Superplasticity in Ti–6Al–4V: Characterisation, modelling and applications
The processing regime relevant to superplasticity in the Ti–6Al–4V alloy is identified. The effect is found to be potent in the range 850–900°C at strain rates between 0.001/s and 0.0001/s. Within this regime, mechanical behaviour is characterised by steady-state grain size and negligible cavity for...
Saved in:
| Published in | Acta materialia Vol. 95; pp. 428 - 442 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.08.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1359-6454 1873-2453 1873-2453 |
| DOI | 10.1016/j.actamat.2015.04.056 |
Cover
| Abstract | The processing regime relevant to superplasticity in the Ti–6Al–4V alloy is identified. The effect is found to be potent in the range 850–900°C at strain rates between 0.001/s and 0.0001/s. Within this regime, mechanical behaviour is characterised by steady-state grain size and negligible cavity formation; electron backscatter diffraction studies confirm a random texture, leaving grain-boundary sliding as the overarching deformation mechanism. Outside of the superplastic regime, grain size refinement involving recrystallisation and the formation of voids and cavities cause macroscopic softening; low ductility results. Stress hardening is correlated to grain growth and accumulation of dislocations. The findings are used to construct a processing map, on which the dominant deformation mechanisms are identified. Physically-based constitutive equations are presented which are faithful to the observed deformation mechanisms. Internal state variables are used to represent the evolution of grain size, dislocation density and void fraction. Material constants are determined using genetic-algorithm optimisation techniques. Finally, the deformation behaviour of this material in an industrially relevant problem is simulated: the inflation of diffusion-bonded material for the manufacture of hollow, lightweight structures. |
|---|---|
| AbstractList | The processing regime relevant to superplasticity in the Ti-6Al-4V alloy is identified. The effect is found to be potent in the range 850-900 degree C at strain rates between 0.001/s and 0.0001/s. Within this regime, mechanical behaviour is characterised by steady-state grain size and negligible cavity formation; electron backscatter diffraction studies confirm a random texture, leaving grain-boundary sliding as the overarching deformation mechanism. Outside of the superplastic regime, grain size refinement involving recrystallisation and the formation of voids and cavities cause macroscopic softening; low ductility results. Stress hardening is correlated to grain growth and accumulation of dislocations. The findings are used to construct a processing map, on which the dominant deformation mechanisms are identified. Physically-based constitutive equations are presented which are faithful to the observed deformation mechanisms. Internal state variables are used to represent the evolution of grain size, dislocation density and void fraction. Material constants are determined using genetic-algorithm optimisation techniques. Finally, the deformation behaviour of this material in an industrially relevant problem is simulated: the inflation of diffusion-bonded material for the manufacture of hollow, lightweight structures. The processing regime relevant to superplasticity in the Ti–6Al–4V alloy is identified. The effect is found to be potent in the range 850–900°C at strain rates between 0.001/s and 0.0001/s. Within this regime, mechanical behaviour is characterised by steady-state grain size and negligible cavity formation; electron backscatter diffraction studies confirm a random texture, leaving grain-boundary sliding as the overarching deformation mechanism. Outside of the superplastic regime, grain size refinement involving recrystallisation and the formation of voids and cavities cause macroscopic softening; low ductility results. Stress hardening is correlated to grain growth and accumulation of dislocations. The findings are used to construct a processing map, on which the dominant deformation mechanisms are identified. Physically-based constitutive equations are presented which are faithful to the observed deformation mechanisms. Internal state variables are used to represent the evolution of grain size, dislocation density and void fraction. Material constants are determined using genetic-algorithm optimisation techniques. Finally, the deformation behaviour of this material in an industrially relevant problem is simulated: the inflation of diffusion-bonded material for the manufacture of hollow, lightweight structures. |
| Author | Alabort, E. Reed, R.C. Putman, D. |
| Author_xml | – sequence: 1 givenname: E. surname: Alabort fullname: Alabort, E. organization: Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom – sequence: 2 givenname: D. surname: Putman fullname: Putman, D. organization: Rolls-Royce plc, PO Box 31, Derby, DE24 8BJ, United Kingdom – sequence: 3 givenname: R.C. surname: Reed fullname: Reed, R.C. organization: Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom |
| BookMark | eNqNkM9OGzEQhy0EUhPoI1TaIwd2sdd_1tseqiiitFJUDk17tWa9DjhyvIvtgHLjHfqGfRIcwokLvdiWZr75jb8pOvaDNwh9IrgimIjLdQU6wQZSVWPCK8wqzMURmhDZ0LJmnB7nN-VtKRhnH9A0xjXGpG4YnqCfv7ajCaODmKy2aVdYXyztv6e_Yubyyf58LuZ3EHKACTZCsoO_KDZDb5yz_rYA3xcwjs7ql1I8QycrcNF8fL1P0e9vV8v593Jxc_1jPluUmvE2lZJpkDTv11EtSNdx2fashx7rWvdCcqk7AN7JFbQNawkGTrtOdnVDpKBUEHqKxGHu1o-wewTn1BjsBsJOEaz2VtRavVpReysKM5WtZPD8AI5huN-amNTGRp1_A94M26hI00hcN7zGuZUfWnUYYgxm9d8RX95wWeyLnhTAunfprwfaZH0P1gQVtTVem94Go5PqB_vOhGdNy6Wn |
| CitedBy_id | crossref_primary_10_1016_j_actamat_2016_08_034 crossref_primary_10_1007_s11665_024_09834_4 crossref_primary_10_1016_j_msea_2017_10_017 crossref_primary_10_1016_j_jallcom_2019_151759 crossref_primary_10_1080_17415977_2018_1489802 crossref_primary_10_1088_2053_1591_ab4b83 crossref_primary_10_2464_jilm_70_226 crossref_primary_10_1016_j_jallcom_2024_175065 crossref_primary_10_1007_s11665_022_07426_8 crossref_primary_10_55713_jmmm_v34i2_1908 crossref_primary_10_1016_j_jmapro_2024_11_025 crossref_primary_10_1002_mawe_201700040 crossref_primary_10_1051_matecconf_202032104028 crossref_primary_10_1016_j_ijplas_2023_103694 crossref_primary_10_1016_j_jallcom_2024_176388 crossref_primary_10_1016_j_jmatprotec_2020_116904 crossref_primary_10_1134_S0031918X18100083 crossref_primary_10_1016_j_calphad_2023_102654 crossref_primary_10_1016_j_msea_2020_140140 crossref_primary_10_1016_j_ijplas_2017_05_005 crossref_primary_10_1016_j_msea_2024_147419 crossref_primary_10_1016_j_jmrt_2025_03_076 crossref_primary_10_3390_coatings14010122 crossref_primary_10_3390_cryst12020294 crossref_primary_10_1016_j_ijlmm_2022_10_002 crossref_primary_10_1016_j_jallcom_2019_06_323 crossref_primary_10_1016_j_jmatprotec_2018_05_002 crossref_primary_10_2464_jilm_70_562 crossref_primary_10_1016_j_jmrt_2023_06_059 crossref_primary_10_2464_jilm_67_95 crossref_primary_10_4028_www_scientific_net_DDF_385_413 crossref_primary_10_1002_adem_201900672 crossref_primary_10_1007_s43452_023_00707_6 crossref_primary_10_1016_j_msea_2017_09_128 crossref_primary_10_1016_j_actamat_2018_01_060 crossref_primary_10_1016_j_actamat_2021_116730 crossref_primary_10_1016_j_matdes_2018_11_039 crossref_primary_10_3390_ma16041439 crossref_primary_10_3390_ma15010294 crossref_primary_10_1007_s42864_022_00182_1 crossref_primary_10_1016_S1003_6326_23_66287_9 crossref_primary_10_4028_www_scientific_net_SSP_306_15 crossref_primary_10_1016_j_jmapro_2021_10_064 crossref_primary_10_1016_j_matchar_2020_110458 crossref_primary_10_1016_j_msea_2019_03_079 crossref_primary_10_1016_S1003_6326_21_65658_3 crossref_primary_10_3390_jmmp9030086 crossref_primary_10_1016_j_ijmecsci_2019_105178 crossref_primary_10_1016_j_msea_2023_144924 crossref_primary_10_1016_j_matchar_2017_10_002 crossref_primary_10_1016_j_jmrt_2022_04_063 crossref_primary_10_1016_j_jmapro_2019_06_033 crossref_primary_10_1016_j_jmrt_2025_01_121 crossref_primary_10_1051_matecconf_202032111023 crossref_primary_10_3390_cryst11080991 crossref_primary_10_3390_met8100819 crossref_primary_10_3390_met12030513 crossref_primary_10_1016_j_apsusc_2019_05_271 crossref_primary_10_3390_app13042686 crossref_primary_10_1016_j_msea_2021_141367 crossref_primary_10_1016_j_mtcomm_2024_109585 crossref_primary_10_1016_j_ijlmm_2024_06_002 crossref_primary_10_1016_S1003_6326_20_65266_9 crossref_primary_10_1007_s00170_021_08440_1 crossref_primary_10_3390_met10121575 crossref_primary_10_1016_j_compositesb_2022_109940 crossref_primary_10_3390_ma12020223 crossref_primary_10_1007_s00170_023_12036_2 crossref_primary_10_1016_j_actamat_2019_07_026 crossref_primary_10_1007_s12289_018_1432_5 crossref_primary_10_1007_s12540_020_00857_9 crossref_primary_10_1016_j_matpr_2020_11_163 crossref_primary_10_1007_s12289_019_01527_x crossref_primary_10_1016_j_msea_2020_140545 crossref_primary_10_1016_j_jallcom_2024_176989 crossref_primary_10_14498_vsgtu1726 crossref_primary_10_1016_j_actamat_2017_04_047 crossref_primary_10_4028_www_scientific_net_MSF_941_2343 crossref_primary_10_1007_s00170_019_03956_z crossref_primary_10_1016_j_jallcom_2024_177156 crossref_primary_10_1016_j_jallcom_2021_159792 crossref_primary_10_1016_j_proeng_2017_10_1005 crossref_primary_10_1007_s11661_022_06598_1 crossref_primary_10_1080_21663831_2020_1818323 crossref_primary_10_1016_j_euromechsol_2024_105469 crossref_primary_10_1007_s00170_016_9235_7 crossref_primary_10_1177_03093247241310346 crossref_primary_10_1007_s40195_024_01670_8 crossref_primary_10_1007_s11837_024_07079_z crossref_primary_10_1016_j_matdes_2023_111791 crossref_primary_10_1038_s41467_017_00814_y crossref_primary_10_1088_1757_899X_473_1_012040 crossref_primary_10_3390_met10121599 crossref_primary_10_1007_s11661_020_06085_5 crossref_primary_10_1016_S1003_6326_23_66145_X crossref_primary_10_1016_j_ijplas_2024_103892 crossref_primary_10_1016_j_ijmecsci_2016_01_024 crossref_primary_10_1016_j_matchar_2022_111825 crossref_primary_10_1051_matecconf_202032111011 crossref_primary_10_3390_ma12111756 crossref_primary_10_1051_matecconf_202032111018 crossref_primary_10_1007_s11661_019_05207_y crossref_primary_10_22226_2410_3535_2021_4_553_556 crossref_primary_10_1016_j_matchar_2019_05_014 crossref_primary_10_1007_s00170_023_12715_0 crossref_primary_10_1016_j_promfg_2020_08_131 crossref_primary_10_1016_j_jmrt_2020_07_076 crossref_primary_10_1016_j_jmst_2022_05_006 crossref_primary_10_1016_j_mtcomm_2023_105343 crossref_primary_10_1557_s43578_020_00102_4 crossref_primary_10_1557_adv_2020_190 crossref_primary_10_1007_s40195_023_01630_8 crossref_primary_10_1016_j_ijmecsci_2019_105126 crossref_primary_10_1016_j_msea_2022_143245 crossref_primary_10_22226_2410_3535_2022_4_332_335 crossref_primary_10_1016_j_msea_2024_146999 crossref_primary_10_1016_j_mtla_2018_100189 crossref_primary_10_1016_j_matdes_2017_10_008 crossref_primary_10_1016_j_jallcom_2019_02_125 crossref_primary_10_1016_j_mtcomm_2024_110090 crossref_primary_10_1016_j_matchar_2023_113051 crossref_primary_10_3390_ma15207064 crossref_primary_10_1016_j_promfg_2018_07_374 crossref_primary_10_1016_j_msea_2020_140626 crossref_primary_10_1108_EC_05_2020_0266 crossref_primary_10_1007_s11665_016_2320_0 crossref_primary_10_1007_s12598_020_01408_2 crossref_primary_10_1016_j_msea_2021_141697 crossref_primary_10_1016_j_compositesb_2020_107838 crossref_primary_10_1007_s11043_024_09735_y crossref_primary_10_1007_s00170_023_12485_9 crossref_primary_10_1016_j_engfracmech_2021_108027 crossref_primary_10_2355_isijinternational_ISIJINT_2024_014 crossref_primary_10_1115_1_4055779 crossref_primary_10_1016_j_msea_2021_141902 crossref_primary_10_1016_j_msea_2023_145241 crossref_primary_10_1016_j_jallcom_2017_02_285 crossref_primary_10_1016_j_msea_2024_146297 crossref_primary_10_1016_j_jmatprotec_2025_118736 crossref_primary_10_1016_j_jmatprotec_2016_06_003 crossref_primary_10_1016_j_cirpj_2017_09_004 crossref_primary_10_1016_j_actamat_2015_12_003 crossref_primary_10_3390_met13050886 crossref_primary_10_1016_j_msea_2016_02_052 crossref_primary_10_1016_j_jmrt_2025_01_014 crossref_primary_10_4028_www_scientific_net_DDF_385_137 crossref_primary_10_1016_j_euromechsol_2021_104227 crossref_primary_10_1080_02670836_2019_1591031 crossref_primary_10_1016_j_jmrt_2024_09_037 crossref_primary_10_1016_S1003_6326_20_65483_8 crossref_primary_10_1016_j_msea_2019_05_063 crossref_primary_10_1016_j_jmatprotec_2024_118701 crossref_primary_10_1016_j_msea_2016_09_107 crossref_primary_10_4028_www_scientific_net_DDF_385_65 crossref_primary_10_1557_s43578_024_01295_8 crossref_primary_10_1016_j_msea_2020_139174 crossref_primary_10_1016_j_scriptamat_2023_115567 crossref_primary_10_1016_j_powtec_2023_118504 crossref_primary_10_1016_j_jallcom_2017_01_096 crossref_primary_10_1016_j_matdes_2017_05_005 crossref_primary_10_1016_j_msea_2018_01_099 crossref_primary_10_1016_j_matdes_2020_108926 crossref_primary_10_1016_j_dental_2024_01_005 crossref_primary_10_1016_j_ijnonlinmec_2024_104835 crossref_primary_10_3390_jmmp4030076 crossref_primary_10_3390_mi11111023 crossref_primary_10_1007_s12666_020_02137_x crossref_primary_10_1115_1_4063310 crossref_primary_10_1016_j_matchar_2023_113253 crossref_primary_10_1016_j_ijsolstr_2020_06_024 crossref_primary_10_1016_j_jmrt_2024_12_224 crossref_primary_10_1016_j_jallcom_2021_160150 crossref_primary_10_1038_s41598_017_09493_7 crossref_primary_10_1088_1742_6596_1270_1_012048 crossref_primary_10_1002_advs_202207535 crossref_primary_10_1016_j_jmrt_2021_01_116 crossref_primary_10_3390_ma12213520 crossref_primary_10_1016_j_actamat_2020_03_048 crossref_primary_10_1007_s12289_022_01718_z crossref_primary_10_1016_j_msea_2020_139718 crossref_primary_10_1007_s11661_016_3625_1 crossref_primary_10_1016_j_msea_2023_145972 crossref_primary_10_1016_S1003_6326_24_66669_0 crossref_primary_10_1016_j_matdes_2018_09_048 crossref_primary_10_3390_met10101353 crossref_primary_10_1007_s11665_024_09807_7 crossref_primary_10_3390_met11020314 crossref_primary_10_1016_j_matchar_2021_111361 crossref_primary_10_1016_j_actamat_2023_119339 crossref_primary_10_1016_j_ijimpeng_2023_104549 crossref_primary_10_1016_j_msea_2023_144994 crossref_primary_10_3390_met12050741 crossref_primary_10_1016_j_jmapro_2022_08_021 crossref_primary_10_1007_s00170_022_10629_x crossref_primary_10_1007_s11665_022_07111_w crossref_primary_10_1088_1572_9494_ab6904 crossref_primary_10_1016_j_msea_2022_142932 crossref_primary_10_3390_met10091153 crossref_primary_10_1016_j_jallcom_2018_04_118 crossref_primary_10_1016_S1003_6326_24_66596_9 crossref_primary_10_1115_1_4045364 crossref_primary_10_3389_fmats_2021_641928 crossref_primary_10_1016_j_jmapro_2018_12_010 crossref_primary_10_3390_ma12223667 crossref_primary_10_4028_www_scientific_net_SSP_306_9 crossref_primary_10_1108_RPJ_04_2024_0186 crossref_primary_10_1016_j_msea_2019_138570 crossref_primary_10_1007_s43452_021_00260_0 crossref_primary_10_1016_j_actamat_2022_117766 crossref_primary_10_1016_j_msea_2020_140046 crossref_primary_10_3390_met10091150 crossref_primary_10_1007_s00170_020_06213_w crossref_primary_10_1016_j_promfg_2020_08_049 crossref_primary_10_1007_s11661_022_06790_3 crossref_primary_10_3390_ma17246146 |
| Cites_doi | 10.1016/S0167-6636(01)00063-1 10.1016/0001-6160(75)90132-7 10.4028/www.scientific.net/MSF.735.215 10.1016/j.jmatprotec.2007.03.097 10.1016/j.ijplas.2010.06.005 10.25103/jestr.053.01 10.1016/0001-6160(78)90030-5 10.1016/S1359-6454(01)00233-6 10.1016/S0921-5093(00)01983-3 10.1016/j.msea.2013.03.013 10.1016/S0749-6419(00)00036-X 10.1016/S0921-5093(98)01157-5 10.1016/S1359-6454(01)00236-1 10.1016/S1359-6454(02)00278-1 10.1016/S0749-6419(98)00013-8 10.1016/j.mechmat.2009.10.004 10.1007/BF00550469 10.1016/S0921-5093(01)01818-4 10.1016/S1875-5372(10)60106-3 10.1016/0001-6160(89)90108-9 10.1016/0956-7151(94)00428-5 10.1016/j.msea.2012.08.110 10.1038/nature09685 10.1016/S0924-0136(98)00208-8 10.1243/03093247V313187 10.1080/14786430412331305285 10.1016/0956-7151(93)90029-R 10.1007/s10853-009-3780-5 10.4028/www.scientific.net/MSF.735.204 10.1007/s11661-006-0008-z 10.1016/S0921-5093(98)01156-3 10.1016/j.actamat.2011.04.051 10.1016/0001-6160(73)90057-6 10.1016/S0921-5093(02)00120-X 10.1016/j.actamat.2005.09.005 10.1016/S0007-8506(07)60405-3 10.1016/S1359-6454(03)00426-9 10.1016/S0924-0136(03)00472-2 10.1016/S1359-6454(98)00196-7 10.1016/j.ijplas.2011.05.008 10.1016/j.jmatprotec.2004.01.023 10.1179/mst.1992.8.2.102 10.1016/j.msea.2010.02.009 10.1007/s11665-007-9076-5 10.1016/0001-6160(78)90154-2 10.1016/S0921-5093(97)00707-7 10.1016/j.actamat.2009.11.034 10.1361/10599490421321 10.1016/S1359-6454(01)00008-8 10.1016/0001-6160(81)90112-7 10.1016/j.actamat.2009.04.011 10.2320/matertrans.ME200720 10.1016/S0924-0136(98)00135-6 10.1016/j.msea.2003.09.024 10.1016/j.ijrmhm.2008.06.009 10.1115/1.3225739 10.1016/j.ijmecsci.2007.07.003 10.1016/S0921-5093(01)01508-8 |
| ContentType | Journal Article |
| Copyright | 2015 The Author(s) |
| Copyright_xml | – notice: 2015 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION 7SR 8BQ 8FD JG9 ADTOC UNPAY |
| DOI | 10.1016/j.actamat.2015.04.056 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2453 |
| EndPage | 442 |
| ExternalDocumentID | 10.1016/j.actamat.2015.04.056 10_1016_j_actamat_2015_04_056 S1359645415003080 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FGOYB R2- SEW T9H ZY4 ~HD 7SR 8BQ 8FD JG9 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c459t-84ca83187b3c61bb589d4dad0c2cd6858cbaa5b8fa974910a53bb8b2718633613 |
| IEDL.DBID | UNPAY |
| ISSN | 1359-6454 1873-2453 |
| IngestDate | Wed Oct 29 11:44:11 EDT 2025 Tue Sep 30 20:14:15 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 Wed Oct 29 21:26:17 EDT 2025 Fri Feb 23 02:41:49 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Superplasticity Superplastic forming Ti–6Al–4V Constitutive modelling |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-84ca83187b3c61bb589d4dad0c2cd6858cbaa5b8fa974910a53bb8b2718633613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.actamat.2015.04.056 |
| PQID | 1778027520 |
| PQPubID | 23500 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1016_j_actamat_2015_04_056 proquest_miscellaneous_1778027520 crossref_primary_10_1016_j_actamat_2015_04_056 crossref_citationtrail_10_1016_j_actamat_2015_04_056 elsevier_sciencedirect_doi_10_1016_j_actamat_2015_04_056 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-15 |
| PublicationDateYYYYMMDD | 2015-08-15 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Acta materialia |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhou, Dunne (b0095) 2007; 31 Pan, Krohn, Leen, Hyde, Walle (b0300) 2005; 219 Horstemeyer, Bammann (b0125) 2010; 26 Chung, Cheng (b0305) 2001; 308 Fan, Yang (b0155) 2011; 27 Zhou (b0130) 1998; 245 Ashby, Verrall (b0040) 1973; 21 Sandström, Lagneborg (b0220) 1975; 23 Kawasaki, Langdon (b0025) 2008; 49 Roberts, Ahlblom (b0225) 1978; 26 Ding, Guo (b0245) 2001; 49 ASTM, Standard test method for determining the superplastic properties of metallic sheet materials E2448–11, Technical Report, 2012. Kim, Semiatin, Lee (b0175) 2003; 51 Kröhn, Leen, Hyde (b0315) 2007; 221 Chung, Cheng (b0310) 2002; 333 Rust, Todd (b0055) 2011; 59 Nazzal, Khraisheh, Darras (b0285) 2004; 13 Bai, Lin, Dean, Balint, Gao, Zhang (b0110) 2013; 559 Estrin (b0250) 1998; 80–81 Nazzal, Khraisheh, Abu-Farha (b0290) 2007; 191 Valiev, Langdon (b0060) 1993; 41 Kim, Chung, Chung, Kum (b0020) 2001; 49 Hiraga, Miyazaki, Tasaka, Yoshida (b0035) 2010; 468 Semiatin, Bieler (b0160) 2001; 49 Picu, Majorell (b0170) 2002; 326 Li, Tan (b0180) 2004; 150 Xu, Nishimura, Hirosaki, Xie, Yamamoto, Tanaka (b0030) 2006; 54 Mayo, Nix (b0070) 1989; 37 Khaleel, Zbib, Nyberg (b0260) 2001; 17 Nemat-Nasser, Guo, Nesterenko, Indrakanti, Gu (b0100) 2001; 33 Roucoules, Pietrzyk, Hodgson (b0230) 2003; 339 Ding, Guo (b0115) 2004; 365 Semiatin, Seetharaman, Weiss (b0105) 1999; 263 Kim, Kim, Lee, Park, Lee (b0085) 1999; 263 Ma, Mishra, Mahoney (b0015) 2002; 50 Ashby (b0120) 1992; 8 Sun, Yang, Han, Fan (b0145) 2010; 527 Murty (b0295) 1973; 8 Panicker, Chokshi, Mishra (b0065) 2009; 57 Sotoudeh, Bate (b0045) 2010; 58 Langdon (b0005) 2009; 44 Spingarn, Nix (b0050) 1978; 26 G. Gurewitz, N. Ridley, A.K. Mukherjee, Elevated temperature cavitation in creep and superplasticity of Ti–6Al–4V alloy, in: Proceedings of ICF International Symposium on Fracture Mechanics, pp. 12–25. Dunne (b0150) 1998; 14 Dunne (b0215) 1998; 80–81 Zelin, Mukherjee (b0075) 1995; 43 Kaibyshev, Safiullin (b0200) 2006; 22 Ko, Lee, Shin, Semiatin (b0195) 2006; 37 Mingard, Roebuck, Bennett, Gee, Nordenstrom, Sweetman, Chan (b0210) 2009; 27 Cao, Lin (b0265) 2008; 50 Luo, Li, Li (b0165) 2010; 42 Wood, Qarni, Blackwell, Cerny, Brennand, Wilkinson, Rosochowski (b0270) 2012; 735 Lin, Liu (b0140) 2003; 143–144 Estrin, Toth, Molinari, Brechet (b0240) 1998; 46 Roy, Suwas (b0080) 2013; 574 Bing, Zhiqiang, Hongliang, Jinhua (b0190) 2010; 39 Mecking, Kocks (b0235) 1981; 29 Ivanov, Perepelica, Bikmeyev (b0185) 2012; 5 Otegi, Galdos, Hurtado, Leen (b0275) 2013; 735 Perzyna (b0255) 1984; 106 Barnes (b0010) 2007; 16 Khraisheh, Abu-Farha, Nazzal, Weinmann (b0280) 2006; 55 Lin, Liu, Farrugia, Zhou (b0135) 2005; 85 Mecking (10.1016/j.actamat.2015.04.056_b0235) 1981; 29 Zelin (10.1016/j.actamat.2015.04.056_b0075) 1995; 43 Ashby (10.1016/j.actamat.2015.04.056_b0120) 1992; 8 Lin (10.1016/j.actamat.2015.04.056_b0140) 2003; 143–144 Sun (10.1016/j.actamat.2015.04.056_b0145) 2010; 527 Horstemeyer (10.1016/j.actamat.2015.04.056_b0125) 2010; 26 Estrin (10.1016/j.actamat.2015.04.056_b0240) 1998; 46 Kim (10.1016/j.actamat.2015.04.056_b0085) 1999; 263 Nazzal (10.1016/j.actamat.2015.04.056_b0290) 2007; 191 Kim (10.1016/j.actamat.2015.04.056_b0175) 2003; 51 Khaleel (10.1016/j.actamat.2015.04.056_b0260) 2001; 17 Roberts (10.1016/j.actamat.2015.04.056_b0225) 1978; 26 Chung (10.1016/j.actamat.2015.04.056_b0305) 2001; 308 Rust (10.1016/j.actamat.2015.04.056_b0055) 2011; 59 Bing (10.1016/j.actamat.2015.04.056_b0190) 2010; 39 Kim (10.1016/j.actamat.2015.04.056_b0020) 2001; 49 Kawasaki (10.1016/j.actamat.2015.04.056_b0025) 2008; 49 10.1016/j.actamat.2015.04.056_b0090 Murty (10.1016/j.actamat.2015.04.056_b0295) 1973; 8 Chung (10.1016/j.actamat.2015.04.056_b0310) 2002; 333 Li (10.1016/j.actamat.2015.04.056_b0180) 2004; 150 Khraisheh (10.1016/j.actamat.2015.04.056_b0280) 2006; 55 Langdon (10.1016/j.actamat.2015.04.056_b0005) 2009; 44 Mayo (10.1016/j.actamat.2015.04.056_b0070) 1989; 37 Dunne (10.1016/j.actamat.2015.04.056_b0150) 1998; 14 Zhou (10.1016/j.actamat.2015.04.056_b0130) 1998; 245 Roucoules (10.1016/j.actamat.2015.04.056_b0230) 2003; 339 Picu (10.1016/j.actamat.2015.04.056_b0170) 2002; 326 Nemat-Nasser (10.1016/j.actamat.2015.04.056_b0100) 2001; 33 Ko (10.1016/j.actamat.2015.04.056_b0195) 2006; 37 10.1016/j.actamat.2015.04.056_b0205 Kaibyshev (10.1016/j.actamat.2015.04.056_b0200) 2006; 22 Sotoudeh (10.1016/j.actamat.2015.04.056_b0045) 2010; 58 Ivanov (10.1016/j.actamat.2015.04.056_b0185) 2012; 5 Kröhn (10.1016/j.actamat.2015.04.056_b0315) 2007; 221 Roy (10.1016/j.actamat.2015.04.056_b0080) 2013; 574 Semiatin (10.1016/j.actamat.2015.04.056_b0160) 2001; 49 Semiatin (10.1016/j.actamat.2015.04.056_b0105) 1999; 263 Xu (10.1016/j.actamat.2015.04.056_b0030) 2006; 54 Ashby (10.1016/j.actamat.2015.04.056_b0040) 1973; 21 Valiev (10.1016/j.actamat.2015.04.056_b0060) 1993; 41 Panicker (10.1016/j.actamat.2015.04.056_b0065) 2009; 57 Perzyna (10.1016/j.actamat.2015.04.056_b0255) 1984; 106 Spingarn (10.1016/j.actamat.2015.04.056_b0050) 1978; 26 Pan (10.1016/j.actamat.2015.04.056_b0300) 2005; 219 Barnes (10.1016/j.actamat.2015.04.056_b0010) 2007; 16 Otegi (10.1016/j.actamat.2015.04.056_b0275) 2013; 735 Sandström (10.1016/j.actamat.2015.04.056_b0220) 1975; 23 Cao (10.1016/j.actamat.2015.04.056_b0265) 2008; 50 Dunne (10.1016/j.actamat.2015.04.056_b0215) 1998; 80–81 Hiraga (10.1016/j.actamat.2015.04.056_b0035) 2010; 468 Lin (10.1016/j.actamat.2015.04.056_b0135) 2005; 85 Ma (10.1016/j.actamat.2015.04.056_b0015) 2002; 50 Ding (10.1016/j.actamat.2015.04.056_b0115) 2004; 365 Zhou (10.1016/j.actamat.2015.04.056_b0095) 2007; 31 Fan (10.1016/j.actamat.2015.04.056_b0155) 2011; 27 Mingard (10.1016/j.actamat.2015.04.056_b0210) 2009; 27 Ding (10.1016/j.actamat.2015.04.056_b0245) 2001; 49 Wood (10.1016/j.actamat.2015.04.056_b0270) 2012; 735 Nazzal (10.1016/j.actamat.2015.04.056_b0285) 2004; 13 Estrin (10.1016/j.actamat.2015.04.056_b0250) 1998; 80–81 Luo (10.1016/j.actamat.2015.04.056_b0165) 2010; 42 Bai (10.1016/j.actamat.2015.04.056_b0110) 2013; 559 |
| References_xml | – volume: 50 start-page: 4419 year: 2002 end-page: 4430 ident: b0015 article-title: Superplastic deformation behaviour of friction stir processed 7075Al alloy publication-title: Acta Mater. – volume: 263 start-page: 272 year: 1999 end-page: 280 ident: b0085 article-title: Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti–6Al–4V alloy publication-title: Mater. Sci. Eng.: A – volume: 574 start-page: 205 year: 2013 end-page: 217 ident: b0080 article-title: Deformation mechanisms during superplastic testing of Ti–6Al–4V-0.1B alloy publication-title: Mater. Sci. Eng.: A – volume: 59 start-page: 5159 year: 2011 end-page: 5170 ident: b0055 article-title: Surface studies of region II superplasticity of AA5083 in shear: confirmation of diffusion creep, grain neighbour switching and absence of dislocation activity publication-title: Acta Mater. – volume: 26 start-page: 1310 year: 2010 end-page: 1334 ident: b0125 article-title: Historical review of internal state variable theory for inelasticity publication-title: Int. J. Plasticity – volume: 559 start-page: 352 year: 2013 end-page: 358 ident: b0110 article-title: Modelling of dominant softening mechanisms for Ti–6Al–4V in steady state hot forming conditions publication-title: Mater. Sci. Eng.: A – volume: 37 start-page: 381 year: 2006 end-page: 391 ident: b0195 article-title: Low-temperature superplasticity of ultra-fine-grained Ti–6Al–4V processed by equal-channel angular pressing publication-title: Metall. Mater. Trans. A – volume: 41 start-page: 949 year: 1993 end-page: 954 ident: b0060 article-title: An investigation of the role of intragranular dislocation strain in the superplastic Pb-62% Sn eutectic alloy publication-title: Acta Metallur. Mater. – volume: 14 start-page: 413 year: 1998 end-page: 433 ident: b0150 article-title: Inhomogeneity of microstructure in superplasticity and its effect on ductility publication-title: Int. J. Plasticity – volume: 49 start-page: 84 year: 2008 end-page: 89 ident: b0025 article-title: Grain boundary sliding in a superplastic zinc–aluminum alloy processed using severe plastic deformation publication-title: Mater. Trans. – volume: 26 start-page: 1389 year: 1978 end-page: 1398 ident: b0050 article-title: Diffusional creep and diffusionally accommodated grain rearrangement publication-title: Acta Metallur. – volume: 221 start-page: 251 year: 2007 end-page: 264 ident: b0315 article-title: A superplastic forming limit diagram concept for Ti–6Al–4V publication-title: Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. – volume: 365 start-page: 172 year: 2004 end-page: 179 ident: b0115 article-title: Microstructural evolution of a Ti–6Al–4V alloy during publication-title: Mater. Sci. Eng.: A – volume: 80–81 start-page: 96 year: 1998 end-page: 100 ident: b0215 article-title: Modelling heterogeneous microstructures, inhomogeneous deformation and failure in superplasticity publication-title: J. Mater. Process. Technol. – volume: 143–144 start-page: 281 year: 2003 end-page: 285 ident: b0140 article-title: A set of unified constitutive equations for modelling microstructure evolution in hot deformation publication-title: J. Mater. Process. Technol. – volume: 37 start-page: 1121 year: 1989 end-page: 1134 ident: b0070 article-title: Direct observation of superplastic flow mechanisms in torsion publication-title: Acta Metallur. – volume: 308 start-page: 153 year: 2001 end-page: 160 ident: b0305 article-title: The analysis of instability and strain concentration during superplastic deformation publication-title: Mater. Sci. Eng.: A – volume: 29 start-page: 1865 year: 1981 end-page: 1875 ident: b0235 article-title: Kinetics of flow and strain-hardening publication-title: Acta Metallur. – volume: 468 start-page: 1091 year: 2010 end-page: 1094 ident: b0035 article-title: Mantle superplasticity and its self-made demise publication-title: Nature – volume: 43 start-page: 2359 year: 1995 end-page: 2372 ident: b0075 article-title: Cooperative phenomena at grain boundaries during superplastic flow publication-title: Acta Metallur. Mater. – volume: 42 start-page: 157 year: 2010 end-page: 165 ident: b0165 article-title: Constitutive model for high temperature deformation of titanium alloys using internal state variables publication-title: Mech. Mater. – volume: 44 start-page: 5998 year: 2009 end-page: 6010 ident: b0005 article-title: Seventy-five years of superplasticity: historic developments and new opportunities publication-title: J. Mater. Sci. – volume: 80–81 start-page: 33 year: 1998 end-page: 39 ident: b0250 article-title: Dislocation theory based constitutive modelling: foundations and applications publication-title: J. Mater. Process. Technol. – volume: 13 start-page: 691 year: 2004 end-page: 699 ident: b0285 article-title: Finite element modeling and optimization of superplastic forming using variable strain rate approach publication-title: J. Mater. Eng. Perform. – reference: ASTM, Standard test method for determining the superplastic properties of metallic sheet materials E2448–11, Technical Report, 2012. – volume: 8 start-page: 611 year: 1973 end-page: 614 ident: b0295 article-title: Stress relaxation in superplastic materials publication-title: J. Mater. Sci. – volume: 21 start-page: 149 year: 1973 end-page: 163 ident: b0040 article-title: Diffusion-accommodated flow and superplasticity publication-title: Acta Metallur. – volume: 27 start-page: 213 year: 2009 end-page: 223 ident: b0210 article-title: Comparison of EBSD and conventional methods of grain size measurement of hardmetals publication-title: Int. J. Refract. Metals Hard Mater. – volume: 527 start-page: 3464 year: 2010 end-page: 3471 ident: b0145 article-title: A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy publication-title: Mater. Sci. Eng.: A – volume: 51 start-page: 5613 year: 2003 end-page: 5626 ident: b0175 article-title: Constitutive analysis of the high-temperature deformation of Ti–6Al–4V with a transformed microstructure publication-title: Acta Mater. – volume: 339 start-page: 1 year: 2003 end-page: 9 ident: b0230 article-title: Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model publication-title: Mater. Sci. Eng.: A – volume: 735 start-page: 215 year: 2012 end-page: 223 ident: b0270 article-title: Modeling the super plastic forming of a multi-sheet diffusion bonded titanium alloy demonstrator fan blade publication-title: Mater. Sci. Forum – volume: 54 start-page: 255 year: 2006 end-page: 262 ident: b0030 article-title: Superplastic deformation of nano-sized silicon nitride ceramics publication-title: Acta Mater. – volume: 49 start-page: 3337 year: 2001 end-page: 3345 ident: b0020 article-title: Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures publication-title: Acta Mater. – volume: 33 start-page: 425 year: 2001 end-page: 439 ident: b0100 article-title: Dynamic response of conventional and hot isostatically pressed Ti–6Al–4V alloys: experiments and modeling publication-title: Mech. Mater. – volume: 191 start-page: 189 year: 2007 end-page: 192 ident: b0290 article-title: The effect of strain rate sensitivity evolution on deformation stability during superplastic forming publication-title: J. Mater. Process. Technol. – volume: 16 start-page: 440 year: 2007 end-page: 454 ident: b0010 article-title: Superplastic forming 40 years and still growing publication-title: J. Mater. Eng. Perform. – volume: 17 start-page: 277 year: 2001 end-page: 296 ident: b0260 article-title: Constitutive modeling of deformation and damage in superplastic materials publication-title: Int. J. Plasticity – volume: 333 start-page: 146 year: 2002 end-page: 154 ident: b0310 article-title: Fracture criterion and forming pressure design for superplastic bulging publication-title: Mater. Sci. Eng.: A – volume: 735 start-page: 204 year: 2013 end-page: 209 ident: b0275 article-title: New strategy for the prediction of the gas pressure profile of superplastic forming of al-5083 aluminium alloy publication-title: Mater. Sci. Forum – volume: 263 start-page: 257 year: 1999 end-page: 271 ident: b0105 article-title: Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure publication-title: Mater. Sci. Eng.: A – reference: G. Gurewitz, N. Ridley, A.K. Mukherjee, Elevated temperature cavitation in creep and superplasticity of Ti–6Al–4V alloy, in: Proceedings of ICF International Symposium on Fracture Mechanics, pp. 12–25. – volume: 5 start-page: 1 year: 2012 end-page: 5 ident: b0185 article-title: Simulation of the blow-up and cooling processes of hollow blade manufacturing publication-title: J. Eng. Sci. Technol. Rev. – volume: 46 start-page: 5509 year: 1998 end-page: 5522 ident: b0240 article-title: A dislocation-based model for all hardening stages in large strain deformation publication-title: Acta Mater. – volume: 50 start-page: 193 year: 2008 end-page: 204 ident: b0265 article-title: A study on formulation of objective functions for determining material models publication-title: Int. J. Mech. Sci. – volume: 31 start-page: 187 year: 2007 end-page: 196 ident: b0095 article-title: Mechanisms-based constitutive equations for the superplastic behaviour of a titanium alloy publication-title: J. Strain Anal. Eng. Des. – volume: 23 start-page: 387 year: 1975 end-page: 398 ident: b0220 article-title: A model for hot working occuring by recrystallization publication-title: Acta Metallur. – volume: 58 start-page: 1909 year: 2010 end-page: 1920 ident: b0045 article-title: Diffusion creep and superplasticity in aluminium alloys publication-title: Acta Mater. – volume: 57 start-page: 3683 year: 2009 end-page: 3693 ident: b0065 article-title: Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy publication-title: Acta Mater. – volume: 39 start-page: 963 year: 2010 end-page: 968 ident: b0190 article-title: Three dimensional FEM simulation of titanium hollow blade forming process publication-title: Rare Metal Mater. – volume: 22 start-page: 343 year: 2006 end-page: 348 ident: b0200 article-title: Advanced superplastic forming and diffusion bonding of titanium alloy publication-title: Mater. Sci. – volume: 26 start-page: 801 year: 1978 end-page: 813 ident: b0225 article-title: A nucleation criterion for dynamic recrystallization during hot working publication-title: Acta Metallur. – volume: 27 start-page: 1833 year: 2011 end-page: 1852 ident: b0155 article-title: Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution publication-title: Int. J. Plasticity – volume: 150 start-page: 76 year: 2004 end-page: 83 ident: b0180 article-title: Three-dimensional modeling and simulation of superplastic forming publication-title: J. Mater. Process. Technol. – volume: 85 start-page: 1967 year: 2005 end-page: 1987 ident: b0135 article-title: Development of dislocation-based unified material model for simulating microstructure evolution in multipass hot rolling publication-title: Philos. Mag. – volume: 49 start-page: 3163 year: 2001 end-page: 3175 ident: b0245 article-title: Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization publication-title: Acta Mater. – volume: 245 start-page: 29 year: 1998 end-page: 38 ident: b0130 article-title: Constitutive modeling of the viscoplastic deformation in high temperature forging of titanium alloy IMI834 publication-title: Mater. Sci. Eng.: A – volume: 219 start-page: 149 year: 2005 end-page: 162 ident: b0300 article-title: A sigmoidal model for superplastic deformation publication-title: Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. – volume: 106 start-page: 410 year: 1984 end-page: 419 ident: b0255 article-title: Constitutive modeling of dissipative solids for postcritical behavior and fracture publication-title: J. Eng. Mater. Technol. – volume: 55 start-page: 233 year: 2006 end-page: 236 ident: b0280 article-title: Combined mechanics-materials based optimization of superplastic forming of magnesium AZ31 alloy publication-title: CIRP Ann. – Manuf. Technol. – volume: 8 start-page: 102 year: 1992 end-page: 111 ident: b0120 article-title: Physical modelling of materials problems publication-title: Mater. Sci. Technol. – volume: 326 start-page: 306 year: 2002 end-page: 316 ident: b0170 article-title: Mechanical behavior of Ti–6Al–4V at high and moderate temperatures - Part II: constitutive modeling publication-title: Mater. Sci. Eng.: A – volume: 49 start-page: 3565 year: 2001 end-page: 3573 ident: b0160 article-title: The effect of alpha platelet thickness on plastic flow during hot working of Ti–6Al–4V with a transformed microstructure publication-title: Acta Mater. – volume: 33 start-page: 425 year: 2001 ident: 10.1016/j.actamat.2015.04.056_b0100 article-title: Dynamic response of conventional and hot isostatically pressed Ti–6Al–4V alloys: experiments and modeling publication-title: Mech. Mater. doi: 10.1016/S0167-6636(01)00063-1 – volume: 219 start-page: 149 year: 2005 ident: 10.1016/j.actamat.2015.04.056_b0300 article-title: A sigmoidal model for superplastic deformation publication-title: Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. – volume: 23 start-page: 387 year: 1975 ident: 10.1016/j.actamat.2015.04.056_b0220 article-title: A model for hot working occuring by recrystallization publication-title: Acta Metallur. doi: 10.1016/0001-6160(75)90132-7 – volume: 735 start-page: 215 year: 2012 ident: 10.1016/j.actamat.2015.04.056_b0270 article-title: Modeling the super plastic forming of a multi-sheet diffusion bonded titanium alloy demonstrator fan blade publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.735.215 – volume: 191 start-page: 189 year: 2007 ident: 10.1016/j.actamat.2015.04.056_b0290 article-title: The effect of strain rate sensitivity evolution on deformation stability during superplastic forming publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.03.097 – volume: 26 start-page: 1310 year: 2010 ident: 10.1016/j.actamat.2015.04.056_b0125 article-title: Historical review of internal state variable theory for inelasticity publication-title: Int. J. Plasticity doi: 10.1016/j.ijplas.2010.06.005 – volume: 221 start-page: 251 year: 2007 ident: 10.1016/j.actamat.2015.04.056_b0315 article-title: A superplastic forming limit diagram concept for Ti–6Al–4V publication-title: Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. – volume: 5 start-page: 1 year: 2012 ident: 10.1016/j.actamat.2015.04.056_b0185 article-title: Simulation of the blow-up and cooling processes of hollow blade manufacturing publication-title: J. Eng. Sci. Technol. Rev. doi: 10.25103/jestr.053.01 – volume: 26 start-page: 801 year: 1978 ident: 10.1016/j.actamat.2015.04.056_b0225 article-title: A nucleation criterion for dynamic recrystallization during hot working publication-title: Acta Metallur. doi: 10.1016/0001-6160(78)90030-5 – volume: 49 start-page: 3163 year: 2001 ident: 10.1016/j.actamat.2015.04.056_b0245 article-title: Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00233-6 – volume: 308 start-page: 153 year: 2001 ident: 10.1016/j.actamat.2015.04.056_b0305 article-title: The analysis of instability and strain concentration during superplastic deformation publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(00)01983-3 – volume: 574 start-page: 205 year: 2013 ident: 10.1016/j.actamat.2015.04.056_b0080 article-title: Deformation mechanisms during superplastic testing of Ti–6Al–4V-0.1B alloy publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2013.03.013 – volume: 17 start-page: 277 year: 2001 ident: 10.1016/j.actamat.2015.04.056_b0260 article-title: Constitutive modeling of deformation and damage in superplastic materials publication-title: Int. J. Plasticity doi: 10.1016/S0749-6419(00)00036-X – volume: 263 start-page: 272 year: 1999 ident: 10.1016/j.actamat.2015.04.056_b0085 article-title: Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti–6Al–4V alloy publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(98)01157-5 – volume: 49 start-page: 3565 year: 2001 ident: 10.1016/j.actamat.2015.04.056_b0160 article-title: The effect of alpha platelet thickness on plastic flow during hot working of Ti–6Al–4V with a transformed microstructure publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00236-1 – volume: 50 start-page: 4419 year: 2002 ident: 10.1016/j.actamat.2015.04.056_b0015 article-title: Superplastic deformation behaviour of friction stir processed 7075Al alloy publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00278-1 – volume: 14 start-page: 413 year: 1998 ident: 10.1016/j.actamat.2015.04.056_b0150 article-title: Inhomogeneity of microstructure in superplasticity and its effect on ductility publication-title: Int. J. Plasticity doi: 10.1016/S0749-6419(98)00013-8 – volume: 42 start-page: 157 year: 2010 ident: 10.1016/j.actamat.2015.04.056_b0165 article-title: Constitutive model for high temperature deformation of titanium alloys using internal state variables publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2009.10.004 – volume: 8 start-page: 611 year: 1973 ident: 10.1016/j.actamat.2015.04.056_b0295 article-title: Stress relaxation in superplastic materials publication-title: J. Mater. Sci. doi: 10.1007/BF00550469 – ident: 10.1016/j.actamat.2015.04.056_b0090 – volume: 333 start-page: 146 year: 2002 ident: 10.1016/j.actamat.2015.04.056_b0310 article-title: Fracture criterion and forming pressure design for superplastic bulging publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(01)01818-4 – volume: 39 start-page: 963 year: 2010 ident: 10.1016/j.actamat.2015.04.056_b0190 article-title: Three dimensional FEM simulation of titanium hollow blade forming process publication-title: Rare Metal Mater. doi: 10.1016/S1875-5372(10)60106-3 – volume: 37 start-page: 1121 year: 1989 ident: 10.1016/j.actamat.2015.04.056_b0070 article-title: Direct observation of superplastic flow mechanisms in torsion publication-title: Acta Metallur. doi: 10.1016/0001-6160(89)90108-9 – volume: 43 start-page: 2359 year: 1995 ident: 10.1016/j.actamat.2015.04.056_b0075 article-title: Cooperative phenomena at grain boundaries during superplastic flow publication-title: Acta Metallur. Mater. doi: 10.1016/0956-7151(94)00428-5 – volume: 559 start-page: 352 year: 2013 ident: 10.1016/j.actamat.2015.04.056_b0110 article-title: Modelling of dominant softening mechanisms for Ti–6Al–4V in steady state hot forming conditions publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2012.08.110 – volume: 468 start-page: 1091 year: 2010 ident: 10.1016/j.actamat.2015.04.056_b0035 article-title: Mantle superplasticity and its self-made demise publication-title: Nature doi: 10.1038/nature09685 – volume: 80–81 start-page: 33 year: 1998 ident: 10.1016/j.actamat.2015.04.056_b0250 article-title: Dislocation theory based constitutive modelling: foundations and applications publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(98)00208-8 – volume: 31 start-page: 187 year: 2007 ident: 10.1016/j.actamat.2015.04.056_b0095 article-title: Mechanisms-based constitutive equations for the superplastic behaviour of a titanium alloy publication-title: J. Strain Anal. Eng. Des. doi: 10.1243/03093247V313187 – volume: 85 start-page: 1967 year: 2005 ident: 10.1016/j.actamat.2015.04.056_b0135 article-title: Development of dislocation-based unified material model for simulating microstructure evolution in multipass hot rolling publication-title: Philos. Mag. doi: 10.1080/14786430412331305285 – volume: 41 start-page: 949 year: 1993 ident: 10.1016/j.actamat.2015.04.056_b0060 article-title: An investigation of the role of intragranular dislocation strain in the superplastic Pb-62% Sn eutectic alloy publication-title: Acta Metallur. Mater. doi: 10.1016/0956-7151(93)90029-R – volume: 44 start-page: 5998 year: 2009 ident: 10.1016/j.actamat.2015.04.056_b0005 article-title: Seventy-five years of superplasticity: historic developments and new opportunities publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-3780-5 – volume: 735 start-page: 204 year: 2013 ident: 10.1016/j.actamat.2015.04.056_b0275 article-title: New strategy for the prediction of the gas pressure profile of superplastic forming of al-5083 aluminium alloy publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.735.204 – volume: 37 start-page: 381 year: 2006 ident: 10.1016/j.actamat.2015.04.056_b0195 article-title: Low-temperature superplasticity of ultra-fine-grained Ti–6Al–4V processed by equal-channel angular pressing publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-006-0008-z – volume: 263 start-page: 257 year: 1999 ident: 10.1016/j.actamat.2015.04.056_b0105 article-title: Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(98)01156-3 – volume: 59 start-page: 5159 year: 2011 ident: 10.1016/j.actamat.2015.04.056_b0055 article-title: Surface studies of region II superplasticity of AA5083 in shear: confirmation of diffusion creep, grain neighbour switching and absence of dislocation activity publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.04.051 – volume: 21 start-page: 149 year: 1973 ident: 10.1016/j.actamat.2015.04.056_b0040 article-title: Diffusion-accommodated flow and superplasticity publication-title: Acta Metallur. doi: 10.1016/0001-6160(73)90057-6 – volume: 339 start-page: 1 year: 2003 ident: 10.1016/j.actamat.2015.04.056_b0230 article-title: Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(02)00120-X – volume: 54 start-page: 255 year: 2006 ident: 10.1016/j.actamat.2015.04.056_b0030 article-title: Superplastic deformation of nano-sized silicon nitride ceramics publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.09.005 – ident: 10.1016/j.actamat.2015.04.056_b0205 – volume: 55 start-page: 233 year: 2006 ident: 10.1016/j.actamat.2015.04.056_b0280 article-title: Combined mechanics-materials based optimization of superplastic forming of magnesium AZ31 alloy publication-title: CIRP Ann. – Manuf. Technol. doi: 10.1016/S0007-8506(07)60405-3 – volume: 51 start-page: 5613 year: 2003 ident: 10.1016/j.actamat.2015.04.056_b0175 article-title: Constitutive analysis of the high-temperature deformation of Ti–6Al–4V with a transformed microstructure publication-title: Acta Mater. doi: 10.1016/S1359-6454(03)00426-9 – volume: 143–144 start-page: 281 year: 2003 ident: 10.1016/j.actamat.2015.04.056_b0140 article-title: A set of unified constitutive equations for modelling microstructure evolution in hot deformation publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(03)00472-2 – volume: 46 start-page: 5509 year: 1998 ident: 10.1016/j.actamat.2015.04.056_b0240 article-title: A dislocation-based model for all hardening stages in large strain deformation publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00196-7 – volume: 27 start-page: 1833 year: 2011 ident: 10.1016/j.actamat.2015.04.056_b0155 article-title: Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution publication-title: Int. J. Plasticity doi: 10.1016/j.ijplas.2011.05.008 – volume: 150 start-page: 76 year: 2004 ident: 10.1016/j.actamat.2015.04.056_b0180 article-title: Three-dimensional modeling and simulation of superplastic forming publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2004.01.023 – volume: 8 start-page: 102 year: 1992 ident: 10.1016/j.actamat.2015.04.056_b0120 article-title: Physical modelling of materials problems publication-title: Mater. Sci. Technol. doi: 10.1179/mst.1992.8.2.102 – volume: 22 start-page: 343 year: 2006 ident: 10.1016/j.actamat.2015.04.056_b0200 article-title: Advanced superplastic forming and diffusion bonding of titanium alloy publication-title: Mater. Sci. – volume: 527 start-page: 3464 year: 2010 ident: 10.1016/j.actamat.2015.04.056_b0145 article-title: A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2010.02.009 – volume: 16 start-page: 440 year: 2007 ident: 10.1016/j.actamat.2015.04.056_b0010 article-title: Superplastic forming 40 years and still growing publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-007-9076-5 – volume: 26 start-page: 1389 year: 1978 ident: 10.1016/j.actamat.2015.04.056_b0050 article-title: Diffusional creep and diffusionally accommodated grain rearrangement publication-title: Acta Metallur. doi: 10.1016/0001-6160(78)90154-2 – volume: 245 start-page: 29 year: 1998 ident: 10.1016/j.actamat.2015.04.056_b0130 article-title: Constitutive modeling of the viscoplastic deformation in high temperature forging of titanium alloy IMI834 publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(97)00707-7 – volume: 58 start-page: 1909 year: 2010 ident: 10.1016/j.actamat.2015.04.056_b0045 article-title: Diffusion creep and superplasticity in aluminium alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.11.034 – volume: 13 start-page: 691 year: 2004 ident: 10.1016/j.actamat.2015.04.056_b0285 article-title: Finite element modeling and optimization of superplastic forming using variable strain rate approach publication-title: J. Mater. Eng. Perform. doi: 10.1361/10599490421321 – volume: 49 start-page: 3337 year: 2001 ident: 10.1016/j.actamat.2015.04.056_b0020 article-title: Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00008-8 – volume: 29 start-page: 1865 year: 1981 ident: 10.1016/j.actamat.2015.04.056_b0235 article-title: Kinetics of flow and strain-hardening publication-title: Acta Metallur. doi: 10.1016/0001-6160(81)90112-7 – volume: 57 start-page: 3683 year: 2009 ident: 10.1016/j.actamat.2015.04.056_b0065 article-title: Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.04.011 – volume: 49 start-page: 84 year: 2008 ident: 10.1016/j.actamat.2015.04.056_b0025 article-title: Grain boundary sliding in a superplastic zinc–aluminum alloy processed using severe plastic deformation publication-title: Mater. Trans. doi: 10.2320/matertrans.ME200720 – volume: 80–81 start-page: 96 year: 1998 ident: 10.1016/j.actamat.2015.04.056_b0215 article-title: Modelling heterogeneous microstructures, inhomogeneous deformation and failure in superplasticity publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(98)00135-6 – volume: 365 start-page: 172 year: 2004 ident: 10.1016/j.actamat.2015.04.056_b0115 article-title: Microstructural evolution of a Ti–6Al–4V alloy during β-phase processing: experimental and simulative investigations publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2003.09.024 – volume: 27 start-page: 213 year: 2009 ident: 10.1016/j.actamat.2015.04.056_b0210 article-title: Comparison of EBSD and conventional methods of grain size measurement of hardmetals publication-title: Int. J. Refract. Metals Hard Mater. doi: 10.1016/j.ijrmhm.2008.06.009 – volume: 106 start-page: 410 year: 1984 ident: 10.1016/j.actamat.2015.04.056_b0255 article-title: Constitutive modeling of dissipative solids for postcritical behavior and fracture publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.3225739 – volume: 50 start-page: 193 year: 2008 ident: 10.1016/j.actamat.2015.04.056_b0265 article-title: A study on formulation of objective functions for determining material models publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2007.07.003 – volume: 326 start-page: 306 year: 2002 ident: 10.1016/j.actamat.2015.04.056_b0170 article-title: Mechanical behavior of Ti–6Al–4V at high and moderate temperatures - Part II: constitutive modeling publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(01)01508-8 |
| SSID | ssj0012740 |
| Score | 2.59508 |
| Snippet | The processing regime relevant to superplasticity in the Ti–6Al–4V alloy is identified. The effect is found to be potent in the range 850–900°C at strain rates... The processing regime relevant to superplasticity in the Ti-6Al-4V alloy is identified. The effect is found to be potent in the range 850-900 degree C at... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 428 |
| SubjectTerms | Constitutive modelling Deformation mechanisms Formations Grain size Holes Recrystallization Superplastic forming Superplasticity Surface layer Texture Titanium base alloys Ti–6Al–4V |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KL-pBfGJ9EcGjMa_dZOOtFEsR7KWteFt2N1toKTHUFOlF_A_-Q3-JM2nSVhAqXgIJmbDM7M58m535hpBr5Roe0ETbnk4iGxA4-MHIGHvINAcZ8MoKC5wfu2FnQB-e2XONtKpaGEyrLH3_wqcX3rp84pTadLLRyOl5AYuRjwogDZKu4L6d0gi7GNy-L9M8PNh1LSqFWWzj26sqHmcMQ84lAEPM8GIF4yn2sf49Pq3hz61Zmsn5m5xM1kJRe4_slhjSai6GuU9qJj0gO2vMgoek25tlZpoBNMas6XxujVKrP_r6-AybE7jSpzurtaJqLqxzYxVdcbA83ZJpYq0fbR-RQfu-3-rYZesEW1MW5zanWnJYrpEKdOgpxXic0EQmrvZ1gpTzWknJFB9K2E8AYpAsUIorHyJVGAQQ4o9JPX1JzQmxfBe-4Cs_lBjtY1fFITKhw3c1gg3TILRSmNAlrzi2t5iIKoFsLEo9C9SzcKkAPTfI7VIsWxBrbBLglTXEjxkiwPlvEr2qrCdg9eCRiEzNy-xVeFHE8eDWdxvEWZr1bwM6_f-Azsg23uG_aY-dk3o-nZkLADe5uixm7zd-FvoW priority: 102 providerName: Elsevier |
| Title | Superplasticity in Ti–6Al–4V: Characterisation, modelling and applications |
| URI | https://dx.doi.org/10.1016/j.actamat.2015.04.056 https://www.proquest.com/docview/1778027520 https://doi.org/10.1016/j.actamat.2015.04.056 |
| UnpaywallVersion | publishedVersion |
| Volume | 95 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2453 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012740 issn: 1359-6454 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2453 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012740 issn: 1359-6454 databaseCode: ACRLP dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2453 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012740 issn: 1359-6454 databaseCode: AIKHN dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-2453 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012740 issn: 1359-6454 databaseCode: .~1 dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2453 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012740 issn: 1359-6454 databaseCode: AKRWK dateStart: 19960101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7B7qHlwKMPsTxWqcSx2eZhJw63FQItoEZIsBU9WbZjJMoqrCARggPiP_AP-SXMZBNYUCvoJUoOM3I8HvuzZ-YzwIb2rAhZZlzfZLGLCBznwdha94QbgTI4K2sqcP6ZRoMh2zvmx3WxOtXCvIjfV3lYyhQKwRtlYfGKlZRHs9COOELvFrSH6UH_d7Wp4olL7FT0LuLQDRgPnyt2_q7nX2vRFNb8UOZjdX2lRqOpZWdnAdKmwZNsk7NeWeieuXnF5fjuP1qE-RqAOv3JiFmCGZt_grkpWsLPkB6WY3sxRlxNKdfFtXOaO0enD3f3UX-ET_Zr09l65nmuTPvdqa7Uodp2R-WZMx0X_wLDne2jrYFb37vgGsaTwhXMKIG-HuvQRL7WXCQZy1TmmcBkxFdvtFJcixOFmxGEG4qHWgsd4DIXhSHig6_Qys9zuwxO4KGGQAeRIqiQeDqJiEYd9RpCKrYDrLGANDUpOd2NMZJN9tkfWXeXpO6SHpPYXR3oPYmNJ6wcbwmIxryyhhYTyCDRPG-JfmuGg0TXo3iKyu15eSn9OBYU9Q28Dvx4Gifva9DKf0uswkf6ovNsn69Bq7go7ToCokJ3YbZ363eh3d_dH6Td2ikeAcr2Cgg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5ED-pBfGJ9RvBozGs32XgrRamvXmylt2V3s0JLSUNNkV7E_-A_9Jc4kya1gqB4ySHJhGVmd-bb7Mw3hJwq1_CAJtr2dBLZgMDBD0bG2E9Mc5ABr6ywwPm-FTY79KbLugukUdXCYFpl6funPr3w1uUdp9Smk_V6zoMXsBj5qADSIOkK7NuXKPMj3IGdv87yPDzYdk1LhVls4-tfZTxOH8acS0CGmOLFCspTbGT9c4CaA6DL4zSTkxc5GMzFoqt1slaCSKs-HecGWTDpJlmdoxbcIq2HcWZGGWBjTJvOJ1Yvtdq9j7f3sD6AK328sBpfXM2Fec6soi0O1qdbMk2s-bPtbdK5umw3mnbZO8HWlMW5zamWHNZrpAIdekoxHic0kYmrfZ0g57xWUjLFnyRsKAAySBYoxZUPoSoMAojxO2QxHaZml1i-C1_wlR9KDPexq-IQqdDhuxrRhqkRWilM6JJYHPtbDESVQdYXpZ4F6lm4VICea-R8JpZNmTV-E-CVNcS3KSLA-_8melJZT8DywTMRmZrh-Fl4UcTx5NZ3a8SZmfVvA9r7_4COyXKzfX8n7q5bt_tkBZ_gj2qPHZDFfDQ2h4B0cnVUzORPHhj9OQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsQwEB50PagH_8X1jwoe7dptkzb1togigougK3oKSRpBXeqytsh68h18Q5_EmW6rqyjqpbSHGdJMJvmSmfkCsK09KwKWGLdpkshFBI7zYGSte82NQBmclTUVOJ-0w6MOO77kl2WxOtXCfIrfF3lYymQKwRtlYfGClZSH4zARcoTeNZjotE9bV8WmiscusVPRu4gC12c8-KjY-V7PT2vRCNaczNOeGjyqbndk2TmchXbV4GG2yV0jz3TDPH3hcvzzH83BTAlAndZwxMzDmE0XYHqElnAR2md5z_Z7iKsp5TobODepc37z-vwStrr4ZBd7zv4Hz3Nh2h2nuFKHatsdlSbOaFx8CTqHB-f7R25574JrGI8zVzCjBPp6pAMTNrXmIk5YohLP-CYhvnqjleJaXCvcjCDcUDzQWmgfl7kwCBAfLEMtvU_tCji-hxp87YeKoELs6TgkGnXUawip2DqwygLSlKTkdDdGV1bZZ7ey7C5J3SU9JrG76tB4F-sNWTl-ExCVeWUJLYaQQaJ5fhPdqoaDRNejeIpK7X3-IJtRJCjq63t12H0fJ39r0Oq_JdZgir7oPLvJ16GW9XO7gYAo05ulG7wBVdEHfA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superplasticity+in+Ti%E2%80%936Al%E2%80%934V%3A+Characterisation%2C+modelling+and+applications&rft.jtitle=Acta+materialia&rft.au=Alabort%2C+E.&rft.au=Putman%2C+D.&rft.au=Reed%2C+R.C.&rft.date=2015-08-15&rft.issn=1359-6454&rft.volume=95&rft.spage=428&rft.epage=442&rft_id=info:doi/10.1016%2Fj.actamat.2015.04.056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actamat_2015_04_056 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |