Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi
Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a the...
Saved in:
Published in | Frontiers in oncology Vol. 8; p. 92 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
29.03.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2234-943X 2234-943X |
DOI | 10.3389/fonc.2018.00092 |
Cover
Abstract | Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient's response to these agents, in order to limit the off-target toxicity associated with HDACi. |
---|---|
AbstractList | Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient's response to these agents, in order to limit the off-target toxicity associated with HDACi.Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient's response to these agents, in order to limit the off-target toxicity associated with HDACi. Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient’s response to these agents, in order to limit the off-target toxicity associated with HDACi. |
Author | O’Byrne, Kenneth J. Suraweera, Amila Richard, Derek J. |
AuthorAffiliation | 2 Princess Alexandra Hospital , Brisbane, QLD , Australia 1 School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia |
AuthorAffiliation_xml | – name: 2 Princess Alexandra Hospital , Brisbane, QLD , Australia – name: 1 School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia |
Author_xml | – sequence: 1 givenname: Amila surname: Suraweera fullname: Suraweera, Amila – sequence: 2 givenname: Kenneth J. surname: O’Byrne fullname: O’Byrne, Kenneth J. – sequence: 3 givenname: Derek J. surname: Richard fullname: Richard, Derek J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29651407$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktrGzEUhYeS0jyadXdFy2RhR495SF0UjJPUhkC7cGl3QiPf8SjMSK4kB_wn-purGTslKXQlIZ3zHYl7zrMT6yxk2QeCp4xxcdM4q6cUEz7FGAv6JjujlOUTkbOfJy_2p9llCI9JgssCE8zeZadUlAXJcXWW_Z67vjZWReMsWrXg1XaPfpjYooUJMeWhW1Aa4r5TAdDStqY20fmArha3s7m5Ro3zKLaAVh5U7MFG5Bo0V1aD_4RmujXwZOxmlNzvuu6YAbtoNPrmYjIY1Q2ekfc-e9uoLsDlcb3Ivt_freaLycPXL8v57GGi80LESaVhXZGiIrwqmNBVXesqFwJTYAWDshzOCTS4xiXXmmhRkqTiTUNoqRnV7CJbHrhrpx7l1pte-b10ysjxwPmNVD49sQNJuODAa0UUg5wrlrIErXSJGea0ziGxPh9Y213dw1qnL3nVvYK-vrGmlRv3JAvOc0F5AlwdAd792kGIsjdBQ9cpC24XJMW0YITyCifpx5dZf0OeB5oExUGgvQvBQyO1ieN0U7TpJMFy6I4cuiOH7sixO8l384_vGf0_xx-3BcdK |
CitedBy_id | crossref_primary_10_14348_molcells_2023_0013 crossref_primary_10_3390_cancers13246280 crossref_primary_10_3389_fphar_2019_00588 crossref_primary_10_1016_j_ccell_2023_02_004 crossref_primary_10_1021_acs_jmedchem_0c00830 crossref_primary_10_1186_s12885_021_08595_w crossref_primary_10_1038_s41380_023_02208_7 crossref_primary_10_3390_cancers16193374 crossref_primary_10_3389_fonc_2023_1244035 crossref_primary_10_3390_ijtm4030031 crossref_primary_10_1016_j_jtct_2022_05_021 crossref_primary_10_3389_fgene_2020_578011 crossref_primary_10_3390_pharmaceutics16020292 crossref_primary_10_3390_ijms21228582 crossref_primary_10_1021_acs_jmedchem_4c02373 crossref_primary_10_1016_j_ejmech_2020_112338 crossref_primary_10_1007_s11033_025_10361_1 crossref_primary_10_1016_j_semcancer_2021_03_001 crossref_primary_10_1002_prp2_1135 crossref_primary_10_3389_fcell_2020_00732 crossref_primary_10_3389_fmicb_2023_1284439 crossref_primary_10_3389_fcell_2020_00613 crossref_primary_10_3390_cancers13194763 crossref_primary_10_1007_s10637_021_01187_2 crossref_primary_10_3390_cancers14010175 crossref_primary_10_3390_cells11091403 crossref_primary_10_3390_ijms22073458 crossref_primary_10_4103_pm_pm_70_21 crossref_primary_10_1038_s41467_021_27651_4 crossref_primary_10_15252_emmm_202215705 crossref_primary_10_18632_genesandcancer_197 crossref_primary_10_3390_ijms24054912 crossref_primary_10_3892_ijo_2020_5031 crossref_primary_10_3233_HAB_200424 crossref_primary_10_1021_acs_jmedchem_8b01825 crossref_primary_10_1016_j_phyplu_2024_100694 crossref_primary_10_1016_j_tranon_2021_101312 crossref_primary_10_1016_j_arr_2021_101349 crossref_primary_10_1016_j_bmcl_2021_128286 crossref_primary_10_3389_fcell_2021_624312 crossref_primary_10_1016_j_etap_2019_03_015 crossref_primary_10_1007_s11033_022_07192_9 crossref_primary_10_3389_fimmu_2019_02718 crossref_primary_10_3389_fneur_2021_804113 crossref_primary_10_2174_011574888X305642240327041753 crossref_primary_10_1016_j_ejmech_2023_115367 crossref_primary_10_1016_j_ejmech_2021_113963 crossref_primary_10_2174_0929867327666200203113926 crossref_primary_10_1021_acsomega_0c00559 crossref_primary_10_3389_fonc_2024_1390518 crossref_primary_10_1016_j_ejphar_2019_172745 crossref_primary_10_1016_j_critrevonc_2021_103234 crossref_primary_10_1007_s10555_024_10172_z crossref_primary_10_1039_D3DT01876H crossref_primary_10_3390_cancers14153709 crossref_primary_10_3389_fgene_2021_773426 crossref_primary_10_1002_1878_0261_13519 crossref_primary_10_3389_fmolb_2021_685440 crossref_primary_10_1016_j_arr_2024_102267 crossref_primary_10_1042_CS20210449 crossref_primary_10_3389_fcell_2021_718707 crossref_primary_10_1101_cshperspect_a037812 crossref_primary_10_1007_s11427_018_9391_7 crossref_primary_10_3390_cancers11091327 crossref_primary_10_3892_ije_2022_10 crossref_primary_10_1002_hep_31216 crossref_primary_10_2217_epi_2023_0181 crossref_primary_10_3390_cancers13112761 crossref_primary_10_3389_fphar_2024_1381168 crossref_primary_10_3389_fendo_2021_762095 crossref_primary_10_1016_j_bcp_2020_114312 crossref_primary_10_3390_pharmaceutics16010054 crossref_primary_10_3389_fcell_2020_582370 crossref_primary_10_18632_oncotarget_27546 crossref_primary_10_3390_biomedicines10020307 crossref_primary_10_1016_j_biopha_2023_114500 crossref_primary_10_3390_ijms252313157 crossref_primary_10_1016_j_ejmcr_2022_100058 crossref_primary_10_1016_j_biomaterials_2020_120229 crossref_primary_10_1016_j_bmc_2021_116251 crossref_primary_10_1111_bph_14932 crossref_primary_10_1016_j_bioorg_2024_107409 crossref_primary_10_1371_journal_pone_0316343 crossref_primary_10_3390_cancers11101530 crossref_primary_10_1097_MD_0000000000024824 crossref_primary_10_3389_fimmu_2020_629722 crossref_primary_10_1038_s41467_023_39528_9 crossref_primary_10_3390_cells11162518 crossref_primary_10_3390_cancers12061664 crossref_primary_10_3389_fonc_2021_741746 crossref_primary_10_1038_s41467_020_19950_z crossref_primary_10_3390_cancers12113172 crossref_primary_10_3390_cells9061402 crossref_primary_10_3390_molecules28042000 crossref_primary_10_1016_j_sciaf_2020_e00318 crossref_primary_10_3390_ijms20051110 crossref_primary_10_2217_epi_2023_0045 crossref_primary_10_1038_s41419_020_02968_y crossref_primary_10_3390_ijms22073378 crossref_primary_10_1007_s10495_019_01543_x crossref_primary_10_3389_fimmu_2019_00949 crossref_primary_10_3389_fphar_2019_01242 crossref_primary_10_1038_s41380_021_01118_w crossref_primary_10_1007_s10555_025_10253_7 crossref_primary_10_1038_s41416_020_0839_1 crossref_primary_10_3390_vaccines8040615 crossref_primary_10_14336_AD_2023_0520 crossref_primary_10_2174_0113895575296174240323172754 crossref_primary_10_1039_D4RA05014B crossref_primary_10_1080_17460441_2024_2387122 crossref_primary_10_1002_jbm4_10694 crossref_primary_10_1016_j_bcp_2022_114944 crossref_primary_10_1007_s11033_022_07204_8 crossref_primary_10_3390_cancers13020259 crossref_primary_10_3389_fphar_2018_00874 crossref_primary_10_3390_cancers10060155 crossref_primary_10_5483_BMBRep_2021_54_10_092 crossref_primary_10_1016_j_bcp_2020_114224 crossref_primary_10_1158_1078_0432_CCR_21_1141 crossref_primary_10_1016_j_trecan_2020_02_003 crossref_primary_10_3390_jcm8070912 crossref_primary_10_1016_j_lfs_2020_118211 crossref_primary_10_3390_cancers11020148 crossref_primary_10_3390_ijms20061291 crossref_primary_10_1080_08923973_2024_2412110 crossref_primary_10_3389_fonc_2022_938052 crossref_primary_10_3389_fonc_2019_01534 crossref_primary_10_18632_oncotarget_26460 crossref_primary_10_1016_j_omto_2020_05_001 crossref_primary_10_3390_ijms222111810 crossref_primary_10_1080_23723556_2019_1705731 crossref_primary_10_3390_ijms20133259 crossref_primary_10_1186_s12935_022_02582_2 crossref_primary_10_3390_cancers13071746 crossref_primary_10_1016_j_molcel_2021_12_015 crossref_primary_10_1111_cbdd_14366 crossref_primary_10_3390_ijms20030714 crossref_primary_10_1007_s11033_021_06173_8 crossref_primary_10_3390_cancers11101617 crossref_primary_10_1021_acsabm_1c00430 crossref_primary_10_1021_acs_jnatprod_4c00843 crossref_primary_10_1007_s13770_019_00223_w crossref_primary_10_3390_cells10051262 crossref_primary_10_1002_mco2_173 crossref_primary_10_1038_s42003_023_05674_5 crossref_primary_10_1186_s13148_019_0675_4 crossref_primary_10_4155_fsoa_2018_0037 crossref_primary_10_1016_j_ceca_2019_102109 crossref_primary_10_1016_j_omto_2020_08_017 crossref_primary_10_1002_cam4_4454 crossref_primary_10_3389_fcell_2020_589016 crossref_primary_10_1016_j_jtumed_2022_07_004 crossref_primary_10_2174_0118715206272112231102063919 crossref_primary_10_3390_cancers12082304 crossref_primary_10_1016_j_abb_2024_110262 crossref_primary_10_1093_nar_gkab473 crossref_primary_10_1016_j_semcancer_2021_01_005 crossref_primary_10_1016_j_drudis_2019_02_003 crossref_primary_10_1097_MD_0000000000026554 crossref_primary_10_1371_journal_pone_0291779 crossref_primary_10_36401_JIPO_20_18 crossref_primary_10_1136_jitc_2021_003217 crossref_primary_10_1038_s41392_020_00361_x crossref_primary_10_3390_ph17070867 crossref_primary_10_2174_0929867329666220922105615 crossref_primary_10_1097_MD_0000000000026788 crossref_primary_10_1016_j_abb_2024_110172 crossref_primary_10_3389_fphar_2023_1275833 crossref_primary_10_1016_j_clml_2024_11_015 crossref_primary_10_1016_j_jddst_2022_103645 crossref_primary_10_1016_j_xcrm_2023_101354 crossref_primary_10_1016_j_bioorg_2025_108169 crossref_primary_10_1186_s13148_022_01228_4 crossref_primary_10_3390_ph14070670 crossref_primary_10_1097_PPO_0000000000000479 crossref_primary_10_1016_j_phymed_2020_153442 crossref_primary_10_1021_acsptsci_4c00358 crossref_primary_10_3390_cancers14041070 crossref_primary_10_15616_BSL_2019_25_4_293 crossref_primary_10_1002_nano_202000118 crossref_primary_10_1016_j_ejmech_2024_116884 crossref_primary_10_1016_j_biocel_2023_106398 crossref_primary_10_3390_molecules25194394 crossref_primary_10_1155_2022_2523066 crossref_primary_10_3390_cells11030468 crossref_primary_10_1016_j_semnephrol_2020_01_005 crossref_primary_10_1515_pac_2021_0111 crossref_primary_10_3390_cells11243951 crossref_primary_10_1002_cam4_2108 crossref_primary_10_1038_s41388_021_01931_1 crossref_primary_10_1038_s41698_023_00417_5 crossref_primary_10_1002_adtp_202000211 crossref_primary_10_1186_s12943_019_1127_7 crossref_primary_10_3390_cancers14071753 crossref_primary_10_1021_acsmedchemlett_9b00561 crossref_primary_10_1002_ange_202001205 crossref_primary_10_1016_j_jddst_2020_102294 crossref_primary_10_1002_anse_202100001 crossref_primary_10_3389_fcell_2020_00400 crossref_primary_10_3389_fimmu_2022_844866 crossref_primary_10_3389_fimmu_2024_1523034 crossref_primary_10_1016_j_ejmech_2021_113745 crossref_primary_10_1038_s41467_020_17630_6 crossref_primary_10_3322_caac_21652 crossref_primary_10_1016_j_neo_2021_04_003 crossref_primary_10_1038_s41388_022_02399_3 crossref_primary_10_1080_08830185_2021_1990277 crossref_primary_10_1186_s13045_021_01111_4 crossref_primary_10_1016_j_sajb_2019_07_022 crossref_primary_10_1007_s12094_022_02779_x crossref_primary_10_1016_j_intimp_2021_108114 crossref_primary_10_1016_j_ejps_2020_105401 crossref_primary_10_2174_1566524021666211206092437 crossref_primary_10_1016_j_pharmthera_2022_108301 crossref_primary_10_1007_s12017_021_08660_4 crossref_primary_10_1155_2020_8876265 crossref_primary_10_3389_fcell_2020_00425 crossref_primary_10_35754_0234_5730_2021_66_2_263_279 crossref_primary_10_1080_16078454_2023_2219930 crossref_primary_10_1007_s40199_024_00514_1 crossref_primary_10_4155_tde_2023_0089 crossref_primary_10_1007_s00044_020_02530_7 crossref_primary_10_2147_CMAR_S252292 crossref_primary_10_3389_fmmed_2024_1426454 crossref_primary_10_1080_09205063_2022_2112303 crossref_primary_10_3390_ijms241713660 crossref_primary_10_1007_s10787_019_00663_9 crossref_primary_10_3390_biomedicines10020251 crossref_primary_10_1021_acs_jcim_3c01473 crossref_primary_10_1016_j_jep_2022_115521 crossref_primary_10_1021_acsptsci_3c00202 crossref_primary_10_1038_s41419_022_05256_z crossref_primary_10_38079_igusabder_1469350 crossref_primary_10_1039_D2CS00220E crossref_primary_10_3390_molecules24132407 crossref_primary_10_1177_2040620719866081 crossref_primary_10_3390_genes11050556 crossref_primary_10_1016_j_biopha_2021_111485 crossref_primary_10_3389_fimmu_2019_02746 crossref_primary_10_1016_j_bioorg_2024_107930 crossref_primary_10_1016_j_canlet_2023_216121 crossref_primary_10_1016_j_ejmech_2024_116324 crossref_primary_10_3390_cancers12071760 crossref_primary_10_3390_cells8091102 crossref_primary_10_1021_acs_jmedchem_2c01418 crossref_primary_10_1038_s41368_019_0053_2 crossref_primary_10_14336_AD_2019_1126 crossref_primary_10_1038_s41584_020_00543_5 crossref_primary_10_1101_cshperspect_a036194 crossref_primary_10_18632_aging_203091 crossref_primary_10_2174_0115748855275769231114094037 crossref_primary_10_3390_cancers12123589 crossref_primary_10_2174_0118715303262653231120043819 crossref_primary_10_3390_cancers14030695 crossref_primary_10_3389_fgene_2021_719456 crossref_primary_10_1016_j_freeradbiomed_2019_12_021 crossref_primary_10_1080_14756366_2021_1933465 crossref_primary_10_3390_ijms21134747 crossref_primary_10_1089_dna_2021_1118 crossref_primary_10_1017_erm_2021_3 crossref_primary_10_3389_fonc_2021_735940 crossref_primary_10_1007_s00011_019_01272_6 crossref_primary_10_1016_j_celrep_2019_10_101 crossref_primary_10_1007_s40264_018_0773_9 crossref_primary_10_1158_1078_0432_CCR_20_2487 crossref_primary_10_1172_jci_insight_149232 crossref_primary_10_1038_s41698_021_00173_4 crossref_primary_10_1016_j_ejphar_2022_175328 crossref_primary_10_1021_acs_jmedchem_4c01859 crossref_primary_10_1371_journal_pone_0306168 crossref_primary_10_1016_j_brainres_2023_148515 crossref_primary_10_1002_cai2_113 crossref_primary_10_1016_j_ejmech_2022_114544 crossref_primary_10_1016_j_ejmech_2020_113095 crossref_primary_10_2217_epi_2020_0348 crossref_primary_10_1002_cncr_31817 crossref_primary_10_1111_bph_15570 crossref_primary_10_3390_cells11050775 crossref_primary_10_1016_j_ejphar_2022_175216 crossref_primary_10_1093_neuonc_noad170 crossref_primary_10_1152_ajpcell_00460_2019 crossref_primary_10_1186_s12964_022_01007_x crossref_primary_10_1155_2022_4985781 crossref_primary_10_1016_j_ejmech_2023_115800 crossref_primary_10_1186_s40164_022_00282_1 crossref_primary_10_1371_journal_pone_0213095 crossref_primary_10_1038_s41598_020_69737_x crossref_primary_10_3390_ijms222413405 crossref_primary_10_1002_adtp_201900151 crossref_primary_10_3390_cancers12020337 crossref_primary_10_1021_acs_jmedchem_0c01357 crossref_primary_10_1016_j_compbiomed_2023_107518 crossref_primary_10_3390_ijms20092241 crossref_primary_10_1016_j_bioorg_2020_103934 crossref_primary_10_1021_acs_jmedchem_0c00193 crossref_primary_10_3390_cancers14194769 crossref_primary_10_3390_cancers15061769 crossref_primary_10_3390_ph14121244 crossref_primary_10_3390_ijms232113657 crossref_primary_10_1007_s13577_022_00724_2 crossref_primary_10_1007_s13346_024_01674_y crossref_primary_10_3390_cells8020165 crossref_primary_10_1074_jbc_RA119_010524 crossref_primary_10_1155_2022_9346767 crossref_primary_10_1158_0008_5472_CAN_22_2042 crossref_primary_10_1158_2159_8290_CD_20_1145 crossref_primary_10_1016_j_radonc_2020_06_041 crossref_primary_10_1111_imr_13079 crossref_primary_10_2174_1568026622666220303113445 crossref_primary_10_3390_ijms20040833 crossref_primary_10_1007_s43450_021_00138_5 crossref_primary_10_1267_ahc_18044 crossref_primary_10_1016_j_ymthe_2019_04_008 crossref_primary_10_3389_fonc_2024_1499950 crossref_primary_10_53879_id_60_09_13729 crossref_primary_10_3389_fonc_2023_1241532 crossref_primary_10_1016_j_neuropharm_2019_03_002 crossref_primary_10_1038_s41467_023_43290_3 crossref_primary_10_1016_j_heliyon_2024_e41589 crossref_primary_10_3389_fcell_2023_1116805 crossref_primary_10_4103_JIPO_JIPO_1_20 crossref_primary_10_1186_s13148_021_01001_z crossref_primary_10_1007_s00432_023_04641_1 crossref_primary_10_1016_j_ijpddr_2020_12_003 crossref_primary_10_3390_ijms25042181 crossref_primary_10_1002_rmv_2085 crossref_primary_10_3389_fgene_2019_00986 crossref_primary_10_1038_s41389_021_00331_0 crossref_primary_10_3390_ijms25021130 crossref_primary_10_1016_j_neuro_2022_04_009 crossref_primary_10_1002_cncr_35096 crossref_primary_10_1016_j_chembiol_2021_07_002 crossref_primary_10_1007_s13167_021_00242_5 crossref_primary_10_1007_s44178_024_00094_9 crossref_primary_10_3390_cancers13040634 crossref_primary_10_3390_ijms21218198 crossref_primary_10_1021_acsmedchemlett_0c00551 crossref_primary_10_1016_j_bmcl_2023_129305 crossref_primary_10_3390_ph15040438 crossref_primary_10_1158_1535_7163_MCT_19_0330 crossref_primary_10_3390_v11050431 crossref_primary_10_1038_s41556_018_0258_1 crossref_primary_10_1016_j_tranon_2018_11_016 crossref_primary_10_1080_17435390_2022_2142169 crossref_primary_10_1074_jbc_RA120_012518 crossref_primary_10_1016_j_preteyeres_2024_101318 crossref_primary_10_1186_s13148_019_0700_7 crossref_primary_10_2174_1570159X17666191010094849 crossref_primary_10_1016_j_pharmthera_2022_108171 crossref_primary_10_1080_15287394_2023_2254807 crossref_primary_10_1177_15353702211067718 crossref_primary_10_1016_j_tips_2018_12_004 crossref_primary_10_1186_s13072_020_00354_8 crossref_primary_10_1039_D1TB00279A crossref_primary_10_3390_ijms21031102 crossref_primary_10_1021_acs_jmedchem_1c02026 crossref_primary_10_3390_ijms22020536 crossref_primary_10_1038_s41392_021_00572_w crossref_primary_10_1186_s40659_020_00294_3 crossref_primary_10_1136_jitc_2024_010179 crossref_primary_10_1016_j_bioorg_2022_105702 crossref_primary_10_1016_j_bmc_2021_116454 crossref_primary_10_1007_s10565_023_09818_5 crossref_primary_10_1016_j_phrs_2023_106950 crossref_primary_10_3389_fphar_2020_00992 crossref_primary_10_1038_s41598_022_10740_9 crossref_primary_10_3390_cancers13061376 crossref_primary_10_3390_cancers13143575 crossref_primary_10_4155_fmc_2021_0206 crossref_primary_10_1016_j_tranon_2022_101345 crossref_primary_10_3892_or_2023_8480 crossref_primary_10_1016_j_biopha_2023_115741 crossref_primary_10_1080_14656566_2022_2150966 crossref_primary_10_1158_0008_5472_CAN_19_2528 crossref_primary_10_1158_0008_5472_CAN_19_3738 crossref_primary_10_1007_s10157_020_01995_5 crossref_primary_10_1002_cmdc_202100473 crossref_primary_10_1186_s13046_019_1350_5 crossref_primary_10_3390_cancers11111794 crossref_primary_10_4155_fmc_2023_0105 crossref_primary_10_1016_j_molcel_2022_10_027 crossref_primary_10_1002_ijc_34144 crossref_primary_10_1371_journal_pone_0293075 crossref_primary_10_1002_pbc_27785 crossref_primary_10_1038_s41467_024_52757_w crossref_primary_10_1016_j_medidd_2020_100040 crossref_primary_10_1038_s12276_020_0382_4 crossref_primary_10_1002_cncr_31791 crossref_primary_10_1021_acs_jproteome_1c00791 crossref_primary_10_1073_pnas_2015808118 crossref_primary_10_2174_1568026619666190125145110 crossref_primary_10_3390_pharmaceutics14010209 crossref_primary_10_3390_diagnostics11030517 crossref_primary_10_3390_ijms20071601 crossref_primary_10_1038_s41591_019_0376_8 crossref_primary_10_3389_fimmu_2022_915094 crossref_primary_10_3390_ijms23063218 crossref_primary_10_3390_ijms22168582 crossref_primary_10_1016_j_ccr_2023_215485 crossref_primary_10_1093_ecco_jcc_jjab176 crossref_primary_10_1021_acs_jmedchem_9b01888 crossref_primary_10_3389_fcell_2021_759237 crossref_primary_10_3390_biomedicines9121749 crossref_primary_10_1016_j_jconrel_2023_04_006 crossref_primary_10_1158_1535_7163_MCT_22_0798 crossref_primary_10_3390_cancers12030767 crossref_primary_10_1016_j_ejmech_2020_112831 crossref_primary_10_3390_cancers11070934 crossref_primary_10_1002_ptr_6869 crossref_primary_10_3390_genes12020260 crossref_primary_10_1007_s00280_020_04109_w crossref_primary_10_3390_cells8050485 crossref_primary_10_1016_j_ejmech_2023_115529 crossref_primary_10_1016_j_heliyon_2024_e34033 crossref_primary_10_1002_ddr_22026 crossref_primary_10_18632_aging_103536 crossref_primary_10_1080_14756366_2023_2195991 crossref_primary_10_1016_j_semcancer_2020_07_015 crossref_primary_10_1002_anie_202001205 crossref_primary_10_1080_10428194_2021_1876857 crossref_primary_10_1007_s12029_020_00370_7 crossref_primary_10_3390_epigenomes2020008 crossref_primary_10_3389_fphar_2020_529881 crossref_primary_10_1016_j_ejmech_2020_112844 crossref_primary_10_1186_s12906_023_03872_6 crossref_primary_10_1186_s40001_024_02108_8 crossref_primary_10_3390_cancers11030304 crossref_primary_10_1038_s41388_024_03054_9 crossref_primary_10_1021_acsabm_9b00643 crossref_primary_10_1016_j_isci_2020_101619 crossref_primary_10_1016_j_biopha_2022_113490 crossref_primary_10_1016_j_ymthe_2022_02_006 crossref_primary_10_1016_j_ejmech_2023_115938 crossref_primary_10_3390_cells11152380 crossref_primary_10_3390_cells11071211 crossref_primary_10_3389_fonc_2021_648023 crossref_primary_10_1155_2022_2197071 crossref_primary_10_1007_s00280_020_04229_3 crossref_primary_10_3390_cancers13236040 crossref_primary_10_1016_j_colsurfb_2020_111144 crossref_primary_10_1016_j_semcancer_2020_12_006 crossref_primary_10_1016_j_lungcan_2020_04_002 crossref_primary_10_2174_0929867328666210901144658 crossref_primary_10_3389_fcell_2025_1480192 crossref_primary_10_1038_s41598_021_87890_9 crossref_primary_10_3390_ijms221910671 crossref_primary_10_1016_j_ctarc_2022_100509 crossref_primary_10_1038_s41598_021_81620_x crossref_primary_10_2217_fon_2020_0385 crossref_primary_10_1016_j_intimp_2025_114193 crossref_primary_10_1186_s12885_021_08579_w crossref_primary_10_3390_cancers13051145 crossref_primary_10_1016_j_arr_2022_101598 crossref_primary_10_2147_JEP_S254334 crossref_primary_10_3233_CBM_190729 crossref_primary_10_12677_HJMCe_2023_112015 crossref_primary_10_1002_mc_23277 crossref_primary_10_1016_j_ejmech_2019_02_054 crossref_primary_10_1016_j_biopha_2024_116902 crossref_primary_10_3390_cancers14030552 crossref_primary_10_1158_1535_7163_MCT_20_0699 crossref_primary_10_3389_fonc_2021_696512 crossref_primary_10_1016_j_bbcan_2022_188676 crossref_primary_10_1002_cncr_34974 crossref_primary_10_3390_cancers13112551 crossref_primary_10_1016_j_bioorg_2022_105848 crossref_primary_10_1021_acs_jmedchem_4c01062 crossref_primary_10_1080_14756366_2023_2295241 crossref_primary_10_1016_j_brainres_2020_146932 crossref_primary_10_1016_j_dnarep_2020_102940 crossref_primary_10_1186_s13578_020_00415_1 crossref_primary_10_1016_j_ejphar_2020_173727 crossref_primary_10_1016_j_jinorgbio_2021_111656 crossref_primary_10_3389_fcell_2021_626708 crossref_primary_10_4155_fmc_2021_0102 crossref_primary_10_1038_s41573_019_0044_1 crossref_primary_10_1007_s00726_023_03298_x crossref_primary_10_1016_j_canlet_2019_12_029 crossref_primary_10_1016_j_ejphar_2024_176943 crossref_primary_10_3390_ijms22115545 crossref_primary_10_1016_j_fct_2020_111303 crossref_primary_10_1021_jacsau_4c00828 crossref_primary_10_1038_s41568_021_00340_6 crossref_primary_10_1016_j_ejmech_2019_111756 crossref_primary_10_1016_j_ejmech_2020_112800 crossref_primary_10_1016_j_ygyno_2020_11_008 |
Cites_doi | 10.3390/ijms18071414 10.1038/bjc.2013.21 10.1016/j.canlet.2012.09.018 10.1182/blood-2006-03-009142 10.1124/jpet.105.084145 10.1158/1078-0432.ccr-03-0561 10.18632/oncotarget.17950 10.1016/s1470-2045(16)30498-3 10.1182/blood-2006-04-016055 10.1182/blood-2012-10-459883 10.1158/0008-5472.CAN-09-1947 10.1146/annurev-biochem-061809-100002 10.1158/1078-0432.CCR-08-2714 10.1200/JCO.2009.24.9094 10.1007/s11060-007-9402-7 10.1038/sj.bjc.6604199 10.1634/theoncologist.12-10-1247 10.1586/era.10.88 10.1016/S0305-7372(79)80057-2 10.1200/JCO.2009.22.1291 10.1038/sj.cdd.4400874 10.1038/sj.bjc.6604557 10.1080/2162402X.2016.1219008 10.1111/ajco.12698 10.1146/annurev.biochem.78.081507.101607 10.1002/cncr.24597 10.1038/nrd2133 10.1038/onc.2015.46 10.1186/s40425-015-0059-z 10.18632/oncotarget.7180 10.1038/sj.onc.1209417 10.1038/35106079 10.1186/s13148-017-0358-y 10.1016/j.currproblcancer.2008.08.002 10.1038/bjc.2011.156 10.1016/j.jinorgbio.2016.06.021 10.2147/tcrm.2006.2.3.271 10.1159/000279388 10.1248/bpb.34.1774 10.1158/0008-5472.CAN-06-3996 10.1634/theoncologist.2012-0465 10.1158/1535-7163.MCT-12-1242 10.1042/bst0350012 10.1016/j.molonc.2007.01.001 10.1002/cncr.22652 10.1507/endocrj.K08E-016 10.1038/sj.onc.1210620 10.1074/jbc.M500403200 10.1007/s10549-005-6001-1 10.1016/j.leukres.2004.11.022 10.1158/1078-0432.Ccr-17-0741 10.1002/ijc.23885 10.1093/annonc/mdp270 10.1038/onc.2011.267 10.1126/science.272.5260.408 10.1038/sj.bjc.6605726 10.1002/bies.201600070 10.1016/j.bcp.2007.03.009 10.1093/annonc/mdn703 10.1111/j.1582-4934.2011.01296.x 10.4061/2010/201367 10.1158/2326-6066.Cir-15-0077-t 10.1002/med.20056 10.1038/sj.bjc.6605293 10.1124/mi.7.4.8 10.1111/j.1600-0609.2009.01384.x 10.1002/cncr.25584 10.1073/pnas.0503221102 10.1593/neo.08474 10.1016/s1470-2045(08)70004-4 10.3324/haematol.2009.015495 10.1038/85798 10.1007/s13148-010-0012-4 10.1158/1535-7163.MCT-07-2140 10.1016/j.canlet.2008.06.005 10.1002/jcb.20045 10.1200/JCO.2006.08.6165 10.1158/1078-0432.CCR-08-0122 10.2217/fon-2016-0086 10.1080/10428190701817258 10.1111/j.1365-2141.2010.08342.x 10.4161/cbt.6.2.3578 10.1371/journal.pone.0074253 10.1158/1078-0432.CCR-08-1930 10.1158/1078-0432.CCR-15-0887 10.1002/ijc.28924 10.1056/NEJMoa1706450 10.1093/carcin/bgp220 10.1038/sj.onc.1207515 10.1002/jcp.25053 10.3892/ol.2017.5585 10.3389/fonc.2014.00086 10.1073/pnas.0830918100 10.1158/1535-7163.MCT-08-0985 10.1158/0008-5472.CAN-07-6091 10.1073/pnas.1008522107 10.1073/pnas.1410626111 10.1186/2045-3701-4-45 10.4161/15592294.2014.983367 10.1038/onc.2011.384 10.4155/fmc.12.3 10.1158/1078-0432.CCR-08-0469 10.3390/molecules20033898 10.1146/annurev.biochem.73.011303.073651 10.1146/annurev.immunol.15.1.177 10.1080/23723556.2015.1053594 10.1097/CCO.0b013e3283127095 10.1093/nar/gkh703 10.2217/fon.09.36 10.1586/ecp.09.44 10.2217/epi.15.118 10.1158/1535-7163.MCT-11-0433 10.1016/j.ctrv.2007.08.001 10.2217/fon.11.2 10.1177/2040620715592567 10.1002/1097-0142(20011101)92:9<2247::AID-CNCR1570>3.0.CO;2-Y 10.1016/S0891-5849(00)00313-0 10.1186/1476-4598-7-70 10.1158/1078-0432.CCR-05-2689 10.1016/j.juro.2010.10.034 10.1101/cshperspect.a026831 10.1158/0008-5472.CAN-06-0080 10.1016/j.cell.2015.03.030 10.1016/0305-7372(85)90015-5 10.1007/s00280-010-1289-x 10.1158/1078-0432.Ccr-17-1178 10.1002/pros.21187 10.1158/1078-0432.CCR-05-1073 10.1158/0008-5472.can-04-2478 10.1038/38664 10.1200/JCO.2003.10.038 10.1016/j.lungcan.2011.02.019 10.1074/jbc.274.44.31127 10.1200/JCO.2005.07.450 10.1146/annurev.biochem.67.1.425 10.1158/1535-7163.MCT-06-0144 10.1177/1756287215597637 10.1016/j.drup.2014.12.001 10.2174/156720105774370294 10.1158/1055-9965.EPI-06-1069 10.1016/j.molcel.2012.08.003 10.1021/mp200329f 10.1158/1078-0432.CCR-07-0162 10.1158/1078-0432.Ccr-07-2114 10.4161/cc.3.6.927 10.1158/1078-0432.Ccr-08-0684 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Suraweera, O’Byrne and Richard. 2018 Suraweera, O’Byrne and Richard |
Copyright_xml | – notice: Copyright © 2018 Suraweera, O’Byrne and Richard. 2018 Suraweera, O’Byrne and Richard |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fonc.2018.00092 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2234-943X |
ExternalDocumentID | oai_doaj_org_article_1898e8ba1a3e48a3bbc927c603082b4e PMC5884928 29651407 10_3389_fonc_2018_00092 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Health and Medical Research Council grantid: 1066550 – fundername: Cancer Council Queensland – fundername: Australian Research Council grantid: DP 120103099 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-7ced7157187539c7bbc749902e353e6618751ef0b068cc1c9619c78ff126c32c3 |
IEDL.DBID | M48 |
ISSN | 2234-943X |
IngestDate | Wed Aug 27 01:30:36 EDT 2025 Thu Aug 21 14:01:13 EDT 2025 Thu Sep 04 16:42:50 EDT 2025 Wed Feb 19 02:43:27 EST 2025 Thu Apr 24 22:52:33 EDT 2025 Tue Jul 01 03:12:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | combination therapy histone deacetylases cancer chemotherapeutic drugs histone deacetylase inhibitors |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-7ced7157187539c7bbc749902e353e6618751ef0b068cc1c9619c78ff126c32c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: K. B. Harikumar, Rajiv Gandhi Centre for Biotechnology, India; Lucia Altucci, Università degli Studi della Campania “Luigi Vanvitelli” Caserta, Italy; James W. Hodge, National Institutes of Health (NIH), United States Specialty section: This article was submitted to Cancer Molecular Targets and Therapeutics, a section of the journal Frontiers in Oncology Edited by: Suzie Chen, Rutgers, The State University of New Jersey, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fonc.2018.00092 |
PMID | 29651407 |
PQID | 2025312870 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1898e8ba1a3e48a3bbc927c603082b4e pubmedcentral_primary_oai_pubmedcentral_nih_gov_5884928 proquest_miscellaneous_2025312870 pubmed_primary_29651407 crossref_citationtrail_10_3389_fonc_2018_00092 crossref_primary_10_3389_fonc_2018_00092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-29 |
PublicationDateYYYYMMDD | 2018-03-29 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in oncology |
PublicationTitleAlternate | Front Oncol |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Luu (B109) 2008; 14 Mithraprabhu (B24) 2014; 9 Lavin (B47) 1997; 15 Zhang (B122) 2008; 14 Sawas (B29) 2015; 6 Khanna (B40) 2001; 27 Richardson (B92) 2008; 49 Weichert (B21) 2008; 10 Shah (B143) 2006; 12 Wagner (B150) 2010; 1 Langer (B11) 2016; 17 Field-Smith (B91) 2006; 2 Marks (B13) 2001; 1 Ropero (B14) 2007; 1 Khanna (B42) 2001; 8 Ramalingam (B82) 2007; 13 Derissen (B125) 2013; 18 Chung (B33) 2001; 21 Thurn (B46) 2013; 12 Munster (B72) 2009; 101 Niewerth (B104) 2015; 18 Pili (B142) 2017; 23 Baxter (B2) 2014; 4 Fantin (B148) 2008; 68 Nolan (B37) 2008; 99 Munster (B70) 2007; 25 Shen (B134) 2016; 8 Oehme (B23) 2009; 15 Mazzone (B133) 2017; 9 LeBlanc (B89) 2002; 62 Saleh-Gohari (B41) 2004; 32 Harrap (B80) 1985; 12 Yoon (B78) 2011; 185 Lurje (B120) 2009; 77 Moore (B30) 2016; 41 Gryder (B145) 2012; 4 Jekimovs (B149) 2014; 4 Blander (B18) 2004; 73 Lee (B43) 2010; 107 Fukuoka (B123) 2003; 21 Bradley (B112) 2009; 115 Li (B20) 2016; 6 Shabason (B58) 2011; 15 Grunstein (B12) 1997; 389 Chen (B55) 2007; 67 Tomita (B140) 2016; 5 Niesvizky (B93) 2011; 117 Lopez (B65) 2009; 15 Eot-Houllier (B48) 2009; 274 Thurn (B57) 2011; 7 Xiao (B62) 2013; 8 Marrocco (B115) 2007; 6 Kaushik (B116) 2015; 7 Pei (B95) 2004; 10 Booth (B135) 2017; 8 Ocio (B97) 2010; 95 Witta (B124) 2009; 20 Pommier (B31) 2004; 23 Lassen (B81) 2010; 103 Lindemann (B38) 2004; 3 Huang (B102) 2017; 13 Woods (B136) 2015; 3 Suraweera (B86) 2012; 48 Hideshima (B99) 2011; 10 Karagiannis (B56) 2006; 25 Shen (B77) 2007; 73 Mottamal (B1) 2015; 20 Diyabalanage (B25) 2013; 329 Rodgers (B39) 2016; 231 Kim (B49) 1999; 274 Bolden (B19) 2006; 5 Minamiya (B85) 2011; 74 Kortuem (B103) 2013; 121 Robson (B53) 2017; 377 Terenzi (B74) 2016; 165 Pfeiffer (B114) 2010; 70 Prestayko (B73) 1979; 6 Marchion (B50) 2009; 8 Valentini (B79) 2014; 6 Molife (B111) 2010; 21 Rudek (B129) 2005; 23 Goldberg (B90) 2007; 35 Hershko (B87) 1998; 67 Xu (B15) 2007; 26 Catley (B98) 2006; 108 Marchion (B64) 2005; 11 Decatris (B6) 2016; 12 Chen (B63) 2013; 82 Lee (B83) 2008; 20 Garcia-Manero (B128) 2006; 108 Gore (B130) 2006; 66 Munster (B71) 2009; 15 Basu (B76) 2010; 2010 Bjorkman (B113) 2008; 123 Fu (B121) 2005; 280 Grant (B28) 2010; 10 Munster (B67) 2011; 104 Galluzzi (B75) 2012; 31 Lin (B54) 2006; 26 Buglio (B101) 2010; 151 Yang (B127) 2005; 29 Groselj (B17) 2013; 108 Das (B66) 2007; 85 Krishnan (B4) 2007; 16 Eckschlager (B26) 2017; 18 Kurkjian (B126) 2008; 32 Rathkopf (B110) 2010; 66 Ramsay (B10) 2005; 2 Kim (B52) 2015; 21 Takeuchi (B118) 2011; 34 Ismael (B5) 2008; 34 Arora (B119) 2005; 315 Mayer (B8) 2007; 7 Mann (B27) 2007; 12 Marchion (B68) 2004; 92 Marrocco-Tallarigo (B117) 2009; 2 Romano (B131) 2015; 3 Bonneterre (B105) 2001; 92 Finley (B88) 2009; 78 Orillion (B139) 2017; 23 Robey (B34) 2011; 8 Cao (B137) 2015; 34 Dejligbjerg (B146) 2008; 7 Venturelli (B61) 2007; 109 Chou (B9) 2010; 70 Weichert (B22) 2008; 9 Sharma (B132) 2015; 161 Hideshima (B94) 2005; 102 Lane (B144) 2009; 27 Powis (B32) 2000; 29 Prince (B60) 2009; 5 Gameiro (B141) 2016; 7 Halsall (B36) 2016; 38 Kim (B138) 2014; 111 Taunton (B16) 1996; 272 Marchion (B69) 2005; 65 Campbell (B96) 2010; 84 Hui (B100) 2014; 135 Roberts (B7) 2017; 13 Spiegel (B44) 2012; 31 Weichert (B108) 2008; 98 Sistigu (B51) 2016; 3 Fantin (B35) 2007; 13 Ramalingam (B84) 2010; 28 Sharma (B3) 2010; 31 Noguchi (B59) 2009; 56 Gregory (B106) 1998; 58 Miyanaga (B147) 2008; 7 Zhang (B107) 2005; 94 Rothkamm (B45) 2003; 100 |
References_xml | – volume: 18 start-page: 1414 year: 2017 ident: B26 article-title: Histone deacetylase inhibitors as anticancer drugs publication-title: Int J Mol Sci doi: 10.3390/ijms18071414 – volume: 108 start-page: 748 year: 2013 ident: B17 article-title: Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair publication-title: Br J Cancer doi: 10.1038/bjc.2013.21 – volume: 329 start-page: 1 year: 2013 ident: B25 article-title: Combination therapy: histone deacetylase inhibitors and platinum-based chemotherapeutics for cancer publication-title: Cancer Lett doi: 10.1016/j.canlet.2012.09.018 – volume: 108 start-page: 3271 year: 2006 ident: B128 article-title: Phase 1/2 study of the combination of 5-aza-2’-deoxycytidine with valproic acid in patients with leukemia publication-title: Blood doi: 10.1182/blood-2006-03-009142 – volume: 315 start-page: 971 year: 2005 ident: B119 article-title: Role of tyrosine kinase inhibitors in cancer therapy publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.105.084145 – volume: 10 start-page: 3839 year: 2004 ident: B95 article-title: Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors publication-title: Clin Cancer Res doi: 10.1158/1078-0432.ccr-03-0561 – volume: 8 start-page: 83155 year: 2017 ident: B135 article-title: HDAC inhibitors enhance the immunotherapy response of melanoma cells publication-title: Oncotarget doi: 10.18632/oncotarget.17950 – volume: 17 start-page: 1497 year: 2016 ident: B11 article-title: Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study publication-title: Lancet Oncol doi: 10.1016/s1470-2045(16)30498-3 – volume: 108 start-page: 3441 year: 2006 ident: B98 article-title: Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells publication-title: Blood doi: 10.1182/blood-2006-04-016055 – volume: 121 start-page: 893 year: 2013 ident: B103 article-title: Carfilzomib publication-title: Blood doi: 10.1182/blood-2012-10-459883 – volume: 70 start-page: 440 year: 2010 ident: B9 article-title: Drug combination studies and their synergy quantification using the Chou-Talalay method publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-1947 – volume: 82 start-page: 139 year: 2013 ident: B63 article-title: New mechanistic and functional insights into DNA topoisomerases publication-title: Annu Rev Biochem doi: 10.1146/annurev-biochem-061809-100002 – volume: 15 start-page: 3472 year: 2009 ident: B65 article-title: Combining PCI-24781, a novel histone deacetylase inhibitor, with chemotherapy for the treatment of soft tissue sarcoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-2714 – volume: 28 start-page: 56 year: 2010 ident: B84 article-title: Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2009.24.9094 – volume: 85 start-page: 159 year: 2007 ident: B66 article-title: Valproic acid induces p21 and topoisomerase-II (alpha/beta) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines publication-title: J Neurooncol doi: 10.1007/s11060-007-9402-7 – volume: 98 start-page: 604 year: 2008 ident: B108 article-title: Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy publication-title: Br J Cancer doi: 10.1038/sj.bjc.6604199 – volume: 12 start-page: 1247 year: 2007 ident: B27 article-title: FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma publication-title: Oncologist doi: 10.1634/theoncologist.12-10-1247 – volume: 10 start-page: 997 year: 2010 ident: B28 article-title: Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors publication-title: Expert Rev Anticancer Ther doi: 10.1586/era.10.88 – volume: 6 start-page: 17 year: 1979 ident: B73 article-title: Cisplatin (cis-diamminedichloroplatinum II) publication-title: Cancer Treat Rev doi: 10.1016/S0305-7372(79)80057-2 – volume: 27 start-page: 5459 year: 2009 ident: B144 article-title: Histone deacetylase inhibitors in cancer therapy publication-title: J Clin Oncol doi: 10.1200/JCO.2009.22.1291 – volume: 8 start-page: 1052 year: 2001 ident: B42 article-title: ATM, a central controller of cellular responses to DNA damage publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4400874 – volume: 99 start-page: 689 year: 2008 ident: B37 article-title: Will histone deacetylase inhibitors require combination with other agents to fulfil their therapeutic potential? publication-title: Br J Cancer doi: 10.1038/sj.bjc.6604557 – volume: 5 start-page: e1219008 year: 2016 ident: B140 article-title: The interplay of epigenetic therapy and immunity in locally recurrent or metastatic estrogen receptor-positive breast cancer: correlative analysis of ENCORE 301, a randomized, placebo-controlled phase II trial of exemestane with or without entinostat publication-title: Oncoimmunology doi: 10.1080/2162402X.2016.1219008 – volume: 13 start-page: 277 year: 2017 ident: B7 article-title: Immune checkpoint inhibitors: navigating a new paradigm of treatment toxicities publication-title: Asia Pac J Clin Oncol doi: 10.1111/ajco.12698 – volume: 78 start-page: 477 year: 2009 ident: B88 article-title: Recognition and processing of ubiquitin-protein conjugates by the proteasome publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.78.081507.101607 – volume: 115 start-page: 5541 year: 2009 ident: B112 article-title: Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute trial 6862): trial results and interleukin-6 analysis: a study by the department of defense prostate cancer clinical trial consortium and University of Chicago phase 2 consortium publication-title: Cancer doi: 10.1002/cncr.24597 – volume: 5 start-page: 769 year: 2006 ident: B19 article-title: Anticancer activities of histone deacetylase inhibitors publication-title: Nat Rev Drug Discov doi: 10.1038/nrd2133 – volume: 34 start-page: 5960 year: 2015 ident: B137 article-title: Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity publication-title: Oncogene doi: 10.1038/onc.2015.46 – volume: 3 start-page: 15 year: 2015 ident: B131 article-title: The therapeutic promise of disrupting the PD-1/PD-L1 immune checkpoint in cancer: unleashing the CD8 T cell mediated anti-tumor activity results in significant, unprecedented clinical efficacy in various solid tumors publication-title: J Immunother Cancer doi: 10.1186/s40425-015-0059-z – volume: 7 start-page: 7390 year: 2016 ident: B141 article-title: Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells publication-title: Oncotarget doi: 10.18632/oncotarget.7180 – volume: 25 start-page: 3885 year: 2006 ident: B56 article-title: Modulation of cellular radiation responses by histone deacetylase inhibitors publication-title: Oncogene doi: 10.1038/sj.onc.1209417 – volume: 1 start-page: 194 year: 2001 ident: B13 article-title: Histone deacetylases and cancer: causes and therapies publication-title: Nat Rev Cancer doi: 10.1038/35106079 – volume: 9 start-page: 59 year: 2017 ident: B133 article-title: Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy publication-title: Clin Epigenetics doi: 10.1186/s13148-017-0358-y – volume: 32 start-page: 187 year: 2008 ident: B126 article-title: DNA methylation: its role in cancer development and therapy publication-title: Curr Probl Cancer doi: 10.1016/j.currproblcancer.2008.08.002 – volume: 104 start-page: 1828 year: 2011 ident: B67 article-title: A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer publication-title: Br J Cancer doi: 10.1038/bjc.2011.156 – volume: 165 start-page: 71 year: 2016 ident: B74 article-title: Anticancer metal drugs and immunogenic cell death publication-title: J Inorg Biochem doi: 10.1016/j.jinorgbio.2016.06.021 – volume: 2 start-page: 271 year: 2006 ident: B91 article-title: Bortezomib (velcadetrade mark) in the treatment of multiple myeloma publication-title: Ther Clin Risk Manag doi: 10.2147/tcrm.2006.2.3.271 – volume: 77 start-page: 400 year: 2009 ident: B120 article-title: EGFR signaling and drug discovery publication-title: Oncology doi: 10.1159/000279388 – volume: 34 start-page: 1774 year: 2011 ident: B118 article-title: Receptor tyrosine kinases and targeted cancer therapeutics publication-title: Biol Pharm Bull doi: 10.1248/bpb.34.1774 – volume: 67 start-page: 5318 year: 2007 ident: B55 article-title: Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-3996 – volume: 18 start-page: 619 year: 2013 ident: B125 article-title: Concise drug review: azacitidine and decitabine publication-title: Oncologist doi: 10.1634/theoncologist.2012-0465 – volume: 12 start-page: 2078 year: 2013 ident: B46 article-title: Histone deacetylase regulation of ATM-mediated DNA damage signaling publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-12-1242 – volume: 35 start-page: 12 year: 2007 ident: B90 article-title: Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy publication-title: Biochem Soc Trans doi: 10.1042/bst0350012 – volume: 1 start-page: 19 year: 2007 ident: B14 article-title: The role of histone deacetylases (HDACs) in human cancer publication-title: Mol Oncol doi: 10.1016/j.molonc.2007.01.001 – volume: 109 start-page: 2132 year: 2007 ident: B61 article-title: Epigenetic combination therapy as a tumor-selective treatment approach for hepatocellular carcinoma publication-title: Cancer doi: 10.1002/cncr.22652 – volume: 56 start-page: 245 year: 2009 ident: B59 article-title: Successful treatment of anaplastic thyroid carcinoma with a combination of oral valproic acid, chemotherapy, radiation and surgery publication-title: Endocr J doi: 10.1507/endocrj.K08E-016 – volume: 26 start-page: 5541 year: 2007 ident: B15 article-title: Histone deacetylase inhibitors: molecular mechanisms of action publication-title: Oncogene doi: 10.1038/sj.onc.1210620 – volume: 280 start-page: 16934 year: 2005 ident: B121 article-title: Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment publication-title: J Biol Chem doi: 10.1074/jbc.M500403200 – volume: 94 start-page: 11 year: 2005 ident: B107 article-title: Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast* publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-005-6001-1 – volume: 29 start-page: 739 year: 2005 ident: B127 article-title: Antileukemia activity of the combination of 5-aza-2’-deoxycytidine with valproic acid publication-title: Leuk Res doi: 10.1016/j.leukres.2004.11.022 – volume: 23 start-page: 5187 year: 2017 ident: B139 article-title: Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.Ccr-17-0741 – volume: 123 start-page: 2774 year: 2008 ident: B113 article-title: Defining the molecular action of HDAC inhibitors and synergism with androgen deprivation in ERG-positive prostate cancer publication-title: Int J Cancer doi: 10.1002/ijc.23885 – volume: 21 start-page: 109 year: 2010 ident: B111 article-title: Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC) publication-title: Ann Oncol doi: 10.1093/annonc/mdp270 – volume: 31 start-page: 537 year: 2012 ident: B44 article-title: Endogenous modulators and pharmacological inhibitors of histone deacetylases in cancer therapy publication-title: Oncogene doi: 10.1038/onc.2011.267 – volume: 272 start-page: 408 year: 1996 ident: B16 article-title: A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p publication-title: Science doi: 10.1126/science.272.5260.408 – volume: 103 start-page: 12 year: 2010 ident: B81 article-title: A phase I study of the safety and pharmacokinetics of the histone deacetylase inhibitor belinostat administered in combination with carboplatin and/or paclitaxel in patients with solid tumours publication-title: Br J Cancer doi: 10.1038/sj.bjc.6605726 – volume: 38 start-page: 1102 year: 2016 ident: B36 article-title: Histone deacetylase inhibitors for cancer therapy: an evolutionarily ancient resistance response may explain their limited success publication-title: Bioessays doi: 10.1002/bies.201600070 – volume: 73 start-page: 1901 year: 2007 ident: B77 article-title: Enhancement of cisplatin induced apoptosis by suberoylanilide hydroxamic acid in human oral squamous cell carcinoma cell lines publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2007.03.009 – volume: 20 start-page: 689 year: 2009 ident: B124 article-title: ErbB-3 expression is associated with E-cadherin and their coexpression restores response to gefitinib in non-small-cell lung cancer (NSCLC) publication-title: Ann Oncol doi: 10.1093/annonc/mdn703 – volume: 15 start-page: 2735 year: 2011 ident: B58 article-title: Grand rounds at the National Institutes of Health: HDAC inhibitors as radiation modifiers, from bench to clinic publication-title: J Cell Mol Med doi: 10.1111/j.1582-4934.2011.01296.x – volume: 2010 start-page: 201367 year: 2010 ident: B76 article-title: Cellular responses to cisplatin-induced DNA damage publication-title: J Nucleic Acids doi: 10.4061/2010/201367 – volume: 3 start-page: 1375 year: 2015 ident: B136 article-title: HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.Cir-15-0077-t – volume: 26 start-page: 397 year: 2006 ident: B54 article-title: Targeting histone deacetylase in cancer therapy publication-title: Med Res Rev doi: 10.1002/med.20056 – volume: 101 start-page: 1044 year: 2009 ident: B72 article-title: Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker publication-title: Br J Cancer doi: 10.1038/sj.bjc.6605293 – volume: 7 start-page: 216 year: 2007 ident: B8 article-title: Optimizing combination chemotherapy by controlling drug ratios publication-title: Mol Interv doi: 10.1124/mi.7.4.8 – volume: 84 start-page: 201 year: 2010 ident: B96 article-title: Vorinostat enhances the antimyeloma effects of melphalan and bortezomib publication-title: Eur J Haematol doi: 10.1111/j.1600-0609.2009.01384.x – volume: 117 start-page: 336 year: 2011 ident: B93 article-title: Phase 2 trial of the histone deacetylase inhibitor romidepsin for the treatment of refractory multiple myeloma publication-title: Cancer doi: 10.1002/cncr.25584 – volume: 102 start-page: 8567 year: 2005 ident: B94 article-title: Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0503221102 – volume: 10 start-page: 1021 year: 2008 ident: B21 article-title: Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas publication-title: Neoplasia doi: 10.1593/neo.08474 – volume: 9 start-page: 139 year: 2008 ident: B22 article-title: Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis publication-title: Lancet Oncol doi: 10.1016/s1470-2045(08)70004-4 – volume: 95 start-page: 794 year: 2010 ident: B97 article-title: In vitro and in vivo rationale for the triple combination of panobinostat (LBH589) and dexamethasone with either bortezomib or lenalidomide in multiple myeloma publication-title: Haematologica doi: 10.3324/haematol.2009.015495 – volume: 27 start-page: 247 year: 2001 ident: B40 article-title: DNA double-strand breaks: signaling, repair and the cancer connection publication-title: Nat Genet doi: 10.1038/85798 – volume: 1 start-page: 117 year: 2010 ident: B150 article-title: Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy publication-title: Clin Epigenetics doi: 10.1007/s13148-010-0012-4 – volume: 7 start-page: 1923 year: 2008 ident: B147 article-title: Antitumor activity of histone deacetylase inhibitors in non-small cell lung cancer cells: development of a molecular predictive model publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-07-2140 – volume: 274 start-page: 169 year: 2009 ident: B48 article-title: Histone deacetylase inhibitors and genomic instability publication-title: Cancer Lett doi: 10.1016/j.canlet.2008.06.005 – volume: 58 start-page: 5718 year: 1998 ident: B106 article-title: Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes publication-title: Cancer Res – volume: 92 start-page: 223 year: 2004 ident: B68 article-title: Sequence-specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid publication-title: J Cell Biochem doi: 10.1002/jcb.20045 – volume: 25 start-page: 1979 year: 2007 ident: B70 article-title: Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study publication-title: J Clin Oncol doi: 10.1200/JCO.2006.08.6165 – volume: 14 start-page: 7138 year: 2008 ident: B109 article-title: A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-0122 – volume: 12 start-page: 1805 year: 2016 ident: B6 article-title: Immune checkpoint inhibitors as first-line and salvage therapy for advanced non-small-cell lung cancer publication-title: Future Oncol doi: 10.2217/fon-2016-0086 – volume: 49 start-page: 502 year: 2008 ident: B92 article-title: Phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma publication-title: Leuk Lymphoma doi: 10.1080/10428190701817258 – volume: 151 start-page: 387 year: 2010 ident: B101 article-title: The class-I HDAC inhibitor MGCD0103 induces apoptosis in Hodgkin lymphoma cell lines and synergizes with proteasome inhibitors by an HDAC6-independent mechanism publication-title: Br J Haematol doi: 10.1111/j.1365-2141.2010.08342.x – volume: 6 start-page: 185 year: 2014 ident: B79 article-title: Valproic acid induces apoptosis, p16INK4Aupregulation and sensitization to chemotherapy in human melanoma cells publication-title: Cancer Biol Ther doi: 10.4161/cbt.6.2.3578 – volume: 8 start-page: e74253 year: 2013 ident: B62 article-title: Combination therapy with the histone deacetylase inhibitor LBH589 and radiation is an effective regimen for prostate cancer cells publication-title: PLoS One doi: 10.1371/journal.pone.0074253 – volume: 15 start-page: 2488 year: 2009 ident: B71 article-title: Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-1930 – volume: 21 start-page: 4257 year: 2015 ident: B52 article-title: FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-15-0887 – volume: 135 start-page: 2950 year: 2014 ident: B100 article-title: Combination of proteasome and class I HDAC inhibitors induces apoptosis of NPC cells through an HDAC6-independent ER stress-induced mechanism publication-title: Int J Cancer doi: 10.1002/ijc.28924 – volume: 377 start-page: 523 year: 2017 ident: B53 article-title: Olaparib for metastatic breast cancer in patients with a germline BRCA mutation publication-title: N Engl J Med doi: 10.1056/NEJMoa1706450 – volume: 31 start-page: 27 year: 2010 ident: B3 article-title: Epigenetics in cancer publication-title: Carcinogenesis doi: 10.1093/carcin/bgp220 – volume: 23 start-page: 2934 year: 2004 ident: B31 article-title: Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks publication-title: Oncogene doi: 10.1038/sj.onc.1207515 – volume: 231 start-page: 15 year: 2016 ident: B39 article-title: Error-prone repair of DNA double-strand breaks publication-title: J Cell Physiol doi: 10.1002/jcp.25053 – volume: 13 start-page: 1058 year: 2017 ident: B102 article-title: Proteasome inhibitors in glioblastoma publication-title: Oncol Lett doi: 10.3892/ol.2017.5585 – volume: 4 start-page: 86 year: 2014 ident: B149 article-title: Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: the good, the bad, and the promising publication-title: Front Oncol doi: 10.3389/fonc.2014.00086 – volume: 100 start-page: 5057 year: 2003 ident: B45 article-title: Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0830918100 – volume: 8 start-page: 794 year: 2009 ident: B50 article-title: HDAC2 regulates chromatin plasticity and enhances DNA vulnerability publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-08-0985 – volume: 68 start-page: 3785 year: 2008 ident: B148 article-title: Constitutive activation of signal transducers and activators of transcription predicts vorinostat resistance in cutaneous T-cell lymphoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-6091 – volume: 107 start-page: 14639 year: 2010 ident: B43 article-title: Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1008522107 – volume: 111 start-page: 11774 year: 2014 ident: B138 article-title: Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1410626111 – volume: 4 start-page: 45 year: 2014 ident: B2 article-title: Epigenetic regulation in cancer progression publication-title: Cell Biosci doi: 10.1186/2045-3701-4-45 – volume: 9 start-page: 1511 year: 2014 ident: B24 article-title: Dysregulated class I histone deacetylases are indicators of poor prognosis in multiple myeloma publication-title: Epigenetics doi: 10.4161/15592294.2014.983367 – volume: 31 start-page: 1869 year: 2012 ident: B75 article-title: Molecular mechanisms of cisplatin resistance publication-title: Oncogene doi: 10.1038/onc.2011.384 – volume: 4 start-page: 505 year: 2012 ident: B145 article-title: Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed publication-title: Future Med Chem doi: 10.4155/fmc.12.3 – volume: 14 start-page: 5385 year: 2008 ident: B122 article-title: Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-0469 – volume: 20 start-page: 3898 year: 2015 ident: B1 article-title: Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents publication-title: Molecules doi: 10.3390/molecules20033898 – volume: 62 start-page: 4996 year: 2002 ident: B89 article-title: Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model publication-title: Cancer Res – volume: 73 start-page: 417 year: 2004 ident: B18 article-title: The Sir2 family of protein deacetylases publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.73.011303.073651 – volume: 15 start-page: 177 year: 1997 ident: B47 article-title: The genetic defect in ataxia-telangiectasia publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.15.1.177 – volume: 3 start-page: e1053594 year: 2016 ident: B51 article-title: Trial watch – inhibiting PARP enzymes for anticancer therapy publication-title: Mol Cell Oncol doi: 10.1080/23723556.2015.1053594 – volume: 20 start-page: 639 year: 2008 ident: B83 article-title: Histone deacetylase inhibitors in cancer therapy publication-title: Curr Opin Oncol doi: 10.1097/CCO.0b013e3283127095 – volume: 32 start-page: 3683 year: 2004 ident: B41 article-title: Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh703 – volume: 5 start-page: 601 year: 2009 ident: B60 article-title: Panobinostat (LBH589): a potent pan-deacetylase inhibitor with promising activity against hematologic and solid tumors publication-title: Future Oncol doi: 10.2217/fon.09.36 – volume: 2 start-page: 619 year: 2009 ident: B117 article-title: Finding the place of histone deacetylase inhibitors in prostate cancer therapy publication-title: Expert Rev Clin Pharmacol doi: 10.1586/ecp.09.44 – volume: 8 start-page: 415 year: 2016 ident: B134 article-title: Histone deacetylase inhibitors as immunomodulators in cancer therapeutics publication-title: Epigenomics doi: 10.2217/epi.15.118 – volume: 10 start-page: 2034 year: 2011 ident: B99 article-title: Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-11-0433 – volume: 34 start-page: 81 year: 2008 ident: B5 article-title: Novel cytotoxic drugs: old challenges, new solutions publication-title: Cancer Treat Rev doi: 10.1016/j.ctrv.2007.08.001 – volume: 7 start-page: 263 year: 2011 ident: B57 article-title: Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer publication-title: Future Oncol doi: 10.2217/fon.11.2 – volume: 21 start-page: 1129 year: 2001 ident: B33 article-title: Increased expression of peroxiredoxin II confers resistance to cisplatin publication-title: Anticancer Res – volume: 6 start-page: 202 year: 2015 ident: B29 article-title: Belinostat in patients with refractory or relapsed peripheral T-cell lymphoma: a perspective review publication-title: Ther Adv Hematol doi: 10.1177/2040620715592567 – volume: 92 start-page: 2247 year: 2001 ident: B105 article-title: Anastrozole is superior to tamoxifen as first-line therapy in hormone receptor positive advanced breast carcinoma publication-title: Cancer doi: 10.1002/1097-0142(20011101)92:9<2247::AID-CNCR1570>3.0.CO;2-Y – volume: 29 start-page: 312 year: 2000 ident: B32 article-title: The role of the redox protein thioredoxin in cell growth and cancer publication-title: Free Radic Biol Med doi: 10.1016/S0891-5849(00)00313-0 – volume: 7 start-page: 70 year: 2008 ident: B146 article-title: Differential effects of class I isoform histone deacetylase depletion and enzymatic inhibition by belinostat or valproic acid in HeLa cells publication-title: Mol Cancer doi: 10.1186/1476-4598-7-70 – volume: 12 start-page: 3997 year: 2006 ident: B143 article-title: Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-05-2689 – volume: 185 start-page: 1102 year: 2011 ident: B78 article-title: The histone deacetylase inhibitor trichostatin A synergistically resensitizes a cisplatin resistant human bladder cancer cell line publication-title: J Urol doi: 10.1016/j.juro.2010.10.034 – volume: 6 start-page: a026831 year: 2016 ident: B20 article-title: HDACs and HDAC inhibitors in cancer development and therapy publication-title: Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a026831 – volume: 66 start-page: 6361 year: 2006 ident: B130 article-title: Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-0080 – volume: 161 start-page: 205 year: 2015 ident: B132 article-title: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential publication-title: Cell doi: 10.1016/j.cell.2015.03.030 – volume: 12 start-page: 21 year: 1985 ident: B80 article-title: Preclinical studies identifying carboplatin as a viable cisplatin alternative publication-title: Cancer Treat Rev doi: 10.1016/0305-7372(85)90015-5 – volume: 66 start-page: 181 year: 2010 ident: B110 article-title: A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-010-1289-x – volume: 23 start-page: 7199 year: 2017 ident: B142 article-title: Immunomodulation by entinostat in renal cell carcinoma patients receiving high-dose interleukin 2: a multicenter, single-arm, phase I/II trial (NCI-CTEP#7870) publication-title: Clin Cancer Res doi: 10.1158/1078-0432.Ccr-17-1178 – volume: 70 start-page: 1524 year: 2010 ident: B114 article-title: An in vitro model for preclinical testing of endocrine therapy combinations for prostate cancer publication-title: Prostate doi: 10.1002/pros.21187 – volume: 11 start-page: 8467 year: 2005 ident: B64 article-title: Synergistic interaction between histone deacetylase and topoisomerase II inhibitors is mediated through topoisomerase IIbeta publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-05-1073 – volume: 65 start-page: 3815 year: 2005 ident: B69 article-title: Valproic acid alters chromatin structure by regulation of chromatin modulation proteins publication-title: Cancer Res doi: 10.1158/0008-5472.can-04-2478 – volume: 389 start-page: 349 year: 1997 ident: B12 article-title: Histone acetylation in chromatin structure and transcription publication-title: Nature doi: 10.1038/38664 – volume: 21 start-page: 2237 year: 2003 ident: B123 article-title: Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (the IDEAL 1 trial) [corrected] publication-title: J Clin Oncol doi: 10.1200/JCO.2003.10.038 – volume: 74 start-page: 300 year: 2011 ident: B85 article-title: Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung publication-title: Lung Cancer doi: 10.1016/j.lungcan.2011.02.019 – volume: 274 start-page: 31127 year: 1999 ident: B49 article-title: Sensing of ionizing radiation-induced DNA damage by ATM through interaction with histone deacetylase publication-title: J Biol Chem doi: 10.1074/jbc.274.44.31127 – volume: 23 start-page: 3906 year: 2005 ident: B129 article-title: Pharmacokinetics of 5-azacitidine administered with phenylbutyrate in patients with refractory solid tumors or hematologic malignancies publication-title: J Clin Oncol doi: 10.1200/JCO.2005.07.450 – volume: 67 start-page: 425 year: 1998 ident: B87 article-title: The ubiquitin system publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.67.1.425 – volume: 6 start-page: 51 year: 2007 ident: B115 article-title: Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-06-0144 – volume: 7 start-page: 388 year: 2015 ident: B116 article-title: Histone deacetylase inhibitors in castration-resistant prostate cancer: molecular mechanism of action and recent clinical trials publication-title: Ther Adv Urol doi: 10.1177/1756287215597637 – volume: 18 start-page: 18 year: 2015 ident: B104 article-title: Molecular basis of resistance to proteasome inhibitors in hematological malignancies publication-title: Drug Resist Updat doi: 10.1016/j.drup.2014.12.001 – volume: 41 start-page: 296 year: 2016 ident: B30 article-title: Panobinostat (Farydak): a novel option for the treatment of relapsed or relapsed and refractory multiple myeloma publication-title: P T – volume: 2 start-page: 341 year: 2005 ident: B10 article-title: The formulation of lipid-based nanotechnologies for the delivery of fixed dose anticancer drug combinations publication-title: Curr Drug Deliv doi: 10.2174/156720105774370294 – volume: 16 start-page: 377 year: 2007 ident: B4 article-title: Non-Hodgkin lymphoma secondary to cancer chemotherapy publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-06-1069 – volume: 48 start-page: 242 year: 2012 ident: B86 article-title: Failure of amino acid homeostasis causes cell death following proteasome inhibition publication-title: Mol Cell doi: 10.1016/j.molcel.2012.08.003 – volume: 8 start-page: 2021 year: 2011 ident: B34 article-title: Histone deacetylase inhibitors: emerging mechanisms of resistance publication-title: Mol Pharm doi: 10.1021/mp200329f – volume: 13 start-page: 3605 year: 2007 ident: B82 article-title: Phase I and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-0162 – volume: 13 start-page: 7237 year: 2007 ident: B35 article-title: Mechanisms of resistance to histone deacetylase inhibitors and their therapeutic implications publication-title: Clin Cancer Res doi: 10.1158/1078-0432.Ccr-07-2114 – volume: 3 start-page: 777 year: 2004 ident: B38 article-title: Histone-deacetylase inhibitors for the treatment of cancer publication-title: Cell Cycle doi: 10.4161/cc.3.6.927 – volume: 15 start-page: 91 year: 2009 ident: B23 article-title: Histone deacetylase 8 in neuroblastoma tumorigenesis publication-title: Clin Cancer Res doi: 10.1158/1078-0432.Ccr-08-0684 |
SSID | ssj0000650103 |
Score | 2.6217315 |
SecondaryResourceType | review_article |
Snippet | Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 92 |
SubjectTerms | cancer chemotherapeutic drugs combination therapy histone deacetylase inhibitors histone deacetylases Oncology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQB8QFFUpp-JIr9UAPgdhJ7JjbshRtkUAcFsEtir1jbSSUrWg48Cf4zcw42dVu1aqXXh07dmbG9jx78oaxr6pQoEHquFLCxplwMq6EV7HDUu9BJ0bS_843t2p0n10_5o9Lqb4oJqyjB-4EdyYKU0BhK1GlkBVVaq0zUjsVeFZsBrT6JiZZAlPdGpxTAoOOywdRmDnzs4YYCwWFTiZGrmxDga3_Ty7m75GSS1vP1Qe21fuMfNCNdZutQbPDNm76W_GP7A0nNQLcIGM-7mgC-EPdTnkgAWmAX-LCB-0resrAfzTT2taUZIefjC4Hw_obR8eVoyPIx_Oocz7zfEj28HzOB25aAx07hCoEWfs-wjk4v5u1FHCE48M24X277P7q-3g4ivs8C7HLctPG2sFEixx3KcQuxmkUsUYglEhI8xRwA8dyAT6xiSqcE84g6HK68F5I5VLp0k9svcGP-cz4RGtjKYe6TB26OtJamYGX2QRRjUZfNGKnc7GXrichp1wYTyWCEdJTSXoqSU9l0FPEThYNfnb8G3-vekF6XFQj4uxQgOZU9uZU_sucIvZlbgUlTjS6PakamL38wo4krld0Lxyxvc4qFl1Jo9DxTHTE9Iq9rIxl9UlTTwOZN_0obGSx_z8Gf8A2SRwUIifNIVtvn1_gCH2m1h6H6fEOU8wU9Q priority: 102 providerName: Directory of Open Access Journals |
Title | Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29651407 https://www.proquest.com/docview/2025312870 https://pubmed.ncbi.nlm.nih.gov/PMC5884928 https://doaj.org/article/1898e8ba1a3e48a3bbc927c603082b4e |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgSIgXxO9lg8lIPIyHjNpJ7BgJodIxClIRD63oWxS7ZxppSqDLJPZP8Ddz56RlReWFlzw4dpz47nz32c53jL1QuQINUselEjZOhZNxKbyKHZZ6D3pgJP3vPPmsxrP00zyb_0kH1A_gxU5oR_mkZqvzk58_rt6iwb8hxIn-9pVvaiIjFHQqEp99k91Ct6QIiU36WL-bljPKadDR--xqR7zARmEAQallrzmpwOW_KwD9-xzlNcd0do_d7SNKPuxU4D67AfUDdnvS75k_ZL_Q5BH-BgnwaUciwL9W7ZIHipAa-ClOi9BeYRwN_GO9rGxFKXj48fh0OKpecgxrOYaJfLo-k84bz0ekLavXfOiWFdCiRKhCgLbvI6yS8y9NS8eR8P2wTXjeIzY7ez8djeM-C0Ps0sy0sXaw0CJDH4bIxjhtrdMIkwYSkiwBdO9YLsAP7EDlzglnEJI5nXsvpHKJdMljtlfjx-wzvtDaWMqwLhOHgZC0VqbgZbpAzKMxUo3YyXrYC9dTlFOmjPMCoQqJrCCRFSSyIogsYsebBt87do5_V31HctxUI1rtUNCsvhW9lRYiNznkthRlAmleJvitRmqnAqmPTSFiz9daUKAZ0t5KWUNzeYEdSZzNaNc4Yk86rdh0tdaqiOktfdl6l-07dbUMVN_0G7GR-cF_tzxkd2gM6NScNE_ZXru6hGcYRrX2KCw_4PXDXBwFU_kNqyQe4A |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+Therapy+With+Histone+Deacetylase+Inhibitors+%28HDACi%29+for+the+Treatment+of+Cancer%3A+Achieving+the+Full+Therapeutic+Potential+of+HDACi&rft.jtitle=Frontiers+in+oncology&rft.au=Suraweera%2C+Amila&rft.au=O%E2%80%99Byrne%2C+Kenneth+J.&rft.au=Richard%2C+Derek+J.&rft.date=2018-03-29&rft.pub=Frontiers+Media+S.A&rft.eissn=2234-943X&rft.volume=8&rft_id=info:doi/10.3389%2Ffonc.2018.00092&rft_id=info%3Apmid%2F29651407&rft.externalDocID=PMC5884928 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon |