Alkaline thermal sludge hydrolysis

The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and resear...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 97; no. 1; pp. 295 - 314
Main Authors Neyens, E, Baeyens, J, Creemers, C
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 28.02.2003
Elsevier
Subjects
Online AccessGet full text
ISSN0304-3894
1873-3336
DOI10.1016/S0304-3894(02)00286-8

Cover

Abstract The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K +/Na + and Ca 2+/Mg 2+) on the sludge dewaterability, only the use of Ca 2+ appears to offer the best solution. The lesser effects of K +, Na + and Mg 2+ confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH) 2 is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 °C; at a pH≈10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34 s for the initial untreated sample to approximately 22 s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46%. Finally, the mass and energy balances of a wastewater treatment plant with/without advanced sludge treatment (AST) are compared. The data clearly illustrate the benefits of using an alkaline AST-step in the system.
AbstractList The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K +/Na + and Ca 2+/Mg 2+) on the sludge dewaterability, only the use of Ca 2+ appears to offer the best solution. The lesser effects of K +, Na + and Mg 2+ confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH) 2 is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 °C; at a pH≈10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34 s for the initial untreated sample to approximately 22 s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46%. Finally, the mass and energy balances of a wastewater treatment plant with/without advanced sludge treatment (AST) are compared. The data clearly illustrate the benefits of using an alkaline AST-step in the system.
Alkaline thermal hydrolysis of sludge generated by waste activated sludge treatment of wastewater was evaluated. Laboratory trials demonstrated the efficacy of the process based on calcium hydroxide in reducing residual sludge volume and in improving dewaterability. These goals are realized at an operating temperature of 100 degree C, pH 10,and a 60-min reaction time; most pathogens are also inactivated by the treatment. The rate of mechanical dewatering increased and the amount of sludge to be dewatered is reduced to about 60% of the initial volume.
The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46%.Finally, the mass and energy balances of a wastewater treatment plant with/without advanced sludge treatment (AST) are compared. The data clearly illustrate the benefits of using an alkaline AST-step in the system.The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46%.Finally, the mass and energy balances of a wastewater treatment plant with/without advanced sludge treatment (AST) are compared. The data clearly illustrate the benefits of using an alkaline AST-step in the system.
The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46%.Finally, the mass and energy balances of a wastewater treatment plant with/without advanced sludge treatment (AST) are compared. The data clearly illustrate the benefits of using an alkaline AST-step in the system.
Author Baeyens, J
Neyens, E
Creemers, C
Author_xml – sequence: 1
  givenname: E
  surname: Neyens
  fullname: Neyens, E
  email: elisabeth.neyens@cit.kuleuven.ac.be
– sequence: 2
  givenname: J
  surname: Baeyens
  fullname: Baeyens, J
– sequence: 3
  givenname: C
  surname: Creemers
  fullname: Creemers, C
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14643966$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12573845$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPGzEUhS2UioTHTwBFlVq1i6HXz7HVBUKoDyQkFmVvOfYdYnBmqD1Byr_vhIQgdZPVXdzvnPs4R2TUdi0SckbhggJV3_4AB1FxbcQXYF8BmFaVPiATqmtecc7ViEx2yJgclfIIALSW4pCMKZM110JOyMer9ORSbHHazzEvXJqWtAwPOJ2vQu7SqsRyQj40LhU83dZjcv_zx_317-r27tfN9dVt5YU0faU9k5qxIORMeQhOKM5FCKZp6ppy5IJjkMGwplYS_EwxAzPXGBOGhfnQPyafN7bPufu7xNLbRSweU3Itdstiaw4gzeC6D6RCSVnrNXi-BZezBQb7nOPC5ZV9u34APm0BV7xLTXatj-WdE0pwo9ZG3zecz10pGRvrY-_62LV9djFZCnadiX3NxK4fboHZ10ysHtTyP_VuwB7d5UaHw9NfImZbfMTWY4gZfW9DF_c4_AN7pKB3
CODEN JHMAD9
CitedBy_id crossref_primary_10_1016_j_cej_2013_06_046
crossref_primary_10_1016_j_procbio_2006_11_010
crossref_primary_10_1016_j_seppur_2018_03_017
crossref_primary_10_1080_19443994_2014_884685
crossref_primary_10_1089_ees_2018_0461
crossref_primary_10_2208_jscejg_62_427
crossref_primary_10_1016_j_renene_2009_10_003
crossref_primary_10_1007_s11274_005_0700_y
crossref_primary_10_1016_j_bej_2010_08_001
crossref_primary_10_1016_j_ultsonch_2018_07_005
crossref_primary_10_1016_j_biortech_2013_03_024
crossref_primary_10_1016_S0043_1354_03_00441_X
crossref_primary_10_1007_s11157_016_9396_8
crossref_primary_10_1007_s12010_011_9407_8
crossref_primary_10_1016_j_jiec_2014_12_019
crossref_primary_10_1016_j_renene_2015_11_060
crossref_primary_10_1080_09593330_2016_1213771
crossref_primary_10_1021_acs_energyfuels_9b02758
crossref_primary_10_1007_s11814_019_0457_x
crossref_primary_10_1016_j_biortech_2009_07_022
crossref_primary_10_1016_j_chemosphere_2016_10_108
crossref_primary_10_1016_j_jhazmat_2007_01_100
crossref_primary_10_1016_j_watres_2017_03_047
crossref_primary_10_1016_j_jhazmat_2012_03_070
crossref_primary_10_1016_j_biortech_2012_02_112
crossref_primary_10_1016_j_wasman_2010_12_005
crossref_primary_10_1016_j_rser_2019_04_011
crossref_primary_10_1007_s10853_007_1957_3
crossref_primary_10_1002_wer_1142
crossref_primary_10_1016_j_jes_2014_07_024
crossref_primary_10_1080_09593330_2016_1220630
crossref_primary_10_1016_j_cej_2014_08_046
crossref_primary_10_1007_s11356_018_1213_1
crossref_primary_10_1016_j_chemosphere_2009_12_053
crossref_primary_10_1016_j_radphyschem_2011_06_011
crossref_primary_10_1016_j_biortech_2010_04_066
crossref_primary_10_1016_j_watres_2020_116576
crossref_primary_10_1016_j_watres_2005_04_072
crossref_primary_10_1016_j_watres_2013_11_034
crossref_primary_10_1002_jctb_2189
crossref_primary_10_1016_j_pnsc_2009_07_008
crossref_primary_10_1016_j_ijhydene_2021_05_097
crossref_primary_10_1016_j_biortech_2012_05_134
crossref_primary_10_1089_ees_2012_0480
crossref_primary_10_4028_www_scientific_net_AMM_768_108
crossref_primary_10_1016_j_watres_2016_11_055
crossref_primary_10_1016_j_envpol_2024_124955
crossref_primary_10_1016_j_biortech_2009_06_049
crossref_primary_10_1108_14777830410513559
crossref_primary_10_3109_1040841X_2012_694410
crossref_primary_10_1016_j_scitotenv_2018_06_392
crossref_primary_10_1016_S1001_0742_08_62264_0
crossref_primary_10_1016_j_biortech_2014_10_122
crossref_primary_10_1016_j_jenvman_2016_04_021
crossref_primary_10_1016_j_jhazmat_2010_08_003
crossref_primary_10_1080_09593330802015508
crossref_primary_10_1016_j_rser_2021_111877
crossref_primary_10_1021_ef301986d
crossref_primary_10_1007_s11157_011_9244_9
crossref_primary_10_1016_j_biortech_2007_09_019
crossref_primary_10_1016_j_biortech_2012_08_039
crossref_primary_10_1016_j_watres_2011_05_018
crossref_primary_10_1039_C7RA01060E
crossref_primary_10_1016_j_watres_2014_05_012
crossref_primary_10_1080_19443994_2014_932717
crossref_primary_10_1016_j_scitotenv_2022_157727
crossref_primary_10_1016_j_biortech_2013_04_061
crossref_primary_10_1016_j_cej_2015_08_121
crossref_primary_10_1016_j_cej_2011_01_093
crossref_primary_10_1016_j_rser_2024_114453
crossref_primary_10_1016_j_watres_2014_12_027
crossref_primary_10_1007_s13762_017_1451_7
crossref_primary_10_1016_j_chemosphere_2021_133209
crossref_primary_10_1016_j_ultsonch_2016_04_027
crossref_primary_10_1007_s10163_016_0577_x
crossref_primary_10_1016_j_watres_2021_117465
crossref_primary_10_1016_j_jece_2019_103310
crossref_primary_10_3390_cleantechnol4030052
crossref_primary_10_1016_j_biortech_2011_08_098
crossref_primary_10_1016_j_biortech_2018_04_081
crossref_primary_10_3390_en13205349
crossref_primary_10_1016_j_proeng_2012_01_1207
crossref_primary_10_1016_j_cej_2014_04_092
crossref_primary_10_1016_j_watres_2011_11_014
crossref_primary_10_3103_S1063455X24060109
crossref_primary_10_1007_s12257_012_0492_5
crossref_primary_10_1016_j_biortech_2024_131373
crossref_primary_10_1016_j_wasman_2022_09_009
crossref_primary_10_1016_j_wasman_2023_07_034
crossref_primary_10_1016_j_jenvman_2021_114408
crossref_primary_10_2175_106143010X12681059116419
crossref_primary_10_12677_SD_2016_63017
crossref_primary_10_1016_j_jtice_2024_105571
crossref_primary_10_1016_j_eti_2023_103134
crossref_primary_10_1080_07373937_2013_871288
crossref_primary_10_1016_j_scitotenv_2021_146966
crossref_primary_10_1080_07373937_2012_697947
crossref_primary_10_1080_09593330_2021_2012268
crossref_primary_10_1016_j_jenvman_2015_06_045
crossref_primary_10_1016_j_jhazmat_2009_02_067
crossref_primary_10_1007_s13762_020_02697_x
crossref_primary_10_1111_wej_12180
crossref_primary_10_1016_j_biortech_2017_08_216
crossref_primary_10_1016_j_cep_2008_03_012
crossref_primary_10_1080_09593330_2013_812667
crossref_primary_10_1016_j_psep_2017_10_004
crossref_primary_10_1016_j_biombioe_2022_106411
crossref_primary_10_1016_j_scitotenv_2008_11_015
crossref_primary_10_1016_j_cej_2019_123410
crossref_primary_10_1080_07373937_2011_602486
crossref_primary_10_1039_C7EW00189D
crossref_primary_10_1016_j_jiec_2012_08_002
crossref_primary_10_1002_ep_13620
crossref_primary_10_1007_s11356_019_04961_1
crossref_primary_10_1016_j_apenergy_2016_09_042
crossref_primary_10_1088_1755_1315_446_3_032078
crossref_primary_10_1016_j_conbuildmat_2019_117715
crossref_primary_10_1016_j_biortech_2016_08_043
crossref_primary_10_3985_jswme_19_1
crossref_primary_10_3390_ma15207384
crossref_primary_10_1039_C8EW00356D
crossref_primary_10_1007_s10163_016_0522_z
crossref_primary_10_1016_j_jenvman_2015_05_014
crossref_primary_10_1016_j_jhazmat_2008_05_038
crossref_primary_10_1111_gcbb_13150
crossref_primary_10_1016_j_watres_2015_01_005
crossref_primary_10_1016_j_biortech_2018_12_010
crossref_primary_10_1016_S1001_0742_11_61031_0
crossref_primary_10_1016_j_bej_2014_03_005
crossref_primary_10_1016_j_chemosphere_2021_130665
crossref_primary_10_1007_s13762_012_0120_0
crossref_primary_10_1080_09593330_2019_1662097
crossref_primary_10_1016_j_watres_2015_06_021
crossref_primary_10_1016_j_desal_2008_06_023
crossref_primary_10_1016_j_jwpe_2022_102994
crossref_primary_10_4028_www_scientific_net_AMM_361_363_1046
crossref_primary_10_1016_j_fuproc_2019_106196
crossref_primary_10_1016_j_watres_2008_08_018
crossref_primary_10_12989_aer_2016_5_4_251
crossref_primary_10_1016_j_watres_2017_04_055
crossref_primary_10_1016_j_serj_2015_10_005
crossref_primary_10_1016_j_watres_2010_05_052
crossref_primary_10_1039_D0GC01701A
crossref_primary_10_3389_fenrg_2019_00047
crossref_primary_10_1016_j_biortech_2012_06_100
crossref_primary_10_1016_j_biortech_2015_08_038
crossref_primary_10_1016_j_desal_2011_02_030
crossref_primary_10_11001_jksww_2024_38_6_361
crossref_primary_10_1016_j_jwpe_2021_101939
crossref_primary_10_1016_j_proenv_2016_02_049
crossref_primary_10_3390_su16156419
crossref_primary_10_1016_j_chemosphere_2017_02_046
crossref_primary_10_3390_ijerph20032544
crossref_primary_10_1016_j_ultsonch_2016_11_006
crossref_primary_10_3390_en17174447
crossref_primary_10_1007_s10163_013_0153_6
crossref_primary_10_1080_1064119X_2020_1750514
crossref_primary_10_1016_j_scitotenv_2024_172682
crossref_primary_10_1016_j_bej_2012_04_013
crossref_primary_10_1016_j_jhazmat_2009_06_146
crossref_primary_10_1016_j_scitotenv_2023_168605
crossref_primary_10_1016_j_jhazmat_2011_04_099
crossref_primary_10_1016_j_seppur_2017_11_047
crossref_primary_10_1016_j_watres_2005_05_007
crossref_primary_10_1089_ees_2006_23_994
crossref_primary_10_1016_j_envres_2020_109746
crossref_primary_10_1016_j_scitotenv_2023_162341
crossref_primary_10_1039_C4RA07235A
crossref_primary_10_1016_j_biortech_2008_05_028
crossref_primary_10_1016_j_envint_2020_105629
crossref_primary_10_1016_j_jclepro_2017_11_195
crossref_primary_10_1007_BF03326216
crossref_primary_10_1016_j_chemosphere_2016_06_112
crossref_primary_10_1016_j_jaap_2022_105678
crossref_primary_10_1016_j_joei_2023_101340
crossref_primary_10_1016_j_seppur_2018_01_008
ContentType Journal Article
Copyright 2002 Elsevier Science B.V.
2003 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science B.V.
– notice: 2003 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7ST
C1K
SOI
7X8
DOI 10.1016/S0304-3894(02)00286-8
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Environment Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
Applied Sciences
EISSN 1873-3336
EndPage 314
ExternalDocumentID 12573845
14643966
10_1016_S0304_3894_02_00286_8
S0304389402002868
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLECG
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
T9H
TAE
UAO
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AIIUN
AKBMS
AKYEP
ANKPU
CITATION
EFKBS
EFLBG
~HD
AEGFY
AFJKZ
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7ST
AGCQF
C1K
SOI
7X8
ID FETCH-LOGICAL-c459t-8c25822d45b6c0da46334dd9ff7713e343ed5d92f7650cb6290baf99d87333e3
IEDL.DBID .~1
ISSN 0304-3894
IngestDate Sun Sep 28 06:38:18 EDT 2025
Fri Sep 05 10:35:13 EDT 2025
Wed Feb 19 01:37:27 EST 2025
Wed Apr 02 07:29:34 EDT 2025
Wed Oct 01 04:10:02 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Tue Jul 09 07:17:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Dewaterability
Reduction
Thermal hydrolysis
KOH
NaOH
Sludge
Mg(OH) 2
Ca(OH) 2
Thermochemical treatment
Mechanical separation
Waste treatment
Temperature effect
Dehydration
Sewage sludge
Hydrolysis
Calcium Hydroxides
Potassium Hydroxides
Medium effect
Sodium Hydroxides
Magnesium Hydroxides
pH
Pretreatment
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-8c25822d45b6c0da46334dd9ff7713e343ed5d92f7650cb6290baf99d87333e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 12573845
PQID 14655786
PQPubID 23462
PageCount 20
ParticipantIDs proquest_miscellaneous_73005946
proquest_miscellaneous_14655786
pubmed_primary_12573845
pascalfrancis_primary_14643966
crossref_citationtrail_10_1016_S0304_3894_02_00286_8
crossref_primary_10_1016_S0304_3894_02_00286_8
elsevier_sciencedirect_doi_10_1016_S0304_3894_02_00286_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-02-28
PublicationDateYYYYMMDD 2003-02-28
PublicationDate_xml – month: 02
  year: 2003
  text: 2003-02-28
  day: 28
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2003
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Murthy, Novak, de Haas (BIB32) 1998; 38
Stuckey, McCarty (BIB9) 1979; 8
Tezuka (BIB27) 1969; 17
Murthy, Novak (BIB36) 2001; 73
Smith, Göransson (BIB15) 1992; 25
Yang, Gaudy (BIB6) 1974; 16
Higgins, Novak (BIB21) 1997; 69
Forster, Lewin (BIB30) 1972; 12
Erdincler, Vesilind (BIB18) 2000; 42
Stuckey, McCarty (BIB10) 1984; 18
J.T. Novak, C.W. Randall, Sludge flocculation at an industrial waste facility, in: Proceedings of the 18th Mid-Atlantic Industrial Waste Conference on Toxic and Hazardous Wastes, Technomic Publishing Company Inc., Lancaster, 1986.
S.E. Woodard, R.F. Wukasch, A Hydrolysis/Thickening/Filtration Process for the Treatment of Waste Activated Sludge, Water Quality International ’94, Book 5.
Novak, Becker, Zurow (BIB34) 1977; 103
J. Baeyens, L. Hosten, E. Van Vaerenbergh, Wastewater Treatment, Kluwer Academic Publishers, The Netherlands 1997, pp. 876 (in Dutch).
Vesilind (BIB3) 1994; 66
Vesilind, Davis (BIB24) 1988; 20
Tsang, Vesilind (BIB2) 1990; 22
Katsiris, Kouzeli-Katsiri (BIB1) 1987; 21
Eriksson, Alm (BIB29) 1991; 24
Singh, Patterson (BIB7) 1974; 46
Murthy, Novak (BIB23) 1998; 37
Rajan, Lin, Ray (BIB12) 1989; 61
Karr, Keinath (BIB35) 1978; 50
Higgins, Novak (BIB22) 1997; 69
Novak, Love, Smith, Wheeler (BIB33) 1998; 70
H.W. Campbell, P.J. Crecuolo, Assessment of sludge conditionability using rheological properties, in: T.J. Casey, P. L’hermite, P.J. Newman (Ed.), Methods of Characterization of Sewage Sludge, D. Reidel Publishing Company, Holland, 1984.
Ray, Lin, Rajan (BIB13) 1990; 62
Everett (BIB8) 1974; 73
Vallom, McLoughlin (BIB20) 1984; 18
Bruus, Nielsen, Keiding (BIB28) 1992; 16
Müller (BIB4) 2001; 44
G.L. Kovacs, U.S. Patent 5 087 378 (11 February 1992).
E. Neyens, J. Baeyens, M. Weemaes, B. De heyder, Hot acid hydrolysis as a potential treatment of thickened sewage sludge, J. Hazard. Mater., in press.
Alsop, Conway (BIB11) 1982; 54
Burghardt, Krull, Hempel, Braunschweig, Pelousek, Bahnmüller (BIB17) 1972; 44
Yang, Gaudy (BIB5) 1974; 46
References_xml – volume: 66
  start-page: 4
  year: 1994
  end-page: 10
  ident: BIB3
  article-title: The role of water in sludge dewatering
  publication-title: Water Environ. Res.
– volume: 46
  start-page: 543
  year: 1974
  end-page: 553
  ident: BIB5
  article-title: Control of biological solids concentration in extended aeration
  publication-title: J. WPCF
– volume: 44
  start-page: 1806
  year: 1972
  end-page: 1811
  ident: BIB17
  article-title: Alkalische Hydrolyse von Klärschlamm am Beispiel der Kläranlage Dormagen der Bayer AG
  publication-title: Korrespondenz Abwasser
– volume: 17
  start-page: 222
  year: 1969
  ident: BIB27
  article-title: Cation-dependent flocculation in a Flavobacterium species predominant in activated sludge
  publication-title: Appl. Microbiol.
– volume: 12
  start-page: 520
  year: 1972
  ident: BIB30
  article-title: Polymer interactions at activated sludge surfaces
  publication-title: J. Effluent Water Treatment
– volume: 21
  start-page: 1319
  year: 1987
  end-page: 1327
  ident: BIB1
  article-title: Bound water content of biological sludges in relation to filtration and dewatering
  publication-title: Water Res.
– volume: 54
  start-page: 146
  year: 1982
  end-page: 152
  ident: BIB11
  article-title: Improved thermal sludge conditioning by treatment with acids and bases
  publication-title: J. WPCF
– volume: 50
  start-page: 1911
  year: 1978
  ident: BIB35
  article-title: Influence of particle size on sludge dewaterability
  publication-title: J. Water Pollut. Control Fed.
– reference: J. Baeyens, L. Hosten, E. Van Vaerenbergh, Wastewater Treatment, Kluwer Academic Publishers, The Netherlands 1997, pp. 876 (in Dutch).
– volume: 24
  start-page: 21
  year: 1991
  end-page: 28
  ident: BIB29
  article-title: Study of flocculation mechanisms by observing effects of a complexing agent on activated sludge properties
  publication-title: Water Sci. Technol.
– volume: 37
  start-page: 317
  year: 1998
  end-page: 324
  ident: BIB23
  article-title: Effects of potassium ion on sludge settling dewatering and effluent properties
  publication-title: Water Sci. Technol.
– volume: 38
  start-page: 119
  year: 1998
  ident: BIB32
  article-title: Monitoring cations to predict and improve activated sludge settling and dewatering properties of an industrial wastewater
  publication-title: Water Sci. Technol.
– volume: 73
  start-page: 30
  year: 2001
  end-page: 36
  ident: BIB36
  article-title: Influence of cations on activated-sludge effluent quality
  publication-title: Water Environ. Res.
– volume: 44
  start-page: 121
  year: 2001
  end-page: 128
  ident: BIB4
  article-title: Prospects and problems of sludge pre-treatment processes
  publication-title: Water Sci. Technol.
– volume: 69
  start-page: 215
  year: 1997
  end-page: 224
  ident: BIB21
  article-title: The effect of cations on the settling and dewatering of activated sludges: laboratory results
  publication-title: Water Environ. Res.
– volume: 69
  start-page: 225
  year: 1997
  end-page: 232
  ident: BIB22
  article-title: Dewatering and settling of activated sludges: the case for using cation analysis
  publication-title: Water Environ. Res.
– reference: G.L. Kovacs, U.S. Patent 5 087 378 (11 February 1992).
– volume: 61
  start-page: 1678
  year: 1989
  end-page: 1683
  ident: BIB12
  article-title: Low-level chemical pre-treatment for enhanced sludge solubilization
  publication-title: J. WPCF
– reference: J.T. Novak, C.W. Randall, Sludge flocculation at an industrial waste facility, in: Proceedings of the 18th Mid-Atlantic Industrial Waste Conference on Toxic and Hazardous Wastes, Technomic Publishing Company Inc., Lancaster, 1986.
– volume: 70
  start-page: 984
  year: 1998
  end-page: 996
  ident: BIB33
  article-title: The effect of cationic salt addition on the settling and dewatering properties of an industrial activated sludge
  publication-title: Water Environ. Res.
– reference: H.W. Campbell, P.J. Crecuolo, Assessment of sludge conditionability using rheological properties, in: T.J. Casey, P. L’hermite, P.J. Newman (Ed.), Methods of Characterization of Sewage Sludge, D. Reidel Publishing Company, Holland, 1984.
– reference: E. Neyens, J. Baeyens, M. Weemaes, B. De heyder, Hot acid hydrolysis as a potential treatment of thickened sewage sludge, J. Hazard. Mater., in press.
– volume: 18
  start-page: 1343
  year: 1984
  end-page: 1353
  ident: BIB10
  article-title: The effect of thermal pre-treatment on the anaerobic biodegradability and toxicity of waste activated sludge
  publication-title: Water Res.
– volume: 42
  start-page: 119
  year: 2000
  end-page: 126
  ident: BIB18
  article-title: Effect of sludge cell disruption on compactibility of biological sludges
  publication-title: Water Sci. Technol.
– volume: 8
  start-page: 219
  year: 1979
  end-page: 233
  ident: BIB9
  article-title: Thermochemical pre-treatment of nitrogenous materials to increase methane yield
  publication-title: Biotechnol. Bioeng. Symp.
– volume: 103
  start-page: 815
  year: 1977
  ident: BIB34
  article-title: Factors influencing activated sludge properties
  publication-title: J. Environ. Eng.
– reference: S.E. Woodard, R.F. Wukasch, A Hydrolysis/Thickening/Filtration Process for the Treatment of Waste Activated Sludge, Water Quality International ’94, Book 5.
– volume: 20
  start-page: 203
  year: 1988
  end-page: 205
  ident: BIB24
  article-title: Using the capillary suction time device for characterizing sludge dewaterability
  publication-title: Water Sci. Technol.
– volume: 22
  start-page: 135
  year: 1990
  end-page: 142
  ident: BIB2
  article-title: Moisture distribution in sludges
  publication-title: Water Sci. Technol.
– volume: 16
  start-page: 1597
  year: 1992
  ident: BIB28
  article-title: On the stability of activated sludge flocs with implications to dewatering
  publication-title: Water Res.
– volume: 25
  start-page: 211
  year: 1992
  end-page: 218
  ident: BIB15
  article-title: Generation of an effective internal carbon source for de-nitrification through thermal hydrolysis of pre-precipitated sludge
  publication-title: Water Sci. Technol.
– volume: 46
  start-page: 102
  year: 1974
  end-page: 112
  ident: BIB7
  article-title: Improvement of the aerobic sludge digestion process efficiency
  publication-title: J. WPCF
– volume: 73
  start-page: 207
  year: 1974
  end-page: 209
  ident: BIB8
  article-title: The effect of heat treatment on the solubilization of heavy metals
  publication-title: Water Pollut. Contr.
– volume: 16
  start-page: 1
  year: 1974
  end-page: 20
  ident: BIB6
  article-title: Nitrogen metabolism in extended aeration processes operated with and without hydrolytic pre-treatment of portions of the sludge
  publication-title: Biotechnol. Bioeng.
– volume: 18
  start-page: 1523
  year: 1984
  end-page: 1528
  ident: BIB20
  article-title: Lysis as a factor in sludge flocculation
  publication-title: Water Res.
– volume: 62
  start-page: 81
  year: 1990
  end-page: 87
  ident: BIB13
  article-title: Low-level alkaline solubilization for enhanced anaerobic digestion
  publication-title: J. WPCF
SSID ssj0001754
Score 2.1969368
Snippet The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in...
Alkaline thermal hydrolysis of sludge generated by waste activated sludge treatment of wastewater was evaluated. Laboratory trials demonstrated the efficacy of...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 295
SubjectTerms Applied sciences
Ca(OH) 2
Dewaterability
Exact sciences and technology
Hydrogen-Ion Concentration
Hydrolysis
Incineration
KOH
Mg(OH) 2
NaOH
Other industrial wastes. Sewage sludge
Pollution
Reduction
Refuse Disposal
Sludge
Temperature
Thermal hydrolysis
Waste Disposal, Fluid
Wastes
Water - chemistry
Title Alkaline thermal sludge hydrolysis
URI https://dx.doi.org/10.1016/S0304-3894(02)00286-8
https://www.ncbi.nlm.nih.gov/pubmed/12573845
https://www.proquest.com/docview/14655786
https://www.proquest.com/docview/73005946
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-3336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001754
  issn: 0304-3894
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-3336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001754
  issn: 0304-3894
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001754
  issn: 0304-3894
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001754
  issn: 0304-3894
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xWEAI8aY8SoUYYAhtHdtxxgqBynOhSGyWHTtQUdqqDyEWfjtnJyV0ACRW586xPjt3X-y7M8CRNkIYrXRArWUBFTwNBDH1IE2J1pZERMcuG_n2jjcf6NUje5yBs0kujAurzG1_ZtO9tc5bqjma1X67Xb13h3robt0PEDpJ7hJ-XfUvXNOnH0WYB7rHrISUOwFA6SKLJ-vBNx7XyInvJBA_-aelvhoiaml23cXPfNT7pYsVWM4JZaWRjXkVZmx3DRa_lRlcg9kb9bYOh43Oi3KksuI43yvqDDtj82Qrz-9m0POVSTagdXHeOmsG-Q0JQUJZPApEQhh6eEOZ5knNKMrDkBrj9mEjt71JQ2uYiUkaIRFLNCdxTas0jo2IwhCfb8Jct9e121DRGnkDq4cqsYSmkYl5go5di8RSrZDklYBOYJFJXj3cXWLRkUWYGKIpHZqyRqRHU4oSnH6p9bPyGX8piAnmcmodSDTxf6mWp-aoeCF1tIvzEhxMJk3iR-RORlTX9sZDJ8HQdP0i4cv6xxQltrLZLnpHoxcKynb-P_JdWPAxgj4YfA_mRoOx3UeuM9Jlv5jLMN-4vG7efQKSjfWF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTwIxEJ0AHtQY47f4AcR40MMKdttu90iMBhW5iIm3pt121YhABGL89067i-hBTbx2O93mtfvmbduZAhxqI4TRSgfUWhZQwdNAEHMapCnR2pKI6NhFI990eOuOXt2z-wKcTWNh3LHKnPszTvdsnZfUczTrw6en-q3b1EN3636A0ElyUYQ5ypCTSzDXvLxudT4JGT1klkXKbQKgwSyQJ2vEFx41yLFvJxA_uailoRohcGl248XPktS7posVWM41Za2ZdXsVCra_BotfMg2uQbGt3tbhoNl7Vk5X1pzse0GbUW9iHmzt8d28Dnxykg3oXpx3z1pBfklCkFAWjwOREIZO3lCmedIwivIwpMa4pdjIrXDS0BpmYpJGqMUSzUnc0CqNYyOiMMTnm1DqD_p2G2pao3Rgp6FKLKFpZGKeoG_XIrFUK9R5ZaBTWGSSJxB391j05OykGKIpHZqyQaRHU4oynHyaDbMMGn8ZiCnm8ttUkMjyf5lWvo3R7IXUKS_Oy1CdDprE78htjqi-HUxGrgZD9vqlhs_sH1OssZWN9qx15L1QULbz_55XYb7VvWnL9mXnehcW_JFBHzi_B6Xx68Tuo_QZ60o-tT8AAqD4OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alkaline+thermal+sludge+hydrolysis&rft.jtitle=Journal+of+hazardous+materials&rft.au=Neyens%2C+E&rft.au=Baeyens%2C+J&rft.au=Creemers%2C+C&rft.date=2003-02-28&rft.pub=Elsevier+B.V&rft.issn=0304-3894&rft.eissn=1873-3336&rft.volume=97&rft.issue=1&rft.spage=295&rft.epage=314&rft_id=info:doi/10.1016%2FS0304-3894%2802%2900286-8&rft.externalDocID=S0304389402002868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon