Group 2 innate lymphoid cells in bone marrow regulate osteoclastogenesis in a reciprocal manner via RANKL, GM-CSF and IL-13

Abstract Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental factors. Initially, it was thought that ILC2s in bone marrow (BM) are progenitors for systemic ILC2s, which migrate to other organs and acquire...

Full description

Saved in:
Bibliographic Details
Published inInternational immunology Vol. 33; no. 11; pp. 573 - 585
Main Authors Momiuchi, Yoshiki, Motomura, Yasutaka, Suga, Emiko, Mizuno, Hiroki, Kikuta, Junichi, Morimoto, Akito, Mochizuki, Miho, Otaki, Natsuko, Ishii, Masaru, Moro, Kazuyo
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 01.11.2021
Subjects
Online AccessGet full text
ISSN1460-2377
1460-2377
DOI10.1093/intimm/dxab062

Cover

Abstract Abstract Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental factors. Initially, it was thought that ILC2s in bone marrow (BM) are progenitors for systemic ILC2s, which migrate to other organs and acquire effector functions. However, accumulating evidence that ILC2s differentiate in peripheral tissues suggests that BM ILC2s may play a specific role in the BM as a unique effector per se. Here, we demonstrate that BM ILC2s highly express the receptor activator of nuclear factor κB ligand (RANKL), a robust cytokine for osteoclast differentiation and activation, and RANKL expression on ILC2s is up-regulated by interleukin (IL)-2, IL-7 and all-trans retinoic acid (ATRA). BM ILC2s co-cultured with BM-derived monocyte/macrophage lineage cells (BMMs) in the presence of IL-7 induce the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in a RANKL-dependent manner. In contrast, BM ILC2s stimulated with IL-33 down-regulate RANKL expression and convert BMMs differentiation into M2 macrophage-like cells rather than osteoclasts by granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-13 production. Intravital imaging using two-photon microscopy revealed that a depletion of ILC2s prominently impaired in vivo osteoclast activity in an IL-7 plus ATRA-induced bone loss mouse model. These results suggest that ILC2s regulate osteoclast activation and contribute to bone homeostasis in both steady state and IL-33-induced inflammation. How ILC2s regulate osteoclastogenesis
AbstractList Abstract Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental factors. Initially, it was thought that ILC2s in bone marrow (BM) are progenitors for systemic ILC2s, which migrate to other organs and acquire effector functions. However, accumulating evidence that ILC2s differentiate in peripheral tissues suggests that BM ILC2s may play a specific role in the BM as a unique effector per se. Here, we demonstrate that BM ILC2s highly express the receptor activator of nuclear factor κB ligand (RANKL), a robust cytokine for osteoclast differentiation and activation, and RANKL expression on ILC2s is up-regulated by interleukin (IL)-2, IL-7 and all-trans retinoic acid (ATRA). BM ILC2s co-cultured with BM-derived monocyte/macrophage lineage cells (BMMs) in the presence of IL-7 induce the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in a RANKL-dependent manner. In contrast, BM ILC2s stimulated with IL-33 down-regulate RANKL expression and convert BMMs differentiation into M2 macrophage-like cells rather than osteoclasts by granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-13 production. Intravital imaging using two-photon microscopy revealed that a depletion of ILC2s prominently impaired in vivo osteoclast activity in an IL-7 plus ATRA-induced bone loss mouse model. These results suggest that ILC2s regulate osteoclast activation and contribute to bone homeostasis in both steady state and IL-33-induced inflammation. How ILC2s regulate osteoclastogenesis
Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental factors. Initially, it was thought that ILC2s in bone marrow (BM) are progenitors for systemic ILC2s, which migrate to other organs and acquire effector functions. However, accumulating evidence that ILC2s differentiate in peripheral tissues suggests that BM ILC2s may play a specific role in the BM as a unique effector per se. Here, we demonstrate that BM ILC2s highly express the receptor activator of nuclear factor κB ligand (RANKL), a robust cytokine for osteoclast differentiation and activation, and RANKL expression on ILC2s is up-regulated by interleukin (IL)-2, IL-7 and all-trans retinoic acid (ATRA). BM ILC2s co-cultured with BM-derived monocyte/macrophage lineage cells (BMMs) in the presence of IL-7 induce the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in a RANKL-dependent manner. In contrast, BM ILC2s stimulated with IL-33 down-regulate RANKL expression and convert BMMs differentiation into M2 macrophage-like cells rather than osteoclasts by granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-13 production. Intravital imaging using two-photon microscopy revealed that a depletion of ILC2s prominently impaired in vivo osteoclast activity in an IL-7 plus ATRA-induced bone loss mouse model. These results suggest that ILC2s regulate osteoclast activation and contribute to bone homeostasis in both steady state and IL-33-induced inflammation.Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental factors. Initially, it was thought that ILC2s in bone marrow (BM) are progenitors for systemic ILC2s, which migrate to other organs and acquire effector functions. However, accumulating evidence that ILC2s differentiate in peripheral tissues suggests that BM ILC2s may play a specific role in the BM as a unique effector per se. Here, we demonstrate that BM ILC2s highly express the receptor activator of nuclear factor κB ligand (RANKL), a robust cytokine for osteoclast differentiation and activation, and RANKL expression on ILC2s is up-regulated by interleukin (IL)-2, IL-7 and all-trans retinoic acid (ATRA). BM ILC2s co-cultured with BM-derived monocyte/macrophage lineage cells (BMMs) in the presence of IL-7 induce the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in a RANKL-dependent manner. In contrast, BM ILC2s stimulated with IL-33 down-regulate RANKL expression and convert BMMs differentiation into M2 macrophage-like cells rather than osteoclasts by granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-13 production. Intravital imaging using two-photon microscopy revealed that a depletion of ILC2s prominently impaired in vivo osteoclast activity in an IL-7 plus ATRA-induced bone loss mouse model. These results suggest that ILC2s regulate osteoclast activation and contribute to bone homeostasis in both steady state and IL-33-induced inflammation.
Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental factors. Initially, it was thought that ILC2s in bone marrow (BM) are progenitors for systemic ILC2s, which migrate to other organs and acquire effector functions. However, accumulating evidence that ILC2s differentiate in peripheral tissues suggests that BM ILC2s may play a specific role in the BM as a unique effector per se. Here, we demonstrate that BM ILC2s highly express the receptor activator of nuclear factor κB ligand (RANKL), a robust cytokine for osteoclast differentiation and activation, and RANKL expression on ILC2s is up-regulated by interleukin (IL)-2, IL-7 and all-trans retinoic acid (ATRA). BM ILC2s co-cultured with BM-derived monocyte/macrophage lineage cells (BMMs) in the presence of IL-7 induce the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in a RANKL-dependent manner. In contrast, BM ILC2s stimulated with IL-33 down-regulate RANKL expression and convert BMMs differentiation into M2 macrophage-like cells rather than osteoclasts by granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-13 production. Intravital imaging using two-photon microscopy revealed that a depletion of ILC2s prominently impaired in vivo osteoclast activity in an IL-7 plus ATRA-induced bone loss mouse model. These results suggest that ILC2s regulate osteoclast activation and contribute to bone homeostasis in both steady state and IL-33-induced inflammation.
Author Kikuta, Junichi
Momiuchi, Yoshiki
Moro, Kazuyo
Ishii, Masaru
Mizuno, Hiroki
Otaki, Natsuko
Motomura, Yasutaka
Suga, Emiko
Mochizuki, Miho
Morimoto, Akito
Author_xml – sequence: 1
  givenname: Yoshiki
  surname: Momiuchi
  fullname: Momiuchi, Yoshiki
  organization: Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
– sequence: 2
  givenname: Yasutaka
  surname: Motomura
  fullname: Motomura, Yasutaka
  organization: Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
– sequence: 3
  givenname: Emiko
  surname: Suga
  fullname: Suga, Emiko
  organization: Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
– sequence: 4
  givenname: Hiroki
  surname: Mizuno
  fullname: Mizuno, Hiroki
  organization: Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
– sequence: 5
  givenname: Junichi
  orcidid: 0000-0002-1549-5961
  surname: Kikuta
  fullname: Kikuta, Junichi
  organization: Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
– sequence: 6
  givenname: Akito
  surname: Morimoto
  fullname: Morimoto, Akito
  organization: Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
– sequence: 7
  givenname: Miho
  surname: Mochizuki
  fullname: Mochizuki, Miho
  organization: Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
– sequence: 8
  givenname: Natsuko
  surname: Otaki
  fullname: Otaki, Natsuko
  organization: Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
– sequence: 9
  givenname: Masaru
  surname: Ishii
  fullname: Ishii, Masaru
  organization: Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
– sequence: 10
  givenname: Kazuyo
  orcidid: 0000-0002-7377-1303
  surname: Moro
  fullname: Moro, Kazuyo
  email: kazuyo.moro@riken.jp
  organization: Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34498703$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEURoMotlW3LiVLBcfmMc9lKbaKVcHHekhn7mhkJqlJRi3-eVOnigjiKiGck5sv3wBtKq0AoX1KTijJ-FAqJ5tmWL6JOYnZBurTMCYB40my-WPfQwNrnwghnGV8G_V4GGZpQngfvU-NbheYYamUcIDrZbN41LLEBdS19ad47gfiRhijX7GBh7ZeYdo60EUtrNMPoMDKT1R4oJALowtRe0UpMPhFCnwzurqYHePpZTC-nWChSnw-CyjfRVuVqC3srdcddD85vRufBbPr6fl4NAuKMMpckFQ8pnESRgnnJAMCGQCrMlKlhJVcFDxloQ8UVWUapkywhKUlsJjNyyiG1CM76LC717_suQXr8kbaVT6hQLc2Z1FCSRRRRj16sEbbeQNlvjDSR1_mXx_mgZMOKIy21kD1jVCSrxrJu0bydSNeCH8JhXTCSa2cEbL-WzvqNN_OfyM-AJhNn6s
CitedBy_id crossref_primary_10_1002_eji_202350381
crossref_primary_10_3389_fimmu_2024_1393418
crossref_primary_10_3389_fimmu_2025_1545284
crossref_primary_10_1016_j_it_2025_01_009
crossref_primary_10_3389_fimmu_2023_1129007
crossref_primary_10_1126_scitranslmed_adl4222
crossref_primary_10_1016_j_intimp_2024_111999
crossref_primary_10_1038_s41467_024_49881_y
crossref_primary_10_1093_intimm_dxab106
crossref_primary_10_3390_biom14030294
crossref_primary_10_3389_fphys_2022_939253
crossref_primary_10_7717_peerj_14560
crossref_primary_10_1097_MD_0000000000030806
crossref_primary_10_2147_JIR_S514002
crossref_primary_10_2147_JIR_S351918
crossref_primary_10_3389_fimmu_2022_869365
crossref_primary_10_3389_fimmu_2023_1107670
crossref_primary_10_1002_jgm_3444
crossref_primary_10_1016_j_cytogfr_2023_09_002
Cites_doi 10.1016/j.immuni.2012.06.020
10.1371/journal.pone.0082388
10.3899/jrheum.090492
10.1084/jem.20040518
10.1016/j.jaci.2013.10.056
10.1016/j.bone.2011.08.003
10.4049/jimmunol.1003487
10.1084/jem.20161807
10.1038/ni.3309
10.1016/S1471-4906(02)02302-5
10.1038/ni.2002
10.1016/j.imlet.2009.02.006
10.1038/s42255-019-0104-1
10.1074/jbc.M111.247734
10.1038/s41467-017-02541-w
10.1016/j.jaci.2015.06.037
10.1038/s41590-018-0201-4
10.1152/ajplung.00174.2012
10.1152/physrev.00036.2016
10.1038/ni.2131
10.1016/j.imlet.2007.03.004
10.1073/pnas.0136772100
10.1186/s10020-019-0107-0
10.1084/jem.20050645
10.1074/jbc.M510160200
10.1038/nature08636
10.4049/jimmunol.1101270
10.1172/JCI0215687
10.1038/nature14115
10.1084/jem.20172310
10.1002/jbmr.1575
10.1002/jcb.29297
10.1210/edrv.20.3.0367
10.1038/nm.4373
10.1007/s00441-017-2598-8
10.1016/j.bone.2020.115335
10.1016/j.cell.2014.12.011
10.1016/j.celrep.2018.06.005
10.1002/jbmr.2096
10.1016/j.immuni.2011.12.020
10.1038/nature24029
10.1038/nm.2452
10.1074/jbc.M116.742452
10.7326/0003-4819-129-10-199811150-00003
10.3346/jkms.2011.26.9.1132
10.1126/science.1247606
10.1016/j.immuni.2018.04.012
10.1038/nri978
10.1038/nature08900
10.1038/nature23676
10.4049/jimmunol.1601114
10.1016/j.immuni.2017.10.015
10.1038/nature12526
10.1038/nature23469
10.1210/endo-123-5-2600
10.3389/fimmu.2017.01742
10.1007/s00726-010-0755-4
10.1126/science.aac9593
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
The Japanese Society for Immunology. 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
– notice: The Japanese Society for Immunology. 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/intimm/dxab062
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1460-2377
EndPage 585
ExternalDocumentID 34498703
10_1093_intimm_dxab062
10.1093/intimm/dxab062
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
.2P
.55
.GJ
.I3
.ZR
0R~
18M
1TH
29J
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
A8Z
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
ABDFA
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABJNI
ABKDP
ABMNT
ABNGD
ABNHQ
ABNKS
ABOCM
ABPIB
ABPQP
ABPTD
ABQLI
ABQNK
ABQTQ
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACFRR
ACGFO
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AI.
AIAGR
AIJHB
AJDVS
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IH2
IOX
J21
J8S
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
MBLQV
MBTAY
MHKGH
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBC
OBFPC
OBOKY
OBS
OCZFY
ODMLO
OEB
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SV3
TCN
TEORI
TJX
TLC
TMA
TR2
UDS
VH1
W8F
WOQ
X7H
X7M
Y6R
YAYTL
YHZ
YKOAZ
YXANX
ZKX
~91
AAYXX
AGORE
AHGBF
AJBYB
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ESTFP
ID FETCH-LOGICAL-c459t-7f361674573309e0e9ee2f90f802d3ac38243445fd8482a2728de262bd56e82d3
ISSN 1460-2377
IngestDate Sat Sep 27 20:55:13 EDT 2025
Thu Apr 03 07:04:33 EDT 2025
Tue Jul 01 00:40:41 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Wed Apr 02 07:04:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords ILC2
all-trans retinoic acid
osteoclast
IL-33
IL-7
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Japanese Society for Immunology. 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-7f361674573309e0e9ee2f90f802d3ac38243445fd8482a2728de262bd56e82d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7377-1303
0000-0002-1549-5961
OpenAccessLink https://academic.oup.com/intimm/article-pdf/33/11/573/41023325/dxab062.pdf
PMID 34498703
PQID 2571055121
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2571055121
pubmed_primary_34498703
crossref_primary_10_1093_intimm_dxab062
crossref_citationtrail_10_1093_intimm_dxab062
oup_primary_10_1093_intimm_dxab062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: England
PublicationTitle International immunology
PublicationTitleAlternate Int Immunol
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Kukita (2022070715270804000_CIT0052) 2004; 200
Mantovani (2022070715270804000_CIT0057) 2002; 23
Klose (2022070715270804000_CIT0003) 2017; 549
Dalmas (2022070715270804000_CIT0012) 2017; 47
Nakashima (2022070715270804000_CIT0019) 2011; 17
Wang (2022070715270804000_CIT0041) 2019; 25
Bando (2022070715270804000_CIT0049) 2018; 48
Koga (2022070715270804000_CIT0016) 2018; 215
Kim (2022070715270804000_CIT0056) 2009; 124
Gong (2022070715270804000_CIT0034) 2016; 46
Cardoso (2022070715270804000_CIT0006) 2017; 549
Palmqvist (2022070715270804000_CIT0032) 2006; 281
Suda (2022070715270804000_CIT0017) 1999; 20
Nussbaum (2022070715270804000_CIT0047) 2013; 502
Weitzmann (2022070715270804000_CIT0039) 2002; 110
Melhus (2022070715270804000_CIT0038) 1998; 129
Yang (2022070715270804000_CIT0043) 2016; 137
Spencer (2022070715270804000_CIT0037) 2014; 343
Fumoto (2022070715270804000_CIT0018) 2014; 29
Fujiwara (2022070715270804000_CIT0022) 2016; 291
Rauber (2022070715270804000_CIT0023) 2017; 23
Zhang (2022070715270804000_CIT0035) 2017; 369
Laffont (2022070715270804000_CIT0005) 2017; 214
Miyamoto (2022070715270804000_CIT0051) 2012; 27
Okamoto (2022070715270804000_CIT0021) 2017; 97
Sawa (2022070715270804000_CIT0048) 2011; 12
Moro (2022070715270804000_CIT0015) 2016; 17
Brestoff (2022070715270804000_CIT0009) 2015; 519
Asano (2022070715270804000_CIT0031) 2019; 1
Ricardo-Gonzalez (2022070715270804000_CIT0044) 2018; 19
Conaway (2022070715270804000_CIT0054) 2011; 286
Halim (2022070715270804000_CIT0008) 2012; 36
Hoyler (2022070715270804000_CIT0013) 2012; 37
Moro (2022070715270804000_CIT0001) 2010; 463
Omata (2022070715270804000_CIT0025) 2020; 136
Lind (2022070715270804000_CIT0042) 2013; 8
Ikutani (2022070715270804000_CIT0046) 2012; 188
Gordon (2022070715270804000_CIT0058) 2003; 3
Hong (2022070715270804000_CIT0028) 2011; 26
Lee (2022070715270804000_CIT0010) 2015; 160
Wilhelm (2022070715270804000_CIT0036) 2017; 8
Zaiss (2022070715270804000_CIT0060) 2011; 186
Monticelli (2022070715270804000_CIT0011) 2011; 12
Atanga (2022070715270804000_CIT0033) 2011; 49
Gasteiger (2022070715270804000_CIT0014) 2015; 350
Wallrapp (2022070715270804000_CIT0004) 2017; 549
Omata (2022070715270804000_CIT0024) 2018; 24
Matsuyama (2022070715270804000_CIT0029) 2010; 37
Kim (2022070715270804000_CIT0053) 2011; 40
Xue (2022070715270804000_CIT0002) 2014; 133
Takahashi (2022070715270804000_CIT0020) 1988; 123
Neill (2022070715270804000_CIT0045) 2010; 464
Kim (2022070715270804000_CIT0055) 2007; 110
Kanzaki (2022070715270804000_CIT0030) 2016; 197
Furuya (2022070715270804000_CIT0027) 2018; 9
Yagi (2022070715270804000_CIT0050) 2005; 202
Doherty (2022070715270804000_CIT0007) 2012; 303
Toraldo (2022070715270804000_CIT0040) 2003; 100
Li (2022070715270804000_CIT0059) 2019; 120
Kikuta (2022070715270804000_CIT0026) 2013; 123
References_xml – volume: 37
  start-page: 634
  year: 2012
  ident: 2022070715270804000_CIT0013
  article-title: The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.06.020
– volume: 8
  start-page: e82388
  year: 2013
  ident: 2022070715270804000_CIT0042
  article-title: Vitamin a is a negative regulator of osteoblast mineralization
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0082388
– volume: 37
  start-page: 18
  year: 2010
  ident: 2022070715270804000_CIT0029
  article-title: Increased levels of interleukin 33 in sera and synovial fluid from patients with active rheumatoid arthritis
  publication-title: J. Rheumatol.
  doi: 10.3899/jrheum.090492
– volume: 200
  start-page: 941
  year: 2004
  ident: 2022070715270804000_CIT0052
  article-title: RANKL-induced DC-STAMP is essential for osteoclastogenesis
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20040518
– volume: 133
  start-page: 1184
  year: 2014
  ident: 2022070715270804000_CIT0002
  article-title: Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2013.10.056
– volume: 49
  start-page: 1090
  year: 2011
  ident: 2022070715270804000_CIT0033
  article-title: TNFα inhibits the development of osteoclasts through osteoblast-derived GM-CSF
  publication-title: Bone
  doi: 10.1016/j.bone.2011.08.003
– volume: 186
  start-page: 6097
  year: 2011
  ident: 2022070715270804000_CIT0060
  article-title: IL-33 shifts the balance from osteoclast to alternatively activated macrophage differentiation and protects from TNF-α-mediated bone loss
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1003487
– volume: 214
  start-page: 1581
  year: 2017
  ident: 2022070715270804000_CIT0005
  article-title: Androgen signaling negatively controls group 2 innate lymphoid cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20161807
– volume: 17
  start-page: 76
  year: 2016
  ident: 2022070715270804000_CIT0015
  article-title: Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3309
– volume: 23
  start-page: 549
  year: 2002
  ident: 2022070715270804000_CIT0057
  article-title: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
  publication-title: Trends Immunol.
  doi: 10.1016/S1471-4906(02)02302-5
– volume: 12
  start-page: 320
  year: 2011
  ident: 2022070715270804000_CIT0048
  article-title: RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2002
– volume: 124
  start-page: 9
  year: 2009
  ident: 2022070715270804000_CIT0056
  article-title: TLR-3 enhances osteoclastogenesis through upregulation of RANKL expression from fibroblast-like synoviocytes in patients with rheumatoid arthritis
  publication-title: Immunol. Lett.
  doi: 10.1016/j.imlet.2009.02.006
– volume: 1
  start-page: 868
  year: 2019
  ident: 2022070715270804000_CIT0031
  article-title: Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-019-0104-1
– volume: 286
  start-page: 31425
  year: 2011
  ident: 2022070715270804000_CIT0054
  article-title: Retinoids stimulate periosteal bone resorption by enhancing the protein RANKL, a response inhibited by monomeric glucocorticoid receptor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.247734
– volume: 9
  start-page: 300
  year: 2018
  ident: 2022070715270804000_CIT0027
  article-title: Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02541-w
– volume: 137
  start-page: 571
  year: 2016
  ident: 2022070715270804000_CIT0043
  article-title: Group 2 innate lymphoid cells mediate ozone-induced airway inflammation and hyperresponsiveness in mice
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2015.06.037
– volume: 19
  start-page: 1093
  year: 2018
  ident: 2022070715270804000_CIT0044
  article-title: Tissue signals imprint ILC2 identity with anticipatory function
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0201-4
– volume: 303
  start-page: L577
  year: 2012
  ident: 2022070715270804000_CIT0007
  article-title: STAT6 regulates natural helper cell proliferation during lung inflammation initiated by Alternaria
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol.
  doi: 10.1152/ajplung.00174.2012
– volume: 97
  start-page: 1295
  year: 2017
  ident: 2022070715270804000_CIT0021
  article-title: Osteoimmunology: the conceptual framework unifying the immune and skeletal systems
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00036.2016
– volume: 12
  start-page: 1045
  year: 2011
  ident: 2022070715270804000_CIT0011
  article-title: Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2131
– volume: 110
  start-page: 54
  year: 2007
  ident: 2022070715270804000_CIT0055
  article-title: Human rheumatoid synovial fibroblasts promote osteoclastogenic activity by activating RANKL via TLR-2 and TLR-4 activation
  publication-title: Immunol. Lett.
  doi: 10.1016/j.imlet.2007.03.004
– volume: 100
  start-page: 125
  year: 2003
  ident: 2022070715270804000_CIT0040
  article-title: IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor kappa B ligand and tumor necrosis factor alpha from T cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0136772100
– volume: 25
  start-page: 43
  year: 2019
  ident: 2022070715270804000_CIT0041
  article-title: Melatonin prevents bone destruction in mice with retinoic acid-induced osteoporosis
  publication-title: Mol. Med.
  doi: 10.1186/s10020-019-0107-0
– volume: 202
  start-page: 345
  year: 2005
  ident: 2022070715270804000_CIT0050
  article-title: DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050645
– volume: 281
  start-page: 2414
  year: 2006
  ident: 2022070715270804000_CIT0032
  article-title: Inhibition of hormone and cytokine-stimulated osteoclastogenesis and bone resorption by interleukin-4 and interleukin-13 is associated with increased osteoprotegerin and decreased RANKL and RANK in a STAT6-dependent pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M510160200
– volume: 463
  start-page: 540
  year: 2010
  ident: 2022070715270804000_CIT0001
  article-title: Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells
  publication-title: Nature
  doi: 10.1038/nature08636
– volume: 188
  start-page: 703
  year: 2012
  ident: 2022070715270804000_CIT0046
  article-title: Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1101270
– volume: 110
  start-page: 1643
  year: 2002
  ident: 2022070715270804000_CIT0039
  article-title: Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0215687
– volume: 519
  start-page: 242
  year: 2015
  ident: 2022070715270804000_CIT0009
  article-title: Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity
  publication-title: Nature
  doi: 10.1038/nature14115
– volume: 215
  start-page: 1609
  year: 2018
  ident: 2022070715270804000_CIT0016
  article-title: Peripheral PDGFRα+gp38+ mesenchymal cells support the differentiation of fetal liver-derived ILC2
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20172310
– volume: 27
  start-page: 1289
  year: 2012
  ident: 2022070715270804000_CIT0051
  article-title: Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1575
– volume: 120
  start-page: 19891
  year: 2019
  ident: 2022070715270804000_CIT0059
  article-title: Bone marrow macrophage M2 polarization and adipose-derived stem cells osteogenic differentiation synergistically promote rehabilitation of bone damage
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.29297
– volume: 20
  start-page: 345
  year: 1999
  ident: 2022070715270804000_CIT0017
  article-title: Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families
  publication-title: Endocr. Rev.
  doi: 10.1210/edrv.20.3.0367
– volume: 123
  start-page: 866
  year: 2013
  ident: 2022070715270804000_CIT0026
  article-title: Dynamic visualization of RANKL and Th17-mediated osteoclast function
  publication-title: J. Clin. Invest.
– volume: 23
  start-page: 938
  year: 2017
  ident: 2022070715270804000_CIT0023
  article-title: Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells
  publication-title: Nat. Med.
  doi: 10.1038/nm.4373
– volume: 369
  start-page: 273
  year: 2017
  ident: 2022070715270804000_CIT0035
  article-title: Macrophage type modulates osteogenic differentiation of adipose tissue MSCs
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-017-2598-8
– volume: 136
  start-page: 115335
  year: 2020
  ident: 2022070715270804000_CIT0025
  article-title: Type 2 innate lymphoid cells inhibit the differentiation of osteoclasts and protect from ovariectomy-induced bone loss
  publication-title: Bone
  doi: 10.1016/j.bone.2020.115335
– volume: 160
  start-page: 74
  year: 2015
  ident: 2022070715270804000_CIT0010
  article-title: Activated type 2 innate lymphoid cells regulate beige fat biogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2014.12.011
– volume: 24
  start-page: 169
  year: 2018
  ident: 2022070715270804000_CIT0024
  article-title: Group 2 innate lymphoid cells attenuate inflammatory arthritis and protect from bone destruction in mice
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.06.005
– volume: 46
  start-page: 65
  year: 2016
  ident: 2022070715270804000_CIT0034
  article-title: The macrophage polarization regulates MSC osteoblast differentiation in vitro
  publication-title: Ann. Clin. Lab. Sci.
– volume: 29
  start-page: 830
  year: 2014
  ident: 2022070715270804000_CIT0018
  article-title: Physiological functions of osteoblast lineage and T cell-derived RANKL in bone homeostasis
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2096
– volume: 36
  start-page: 451
  year: 2012
  ident: 2022070715270804000_CIT0008
  article-title: Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.12.020
– volume: 549
  start-page: 351
  year: 2017
  ident: 2022070715270804000_CIT0004
  article-title: The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation
  publication-title: Nature
  doi: 10.1038/nature24029
– volume: 17
  start-page: 1231
  year: 2011
  ident: 2022070715270804000_CIT0019
  article-title: Evidence for osteocyte regulation of bone homeostasis through RANKL expression
  publication-title: Nat. Med.
  doi: 10.1038/nm.2452
– volume: 291
  start-page: 24838
  year: 2016
  ident: 2022070715270804000_CIT0022
  article-title: RANKL (Receptor Activator of NFκB Ligand) produced by osteocytes is required for the increase in b cells and bone loss caused by estrogen deficiency in mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.742452
– volume: 129
  start-page: 770
  year: 1998
  ident: 2022070715270804000_CIT0038
  article-title: Excessive dietary intake of vitamin A is associated with reduced bone mineral density and increased risk for hip fracture
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-129-10-199811150-00003
– volume: 26
  start-page: 1132
  year: 2011
  ident: 2022070715270804000_CIT0028
  article-title: Measurement of interleukin-33 (IL-33) and IL-33 receptors (sST2 and ST2L) in patients with rheumatoid arthritis
  publication-title: J. Korean Med. Sci.
  doi: 10.3346/jkms.2011.26.9.1132
– volume: 343
  start-page: 432
  year: 2014
  ident: 2022070715270804000_CIT0037
  article-title: Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity
  publication-title: Science
  doi: 10.1126/science.1247606
– volume: 48
  start-page: 1208
  year: 2018
  ident: 2022070715270804000_CIT0049
  article-title: The tumor necrosis factor superfamily member RANKL suppresses effector cytokine production in group 3 innate lymphoid cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.04.012
– volume: 3
  start-page: 23
  year: 2003
  ident: 2022070715270804000_CIT0058
  article-title: Alternative activation of macrophages
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri978
– volume: 464
  start-page: 1367
  year: 2010
  ident: 2022070715270804000_CIT0045
  article-title: Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity
  publication-title: Nature
  doi: 10.1038/nature08900
– volume: 549
  start-page: 282
  year: 2017
  ident: 2022070715270804000_CIT0003
  article-title: The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation
  publication-title: Nature
  doi: 10.1038/nature23676
– volume: 197
  start-page: 3871
  year: 2016
  ident: 2022070715270804000_CIT0030
  article-title: Soluble RANKL cleaved from activated lymphocytes by TNF-α-converting enzyme contributes to osteoclastogenesis in periodontitis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1601114
– volume: 47
  start-page: 928
  year: 2017
  ident: 2022070715270804000_CIT0012
  article-title: Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.10.015
– volume: 502
  start-page: 245
  year: 2013
  ident: 2022070715270804000_CIT0047
  article-title: Type 2 innate lymphoid cells control eosinophil homeostasis
  publication-title: Nature
  doi: 10.1038/nature12526
– volume: 549
  start-page: 277
  year: 2017
  ident: 2022070715270804000_CIT0006
  article-title: Neuronal regulation of type 2 innate lymphoid cells via neuromedin U
  publication-title: Nature
  doi: 10.1038/nature23469
– volume: 123
  start-page: 2600
  year: 1988
  ident: 2022070715270804000_CIT0020
  article-title: Osteoblastic cells are involved in osteoclast formation
  publication-title: Endocrinology
  doi: 10.1210/endo-123-5-2600
– volume: 8
  start-page: 1742
  year: 2017
  ident: 2022070715270804000_CIT0036
  article-title: Metabolic regulation of innate lymphoid cell-mediated tissue protection-linking the nutritional state to barrier immunity
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.01742
– volume: 40
  start-page: 1447
  year: 2011
  ident: 2022070715270804000_CIT0053
  article-title: Molecules and signaling pathways involved in the expression of OC-STAMP during osteoclastogenesis
  publication-title: Amino Acids
  doi: 10.1007/s00726-010-0755-4
– volume: 350
  start-page: 981
  year: 2015
  ident: 2022070715270804000_CIT0014
  article-title: Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs
  publication-title: Science
  doi: 10.1126/science.aac9593
SSID ssj0003293
Score 2.4654436
Snippet Abstract Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental...
Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental factors....
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 573
SubjectTerms Animals
Cell Differentiation - immunology
Cells, Cultured
Coculture Techniques
Granulocyte-Macrophage Colony-Stimulating Factor - immunology
Immunity, Innate - immunology
Inflammation - immunology
Interleukin-13 - biosynthesis
Interleukin-13 - immunology
Lymphocytes - cytology
Lymphocytes - immunology
Macrophages - immunology
Mice
Mice, Inbred C57BL
Osteoclasts - immunology
Osteogenesis - immunology
RANK Ligand - immunology
Title Group 2 innate lymphoid cells in bone marrow regulate osteoclastogenesis in a reciprocal manner via RANKL, GM-CSF and IL-13
URI https://www.ncbi.nlm.nih.gov/pubmed/34498703
https://www.proquest.com/docview/2571055121
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEIgXBOOrfMkgJB5CttR2vh6nadNg6x7YJo2nyIkdsLomqE0QG38S_yTnj6SruonBSxSlZ6f1_eo7n-7uh9A7Kco8SSgDDYjIZymN_Byw5Ac5BYe3jMAl18XJ48No74R9Og1PB4Pfl7KW2ibfKC6urCv5H63CM9CrrpL9B832k8IDuAf9whU0DNcb6dhGkoinqgpcRu_sHFRTK-HpaLzJc83rSieo6j6L3syyzktPl3XUBXjNTf1V73TKiHJP97nQ9kzXk3DNyOX9UNz7vHW4f2Ci52N_-2jX5g8f-La0s3Nrl-OKStecLIXrx_VUadYVs-HX829qohYfNfW0NWxH3hc-bxs-6S3FUWvDvjtTNan7AeqiNXzh3p6a1W4iF7cgI1fA159yr66HtGbJ7sUsCnxCHcuL26xt14wOlKNLW29oKVGcFQ8tEdCKgbDNs1TVwFLAjfjJ88CZg-W229cL30K3SQyOmvbAP-73Zp-C49R3BaWbdtSmG7Pk9SxVUq4caIxjc_wA3XcnErxl4fUQDWS1ju5YjtLzdXR37LIvHqFfBm-YYIs33OENG7zBU6zxhi3ecIc3vIo3LcrxAm_Y4g0D3rDB2wds0YYBbdig7TE62d053t7zHXmHX7Awbfy4pJGucNH9NoNUBjKVkpRpUCYBEZQXNCGMMhaWImEJ4SQmiZAkIrkII5mAyBO0VsGXfoZwIEc8jkSU50XMRJwmZVokIo2LIg4KxuMh8rvFzQrX2V4TrJxlNsOCZlYZmVPGEL3v5b_bni7XSr6Fdf2r0JtOlRnszXrJeSXrdp6BOdT8syMyGqKnVsf9XPDbU7CV9PlNXvEC3Vv8hV6itWbWylfgDDf5awPCPwSBvHs
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+2+innate+lymphoid+cells+in+bone+marrow+regulate+osteoclastogenesis+in+a+reciprocal+manner+via+RANKL%2C+GM-CSF+and+IL-13&rft.jtitle=International+immunology&rft.au=Momiuchi%2C+Yoshiki&rft.au=Motomura%2C+Yasutaka&rft.au=Suga%2C+Emiko&rft.au=Mizuno%2C+Hiroki&rft.date=2021-11-01&rft.pub=Oxford+University+Press&rft.eissn=1460-2377&rft.volume=33&rft.issue=11&rft.spage=573&rft.epage=585&rft_id=info:doi/10.1093%2Fintimm%2Fdxab062&rft.externalDocID=10.1093%2Fintimm%2Fdxab062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2377&client=summon