Superplasticity in Ti–6Al–4V: Characterisation, modelling and applications

The processing regime relevant to superplasticity in the Ti–6Al–4V alloy is identified. The effect is found to be potent in the range 850–900°C at strain rates between 0.001/s and 0.0001/s. Within this regime, mechanical behaviour is characterised by steady-state grain size and negligible cavity for...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 95; pp. 428 - 442
Main Authors Alabort, E., Putman, D., Reed, R.C.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.08.2015
Subjects
Online AccessGet full text
ISSN1359-6454
1873-2453
1873-2453
DOI10.1016/j.actamat.2015.04.056

Cover

Abstract The processing regime relevant to superplasticity in the Ti–6Al–4V alloy is identified. The effect is found to be potent in the range 850–900°C at strain rates between 0.001/s and 0.0001/s. Within this regime, mechanical behaviour is characterised by steady-state grain size and negligible cavity formation; electron backscatter diffraction studies confirm a random texture, leaving grain-boundary sliding as the overarching deformation mechanism. Outside of the superplastic regime, grain size refinement involving recrystallisation and the formation of voids and cavities cause macroscopic softening; low ductility results. Stress hardening is correlated to grain growth and accumulation of dislocations. The findings are used to construct a processing map, on which the dominant deformation mechanisms are identified. Physically-based constitutive equations are presented which are faithful to the observed deformation mechanisms. Internal state variables are used to represent the evolution of grain size, dislocation density and void fraction. Material constants are determined using genetic-algorithm optimisation techniques. Finally, the deformation behaviour of this material in an industrially relevant problem is simulated: the inflation of diffusion-bonded material for the manufacture of hollow, lightweight structures.
AbstractList The processing regime relevant to superplasticity in the Ti-6Al-4V alloy is identified. The effect is found to be potent in the range 850-900 degree C at strain rates between 0.001/s and 0.0001/s. Within this regime, mechanical behaviour is characterised by steady-state grain size and negligible cavity formation; electron backscatter diffraction studies confirm a random texture, leaving grain-boundary sliding as the overarching deformation mechanism. Outside of the superplastic regime, grain size refinement involving recrystallisation and the formation of voids and cavities cause macroscopic softening; low ductility results. Stress hardening is correlated to grain growth and accumulation of dislocations. The findings are used to construct a processing map, on which the dominant deformation mechanisms are identified. Physically-based constitutive equations are presented which are faithful to the observed deformation mechanisms. Internal state variables are used to represent the evolution of grain size, dislocation density and void fraction. Material constants are determined using genetic-algorithm optimisation techniques. Finally, the deformation behaviour of this material in an industrially relevant problem is simulated: the inflation of diffusion-bonded material for the manufacture of hollow, lightweight structures.
The processing regime relevant to superplasticity in the Ti–6Al–4V alloy is identified. The effect is found to be potent in the range 850–900°C at strain rates between 0.001/s and 0.0001/s. Within this regime, mechanical behaviour is characterised by steady-state grain size and negligible cavity formation; electron backscatter diffraction studies confirm a random texture, leaving grain-boundary sliding as the overarching deformation mechanism. Outside of the superplastic regime, grain size refinement involving recrystallisation and the formation of voids and cavities cause macroscopic softening; low ductility results. Stress hardening is correlated to grain growth and accumulation of dislocations. The findings are used to construct a processing map, on which the dominant deformation mechanisms are identified. Physically-based constitutive equations are presented which are faithful to the observed deformation mechanisms. Internal state variables are used to represent the evolution of grain size, dislocation density and void fraction. Material constants are determined using genetic-algorithm optimisation techniques. Finally, the deformation behaviour of this material in an industrially relevant problem is simulated: the inflation of diffusion-bonded material for the manufacture of hollow, lightweight structures.
Author Alabort, E.
Reed, R.C.
Putman, D.
Author_xml – sequence: 1
  givenname: E.
  surname: Alabort
  fullname: Alabort, E.
  organization: Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
– sequence: 2
  givenname: D.
  surname: Putman
  fullname: Putman, D.
  organization: Rolls-Royce plc, PO Box 31, Derby, DE24 8BJ, United Kingdom
– sequence: 3
  givenname: R.C.
  surname: Reed
  fullname: Reed, R.C.
  organization: Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
BookMark eNqNkM9OGzEQhy0EUhPoI1TaIwd2sdd_1tseqiiitFJUDk17tWa9DjhyvIvtgHLjHfqGfRIcwokLvdiWZr75jb8pOvaDNwh9IrgimIjLdQU6wQZSVWPCK8wqzMURmhDZ0LJmnB7nN-VtKRhnH9A0xjXGpG4YnqCfv7ajCaODmKy2aVdYXyztv6e_Yubyyf58LuZ3EHKACTZCsoO_KDZDb5yz_rYA3xcwjs7ql1I8QycrcNF8fL1P0e9vV8v593Jxc_1jPluUmvE2lZJpkDTv11EtSNdx2fashx7rWvdCcqk7AN7JFbQNawkGTrtOdnVDpKBUEHqKxGHu1o-wewTn1BjsBsJOEaz2VtRavVpReysKM5WtZPD8AI5huN-amNTGRp1_A94M26hI00hcN7zGuZUfWnUYYgxm9d8RX95wWeyLnhTAunfprwfaZH0P1gQVtTVem94Go5PqB_vOhGdNy6Wn
CitedBy_id crossref_primary_10_1016_j_actamat_2016_08_034
crossref_primary_10_1007_s11665_024_09834_4
crossref_primary_10_1016_j_msea_2017_10_017
crossref_primary_10_1016_j_jallcom_2019_151759
crossref_primary_10_1080_17415977_2018_1489802
crossref_primary_10_1088_2053_1591_ab4b83
crossref_primary_10_2464_jilm_70_226
crossref_primary_10_1016_j_jallcom_2024_175065
crossref_primary_10_1007_s11665_022_07426_8
crossref_primary_10_55713_jmmm_v34i2_1908
crossref_primary_10_1016_j_jmapro_2024_11_025
crossref_primary_10_1002_mawe_201700040
crossref_primary_10_1051_matecconf_202032104028
crossref_primary_10_1016_j_ijplas_2023_103694
crossref_primary_10_1016_j_jallcom_2024_176388
crossref_primary_10_1016_j_jmatprotec_2020_116904
crossref_primary_10_1134_S0031918X18100083
crossref_primary_10_1016_j_calphad_2023_102654
crossref_primary_10_1016_j_msea_2020_140140
crossref_primary_10_1016_j_ijplas_2017_05_005
crossref_primary_10_1016_j_msea_2024_147419
crossref_primary_10_1016_j_jmrt_2025_03_076
crossref_primary_10_3390_coatings14010122
crossref_primary_10_3390_cryst12020294
crossref_primary_10_1016_j_ijlmm_2022_10_002
crossref_primary_10_1016_j_jallcom_2019_06_323
crossref_primary_10_1016_j_jmatprotec_2018_05_002
crossref_primary_10_2464_jilm_70_562
crossref_primary_10_1016_j_jmrt_2023_06_059
crossref_primary_10_2464_jilm_67_95
crossref_primary_10_4028_www_scientific_net_DDF_385_413
crossref_primary_10_1002_adem_201900672
crossref_primary_10_1007_s43452_023_00707_6
crossref_primary_10_1016_j_msea_2017_09_128
crossref_primary_10_1016_j_actamat_2018_01_060
crossref_primary_10_1016_j_actamat_2021_116730
crossref_primary_10_1016_j_matdes_2018_11_039
crossref_primary_10_3390_ma16041439
crossref_primary_10_3390_ma15010294
crossref_primary_10_1007_s42864_022_00182_1
crossref_primary_10_1016_S1003_6326_23_66287_9
crossref_primary_10_4028_www_scientific_net_SSP_306_15
crossref_primary_10_1016_j_jmapro_2021_10_064
crossref_primary_10_1016_j_matchar_2020_110458
crossref_primary_10_1016_j_msea_2019_03_079
crossref_primary_10_1016_S1003_6326_21_65658_3
crossref_primary_10_3390_jmmp9030086
crossref_primary_10_1016_j_ijmecsci_2019_105178
crossref_primary_10_1016_j_msea_2023_144924
crossref_primary_10_1016_j_matchar_2017_10_002
crossref_primary_10_1016_j_jmrt_2022_04_063
crossref_primary_10_1016_j_jmapro_2019_06_033
crossref_primary_10_1016_j_jmrt_2025_01_121
crossref_primary_10_1051_matecconf_202032111023
crossref_primary_10_3390_cryst11080991
crossref_primary_10_3390_met8100819
crossref_primary_10_3390_met12030513
crossref_primary_10_1016_j_apsusc_2019_05_271
crossref_primary_10_3390_app13042686
crossref_primary_10_1016_j_msea_2021_141367
crossref_primary_10_1016_j_mtcomm_2024_109585
crossref_primary_10_1016_j_ijlmm_2024_06_002
crossref_primary_10_1016_S1003_6326_20_65266_9
crossref_primary_10_1007_s00170_021_08440_1
crossref_primary_10_3390_met10121575
crossref_primary_10_1016_j_compositesb_2022_109940
crossref_primary_10_3390_ma12020223
crossref_primary_10_1007_s00170_023_12036_2
crossref_primary_10_1016_j_actamat_2019_07_026
crossref_primary_10_1007_s12289_018_1432_5
crossref_primary_10_1007_s12540_020_00857_9
crossref_primary_10_1016_j_matpr_2020_11_163
crossref_primary_10_1007_s12289_019_01527_x
crossref_primary_10_1016_j_msea_2020_140545
crossref_primary_10_1016_j_jallcom_2024_176989
crossref_primary_10_14498_vsgtu1726
crossref_primary_10_1016_j_actamat_2017_04_047
crossref_primary_10_4028_www_scientific_net_MSF_941_2343
crossref_primary_10_1007_s00170_019_03956_z
crossref_primary_10_1016_j_jallcom_2024_177156
crossref_primary_10_1016_j_jallcom_2021_159792
crossref_primary_10_1016_j_proeng_2017_10_1005
crossref_primary_10_1007_s11661_022_06598_1
crossref_primary_10_1080_21663831_2020_1818323
crossref_primary_10_1016_j_euromechsol_2024_105469
crossref_primary_10_1007_s00170_016_9235_7
crossref_primary_10_1177_03093247241310346
crossref_primary_10_1007_s40195_024_01670_8
crossref_primary_10_1007_s11837_024_07079_z
crossref_primary_10_1016_j_matdes_2023_111791
crossref_primary_10_1038_s41467_017_00814_y
crossref_primary_10_1088_1757_899X_473_1_012040
crossref_primary_10_3390_met10121599
crossref_primary_10_1007_s11661_020_06085_5
crossref_primary_10_1016_S1003_6326_23_66145_X
crossref_primary_10_1016_j_ijplas_2024_103892
crossref_primary_10_1016_j_ijmecsci_2016_01_024
crossref_primary_10_1016_j_matchar_2022_111825
crossref_primary_10_1051_matecconf_202032111011
crossref_primary_10_3390_ma12111756
crossref_primary_10_1051_matecconf_202032111018
crossref_primary_10_1007_s11661_019_05207_y
crossref_primary_10_22226_2410_3535_2021_4_553_556
crossref_primary_10_1016_j_matchar_2019_05_014
crossref_primary_10_1007_s00170_023_12715_0
crossref_primary_10_1016_j_promfg_2020_08_131
crossref_primary_10_1016_j_jmrt_2020_07_076
crossref_primary_10_1016_j_jmst_2022_05_006
crossref_primary_10_1016_j_mtcomm_2023_105343
crossref_primary_10_1557_s43578_020_00102_4
crossref_primary_10_1557_adv_2020_190
crossref_primary_10_1007_s40195_023_01630_8
crossref_primary_10_1016_j_ijmecsci_2019_105126
crossref_primary_10_1016_j_msea_2022_143245
crossref_primary_10_22226_2410_3535_2022_4_332_335
crossref_primary_10_1016_j_msea_2024_146999
crossref_primary_10_1016_j_mtla_2018_100189
crossref_primary_10_1016_j_matdes_2017_10_008
crossref_primary_10_1016_j_jallcom_2019_02_125
crossref_primary_10_1016_j_mtcomm_2024_110090
crossref_primary_10_1016_j_matchar_2023_113051
crossref_primary_10_3390_ma15207064
crossref_primary_10_1016_j_promfg_2018_07_374
crossref_primary_10_1016_j_msea_2020_140626
crossref_primary_10_1108_EC_05_2020_0266
crossref_primary_10_1007_s11665_016_2320_0
crossref_primary_10_1007_s12598_020_01408_2
crossref_primary_10_1016_j_msea_2021_141697
crossref_primary_10_1016_j_compositesb_2020_107838
crossref_primary_10_1007_s11043_024_09735_y
crossref_primary_10_1007_s00170_023_12485_9
crossref_primary_10_1016_j_engfracmech_2021_108027
crossref_primary_10_2355_isijinternational_ISIJINT_2024_014
crossref_primary_10_1115_1_4055779
crossref_primary_10_1016_j_msea_2021_141902
crossref_primary_10_1016_j_msea_2023_145241
crossref_primary_10_1016_j_jallcom_2017_02_285
crossref_primary_10_1016_j_msea_2024_146297
crossref_primary_10_1016_j_jmatprotec_2025_118736
crossref_primary_10_1016_j_jmatprotec_2016_06_003
crossref_primary_10_1016_j_cirpj_2017_09_004
crossref_primary_10_1016_j_actamat_2015_12_003
crossref_primary_10_3390_met13050886
crossref_primary_10_1016_j_msea_2016_02_052
crossref_primary_10_1016_j_jmrt_2025_01_014
crossref_primary_10_4028_www_scientific_net_DDF_385_137
crossref_primary_10_1016_j_euromechsol_2021_104227
crossref_primary_10_1080_02670836_2019_1591031
crossref_primary_10_1016_j_jmrt_2024_09_037
crossref_primary_10_1016_S1003_6326_20_65483_8
crossref_primary_10_1016_j_msea_2019_05_063
crossref_primary_10_1016_j_jmatprotec_2024_118701
crossref_primary_10_1016_j_msea_2016_09_107
crossref_primary_10_4028_www_scientific_net_DDF_385_65
crossref_primary_10_1557_s43578_024_01295_8
crossref_primary_10_1016_j_msea_2020_139174
crossref_primary_10_1016_j_scriptamat_2023_115567
crossref_primary_10_1016_j_powtec_2023_118504
crossref_primary_10_1016_j_jallcom_2017_01_096
crossref_primary_10_1016_j_matdes_2017_05_005
crossref_primary_10_1016_j_msea_2018_01_099
crossref_primary_10_1016_j_matdes_2020_108926
crossref_primary_10_1016_j_dental_2024_01_005
crossref_primary_10_1016_j_ijnonlinmec_2024_104835
crossref_primary_10_3390_jmmp4030076
crossref_primary_10_3390_mi11111023
crossref_primary_10_1007_s12666_020_02137_x
crossref_primary_10_1115_1_4063310
crossref_primary_10_1016_j_matchar_2023_113253
crossref_primary_10_1016_j_ijsolstr_2020_06_024
crossref_primary_10_1016_j_jmrt_2024_12_224
crossref_primary_10_1016_j_jallcom_2021_160150
crossref_primary_10_1038_s41598_017_09493_7
crossref_primary_10_1088_1742_6596_1270_1_012048
crossref_primary_10_1002_advs_202207535
crossref_primary_10_1016_j_jmrt_2021_01_116
crossref_primary_10_3390_ma12213520
crossref_primary_10_1016_j_actamat_2020_03_048
crossref_primary_10_1007_s12289_022_01718_z
crossref_primary_10_1016_j_msea_2020_139718
crossref_primary_10_1007_s11661_016_3625_1
crossref_primary_10_1016_j_msea_2023_145972
crossref_primary_10_1016_S1003_6326_24_66669_0
crossref_primary_10_1016_j_matdes_2018_09_048
crossref_primary_10_3390_met10101353
crossref_primary_10_1007_s11665_024_09807_7
crossref_primary_10_3390_met11020314
crossref_primary_10_1016_j_matchar_2021_111361
crossref_primary_10_1016_j_actamat_2023_119339
crossref_primary_10_1016_j_ijimpeng_2023_104549
crossref_primary_10_1016_j_msea_2023_144994
crossref_primary_10_3390_met12050741
crossref_primary_10_1016_j_jmapro_2022_08_021
crossref_primary_10_1007_s00170_022_10629_x
crossref_primary_10_1007_s11665_022_07111_w
crossref_primary_10_1088_1572_9494_ab6904
crossref_primary_10_1016_j_msea_2022_142932
crossref_primary_10_3390_met10091153
crossref_primary_10_1016_j_jallcom_2018_04_118
crossref_primary_10_1016_S1003_6326_24_66596_9
crossref_primary_10_1115_1_4045364
crossref_primary_10_3389_fmats_2021_641928
crossref_primary_10_1016_j_jmapro_2018_12_010
crossref_primary_10_3390_ma12223667
crossref_primary_10_4028_www_scientific_net_SSP_306_9
crossref_primary_10_1108_RPJ_04_2024_0186
crossref_primary_10_1016_j_msea_2019_138570
crossref_primary_10_1007_s43452_021_00260_0
crossref_primary_10_1016_j_actamat_2022_117766
crossref_primary_10_1016_j_msea_2020_140046
crossref_primary_10_3390_met10091150
crossref_primary_10_1007_s00170_020_06213_w
crossref_primary_10_1016_j_promfg_2020_08_049
crossref_primary_10_1007_s11661_022_06790_3
crossref_primary_10_3390_ma17246146
Cites_doi 10.1016/S0167-6636(01)00063-1
10.1016/0001-6160(75)90132-7
10.4028/www.scientific.net/MSF.735.215
10.1016/j.jmatprotec.2007.03.097
10.1016/j.ijplas.2010.06.005
10.25103/jestr.053.01
10.1016/0001-6160(78)90030-5
10.1016/S1359-6454(01)00233-6
10.1016/S0921-5093(00)01983-3
10.1016/j.msea.2013.03.013
10.1016/S0749-6419(00)00036-X
10.1016/S0921-5093(98)01157-5
10.1016/S1359-6454(01)00236-1
10.1016/S1359-6454(02)00278-1
10.1016/S0749-6419(98)00013-8
10.1016/j.mechmat.2009.10.004
10.1007/BF00550469
10.1016/S0921-5093(01)01818-4
10.1016/S1875-5372(10)60106-3
10.1016/0001-6160(89)90108-9
10.1016/0956-7151(94)00428-5
10.1016/j.msea.2012.08.110
10.1038/nature09685
10.1016/S0924-0136(98)00208-8
10.1243/03093247V313187
10.1080/14786430412331305285
10.1016/0956-7151(93)90029-R
10.1007/s10853-009-3780-5
10.4028/www.scientific.net/MSF.735.204
10.1007/s11661-006-0008-z
10.1016/S0921-5093(98)01156-3
10.1016/j.actamat.2011.04.051
10.1016/0001-6160(73)90057-6
10.1016/S0921-5093(02)00120-X
10.1016/j.actamat.2005.09.005
10.1016/S0007-8506(07)60405-3
10.1016/S1359-6454(03)00426-9
10.1016/S0924-0136(03)00472-2
10.1016/S1359-6454(98)00196-7
10.1016/j.ijplas.2011.05.008
10.1016/j.jmatprotec.2004.01.023
10.1179/mst.1992.8.2.102
10.1016/j.msea.2010.02.009
10.1007/s11665-007-9076-5
10.1016/0001-6160(78)90154-2
10.1016/S0921-5093(97)00707-7
10.1016/j.actamat.2009.11.034
10.1361/10599490421321
10.1016/S1359-6454(01)00008-8
10.1016/0001-6160(81)90112-7
10.1016/j.actamat.2009.04.011
10.2320/matertrans.ME200720
10.1016/S0924-0136(98)00135-6
10.1016/j.msea.2003.09.024
10.1016/j.ijrmhm.2008.06.009
10.1115/1.3225739
10.1016/j.ijmecsci.2007.07.003
10.1016/S0921-5093(01)01508-8
ContentType Journal Article
Copyright 2015 The Author(s)
Copyright_xml – notice: 2015 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ADTOC
UNPAY
DOI 10.1016/j.actamat.2015.04.056
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2453
EndPage 442
ExternalDocumentID 10.1016/j.actamat.2015.04.056
10_1016_j_actamat_2015_04_056
S1359645415003080
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
R2-
SEW
T9H
ZY4
~HD
7SR
8BQ
8FD
JG9
ADTOC
UNPAY
ID FETCH-LOGICAL-c459t-84ca83187b3c61bb589d4dad0c2cd6858cbaa5b8fa974910a53bb8b2718633613
IEDL.DBID UNPAY
ISSN 1359-6454
1873-2453
IngestDate Wed Oct 29 11:44:11 EDT 2025
Tue Sep 30 20:14:15 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
Wed Oct 29 21:26:17 EDT 2025
Fri Feb 23 02:41:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Superplasticity
Superplastic forming
Ti–6Al–4V
Constitutive modelling
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-84ca83187b3c61bb589d4dad0c2cd6858cbaa5b8fa974910a53bb8b2718633613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.actamat.2015.04.056
PQID 1778027520
PQPubID 23500
PageCount 15
ParticipantIDs unpaywall_primary_10_1016_j_actamat_2015_04_056
proquest_miscellaneous_1778027520
crossref_primary_10_1016_j_actamat_2015_04_056
crossref_citationtrail_10_1016_j_actamat_2015_04_056
elsevier_sciencedirect_doi_10_1016_j_actamat_2015_04_056
PublicationCentury 2000
PublicationDate 2015-08-15
PublicationDateYYYYMMDD 2015-08-15
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-15
  day: 15
PublicationDecade 2010
PublicationTitle Acta materialia
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhou, Dunne (b0095) 2007; 31
Pan, Krohn, Leen, Hyde, Walle (b0300) 2005; 219
Horstemeyer, Bammann (b0125) 2010; 26
Chung, Cheng (b0305) 2001; 308
Fan, Yang (b0155) 2011; 27
Zhou (b0130) 1998; 245
Ashby, Verrall (b0040) 1973; 21
Sandström, Lagneborg (b0220) 1975; 23
Kawasaki, Langdon (b0025) 2008; 49
Roberts, Ahlblom (b0225) 1978; 26
Ding, Guo (b0245) 2001; 49
ASTM, Standard test method for determining the superplastic properties of metallic sheet materials E2448–11, Technical Report, 2012.
Kim, Semiatin, Lee (b0175) 2003; 51
Kröhn, Leen, Hyde (b0315) 2007; 221
Chung, Cheng (b0310) 2002; 333
Rust, Todd (b0055) 2011; 59
Nazzal, Khraisheh, Darras (b0285) 2004; 13
Bai, Lin, Dean, Balint, Gao, Zhang (b0110) 2013; 559
Estrin (b0250) 1998; 80–81
Nazzal, Khraisheh, Abu-Farha (b0290) 2007; 191
Valiev, Langdon (b0060) 1993; 41
Kim, Chung, Chung, Kum (b0020) 2001; 49
Hiraga, Miyazaki, Tasaka, Yoshida (b0035) 2010; 468
Semiatin, Bieler (b0160) 2001; 49
Picu, Majorell (b0170) 2002; 326
Li, Tan (b0180) 2004; 150
Xu, Nishimura, Hirosaki, Xie, Yamamoto, Tanaka (b0030) 2006; 54
Mayo, Nix (b0070) 1989; 37
Khaleel, Zbib, Nyberg (b0260) 2001; 17
Nemat-Nasser, Guo, Nesterenko, Indrakanti, Gu (b0100) 2001; 33
Roucoules, Pietrzyk, Hodgson (b0230) 2003; 339
Ding, Guo (b0115) 2004; 365
Semiatin, Seetharaman, Weiss (b0105) 1999; 263
Kim, Kim, Lee, Park, Lee (b0085) 1999; 263
Ma, Mishra, Mahoney (b0015) 2002; 50
Ashby (b0120) 1992; 8
Sun, Yang, Han, Fan (b0145) 2010; 527
Murty (b0295) 1973; 8
Panicker, Chokshi, Mishra (b0065) 2009; 57
Sotoudeh, Bate (b0045) 2010; 58
Langdon (b0005) 2009; 44
Spingarn, Nix (b0050) 1978; 26
G. Gurewitz, N. Ridley, A.K. Mukherjee, Elevated temperature cavitation in creep and superplasticity of Ti–6Al–4V alloy, in: Proceedings of ICF International Symposium on Fracture Mechanics, pp. 12–25.
Dunne (b0150) 1998; 14
Dunne (b0215) 1998; 80–81
Zelin, Mukherjee (b0075) 1995; 43
Kaibyshev, Safiullin (b0200) 2006; 22
Ko, Lee, Shin, Semiatin (b0195) 2006; 37
Mingard, Roebuck, Bennett, Gee, Nordenstrom, Sweetman, Chan (b0210) 2009; 27
Cao, Lin (b0265) 2008; 50
Luo, Li, Li (b0165) 2010; 42
Wood, Qarni, Blackwell, Cerny, Brennand, Wilkinson, Rosochowski (b0270) 2012; 735
Lin, Liu (b0140) 2003; 143–144
Estrin, Toth, Molinari, Brechet (b0240) 1998; 46
Roy, Suwas (b0080) 2013; 574
Bing, Zhiqiang, Hongliang, Jinhua (b0190) 2010; 39
Mecking, Kocks (b0235) 1981; 29
Ivanov, Perepelica, Bikmeyev (b0185) 2012; 5
Otegi, Galdos, Hurtado, Leen (b0275) 2013; 735
Perzyna (b0255) 1984; 106
Barnes (b0010) 2007; 16
Khraisheh, Abu-Farha, Nazzal, Weinmann (b0280) 2006; 55
Lin, Liu, Farrugia, Zhou (b0135) 2005; 85
Mecking (10.1016/j.actamat.2015.04.056_b0235) 1981; 29
Zelin (10.1016/j.actamat.2015.04.056_b0075) 1995; 43
Ashby (10.1016/j.actamat.2015.04.056_b0120) 1992; 8
Lin (10.1016/j.actamat.2015.04.056_b0140) 2003; 143–144
Sun (10.1016/j.actamat.2015.04.056_b0145) 2010; 527
Horstemeyer (10.1016/j.actamat.2015.04.056_b0125) 2010; 26
Estrin (10.1016/j.actamat.2015.04.056_b0240) 1998; 46
Kim (10.1016/j.actamat.2015.04.056_b0085) 1999; 263
Nazzal (10.1016/j.actamat.2015.04.056_b0290) 2007; 191
Kim (10.1016/j.actamat.2015.04.056_b0175) 2003; 51
Khaleel (10.1016/j.actamat.2015.04.056_b0260) 2001; 17
Roberts (10.1016/j.actamat.2015.04.056_b0225) 1978; 26
Chung (10.1016/j.actamat.2015.04.056_b0305) 2001; 308
Rust (10.1016/j.actamat.2015.04.056_b0055) 2011; 59
Bing (10.1016/j.actamat.2015.04.056_b0190) 2010; 39
Kim (10.1016/j.actamat.2015.04.056_b0020) 2001; 49
Kawasaki (10.1016/j.actamat.2015.04.056_b0025) 2008; 49
10.1016/j.actamat.2015.04.056_b0090
Murty (10.1016/j.actamat.2015.04.056_b0295) 1973; 8
Chung (10.1016/j.actamat.2015.04.056_b0310) 2002; 333
Li (10.1016/j.actamat.2015.04.056_b0180) 2004; 150
Khraisheh (10.1016/j.actamat.2015.04.056_b0280) 2006; 55
Langdon (10.1016/j.actamat.2015.04.056_b0005) 2009; 44
Mayo (10.1016/j.actamat.2015.04.056_b0070) 1989; 37
Dunne (10.1016/j.actamat.2015.04.056_b0150) 1998; 14
Zhou (10.1016/j.actamat.2015.04.056_b0130) 1998; 245
Roucoules (10.1016/j.actamat.2015.04.056_b0230) 2003; 339
Picu (10.1016/j.actamat.2015.04.056_b0170) 2002; 326
Nemat-Nasser (10.1016/j.actamat.2015.04.056_b0100) 2001; 33
Ko (10.1016/j.actamat.2015.04.056_b0195) 2006; 37
10.1016/j.actamat.2015.04.056_b0205
Kaibyshev (10.1016/j.actamat.2015.04.056_b0200) 2006; 22
Sotoudeh (10.1016/j.actamat.2015.04.056_b0045) 2010; 58
Ivanov (10.1016/j.actamat.2015.04.056_b0185) 2012; 5
Kröhn (10.1016/j.actamat.2015.04.056_b0315) 2007; 221
Roy (10.1016/j.actamat.2015.04.056_b0080) 2013; 574
Semiatin (10.1016/j.actamat.2015.04.056_b0160) 2001; 49
Semiatin (10.1016/j.actamat.2015.04.056_b0105) 1999; 263
Xu (10.1016/j.actamat.2015.04.056_b0030) 2006; 54
Ashby (10.1016/j.actamat.2015.04.056_b0040) 1973; 21
Valiev (10.1016/j.actamat.2015.04.056_b0060) 1993; 41
Panicker (10.1016/j.actamat.2015.04.056_b0065) 2009; 57
Perzyna (10.1016/j.actamat.2015.04.056_b0255) 1984; 106
Spingarn (10.1016/j.actamat.2015.04.056_b0050) 1978; 26
Pan (10.1016/j.actamat.2015.04.056_b0300) 2005; 219
Barnes (10.1016/j.actamat.2015.04.056_b0010) 2007; 16
Otegi (10.1016/j.actamat.2015.04.056_b0275) 2013; 735
Sandström (10.1016/j.actamat.2015.04.056_b0220) 1975; 23
Cao (10.1016/j.actamat.2015.04.056_b0265) 2008; 50
Dunne (10.1016/j.actamat.2015.04.056_b0215) 1998; 80–81
Hiraga (10.1016/j.actamat.2015.04.056_b0035) 2010; 468
Lin (10.1016/j.actamat.2015.04.056_b0135) 2005; 85
Ma (10.1016/j.actamat.2015.04.056_b0015) 2002; 50
Ding (10.1016/j.actamat.2015.04.056_b0115) 2004; 365
Zhou (10.1016/j.actamat.2015.04.056_b0095) 2007; 31
Fan (10.1016/j.actamat.2015.04.056_b0155) 2011; 27
Mingard (10.1016/j.actamat.2015.04.056_b0210) 2009; 27
Ding (10.1016/j.actamat.2015.04.056_b0245) 2001; 49
Wood (10.1016/j.actamat.2015.04.056_b0270) 2012; 735
Nazzal (10.1016/j.actamat.2015.04.056_b0285) 2004; 13
Estrin (10.1016/j.actamat.2015.04.056_b0250) 1998; 80–81
Luo (10.1016/j.actamat.2015.04.056_b0165) 2010; 42
Bai (10.1016/j.actamat.2015.04.056_b0110) 2013; 559
References_xml – volume: 50
  start-page: 4419
  year: 2002
  end-page: 4430
  ident: b0015
  article-title: Superplastic deformation behaviour of friction stir processed 7075Al alloy
  publication-title: Acta Mater.
– volume: 263
  start-page: 272
  year: 1999
  end-page: 280
  ident: b0085
  article-title: Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti–6Al–4V alloy
  publication-title: Mater. Sci. Eng.: A
– volume: 574
  start-page: 205
  year: 2013
  end-page: 217
  ident: b0080
  article-title: Deformation mechanisms during superplastic testing of Ti–6Al–4V-0.1B alloy
  publication-title: Mater. Sci. Eng.: A
– volume: 59
  start-page: 5159
  year: 2011
  end-page: 5170
  ident: b0055
  article-title: Surface studies of region II superplasticity of AA5083 in shear: confirmation of diffusion creep, grain neighbour switching and absence of dislocation activity
  publication-title: Acta Mater.
– volume: 26
  start-page: 1310
  year: 2010
  end-page: 1334
  ident: b0125
  article-title: Historical review of internal state variable theory for inelasticity
  publication-title: Int. J. Plasticity
– volume: 559
  start-page: 352
  year: 2013
  end-page: 358
  ident: b0110
  article-title: Modelling of dominant softening mechanisms for Ti–6Al–4V in steady state hot forming conditions
  publication-title: Mater. Sci. Eng.: A
– volume: 37
  start-page: 381
  year: 2006
  end-page: 391
  ident: b0195
  article-title: Low-temperature superplasticity of ultra-fine-grained Ti–6Al–4V processed by equal-channel angular pressing
  publication-title: Metall. Mater. Trans. A
– volume: 41
  start-page: 949
  year: 1993
  end-page: 954
  ident: b0060
  article-title: An investigation of the role of intragranular dislocation strain in the superplastic Pb-62% Sn eutectic alloy
  publication-title: Acta Metallur. Mater.
– volume: 14
  start-page: 413
  year: 1998
  end-page: 433
  ident: b0150
  article-title: Inhomogeneity of microstructure in superplasticity and its effect on ductility
  publication-title: Int. J. Plasticity
– volume: 49
  start-page: 84
  year: 2008
  end-page: 89
  ident: b0025
  article-title: Grain boundary sliding in a superplastic zinc–aluminum alloy processed using severe plastic deformation
  publication-title: Mater. Trans.
– volume: 26
  start-page: 1389
  year: 1978
  end-page: 1398
  ident: b0050
  article-title: Diffusional creep and diffusionally accommodated grain rearrangement
  publication-title: Acta Metallur.
– volume: 221
  start-page: 251
  year: 2007
  end-page: 264
  ident: b0315
  article-title: A superplastic forming limit diagram concept for Ti–6Al–4V
  publication-title: Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl.
– volume: 365
  start-page: 172
  year: 2004
  end-page: 179
  ident: b0115
  article-title: Microstructural evolution of a Ti–6Al–4V alloy during
  publication-title: Mater. Sci. Eng.: A
– volume: 80–81
  start-page: 96
  year: 1998
  end-page: 100
  ident: b0215
  article-title: Modelling heterogeneous microstructures, inhomogeneous deformation and failure in superplasticity
  publication-title: J. Mater. Process. Technol.
– volume: 143–144
  start-page: 281
  year: 2003
  end-page: 285
  ident: b0140
  article-title: A set of unified constitutive equations for modelling microstructure evolution in hot deformation
  publication-title: J. Mater. Process. Technol.
– volume: 37
  start-page: 1121
  year: 1989
  end-page: 1134
  ident: b0070
  article-title: Direct observation of superplastic flow mechanisms in torsion
  publication-title: Acta Metallur.
– volume: 308
  start-page: 153
  year: 2001
  end-page: 160
  ident: b0305
  article-title: The analysis of instability and strain concentration during superplastic deformation
  publication-title: Mater. Sci. Eng.: A
– volume: 29
  start-page: 1865
  year: 1981
  end-page: 1875
  ident: b0235
  article-title: Kinetics of flow and strain-hardening
  publication-title: Acta Metallur.
– volume: 468
  start-page: 1091
  year: 2010
  end-page: 1094
  ident: b0035
  article-title: Mantle superplasticity and its self-made demise
  publication-title: Nature
– volume: 43
  start-page: 2359
  year: 1995
  end-page: 2372
  ident: b0075
  article-title: Cooperative phenomena at grain boundaries during superplastic flow
  publication-title: Acta Metallur. Mater.
– volume: 42
  start-page: 157
  year: 2010
  end-page: 165
  ident: b0165
  article-title: Constitutive model for high temperature deformation of titanium alloys using internal state variables
  publication-title: Mech. Mater.
– volume: 44
  start-page: 5998
  year: 2009
  end-page: 6010
  ident: b0005
  article-title: Seventy-five years of superplasticity: historic developments and new opportunities
  publication-title: J. Mater. Sci.
– volume: 80–81
  start-page: 33
  year: 1998
  end-page: 39
  ident: b0250
  article-title: Dislocation theory based constitutive modelling: foundations and applications
  publication-title: J. Mater. Process. Technol.
– volume: 13
  start-page: 691
  year: 2004
  end-page: 699
  ident: b0285
  article-title: Finite element modeling and optimization of superplastic forming using variable strain rate approach
  publication-title: J. Mater. Eng. Perform.
– reference: ASTM, Standard test method for determining the superplastic properties of metallic sheet materials E2448–11, Technical Report, 2012.
– volume: 8
  start-page: 611
  year: 1973
  end-page: 614
  ident: b0295
  article-title: Stress relaxation in superplastic materials
  publication-title: J. Mater. Sci.
– volume: 21
  start-page: 149
  year: 1973
  end-page: 163
  ident: b0040
  article-title: Diffusion-accommodated flow and superplasticity
  publication-title: Acta Metallur.
– volume: 27
  start-page: 213
  year: 2009
  end-page: 223
  ident: b0210
  article-title: Comparison of EBSD and conventional methods of grain size measurement of hardmetals
  publication-title: Int. J. Refract. Metals Hard Mater.
– volume: 527
  start-page: 3464
  year: 2010
  end-page: 3471
  ident: b0145
  article-title: A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy
  publication-title: Mater. Sci. Eng.: A
– volume: 51
  start-page: 5613
  year: 2003
  end-page: 5626
  ident: b0175
  article-title: Constitutive analysis of the high-temperature deformation of Ti–6Al–4V with a transformed microstructure
  publication-title: Acta Mater.
– volume: 339
  start-page: 1
  year: 2003
  end-page: 9
  ident: b0230
  article-title: Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model
  publication-title: Mater. Sci. Eng.: A
– volume: 735
  start-page: 215
  year: 2012
  end-page: 223
  ident: b0270
  article-title: Modeling the super plastic forming of a multi-sheet diffusion bonded titanium alloy demonstrator fan blade
  publication-title: Mater. Sci. Forum
– volume: 54
  start-page: 255
  year: 2006
  end-page: 262
  ident: b0030
  article-title: Superplastic deformation of nano-sized silicon nitride ceramics
  publication-title: Acta Mater.
– volume: 49
  start-page: 3337
  year: 2001
  end-page: 3345
  ident: b0020
  article-title: Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures
  publication-title: Acta Mater.
– volume: 33
  start-page: 425
  year: 2001
  end-page: 439
  ident: b0100
  article-title: Dynamic response of conventional and hot isostatically pressed Ti–6Al–4V alloys: experiments and modeling
  publication-title: Mech. Mater.
– volume: 191
  start-page: 189
  year: 2007
  end-page: 192
  ident: b0290
  article-title: The effect of strain rate sensitivity evolution on deformation stability during superplastic forming
  publication-title: J. Mater. Process. Technol.
– volume: 16
  start-page: 440
  year: 2007
  end-page: 454
  ident: b0010
  article-title: Superplastic forming 40 years and still growing
  publication-title: J. Mater. Eng. Perform.
– volume: 17
  start-page: 277
  year: 2001
  end-page: 296
  ident: b0260
  article-title: Constitutive modeling of deformation and damage in superplastic materials
  publication-title: Int. J. Plasticity
– volume: 333
  start-page: 146
  year: 2002
  end-page: 154
  ident: b0310
  article-title: Fracture criterion and forming pressure design for superplastic bulging
  publication-title: Mater. Sci. Eng.: A
– volume: 735
  start-page: 204
  year: 2013
  end-page: 209
  ident: b0275
  article-title: New strategy for the prediction of the gas pressure profile of superplastic forming of al-5083 aluminium alloy
  publication-title: Mater. Sci. Forum
– volume: 263
  start-page: 257
  year: 1999
  end-page: 271
  ident: b0105
  article-title: Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure
  publication-title: Mater. Sci. Eng.: A
– reference: G. Gurewitz, N. Ridley, A.K. Mukherjee, Elevated temperature cavitation in creep and superplasticity of Ti–6Al–4V alloy, in: Proceedings of ICF International Symposium on Fracture Mechanics, pp. 12–25.
– volume: 5
  start-page: 1
  year: 2012
  end-page: 5
  ident: b0185
  article-title: Simulation of the blow-up and cooling processes of hollow blade manufacturing
  publication-title: J. Eng. Sci. Technol. Rev.
– volume: 46
  start-page: 5509
  year: 1998
  end-page: 5522
  ident: b0240
  article-title: A dislocation-based model for all hardening stages in large strain deformation
  publication-title: Acta Mater.
– volume: 50
  start-page: 193
  year: 2008
  end-page: 204
  ident: b0265
  article-title: A study on formulation of objective functions for determining material models
  publication-title: Int. J. Mech. Sci.
– volume: 31
  start-page: 187
  year: 2007
  end-page: 196
  ident: b0095
  article-title: Mechanisms-based constitutive equations for the superplastic behaviour of a titanium alloy
  publication-title: J. Strain Anal. Eng. Des.
– volume: 23
  start-page: 387
  year: 1975
  end-page: 398
  ident: b0220
  article-title: A model for hot working occuring by recrystallization
  publication-title: Acta Metallur.
– volume: 58
  start-page: 1909
  year: 2010
  end-page: 1920
  ident: b0045
  article-title: Diffusion creep and superplasticity in aluminium alloys
  publication-title: Acta Mater.
– volume: 57
  start-page: 3683
  year: 2009
  end-page: 3693
  ident: b0065
  article-title: Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy
  publication-title: Acta Mater.
– volume: 39
  start-page: 963
  year: 2010
  end-page: 968
  ident: b0190
  article-title: Three dimensional FEM simulation of titanium hollow blade forming process
  publication-title: Rare Metal Mater.
– volume: 22
  start-page: 343
  year: 2006
  end-page: 348
  ident: b0200
  article-title: Advanced superplastic forming and diffusion bonding of titanium alloy
  publication-title: Mater. Sci.
– volume: 26
  start-page: 801
  year: 1978
  end-page: 813
  ident: b0225
  article-title: A nucleation criterion for dynamic recrystallization during hot working
  publication-title: Acta Metallur.
– volume: 27
  start-page: 1833
  year: 2011
  end-page: 1852
  ident: b0155
  article-title: Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution
  publication-title: Int. J. Plasticity
– volume: 150
  start-page: 76
  year: 2004
  end-page: 83
  ident: b0180
  article-title: Three-dimensional modeling and simulation of superplastic forming
  publication-title: J. Mater. Process. Technol.
– volume: 85
  start-page: 1967
  year: 2005
  end-page: 1987
  ident: b0135
  article-title: Development of dislocation-based unified material model for simulating microstructure evolution in multipass hot rolling
  publication-title: Philos. Mag.
– volume: 49
  start-page: 3163
  year: 2001
  end-page: 3175
  ident: b0245
  article-title: Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization
  publication-title: Acta Mater.
– volume: 245
  start-page: 29
  year: 1998
  end-page: 38
  ident: b0130
  article-title: Constitutive modeling of the viscoplastic deformation in high temperature forging of titanium alloy IMI834
  publication-title: Mater. Sci. Eng.: A
– volume: 219
  start-page: 149
  year: 2005
  end-page: 162
  ident: b0300
  article-title: A sigmoidal model for superplastic deformation
  publication-title: Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl.
– volume: 106
  start-page: 410
  year: 1984
  end-page: 419
  ident: b0255
  article-title: Constitutive modeling of dissipative solids for postcritical behavior and fracture
  publication-title: J. Eng. Mater. Technol.
– volume: 55
  start-page: 233
  year: 2006
  end-page: 236
  ident: b0280
  article-title: Combined mechanics-materials based optimization of superplastic forming of magnesium AZ31 alloy
  publication-title: CIRP Ann. – Manuf. Technol.
– volume: 8
  start-page: 102
  year: 1992
  end-page: 111
  ident: b0120
  article-title: Physical modelling of materials problems
  publication-title: Mater. Sci. Technol.
– volume: 326
  start-page: 306
  year: 2002
  end-page: 316
  ident: b0170
  article-title: Mechanical behavior of Ti–6Al–4V at high and moderate temperatures - Part II: constitutive modeling
  publication-title: Mater. Sci. Eng.: A
– volume: 49
  start-page: 3565
  year: 2001
  end-page: 3573
  ident: b0160
  article-title: The effect of alpha platelet thickness on plastic flow during hot working of Ti–6Al–4V with a transformed microstructure
  publication-title: Acta Mater.
– volume: 33
  start-page: 425
  year: 2001
  ident: 10.1016/j.actamat.2015.04.056_b0100
  article-title: Dynamic response of conventional and hot isostatically pressed Ti–6Al–4V alloys: experiments and modeling
  publication-title: Mech. Mater.
  doi: 10.1016/S0167-6636(01)00063-1
– volume: 219
  start-page: 149
  year: 2005
  ident: 10.1016/j.actamat.2015.04.056_b0300
  article-title: A sigmoidal model for superplastic deformation
  publication-title: Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl.
– volume: 23
  start-page: 387
  year: 1975
  ident: 10.1016/j.actamat.2015.04.056_b0220
  article-title: A model for hot working occuring by recrystallization
  publication-title: Acta Metallur.
  doi: 10.1016/0001-6160(75)90132-7
– volume: 735
  start-page: 215
  year: 2012
  ident: 10.1016/j.actamat.2015.04.056_b0270
  article-title: Modeling the super plastic forming of a multi-sheet diffusion bonded titanium alloy demonstrator fan blade
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.735.215
– volume: 191
  start-page: 189
  year: 2007
  ident: 10.1016/j.actamat.2015.04.056_b0290
  article-title: The effect of strain rate sensitivity evolution on deformation stability during superplastic forming
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.03.097
– volume: 26
  start-page: 1310
  year: 2010
  ident: 10.1016/j.actamat.2015.04.056_b0125
  article-title: Historical review of internal state variable theory for inelasticity
  publication-title: Int. J. Plasticity
  doi: 10.1016/j.ijplas.2010.06.005
– volume: 221
  start-page: 251
  year: 2007
  ident: 10.1016/j.actamat.2015.04.056_b0315
  article-title: A superplastic forming limit diagram concept for Ti–6Al–4V
  publication-title: Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl.
– volume: 5
  start-page: 1
  year: 2012
  ident: 10.1016/j.actamat.2015.04.056_b0185
  article-title: Simulation of the blow-up and cooling processes of hollow blade manufacturing
  publication-title: J. Eng. Sci. Technol. Rev.
  doi: 10.25103/jestr.053.01
– volume: 26
  start-page: 801
  year: 1978
  ident: 10.1016/j.actamat.2015.04.056_b0225
  article-title: A nucleation criterion for dynamic recrystallization during hot working
  publication-title: Acta Metallur.
  doi: 10.1016/0001-6160(78)90030-5
– volume: 49
  start-page: 3163
  year: 2001
  ident: 10.1016/j.actamat.2015.04.056_b0245
  article-title: Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00233-6
– volume: 308
  start-page: 153
  year: 2001
  ident: 10.1016/j.actamat.2015.04.056_b0305
  article-title: The analysis of instability and strain concentration during superplastic deformation
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/S0921-5093(00)01983-3
– volume: 574
  start-page: 205
  year: 2013
  ident: 10.1016/j.actamat.2015.04.056_b0080
  article-title: Deformation mechanisms during superplastic testing of Ti–6Al–4V-0.1B alloy
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2013.03.013
– volume: 17
  start-page: 277
  year: 2001
  ident: 10.1016/j.actamat.2015.04.056_b0260
  article-title: Constitutive modeling of deformation and damage in superplastic materials
  publication-title: Int. J. Plasticity
  doi: 10.1016/S0749-6419(00)00036-X
– volume: 263
  start-page: 272
  year: 1999
  ident: 10.1016/j.actamat.2015.04.056_b0085
  article-title: Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti–6Al–4V alloy
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/S0921-5093(98)01157-5
– volume: 49
  start-page: 3565
  year: 2001
  ident: 10.1016/j.actamat.2015.04.056_b0160
  article-title: The effect of alpha platelet thickness on plastic flow during hot working of Ti–6Al–4V with a transformed microstructure
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00236-1
– volume: 50
  start-page: 4419
  year: 2002
  ident: 10.1016/j.actamat.2015.04.056_b0015
  article-title: Superplastic deformation behaviour of friction stir processed 7075Al alloy
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(02)00278-1
– volume: 14
  start-page: 413
  year: 1998
  ident: 10.1016/j.actamat.2015.04.056_b0150
  article-title: Inhomogeneity of microstructure in superplasticity and its effect on ductility
  publication-title: Int. J. Plasticity
  doi: 10.1016/S0749-6419(98)00013-8
– volume: 42
  start-page: 157
  year: 2010
  ident: 10.1016/j.actamat.2015.04.056_b0165
  article-title: Constitutive model for high temperature deformation of titanium alloys using internal state variables
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2009.10.004
– volume: 8
  start-page: 611
  year: 1973
  ident: 10.1016/j.actamat.2015.04.056_b0295
  article-title: Stress relaxation in superplastic materials
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00550469
– ident: 10.1016/j.actamat.2015.04.056_b0090
– volume: 333
  start-page: 146
  year: 2002
  ident: 10.1016/j.actamat.2015.04.056_b0310
  article-title: Fracture criterion and forming pressure design for superplastic bulging
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/S0921-5093(01)01818-4
– volume: 39
  start-page: 963
  year: 2010
  ident: 10.1016/j.actamat.2015.04.056_b0190
  article-title: Three dimensional FEM simulation of titanium hollow blade forming process
  publication-title: Rare Metal Mater.
  doi: 10.1016/S1875-5372(10)60106-3
– volume: 37
  start-page: 1121
  year: 1989
  ident: 10.1016/j.actamat.2015.04.056_b0070
  article-title: Direct observation of superplastic flow mechanisms in torsion
  publication-title: Acta Metallur.
  doi: 10.1016/0001-6160(89)90108-9
– volume: 43
  start-page: 2359
  year: 1995
  ident: 10.1016/j.actamat.2015.04.056_b0075
  article-title: Cooperative phenomena at grain boundaries during superplastic flow
  publication-title: Acta Metallur. Mater.
  doi: 10.1016/0956-7151(94)00428-5
– volume: 559
  start-page: 352
  year: 2013
  ident: 10.1016/j.actamat.2015.04.056_b0110
  article-title: Modelling of dominant softening mechanisms for Ti–6Al–4V in steady state hot forming conditions
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2012.08.110
– volume: 468
  start-page: 1091
  year: 2010
  ident: 10.1016/j.actamat.2015.04.056_b0035
  article-title: Mantle superplasticity and its self-made demise
  publication-title: Nature
  doi: 10.1038/nature09685
– volume: 80–81
  start-page: 33
  year: 1998
  ident: 10.1016/j.actamat.2015.04.056_b0250
  article-title: Dislocation theory based constitutive modelling: foundations and applications
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(98)00208-8
– volume: 31
  start-page: 187
  year: 2007
  ident: 10.1016/j.actamat.2015.04.056_b0095
  article-title: Mechanisms-based constitutive equations for the superplastic behaviour of a titanium alloy
  publication-title: J. Strain Anal. Eng. Des.
  doi: 10.1243/03093247V313187
– volume: 85
  start-page: 1967
  year: 2005
  ident: 10.1016/j.actamat.2015.04.056_b0135
  article-title: Development of dislocation-based unified material model for simulating microstructure evolution in multipass hot rolling
  publication-title: Philos. Mag.
  doi: 10.1080/14786430412331305285
– volume: 41
  start-page: 949
  year: 1993
  ident: 10.1016/j.actamat.2015.04.056_b0060
  article-title: An investigation of the role of intragranular dislocation strain in the superplastic Pb-62% Sn eutectic alloy
  publication-title: Acta Metallur. Mater.
  doi: 10.1016/0956-7151(93)90029-R
– volume: 44
  start-page: 5998
  year: 2009
  ident: 10.1016/j.actamat.2015.04.056_b0005
  article-title: Seventy-five years of superplasticity: historic developments and new opportunities
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-3780-5
– volume: 735
  start-page: 204
  year: 2013
  ident: 10.1016/j.actamat.2015.04.056_b0275
  article-title: New strategy for the prediction of the gas pressure profile of superplastic forming of al-5083 aluminium alloy
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.735.204
– volume: 37
  start-page: 381
  year: 2006
  ident: 10.1016/j.actamat.2015.04.056_b0195
  article-title: Low-temperature superplasticity of ultra-fine-grained Ti–6Al–4V processed by equal-channel angular pressing
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-006-0008-z
– volume: 263
  start-page: 257
  year: 1999
  ident: 10.1016/j.actamat.2015.04.056_b0105
  article-title: Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/S0921-5093(98)01156-3
– volume: 59
  start-page: 5159
  year: 2011
  ident: 10.1016/j.actamat.2015.04.056_b0055
  article-title: Surface studies of region II superplasticity of AA5083 in shear: confirmation of diffusion creep, grain neighbour switching and absence of dislocation activity
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.04.051
– volume: 21
  start-page: 149
  year: 1973
  ident: 10.1016/j.actamat.2015.04.056_b0040
  article-title: Diffusion-accommodated flow and superplasticity
  publication-title: Acta Metallur.
  doi: 10.1016/0001-6160(73)90057-6
– volume: 339
  start-page: 1
  year: 2003
  ident: 10.1016/j.actamat.2015.04.056_b0230
  article-title: Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/S0921-5093(02)00120-X
– volume: 54
  start-page: 255
  year: 2006
  ident: 10.1016/j.actamat.2015.04.056_b0030
  article-title: Superplastic deformation of nano-sized silicon nitride ceramics
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.09.005
– ident: 10.1016/j.actamat.2015.04.056_b0205
– volume: 55
  start-page: 233
  year: 2006
  ident: 10.1016/j.actamat.2015.04.056_b0280
  article-title: Combined mechanics-materials based optimization of superplastic forming of magnesium AZ31 alloy
  publication-title: CIRP Ann. – Manuf. Technol.
  doi: 10.1016/S0007-8506(07)60405-3
– volume: 51
  start-page: 5613
  year: 2003
  ident: 10.1016/j.actamat.2015.04.056_b0175
  article-title: Constitutive analysis of the high-temperature deformation of Ti–6Al–4V with a transformed microstructure
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(03)00426-9
– volume: 143–144
  start-page: 281
  year: 2003
  ident: 10.1016/j.actamat.2015.04.056_b0140
  article-title: A set of unified constitutive equations for modelling microstructure evolution in hot deformation
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(03)00472-2
– volume: 46
  start-page: 5509
  year: 1998
  ident: 10.1016/j.actamat.2015.04.056_b0240
  article-title: A dislocation-based model for all hardening stages in large strain deformation
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(98)00196-7
– volume: 27
  start-page: 1833
  year: 2011
  ident: 10.1016/j.actamat.2015.04.056_b0155
  article-title: Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution
  publication-title: Int. J. Plasticity
  doi: 10.1016/j.ijplas.2011.05.008
– volume: 150
  start-page: 76
  year: 2004
  ident: 10.1016/j.actamat.2015.04.056_b0180
  article-title: Three-dimensional modeling and simulation of superplastic forming
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2004.01.023
– volume: 8
  start-page: 102
  year: 1992
  ident: 10.1016/j.actamat.2015.04.056_b0120
  article-title: Physical modelling of materials problems
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/mst.1992.8.2.102
– volume: 22
  start-page: 343
  year: 2006
  ident: 10.1016/j.actamat.2015.04.056_b0200
  article-title: Advanced superplastic forming and diffusion bonding of titanium alloy
  publication-title: Mater. Sci.
– volume: 527
  start-page: 3464
  year: 2010
  ident: 10.1016/j.actamat.2015.04.056_b0145
  article-title: A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2010.02.009
– volume: 16
  start-page: 440
  year: 2007
  ident: 10.1016/j.actamat.2015.04.056_b0010
  article-title: Superplastic forming 40 years and still growing
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-007-9076-5
– volume: 26
  start-page: 1389
  year: 1978
  ident: 10.1016/j.actamat.2015.04.056_b0050
  article-title: Diffusional creep and diffusionally accommodated grain rearrangement
  publication-title: Acta Metallur.
  doi: 10.1016/0001-6160(78)90154-2
– volume: 245
  start-page: 29
  year: 1998
  ident: 10.1016/j.actamat.2015.04.056_b0130
  article-title: Constitutive modeling of the viscoplastic deformation in high temperature forging of titanium alloy IMI834
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/S0921-5093(97)00707-7
– volume: 58
  start-page: 1909
  year: 2010
  ident: 10.1016/j.actamat.2015.04.056_b0045
  article-title: Diffusion creep and superplasticity in aluminium alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.11.034
– volume: 13
  start-page: 691
  year: 2004
  ident: 10.1016/j.actamat.2015.04.056_b0285
  article-title: Finite element modeling and optimization of superplastic forming using variable strain rate approach
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1361/10599490421321
– volume: 49
  start-page: 3337
  year: 2001
  ident: 10.1016/j.actamat.2015.04.056_b0020
  article-title: Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00008-8
– volume: 29
  start-page: 1865
  year: 1981
  ident: 10.1016/j.actamat.2015.04.056_b0235
  article-title: Kinetics of flow and strain-hardening
  publication-title: Acta Metallur.
  doi: 10.1016/0001-6160(81)90112-7
– volume: 57
  start-page: 3683
  year: 2009
  ident: 10.1016/j.actamat.2015.04.056_b0065
  article-title: Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.04.011
– volume: 49
  start-page: 84
  year: 2008
  ident: 10.1016/j.actamat.2015.04.056_b0025
  article-title: Grain boundary sliding in a superplastic zinc–aluminum alloy processed using severe plastic deformation
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.ME200720
– volume: 80–81
  start-page: 96
  year: 1998
  ident: 10.1016/j.actamat.2015.04.056_b0215
  article-title: Modelling heterogeneous microstructures, inhomogeneous deformation and failure in superplasticity
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(98)00135-6
– volume: 365
  start-page: 172
  year: 2004
  ident: 10.1016/j.actamat.2015.04.056_b0115
  article-title: Microstructural evolution of a Ti–6Al–4V alloy during β-phase processing: experimental and simulative investigations
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2003.09.024
– volume: 27
  start-page: 213
  year: 2009
  ident: 10.1016/j.actamat.2015.04.056_b0210
  article-title: Comparison of EBSD and conventional methods of grain size measurement of hardmetals
  publication-title: Int. J. Refract. Metals Hard Mater.
  doi: 10.1016/j.ijrmhm.2008.06.009
– volume: 106
  start-page: 410
  year: 1984
  ident: 10.1016/j.actamat.2015.04.056_b0255
  article-title: Constitutive modeling of dissipative solids for postcritical behavior and fracture
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.3225739
– volume: 50
  start-page: 193
  year: 2008
  ident: 10.1016/j.actamat.2015.04.056_b0265
  article-title: A study on formulation of objective functions for determining material models
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2007.07.003
– volume: 326
  start-page: 306
  year: 2002
  ident: 10.1016/j.actamat.2015.04.056_b0170
  article-title: Mechanical behavior of Ti–6Al–4V at high and moderate temperatures - Part II: constitutive modeling
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/S0921-5093(01)01508-8
SSID ssj0012740
Score 2.59508
Snippet The processing regime relevant to superplasticity in the Ti–6Al–4V alloy is identified. The effect is found to be potent in the range 850–900°C at strain rates...
The processing regime relevant to superplasticity in the Ti-6Al-4V alloy is identified. The effect is found to be potent in the range 850-900 degree C at...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 428
SubjectTerms Constitutive modelling
Deformation mechanisms
Formations
Grain size
Holes
Recrystallization
Superplastic forming
Superplasticity
Surface layer
Texture
Titanium base alloys
Ti–6Al–4V
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KL-pBfGJ9EcGjMa_dZOOtFEsR7KWteFt2N1toKTHUFOlF_A_-Q3-JM2nSVhAqXgIJmbDM7M58m535hpBr5Roe0ETbnk4iGxA4-MHIGHvINAcZ8MoKC5wfu2FnQB-e2XONtKpaGEyrLH3_wqcX3rp84pTadLLRyOl5AYuRjwogDZKu4L6d0gi7GNy-L9M8PNh1LSqFWWzj26sqHmcMQ84lAEPM8GIF4yn2sf49Pq3hz61Zmsn5m5xM1kJRe4_slhjSai6GuU9qJj0gO2vMgoek25tlZpoBNMas6XxujVKrP_r6-AybE7jSpzurtaJqLqxzYxVdcbA83ZJpYq0fbR-RQfu-3-rYZesEW1MW5zanWnJYrpEKdOgpxXic0EQmrvZ1gpTzWknJFB9K2E8AYpAsUIorHyJVGAQQ4o9JPX1JzQmxfBe-4Cs_lBjtY1fFITKhw3c1gg3TILRSmNAlrzi2t5iIKoFsLEo9C9SzcKkAPTfI7VIsWxBrbBLglTXEjxkiwPlvEr2qrCdg9eCRiEzNy-xVeFHE8eDWdxvEWZr1bwM6_f-Azsg23uG_aY-dk3o-nZkLADe5uixm7zd-FvoW
  priority: 102
  providerName: Elsevier
Title Superplasticity in Ti–6Al–4V: Characterisation, modelling and applications
URI https://dx.doi.org/10.1016/j.actamat.2015.04.056
https://www.proquest.com/docview/1778027520
https://doi.org/10.1016/j.actamat.2015.04.056
UnpaywallVersion publishedVersion
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2453
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012740
  issn: 1359-6454
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2453
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012740
  issn: 1359-6454
  databaseCode: ACRLP
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2453
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012740
  issn: 1359-6454
  databaseCode: AIKHN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2453
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012740
  issn: 1359-6454
  databaseCode: .~1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2453
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012740
  issn: 1359-6454
  databaseCode: AKRWK
  dateStart: 19960101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7B7qHlwKMPsTxWqcSx2eZhJw63FQItoEZIsBU9WbZjJMoqrCARggPiP_AP-SXMZBNYUCvoJUoOM3I8HvuzZ-YzwIb2rAhZZlzfZLGLCBznwdha94QbgTI4K2sqcP6ZRoMh2zvmx3WxOtXCvIjfV3lYyhQKwRtlYfGKlZRHs9COOELvFrSH6UH_d7Wp4olL7FT0LuLQDRgPnyt2_q7nX2vRFNb8UOZjdX2lRqOpZWdnAdKmwZNsk7NeWeieuXnF5fjuP1qE-RqAOv3JiFmCGZt_grkpWsLPkB6WY3sxRlxNKdfFtXOaO0enD3f3UX-ET_Zr09l65nmuTPvdqa7Uodp2R-WZMx0X_wLDne2jrYFb37vgGsaTwhXMKIG-HuvQRL7WXCQZy1TmmcBkxFdvtFJcixOFmxGEG4qHWgsd4DIXhSHig6_Qys9zuwxO4KGGQAeRIqiQeDqJiEYd9RpCKrYDrLGANDUpOd2NMZJN9tkfWXeXpO6SHpPYXR3oPYmNJ6wcbwmIxryyhhYTyCDRPG-JfmuGg0TXo3iKyu15eSn9OBYU9Q28Dvx4Gifva9DKf0uswkf6ovNsn69Bq7go7ToCokJ3YbZ363eh3d_dH6Td2ikeAcr2Cgg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5ED-pBfGJ9RvBozGs32XgrRamvXmylt2V3s0JLSUNNkV7E_-A_9Jc4kya1gqB4ySHJhGVmd-bb7Mw3hJwq1_CAJtr2dBLZgMDBD0bG2E9Mc5ABr6ywwPm-FTY79KbLugukUdXCYFpl6funPr3w1uUdp9Smk_V6zoMXsBj5qADSIOkK7NuXKPMj3IGdv87yPDzYdk1LhVls4-tfZTxOH8acS0CGmOLFCspTbGT9c4CaA6DL4zSTkxc5GMzFoqt1slaCSKs-HecGWTDpJlmdoxbcIq2HcWZGGWBjTJvOJ1Yvtdq9j7f3sD6AK328sBpfXM2Fec6soi0O1qdbMk2s-bPtbdK5umw3mnbZO8HWlMW5zamWHNZrpAIdekoxHic0kYmrfZ0g57xWUjLFnyRsKAAySBYoxZUPoSoMAojxO2QxHaZml1i-C1_wlR9KDPexq-IQqdDhuxrRhqkRWilM6JJYHPtbDESVQdYXpZ4F6lm4VICea-R8JpZNmTV-E-CVNcS3KSLA-_8melJZT8DywTMRmZrh-Fl4UcTx5NZ3a8SZmfVvA9r7_4COyXKzfX8n7q5bt_tkBZ_gj2qPHZDFfDQ2h4B0cnVUzORPHhj9OQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsQwEB50PagH_8X1jwoe7dptkzb1togigougK3oKSRpBXeqytsh68h18Q5_EmW6rqyjqpbSHGdJMJvmSmfkCsK09KwKWGLdpkshFBI7zYGSte82NQBmclTUVOJ-0w6MOO77kl2WxOtXCfIrfF3lYymQKwRtlYfGClZSH4zARcoTeNZjotE9bV8WmiscusVPRu4gC12c8-KjY-V7PT2vRCNaczNOeGjyqbndk2TmchXbV4GG2yV0jz3TDPH3hcvzzH83BTAlAndZwxMzDmE0XYHqElnAR2md5z_Z7iKsp5TobODepc37z-vwStrr4ZBd7zv4Hz3Nh2h2nuFKHatsdlSbOaFx8CTqHB-f7R25574JrGI8zVzCjBPp6pAMTNrXmIk5YohLP-CYhvnqjleJaXCvcjCDcUDzQWmgfl7kwCBAfLEMtvU_tCji-hxp87YeKoELs6TgkGnXUawip2DqwygLSlKTkdDdGV1bZZ7ey7C5J3SU9JrG76tB4F-sNWTl-ExCVeWUJLYaQQaJ5fhPdqoaDRNejeIpK7X3-IJtRJCjq63t12H0fJ39r0Oq_JdZgir7oPLvJ16GW9XO7gYAo05ulG7wBVdEHfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superplasticity+in+Ti%E2%80%936Al%E2%80%934V%3A+Characterisation%2C+modelling+and+applications&rft.jtitle=Acta+materialia&rft.au=Alabort%2C+E.&rft.au=Putman%2C+D.&rft.au=Reed%2C+R.C.&rft.date=2015-08-15&rft.issn=1359-6454&rft.volume=95&rft.spage=428&rft.epage=442&rft_id=info:doi/10.1016%2Fj.actamat.2015.04.056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actamat_2015_04_056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon