Alkaline thermal sludge hydrolysis
The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and resear...
Saved in:
Published in | Journal of hazardous materials Vol. 97; no. 1; pp. 295 - 314 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
28.02.2003
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0304-3894 1873-3336 |
DOI | 10.1016/S0304-3894(02)00286-8 |
Cover
Abstract | The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K
+/Na
+ and Ca
2+/Mg
2+) on the sludge dewaterability, only the use of Ca
2+ appears to offer the best solution. The lesser effects of K
+, Na
+ and Mg
2+ confirm previous experimental findings.
As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)
2 is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100
°C; at a pH≈10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34
s for the initial untreated sample to approximately 22
s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46%.
Finally, the mass and energy balances of a wastewater treatment plant with/without advanced sludge treatment (AST) are compared. The data clearly illustrate the benefits of using an alkaline AST-step in the system. |
---|---|
AbstractList | The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K
+/Na
+ and Ca
2+/Mg
2+) on the sludge dewaterability, only the use of Ca
2+ appears to offer the best solution. The lesser effects of K
+, Na
+ and Mg
2+ confirm previous experimental findings.
As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)
2 is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100
°C; at a pH≈10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34
s for the initial untreated sample to approximately 22
s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46%.
Finally, the mass and energy balances of a wastewater treatment plant with/without advanced sludge treatment (AST) are compared. The data clearly illustrate the benefits of using an alkaline AST-step in the system. Alkaline thermal hydrolysis of sludge generated by waste activated sludge treatment of wastewater was evaluated. Laboratory trials demonstrated the efficacy of the process based on calcium hydroxide in reducing residual sludge volume and in improving dewaterability. These goals are realized at an operating temperature of 100 degree C, pH 10,and a 60-min reaction time; most pathogens are also inactivated by the treatment. The rate of mechanical dewatering increased and the amount of sludge to be dewatered is reduced to about 60% of the initial volume. The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46%.Finally, the mass and energy balances of a wastewater treatment plant with/without advanced sludge treatment (AST) are compared. The data clearly illustrate the benefits of using an alkaline AST-step in the system.The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46%.Finally, the mass and energy balances of a wastewater treatment plant with/without advanced sludge treatment (AST) are compared. The data clearly illustrate the benefits of using an alkaline AST-step in the system. The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46%.Finally, the mass and energy balances of a wastewater treatment plant with/without advanced sludge treatment (AST) are compared. The data clearly illustrate the benefits of using an alkaline AST-step in the system. |
Author | Baeyens, J Neyens, E Creemers, C |
Author_xml | – sequence: 1 givenname: E surname: Neyens fullname: Neyens, E email: elisabeth.neyens@cit.kuleuven.ac.be – sequence: 2 givenname: J surname: Baeyens fullname: Baeyens, J – sequence: 3 givenname: C surname: Creemers fullname: Creemers, C |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14643966$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12573845$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtPGzEUhS2UioTHTwBFlVq1i6HXz7HVBUKoDyQkFmVvOfYdYnBmqD1Byr_vhIQgdZPVXdzvnPs4R2TUdi0SckbhggJV3_4AB1FxbcQXYF8BmFaVPiATqmtecc7ViEx2yJgclfIIALSW4pCMKZM110JOyMer9ORSbHHazzEvXJqWtAwPOJ2vQu7SqsRyQj40LhU83dZjcv_zx_317-r27tfN9dVt5YU0faU9k5qxIORMeQhOKM5FCKZp6ppy5IJjkMGwplYS_EwxAzPXGBOGhfnQPyafN7bPufu7xNLbRSweU3Itdstiaw4gzeC6D6RCSVnrNXi-BZezBQb7nOPC5ZV9u34APm0BV7xLTXatj-WdE0pwo9ZG3zecz10pGRvrY-_62LV9djFZCnadiX3NxK4fboHZ10ysHtTyP_VuwB7d5UaHw9NfImZbfMTWY4gZfW9DF_c4_AN7pKB3 |
CODEN | JHMAD9 |
CitedBy_id | crossref_primary_10_1016_j_cej_2013_06_046 crossref_primary_10_1016_j_procbio_2006_11_010 crossref_primary_10_1016_j_seppur_2018_03_017 crossref_primary_10_1080_19443994_2014_884685 crossref_primary_10_1089_ees_2018_0461 crossref_primary_10_2208_jscejg_62_427 crossref_primary_10_1016_j_renene_2009_10_003 crossref_primary_10_1007_s11274_005_0700_y crossref_primary_10_1016_j_bej_2010_08_001 crossref_primary_10_1016_j_ultsonch_2018_07_005 crossref_primary_10_1016_j_biortech_2013_03_024 crossref_primary_10_1016_S0043_1354_03_00441_X crossref_primary_10_1007_s11157_016_9396_8 crossref_primary_10_1007_s12010_011_9407_8 crossref_primary_10_1016_j_jiec_2014_12_019 crossref_primary_10_1016_j_renene_2015_11_060 crossref_primary_10_1080_09593330_2016_1213771 crossref_primary_10_1021_acs_energyfuels_9b02758 crossref_primary_10_1007_s11814_019_0457_x crossref_primary_10_1016_j_biortech_2009_07_022 crossref_primary_10_1016_j_chemosphere_2016_10_108 crossref_primary_10_1016_j_jhazmat_2007_01_100 crossref_primary_10_1016_j_watres_2017_03_047 crossref_primary_10_1016_j_jhazmat_2012_03_070 crossref_primary_10_1016_j_biortech_2012_02_112 crossref_primary_10_1016_j_wasman_2010_12_005 crossref_primary_10_1016_j_rser_2019_04_011 crossref_primary_10_1007_s10853_007_1957_3 crossref_primary_10_1002_wer_1142 crossref_primary_10_1016_j_jes_2014_07_024 crossref_primary_10_1080_09593330_2016_1220630 crossref_primary_10_1016_j_cej_2014_08_046 crossref_primary_10_1007_s11356_018_1213_1 crossref_primary_10_1016_j_chemosphere_2009_12_053 crossref_primary_10_1016_j_radphyschem_2011_06_011 crossref_primary_10_1016_j_biortech_2010_04_066 crossref_primary_10_1016_j_watres_2020_116576 crossref_primary_10_1016_j_watres_2005_04_072 crossref_primary_10_1016_j_watres_2013_11_034 crossref_primary_10_1002_jctb_2189 crossref_primary_10_1016_j_pnsc_2009_07_008 crossref_primary_10_1016_j_ijhydene_2021_05_097 crossref_primary_10_1016_j_biortech_2012_05_134 crossref_primary_10_1089_ees_2012_0480 crossref_primary_10_4028_www_scientific_net_AMM_768_108 crossref_primary_10_1016_j_watres_2016_11_055 crossref_primary_10_1016_j_envpol_2024_124955 crossref_primary_10_1016_j_biortech_2009_06_049 crossref_primary_10_1108_14777830410513559 crossref_primary_10_3109_1040841X_2012_694410 crossref_primary_10_1016_j_scitotenv_2018_06_392 crossref_primary_10_1016_S1001_0742_08_62264_0 crossref_primary_10_1016_j_biortech_2014_10_122 crossref_primary_10_1016_j_jenvman_2016_04_021 crossref_primary_10_1016_j_jhazmat_2010_08_003 crossref_primary_10_1080_09593330802015508 crossref_primary_10_1016_j_rser_2021_111877 crossref_primary_10_1021_ef301986d crossref_primary_10_1007_s11157_011_9244_9 crossref_primary_10_1016_j_biortech_2007_09_019 crossref_primary_10_1016_j_biortech_2012_08_039 crossref_primary_10_1016_j_watres_2011_05_018 crossref_primary_10_1039_C7RA01060E crossref_primary_10_1016_j_watres_2014_05_012 crossref_primary_10_1080_19443994_2014_932717 crossref_primary_10_1016_j_scitotenv_2022_157727 crossref_primary_10_1016_j_biortech_2013_04_061 crossref_primary_10_1016_j_cej_2015_08_121 crossref_primary_10_1016_j_cej_2011_01_093 crossref_primary_10_1016_j_rser_2024_114453 crossref_primary_10_1016_j_watres_2014_12_027 crossref_primary_10_1007_s13762_017_1451_7 crossref_primary_10_1016_j_chemosphere_2021_133209 crossref_primary_10_1016_j_ultsonch_2016_04_027 crossref_primary_10_1007_s10163_016_0577_x crossref_primary_10_1016_j_watres_2021_117465 crossref_primary_10_1016_j_jece_2019_103310 crossref_primary_10_3390_cleantechnol4030052 crossref_primary_10_1016_j_biortech_2011_08_098 crossref_primary_10_1016_j_biortech_2018_04_081 crossref_primary_10_3390_en13205349 crossref_primary_10_1016_j_proeng_2012_01_1207 crossref_primary_10_1016_j_cej_2014_04_092 crossref_primary_10_1016_j_watres_2011_11_014 crossref_primary_10_3103_S1063455X24060109 crossref_primary_10_1007_s12257_012_0492_5 crossref_primary_10_1016_j_biortech_2024_131373 crossref_primary_10_1016_j_wasman_2022_09_009 crossref_primary_10_1016_j_wasman_2023_07_034 crossref_primary_10_1016_j_jenvman_2021_114408 crossref_primary_10_2175_106143010X12681059116419 crossref_primary_10_12677_SD_2016_63017 crossref_primary_10_1016_j_jtice_2024_105571 crossref_primary_10_1016_j_eti_2023_103134 crossref_primary_10_1080_07373937_2013_871288 crossref_primary_10_1016_j_scitotenv_2021_146966 crossref_primary_10_1080_07373937_2012_697947 crossref_primary_10_1080_09593330_2021_2012268 crossref_primary_10_1016_j_jenvman_2015_06_045 crossref_primary_10_1016_j_jhazmat_2009_02_067 crossref_primary_10_1007_s13762_020_02697_x crossref_primary_10_1111_wej_12180 crossref_primary_10_1016_j_biortech_2017_08_216 crossref_primary_10_1016_j_cep_2008_03_012 crossref_primary_10_1080_09593330_2013_812667 crossref_primary_10_1016_j_psep_2017_10_004 crossref_primary_10_1016_j_biombioe_2022_106411 crossref_primary_10_1016_j_scitotenv_2008_11_015 crossref_primary_10_1016_j_cej_2019_123410 crossref_primary_10_1080_07373937_2011_602486 crossref_primary_10_1039_C7EW00189D crossref_primary_10_1016_j_jiec_2012_08_002 crossref_primary_10_1002_ep_13620 crossref_primary_10_1007_s11356_019_04961_1 crossref_primary_10_1016_j_apenergy_2016_09_042 crossref_primary_10_1088_1755_1315_446_3_032078 crossref_primary_10_1016_j_conbuildmat_2019_117715 crossref_primary_10_1016_j_biortech_2016_08_043 crossref_primary_10_3985_jswme_19_1 crossref_primary_10_3390_ma15207384 crossref_primary_10_1039_C8EW00356D crossref_primary_10_1007_s10163_016_0522_z crossref_primary_10_1016_j_jenvman_2015_05_014 crossref_primary_10_1016_j_jhazmat_2008_05_038 crossref_primary_10_1111_gcbb_13150 crossref_primary_10_1016_j_watres_2015_01_005 crossref_primary_10_1016_j_biortech_2018_12_010 crossref_primary_10_1016_S1001_0742_11_61031_0 crossref_primary_10_1016_j_bej_2014_03_005 crossref_primary_10_1016_j_chemosphere_2021_130665 crossref_primary_10_1007_s13762_012_0120_0 crossref_primary_10_1080_09593330_2019_1662097 crossref_primary_10_1016_j_watres_2015_06_021 crossref_primary_10_1016_j_desal_2008_06_023 crossref_primary_10_1016_j_jwpe_2022_102994 crossref_primary_10_4028_www_scientific_net_AMM_361_363_1046 crossref_primary_10_1016_j_fuproc_2019_106196 crossref_primary_10_1016_j_watres_2008_08_018 crossref_primary_10_12989_aer_2016_5_4_251 crossref_primary_10_1016_j_watres_2017_04_055 crossref_primary_10_1016_j_serj_2015_10_005 crossref_primary_10_1016_j_watres_2010_05_052 crossref_primary_10_1039_D0GC01701A crossref_primary_10_3389_fenrg_2019_00047 crossref_primary_10_1016_j_biortech_2012_06_100 crossref_primary_10_1016_j_biortech_2015_08_038 crossref_primary_10_1016_j_desal_2011_02_030 crossref_primary_10_11001_jksww_2024_38_6_361 crossref_primary_10_1016_j_jwpe_2021_101939 crossref_primary_10_1016_j_proenv_2016_02_049 crossref_primary_10_3390_su16156419 crossref_primary_10_1016_j_chemosphere_2017_02_046 crossref_primary_10_3390_ijerph20032544 crossref_primary_10_1016_j_ultsonch_2016_11_006 crossref_primary_10_3390_en17174447 crossref_primary_10_1007_s10163_013_0153_6 crossref_primary_10_1080_1064119X_2020_1750514 crossref_primary_10_1016_j_scitotenv_2024_172682 crossref_primary_10_1016_j_bej_2012_04_013 crossref_primary_10_1016_j_jhazmat_2009_06_146 crossref_primary_10_1016_j_scitotenv_2023_168605 crossref_primary_10_1016_j_jhazmat_2011_04_099 crossref_primary_10_1016_j_seppur_2017_11_047 crossref_primary_10_1016_j_watres_2005_05_007 crossref_primary_10_1089_ees_2006_23_994 crossref_primary_10_1016_j_envres_2020_109746 crossref_primary_10_1016_j_scitotenv_2023_162341 crossref_primary_10_1039_C4RA07235A crossref_primary_10_1016_j_biortech_2008_05_028 crossref_primary_10_1016_j_envint_2020_105629 crossref_primary_10_1016_j_jclepro_2017_11_195 crossref_primary_10_1007_BF03326216 crossref_primary_10_1016_j_chemosphere_2016_06_112 crossref_primary_10_1016_j_jaap_2022_105678 crossref_primary_10_1016_j_joei_2023_101340 crossref_primary_10_1016_j_seppur_2018_01_008 |
ContentType | Journal Article |
Copyright | 2002 Elsevier Science B.V. 2003 INIST-CNRS |
Copyright_xml | – notice: 2002 Elsevier Science B.V. – notice: 2003 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7ST C1K SOI 7X8 |
DOI | 10.1016/S0304-3894(02)00286-8 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Environment Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law Applied Sciences |
EISSN | 1873-3336 |
EndPage | 314 |
ExternalDocumentID | 12573845 14643966 10_1016_S0304_3894_02_00286_8 S0304389402002868 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .HR .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLECG BLXMC CS3 D-I DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HMC HVGLF HZ~ IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SEN SES SEW SPC SPCBC SSG SSJ SSZ T5K T9H TAE UAO VH1 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AIIUN AKBMS AKYEP ANKPU CITATION EFKBS EFLBG ~HD AEGFY AFJKZ BNPGV IQODW SSH CGR CUY CVF ECM EIF NPM 7ST AGCQF C1K SOI 7X8 |
ID | FETCH-LOGICAL-c459t-8c25822d45b6c0da46334dd9ff7713e343ed5d92f7650cb6290baf99d87333e3 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 |
IngestDate | Sun Sep 28 06:38:18 EDT 2025 Fri Sep 05 10:35:13 EDT 2025 Wed Feb 19 01:37:27 EST 2025 Wed Apr 02 07:29:34 EDT 2025 Wed Oct 01 04:10:02 EDT 2025 Thu Apr 24 23:08:25 EDT 2025 Tue Jul 09 07:17:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Dewaterability Reduction Thermal hydrolysis KOH NaOH Sludge Mg(OH) 2 Ca(OH) 2 Thermochemical treatment Mechanical separation Waste treatment Temperature effect Dehydration Sewage sludge Hydrolysis Calcium Hydroxides Potassium Hydroxides Medium effect Sodium Hydroxides Magnesium Hydroxides pH Pretreatment |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-8c25822d45b6c0da46334dd9ff7713e343ed5d92f7650cb6290baf99d87333e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 12573845 |
PQID | 14655786 |
PQPubID | 23462 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_73005946 proquest_miscellaneous_14655786 pubmed_primary_12573845 pascalfrancis_primary_14643966 crossref_citationtrail_10_1016_S0304_3894_02_00286_8 crossref_primary_10_1016_S0304_3894_02_00286_8 elsevier_sciencedirect_doi_10_1016_S0304_3894_02_00286_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-02-28 |
PublicationDateYYYYMMDD | 2003-02-28 |
PublicationDate_xml | – month: 02 year: 2003 text: 2003-02-28 day: 28 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2003 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Murthy, Novak, de Haas (BIB32) 1998; 38 Stuckey, McCarty (BIB9) 1979; 8 Tezuka (BIB27) 1969; 17 Murthy, Novak (BIB36) 2001; 73 Smith, Göransson (BIB15) 1992; 25 Yang, Gaudy (BIB6) 1974; 16 Higgins, Novak (BIB21) 1997; 69 Forster, Lewin (BIB30) 1972; 12 Erdincler, Vesilind (BIB18) 2000; 42 Stuckey, McCarty (BIB10) 1984; 18 J.T. Novak, C.W. Randall, Sludge flocculation at an industrial waste facility, in: Proceedings of the 18th Mid-Atlantic Industrial Waste Conference on Toxic and Hazardous Wastes, Technomic Publishing Company Inc., Lancaster, 1986. S.E. Woodard, R.F. Wukasch, A Hydrolysis/Thickening/Filtration Process for the Treatment of Waste Activated Sludge, Water Quality International ’94, Book 5. Novak, Becker, Zurow (BIB34) 1977; 103 J. Baeyens, L. Hosten, E. Van Vaerenbergh, Wastewater Treatment, Kluwer Academic Publishers, The Netherlands 1997, pp. 876 (in Dutch). Vesilind (BIB3) 1994; 66 Vesilind, Davis (BIB24) 1988; 20 Tsang, Vesilind (BIB2) 1990; 22 Katsiris, Kouzeli-Katsiri (BIB1) 1987; 21 Eriksson, Alm (BIB29) 1991; 24 Singh, Patterson (BIB7) 1974; 46 Murthy, Novak (BIB23) 1998; 37 Rajan, Lin, Ray (BIB12) 1989; 61 Karr, Keinath (BIB35) 1978; 50 Higgins, Novak (BIB22) 1997; 69 Novak, Love, Smith, Wheeler (BIB33) 1998; 70 H.W. Campbell, P.J. Crecuolo, Assessment of sludge conditionability using rheological properties, in: T.J. Casey, P. L’hermite, P.J. Newman (Ed.), Methods of Characterization of Sewage Sludge, D. Reidel Publishing Company, Holland, 1984. Ray, Lin, Rajan (BIB13) 1990; 62 Everett (BIB8) 1974; 73 Vallom, McLoughlin (BIB20) 1984; 18 Bruus, Nielsen, Keiding (BIB28) 1992; 16 Müller (BIB4) 2001; 44 G.L. Kovacs, U.S. Patent 5 087 378 (11 February 1992). E. Neyens, J. Baeyens, M. Weemaes, B. De heyder, Hot acid hydrolysis as a potential treatment of thickened sewage sludge, J. Hazard. Mater., in press. Alsop, Conway (BIB11) 1982; 54 Burghardt, Krull, Hempel, Braunschweig, Pelousek, Bahnmüller (BIB17) 1972; 44 Yang, Gaudy (BIB5) 1974; 46 |
References_xml | – volume: 66 start-page: 4 year: 1994 end-page: 10 ident: BIB3 article-title: The role of water in sludge dewatering publication-title: Water Environ. Res. – volume: 46 start-page: 543 year: 1974 end-page: 553 ident: BIB5 article-title: Control of biological solids concentration in extended aeration publication-title: J. WPCF – volume: 44 start-page: 1806 year: 1972 end-page: 1811 ident: BIB17 article-title: Alkalische Hydrolyse von Klärschlamm am Beispiel der Kläranlage Dormagen der Bayer AG publication-title: Korrespondenz Abwasser – volume: 17 start-page: 222 year: 1969 ident: BIB27 article-title: Cation-dependent flocculation in a Flavobacterium species predominant in activated sludge publication-title: Appl. Microbiol. – volume: 12 start-page: 520 year: 1972 ident: BIB30 article-title: Polymer interactions at activated sludge surfaces publication-title: J. Effluent Water Treatment – volume: 21 start-page: 1319 year: 1987 end-page: 1327 ident: BIB1 article-title: Bound water content of biological sludges in relation to filtration and dewatering publication-title: Water Res. – volume: 54 start-page: 146 year: 1982 end-page: 152 ident: BIB11 article-title: Improved thermal sludge conditioning by treatment with acids and bases publication-title: J. WPCF – volume: 50 start-page: 1911 year: 1978 ident: BIB35 article-title: Influence of particle size on sludge dewaterability publication-title: J. Water Pollut. Control Fed. – reference: J. Baeyens, L. Hosten, E. Van Vaerenbergh, Wastewater Treatment, Kluwer Academic Publishers, The Netherlands 1997, pp. 876 (in Dutch). – volume: 24 start-page: 21 year: 1991 end-page: 28 ident: BIB29 article-title: Study of flocculation mechanisms by observing effects of a complexing agent on activated sludge properties publication-title: Water Sci. Technol. – volume: 37 start-page: 317 year: 1998 end-page: 324 ident: BIB23 article-title: Effects of potassium ion on sludge settling dewatering and effluent properties publication-title: Water Sci. Technol. – volume: 38 start-page: 119 year: 1998 ident: BIB32 article-title: Monitoring cations to predict and improve activated sludge settling and dewatering properties of an industrial wastewater publication-title: Water Sci. Technol. – volume: 73 start-page: 30 year: 2001 end-page: 36 ident: BIB36 article-title: Influence of cations on activated-sludge effluent quality publication-title: Water Environ. Res. – volume: 44 start-page: 121 year: 2001 end-page: 128 ident: BIB4 article-title: Prospects and problems of sludge pre-treatment processes publication-title: Water Sci. Technol. – volume: 69 start-page: 215 year: 1997 end-page: 224 ident: BIB21 article-title: The effect of cations on the settling and dewatering of activated sludges: laboratory results publication-title: Water Environ. Res. – volume: 69 start-page: 225 year: 1997 end-page: 232 ident: BIB22 article-title: Dewatering and settling of activated sludges: the case for using cation analysis publication-title: Water Environ. Res. – reference: G.L. Kovacs, U.S. Patent 5 087 378 (11 February 1992). – volume: 61 start-page: 1678 year: 1989 end-page: 1683 ident: BIB12 article-title: Low-level chemical pre-treatment for enhanced sludge solubilization publication-title: J. WPCF – reference: J.T. Novak, C.W. Randall, Sludge flocculation at an industrial waste facility, in: Proceedings of the 18th Mid-Atlantic Industrial Waste Conference on Toxic and Hazardous Wastes, Technomic Publishing Company Inc., Lancaster, 1986. – volume: 70 start-page: 984 year: 1998 end-page: 996 ident: BIB33 article-title: The effect of cationic salt addition on the settling and dewatering properties of an industrial activated sludge publication-title: Water Environ. Res. – reference: H.W. Campbell, P.J. Crecuolo, Assessment of sludge conditionability using rheological properties, in: T.J. Casey, P. L’hermite, P.J. Newman (Ed.), Methods of Characterization of Sewage Sludge, D. Reidel Publishing Company, Holland, 1984. – reference: E. Neyens, J. Baeyens, M. Weemaes, B. De heyder, Hot acid hydrolysis as a potential treatment of thickened sewage sludge, J. Hazard. Mater., in press. – volume: 18 start-page: 1343 year: 1984 end-page: 1353 ident: BIB10 article-title: The effect of thermal pre-treatment on the anaerobic biodegradability and toxicity of waste activated sludge publication-title: Water Res. – volume: 42 start-page: 119 year: 2000 end-page: 126 ident: BIB18 article-title: Effect of sludge cell disruption on compactibility of biological sludges publication-title: Water Sci. Technol. – volume: 8 start-page: 219 year: 1979 end-page: 233 ident: BIB9 article-title: Thermochemical pre-treatment of nitrogenous materials to increase methane yield publication-title: Biotechnol. Bioeng. Symp. – volume: 103 start-page: 815 year: 1977 ident: BIB34 article-title: Factors influencing activated sludge properties publication-title: J. Environ. Eng. – reference: S.E. Woodard, R.F. Wukasch, A Hydrolysis/Thickening/Filtration Process for the Treatment of Waste Activated Sludge, Water Quality International ’94, Book 5. – volume: 20 start-page: 203 year: 1988 end-page: 205 ident: BIB24 article-title: Using the capillary suction time device for characterizing sludge dewaterability publication-title: Water Sci. Technol. – volume: 22 start-page: 135 year: 1990 end-page: 142 ident: BIB2 article-title: Moisture distribution in sludges publication-title: Water Sci. Technol. – volume: 16 start-page: 1597 year: 1992 ident: BIB28 article-title: On the stability of activated sludge flocs with implications to dewatering publication-title: Water Res. – volume: 25 start-page: 211 year: 1992 end-page: 218 ident: BIB15 article-title: Generation of an effective internal carbon source for de-nitrification through thermal hydrolysis of pre-precipitated sludge publication-title: Water Sci. Technol. – volume: 46 start-page: 102 year: 1974 end-page: 112 ident: BIB7 article-title: Improvement of the aerobic sludge digestion process efficiency publication-title: J. WPCF – volume: 73 start-page: 207 year: 1974 end-page: 209 ident: BIB8 article-title: The effect of heat treatment on the solubilization of heavy metals publication-title: Water Pollut. Contr. – volume: 16 start-page: 1 year: 1974 end-page: 20 ident: BIB6 article-title: Nitrogen metabolism in extended aeration processes operated with and without hydrolytic pre-treatment of portions of the sludge publication-title: Biotechnol. Bioeng. – volume: 18 start-page: 1523 year: 1984 end-page: 1528 ident: BIB20 article-title: Lysis as a factor in sludge flocculation publication-title: Water Res. – volume: 62 start-page: 81 year: 1990 end-page: 87 ident: BIB13 article-title: Low-level alkaline solubilization for enhanced anaerobic digestion publication-title: J. WPCF |
SSID | ssj0001754 |
Score | 2.1969368 |
Snippet | The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in... Alkaline thermal hydrolysis of sludge generated by waste activated sludge treatment of wastewater was evaluated. Laboratory trials demonstrated the efficacy of... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 295 |
SubjectTerms | Applied sciences Ca(OH) 2 Dewaterability Exact sciences and technology Hydrogen-Ion Concentration Hydrolysis Incineration KOH Mg(OH) 2 NaOH Other industrial wastes. Sewage sludge Pollution Reduction Refuse Disposal Sludge Temperature Thermal hydrolysis Waste Disposal, Fluid Wastes Water - chemistry |
Title | Alkaline thermal sludge hydrolysis |
URI | https://dx.doi.org/10.1016/S0304-3894(02)00286-8 https://www.ncbi.nlm.nih.gov/pubmed/12573845 https://www.proquest.com/docview/14655786 https://www.proquest.com/docview/73005946 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-3336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001754 issn: 0304-3894 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001754 issn: 0304-3894 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001754 issn: 0304-3894 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001754 issn: 0304-3894 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xWEAI8aY8SoUYYAhtHdtxxgqBynOhSGyWHTtQUdqqDyEWfjtnJyV0ACRW586xPjt3X-y7M8CRNkIYrXRArWUBFTwNBDH1IE2J1pZERMcuG_n2jjcf6NUje5yBs0kujAurzG1_ZtO9tc5bqjma1X67Xb13h3robt0PEDpJ7hJ-XfUvXNOnH0WYB7rHrISUOwFA6SKLJ-vBNx7XyInvJBA_-aelvhoiaml23cXPfNT7pYsVWM4JZaWRjXkVZmx3DRa_lRlcg9kb9bYOh43Oi3KksuI43yvqDDtj82Qrz-9m0POVSTagdXHeOmsG-Q0JQUJZPApEQhh6eEOZ5knNKMrDkBrj9mEjt71JQ2uYiUkaIRFLNCdxTas0jo2IwhCfb8Jct9e121DRGnkDq4cqsYSmkYl5go5di8RSrZDklYBOYJFJXj3cXWLRkUWYGKIpHZqyRqRHU4oSnH6p9bPyGX8piAnmcmodSDTxf6mWp-aoeCF1tIvzEhxMJk3iR-RORlTX9sZDJ8HQdP0i4cv6xxQltrLZLnpHoxcKynb-P_JdWPAxgj4YfA_mRoOx3UeuM9Jlv5jLMN-4vG7efQKSjfWF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTwIxEJ0AHtQY47f4AcR40MMKdttu90iMBhW5iIm3pt121YhABGL89067i-hBTbx2O93mtfvmbduZAhxqI4TRSgfUWhZQwdNAEHMapCnR2pKI6NhFI990eOuOXt2z-wKcTWNh3LHKnPszTvdsnZfUczTrw6en-q3b1EN3636A0ElyUYQ5ypCTSzDXvLxudT4JGT1klkXKbQKgwSyQJ2vEFx41yLFvJxA_uailoRohcGl248XPktS7posVWM41Za2ZdXsVCra_BotfMg2uQbGt3tbhoNl7Vk5X1pzse0GbUW9iHmzt8d28Dnxykg3oXpx3z1pBfklCkFAWjwOREIZO3lCmedIwivIwpMa4pdjIrXDS0BpmYpJGqMUSzUnc0CqNYyOiMMTnm1DqD_p2G2pao3Rgp6FKLKFpZGKeoG_XIrFUK9R5ZaBTWGSSJxB391j05OykGKIpHZqyQaRHU4oynHyaDbMMGn8ZiCnm8ttUkMjyf5lWvo3R7IXUKS_Oy1CdDprE78htjqi-HUxGrgZD9vqlhs_sH1OssZWN9qx15L1QULbz_55XYb7VvWnL9mXnehcW_JFBHzi_B6Xx68Tuo_QZ60o-tT8AAqD4OQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alkaline+thermal+sludge+hydrolysis&rft.jtitle=Journal+of+hazardous+materials&rft.au=Neyens%2C+E&rft.au=Baeyens%2C+J&rft.au=Creemers%2C+C&rft.date=2003-02-28&rft.pub=Elsevier+B.V&rft.issn=0304-3894&rft.eissn=1873-3336&rft.volume=97&rft.issue=1&rft.spage=295&rft.epage=314&rft_id=info:doi/10.1016%2FS0304-3894%2802%2900286-8&rft.externalDocID=S0304389402002868 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |