/S0026-0495(03)00296-8
– volume: 20
  start-page: 677
  issue: 8
  year: 2001
  ident: 10.1016/j.neuroimage.2018.07.032_bib37
  article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.938237
– year: 1935
  ident: 10.1016/j.neuroimage.2018.07.032_bib4
– volume: 12
  start-page: 229
  issue: 2
  year: 2014
  ident: 10.1016/j.neuroimage.2018.07.032_bib25
  article-title: A review of feature reduction techniques in neuroimaging
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9204-3
– volume: 12
  start-page: 231
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2018.07.032_bib19
  article-title: The structural basis of inter-individual differences in human behaviour and cognition
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3000
– volume: PP
  issue: 99
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.032_bib40
  article-title: Abnormality detection via iterative deformable registration and basis-pursuit decomposition
  publication-title: Med. Imag., IEEE Transact. on
– volume: 127
  start-page: 791
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2018.07.032_bib7
  article-title: Cerebral atrophy in Parkinsons disease with and without dementia: a comparison with Alzheimers disease, dementia with Lewy bodies and controls
  publication-title: Brain
  doi: 10.1093/brain/awh088
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.neuroimage.2018.07.032_bib8
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2018.07.032_bib6
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 28
  start-page: 464
  issue: 6
  year: 2007
  ident: 10.1016/j.neuroimage.2018.07.032_bib27
  article-title: Genetic influences on human brain structure: a review of brain imaging studies in twins
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20398
– year: 2010
  ident: 10.1016/j.neuroimage.2018.07.032_bib32
  article-title: Statsmodels: econometric and statistical modeling with python
  doi: 10.25080/Majora-92bf1922-011
– ident: 10.1016/j.neuroimage.2018.07.032_bib1
– volume: 58
  start-page: 695
  issue: 5
  year: 2002
  ident: 10.1016/j.neuroimage.2018.07.032_bib31
  article-title: Regional and progressive thinning of the cortical ribbon in Huntingtons disease
  publication-title: Neurology
  doi: 10.1212/WNL.58.5.695
– volume: 99
  start-page: 166
  year: 2014
  ident: 10.1016/j.neuroimage.2018.07.032_bib36
  article-title: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.05.044
– volume: 4
  start-page: 502
  issue: 3
  year: 1953
  ident: 10.1016/j.neuroimage.2018.07.032_bib20
  article-title: Sequential minimax search for a maximum
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1953-0055639-3
– volume: 11
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2018.07.032_bib33
  article-title: Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/11.1.1
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2018.07.032_bib10
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 46
  start-page: 177
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2018.07.032_bib18
  article-title: MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.02.010
– volume: vol. 19
  year: 2011
  ident: 10.1016/j.neuroimage.2018.07.032_bib16
  article-title: An absolute beginner's guide to surface-and voxel-based morphometric analysis
– volume: 81
  start-page: 121
  year: 2013
  ident: 10.1016/j.neuroimage.2018.07.032_bib22
  article-title: Patient-specific detection of perfusion abnormalities combining within-subject and between-subject variances in Arterial Spin Labeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.079
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.neuroimage.2018.07.032_bib26
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 134
  start-page: 424
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.032_bib23
  article-title: An a contrario approach for the detection of patient-specific brain perfusion abnormalities with arterial spin labelling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.054
– year: 2018
  ident: 10.1016/j.neuroimage.2018.07.032_bib3
  article-title: Visual feature attribution using wasserstein GANs
– volume: 82
  start-page: 239
  issue: 4
  year: 1991
  ident: 10.1016/j.neuroimage.2018.07.032_bib5
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol.
  doi: 10.1007/BF00308809
– volume: 78
  start-page: 270
  year: 2013
  ident: 10.1016/j.neuroimage.2018.07.032_bib13
  article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.066
– volume: 14
  start-page: 232
  issue: 04
  year: 1993
  ident: 10.1016/j.neuroimage.2018.07.032_bib14
  article-title: Cortical atrophy and other brain magnetic resonance imaging (MRI) changes after extremely high-altitude climbs without oxygen
  publication-title: Int. J. Sports Med.
  doi: 10.1055/s-2007-1021169
– volume: 125
  start-page: 465
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2018.07.032_bib38
  article-title: MRI analysis of an inherited speech and language disorder: structural brain abnormalities
  publication-title: Brain
  doi: 10.1093/brain/awf057
– volume: 10
  start-page: 67
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2018.07.032_bib28
  article-title: Brain classification reveals the right cerebellum as the best biomarker of dyslexia
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-10-67
– volume: 6
  start-page: 305
  issue: 4
  year: 1997
  ident: 10.1016/j.neuroimage.2018.07.032_bib39
  article-title: Characterizing the response of PET and fMRI data using multivariate linear models
  publication-title: Neuroimage
  doi: 10.1006/nimg.1997.0294
– volume: 8
  start-page: 275
  issue: 3
  year: 2004
  ident: 10.1016/j.neuroimage.2018.07.032_bib29
  article-title: A brain tumor segmentation framework based on outlier detection*1
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.06.007
– volume: 56
  start-page: 455
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2018.07.032_bib21
  article-title: Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.034
– start-page: 207
  year: 2015
  ident: 10.1016/j.neuroimage.2018.07.032_bib30
  article-title: Integrating multimodal priors in predictive models for the functional characterization of Alzheimers disease
– volume: 4
  start-page: 1253
  issue: 12
  year: 2001
  ident: 10.1016/j.neuroimage.2018.07.032_bib34
  article-title: Genetic influences on brain structure
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn758
– volume: 2
  start-page: 166
  issue: 2, Part A
  year: 1995
  ident: 10.1016/j.neuroimage.2018.07.032_bib11
  article-title: Characterizing dynamic brain responses with fMRI: a multivariate approach
  publication-title: Neuroimage
  doi: 10.1006/nimg.1995.1019
– volume: 14
  start-page: 1238
  issue: 6
  year: 2001
  ident: 10.1016/j.neuroimage.2018.07.032_bib2
  article-title: Why voxel-based morphometry should be used
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0961
– volume: 58
  start-page: 748
  issue: 5
  year: 2005
  ident: 10.1016/j.neuroimage.2018.07.032_bib17
  article-title: Subgroups of Alzheimer's disease based on cerebrospinal fluid molecular markers
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20639
– volume: 19
  start-page: 497
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2018.07.032_bib9
  article-title: The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhn113
– year: 2005
  ident: 10.1016/j.neuroimage.2018.07.032_bib15
SSID ssj0009148
Score 2.3260334
Snippet Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 521
SubjectTerms Algorithms
Alzheimer Disease - cerebrospinal fluid
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - physiopathology
Alzheimer's disease
Amyloid
Amyloid beta-Peptides - cerebrospinal fluid
Artificial intelligence
Brain mapping
Cerebrospinal fluid
Computer Simulation
Cortex
Datasets
Datasets as Topic
Humans
Image Processing, Computer-Assisted - methods
Medical imaging
Mental Status and Dementia Tests
Methods
Models, Theoretical
Neurodegenerative diseases
Neuroimaging
Neuroimaging - methods
Noise
Noise reduction
Pharmaceutical industry
Population
R&D
Registration
Research & development
Sampling error
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7LHsSL-HZ9UcFr3LRJmgRPIooIetEFbyHJprKi3YXVq7_dmTbdxYOw4LFtBtLpZPJN55sJIeeaVdjnLqc5FxUVvuDUSOdoMRaRRR1KUWFG9-GxvBuJ-xf50iPXXS0M0iqT7299euOt051h0uZwNpkMnwAZwHYD8YZGFK2w0FwIhacYXHwvaR4mF205nOQURyc2T8vxanpGTj5g5SLJSzdtPHnx1xb1FwRttqLbTbKRMGR21U5zi_RivU3WHlKWfIcgFpx2nWHr12z-5fFvC8WqSmQGZS2JI_tws_kuGd3ePF_f0XQoAg1Cmk_q8liZ6I0olDPMFDLIsZYOwjQWOQ-OjVmVu0IH4XXpysoHhTDKs8CiBPDF90i_ntbxgGTYWkYqU-W5lyJ45lwZAT0qp8eYoC0HRHV6sCF1DMeDK95tRw17s0sNWtSgZcqCBgckX0jO2q4ZK8iYTtW2qwoFP2bBta8ge7mQ_WU9K0ofd1_WphU8txgKc0BrHNRwtngMaw8TKq6O0y8YA_hKgktkakD2W4tYvC52MtMQqx3-a2pHZB2v2uLHY9IHy4kngII-_Wlj5j92hQQR
  priority: 102
  providerName: Elsevier
Title Reconstructing subject-specific effect maps
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918306475
https://dx.doi.org/10.1016/j.neuroimage.2018.07.032
https://www.ncbi.nlm.nih.gov/pubmed/30048747
https://www.proquest.com/docview/2102343936
https://www.proquest.com/docview/2078583207
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_aBMZeyr6XrQse7FWbZEmWxBijKy3ZR0MpK-RNyLJcNlYnJe3r_vbpbCl56siL_WCfsc-n00-6u98BvNO0RZ47RhgXLRF1yYmRzpGyEYEG7SvRYkT3bF7NLsW3hVzswTzXwmBaZfaJvaNulh73yD_g0oTH2ZNXn1c3BLtGYXQ1t9BwqbVC86mnGNuHcYnMWCMYfzmZn19saXiZGIrjJCeaMZNye4aMr55B8td1HMeY8qV7Uk9e3jdh3QdI-4np9BEcJERZHA0m8Bj2QvcEHpylmPlTQGS4zDyx3VWxvqtx74VgjSXmCRVDSkdx7VbrZ3B5evLzeEZSiwTihTS3xLHQmlAbUSpnqCmll42WLi7aaODcO9rQlrlSe1HrylVt7RWCqpp6GmSEYvw5jLplF15CgUQzUpmWsVoKX1PnqhCxpHK6wXBtNQGV9WB94g_HNhZ_bE4U-223GrSoQUuVjRqcANtIrgYOjR1kTFa1zTWi0avZ6Oh3kP24kU04YsAHO0of5j9r03he2631TeDt5nIciRhecV1Y3sV7ItqS0UFSNYEXg0VsPhd5zXRcub36_8Nfw0N8k6HW8RBG0TTCmwh6busp7L__y-JRLdQUxkfHFz_O8fz1-2w-TVb-DxZTBCc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVoJeEG8WCgQJjhZ2bCexUIV4tNrS7gqhVurN2I6DqGh20bZC_Dl-GzOJs3sq2kvPyUTJZDz-xjPzDcCrijfEcyeYkKphyueSGe0cy2sVeaxCoRrK6E6mxfhEfT7Vpxvwd-iFobLKwSd2jrqeBTojf0OhicTdUxbv5r8YTY2i7OowQsOl0Qr1bkcxlho7DuOf3xjCLXYPPuH_fp3n-3vHH8csTRlgQWlzwZyIjYneqLx0hptcB11X2mHcw6OUwfGaN8LlVVC-KlzR-FASLvE88KgRzUh87g3YUlIZDP62PuxNv3xd0f4K1TfjackqIUyqJeorzDrGyh_n6DeoxKzqSERlftUGeRUA7jbC_TtwOyHY7H1vcndhI7b34OYk5ejvAyHR2cBL237PFpeeznoY9XRSXVLWl5Bk526-eAAn16Ksh7DZztr4GDIittGlaYTwWgXPnSsiYtfSVTWlh4sRlIMebEh85TQ246cdCtPO7EqDljRoeWlRgyMQS8l5z9mxhowZVG2HnlT0ohY3ljVk3y5lE27p8cia0jvDn7XJfyzsytpH8HJ5GVc-pXNcG2eXeA-iO40OmZcjeNRbxPJziUetwkjxyf8f_gJujY8nR_boYHr4FLbprfo-yx3YRDOJzxBwXfjnyaoz-HbdC-kf0xc7vw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlVcEN8sFAgSHK3asR3HQgghyqqltOJApb0Z23EqEM0u2laIv8avYyaJd09Fe-k5mSgZj8fPmTfPAK9q3pLOnWBCqpapUEpmtfesbFTiqY6Vaqmie3xSHZyqTzM924K_uReGaJU5J_aJuplH-ke-R1sTiaunrPbakRbxZX_6bvGL0QlSVGnNx2kMIXKU_vzG7dvy7eE-jvXrspx-_PrhgI0nDLCotL1gXqTWpmBVabzlttRRN7X2uOfhScroecNb4cs6qlBXvmpDNIRJAo88aUQyEp97A24aKS3RCc3MrAV_hRra8LRktRB2ZBEN3LJeq_L7OWYMIpfVvXyoLK9aGq-Cvv0SOL0Dt0fsWrwfgu0ubKXuHuwcj9X5-0AYdJ4VabuzYnkZ6C8Po25OYiQVA3mkOPeL5QM4vRZXPYTtbt6lx1CQpI02thUiaBUD975KiFqNrxsqDFcTMNkPLo5K5XRgxk-XKWk_3NqDjjzouHHowQmIleViUOvYwMZmV7vcjYr50-GSsoHtm5XtiFgGJLKh9W4eWTdmjqVbx_kEXq4u45ynQo7v0vwS70FcpzEVczOBR0NErD6XFNRq3CM--f_DX8AOTh_3-fDk6CncopcaGix3YRujJD1DpHURnvchXcC3655D_wApPTlZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstructing+subject-specific+effect+maps&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Konukoglu%2C+Ender&rft.au=Glocker%2C+Ben&rft.date=2018-11-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=181&rft.spage=521&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.07.032&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon