Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi

Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a the...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in oncology Vol. 8; p. 92
Main Authors Suraweera, Amila, O’Byrne, Kenneth J., Richard, Derek J.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 29.03.2018
Subjects
Online AccessGet full text
ISSN2234-943X
2234-943X
DOI10.3389/fonc.2018.00092

Cover

Abstract Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient's response to these agents, in order to limit the off-target toxicity associated with HDACi.
AbstractList Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient's response to these agents, in order to limit the off-target toxicity associated with HDACi.Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient's response to these agents, in order to limit the off-target toxicity associated with HDACi.
Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient’s response to these agents, in order to limit the off-target toxicity associated with HDACi.
Author O’Byrne, Kenneth J.
Suraweera, Amila
Richard, Derek J.
AuthorAffiliation 2 Princess Alexandra Hospital , Brisbane, QLD , Australia
1 School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia
AuthorAffiliation_xml – name: 2 Princess Alexandra Hospital , Brisbane, QLD , Australia
– name: 1 School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia
Author_xml – sequence: 1
  givenname: Amila
  surname: Suraweera
  fullname: Suraweera, Amila
– sequence: 2
  givenname: Kenneth J.
  surname: O’Byrne
  fullname: O’Byrne, Kenneth J.
– sequence: 3
  givenname: Derek J.
  surname: Richard
  fullname: Richard, Derek J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29651407$$D View this record in MEDLINE/PubMed
BookMark eNp1kktrGzEUhYeS0jyadXdFy2RhR495SF0UjJPUhkC7cGl3QiPf8SjMSK4kB_wn-purGTslKXQlIZ3zHYl7zrMT6yxk2QeCp4xxcdM4q6cUEz7FGAv6JjujlOUTkbOfJy_2p9llCI9JgssCE8zeZadUlAXJcXWW_Z67vjZWReMsWrXg1XaPfpjYooUJMeWhW1Aa4r5TAdDStqY20fmArha3s7m5Ro3zKLaAVh5U7MFG5Bo0V1aD_4RmujXwZOxmlNzvuu6YAbtoNPrmYjIY1Q2ekfc-e9uoLsDlcb3Ivt_freaLycPXL8v57GGi80LESaVhXZGiIrwqmNBVXesqFwJTYAWDshzOCTS4xiXXmmhRkqTiTUNoqRnV7CJbHrhrpx7l1pte-b10ysjxwPmNVD49sQNJuODAa0UUg5wrlrIErXSJGea0ziGxPh9Y213dw1qnL3nVvYK-vrGmlRv3JAvOc0F5AlwdAd792kGIsjdBQ9cpC24XJMW0YITyCifpx5dZf0OeB5oExUGgvQvBQyO1ieN0U7TpJMFy6I4cuiOH7sixO8l384_vGf0_xx-3BcdK
CitedBy_id crossref_primary_10_14348_molcells_2023_0013
crossref_primary_10_3390_cancers13246280
crossref_primary_10_3389_fphar_2019_00588
crossref_primary_10_1016_j_ccell_2023_02_004
crossref_primary_10_1021_acs_jmedchem_0c00830
crossref_primary_10_1186_s12885_021_08595_w
crossref_primary_10_1038_s41380_023_02208_7
crossref_primary_10_3390_cancers16193374
crossref_primary_10_3389_fonc_2023_1244035
crossref_primary_10_3390_ijtm4030031
crossref_primary_10_1016_j_jtct_2022_05_021
crossref_primary_10_3389_fgene_2020_578011
crossref_primary_10_3390_pharmaceutics16020292
crossref_primary_10_3390_ijms21228582
crossref_primary_10_1021_acs_jmedchem_4c02373
crossref_primary_10_1016_j_ejmech_2020_112338
crossref_primary_10_1007_s11033_025_10361_1
crossref_primary_10_1016_j_semcancer_2021_03_001
crossref_primary_10_1002_prp2_1135
crossref_primary_10_3389_fcell_2020_00732
crossref_primary_10_3389_fmicb_2023_1284439
crossref_primary_10_3389_fcell_2020_00613
crossref_primary_10_3390_cancers13194763
crossref_primary_10_1007_s10637_021_01187_2
crossref_primary_10_3390_cancers14010175
crossref_primary_10_3390_cells11091403
crossref_primary_10_3390_ijms22073458
crossref_primary_10_4103_pm_pm_70_21
crossref_primary_10_1038_s41467_021_27651_4
crossref_primary_10_15252_emmm_202215705
crossref_primary_10_18632_genesandcancer_197
crossref_primary_10_3390_ijms24054912
crossref_primary_10_3892_ijo_2020_5031
crossref_primary_10_3233_HAB_200424
crossref_primary_10_1021_acs_jmedchem_8b01825
crossref_primary_10_1016_j_phyplu_2024_100694
crossref_primary_10_1016_j_tranon_2021_101312
crossref_primary_10_1016_j_arr_2021_101349
crossref_primary_10_1016_j_bmcl_2021_128286
crossref_primary_10_3389_fcell_2021_624312
crossref_primary_10_1016_j_etap_2019_03_015
crossref_primary_10_1007_s11033_022_07192_9
crossref_primary_10_3389_fimmu_2019_02718
crossref_primary_10_3389_fneur_2021_804113
crossref_primary_10_2174_011574888X305642240327041753
crossref_primary_10_1016_j_ejmech_2023_115367
crossref_primary_10_1016_j_ejmech_2021_113963
crossref_primary_10_2174_0929867327666200203113926
crossref_primary_10_1021_acsomega_0c00559
crossref_primary_10_3389_fonc_2024_1390518
crossref_primary_10_1016_j_ejphar_2019_172745
crossref_primary_10_1016_j_critrevonc_2021_103234
crossref_primary_10_1007_s10555_024_10172_z
crossref_primary_10_1039_D3DT01876H
crossref_primary_10_3390_cancers14153709
crossref_primary_10_3389_fgene_2021_773426
crossref_primary_10_1002_1878_0261_13519
crossref_primary_10_3389_fmolb_2021_685440
crossref_primary_10_1016_j_arr_2024_102267
crossref_primary_10_1042_CS20210449
crossref_primary_10_3389_fcell_2021_718707
crossref_primary_10_1101_cshperspect_a037812
crossref_primary_10_1007_s11427_018_9391_7
crossref_primary_10_3390_cancers11091327
crossref_primary_10_3892_ije_2022_10
crossref_primary_10_1002_hep_31216
crossref_primary_10_2217_epi_2023_0181
crossref_primary_10_3390_cancers13112761
crossref_primary_10_3389_fphar_2024_1381168
crossref_primary_10_3389_fendo_2021_762095
crossref_primary_10_1016_j_bcp_2020_114312
crossref_primary_10_3390_pharmaceutics16010054
crossref_primary_10_3389_fcell_2020_582370
crossref_primary_10_18632_oncotarget_27546
crossref_primary_10_3390_biomedicines10020307
crossref_primary_10_1016_j_biopha_2023_114500
crossref_primary_10_3390_ijms252313157
crossref_primary_10_1016_j_ejmcr_2022_100058
crossref_primary_10_1016_j_biomaterials_2020_120229
crossref_primary_10_1016_j_bmc_2021_116251
crossref_primary_10_1111_bph_14932
crossref_primary_10_1016_j_bioorg_2024_107409
crossref_primary_10_1371_journal_pone_0316343
crossref_primary_10_3390_cancers11101530
crossref_primary_10_1097_MD_0000000000024824
crossref_primary_10_3389_fimmu_2020_629722
crossref_primary_10_1038_s41467_023_39528_9
crossref_primary_10_3390_cells11162518
crossref_primary_10_3390_cancers12061664
crossref_primary_10_3389_fonc_2021_741746
crossref_primary_10_1038_s41467_020_19950_z
crossref_primary_10_3390_cancers12113172
crossref_primary_10_3390_cells9061402
crossref_primary_10_3390_molecules28042000
crossref_primary_10_1016_j_sciaf_2020_e00318
crossref_primary_10_3390_ijms20051110
crossref_primary_10_2217_epi_2023_0045
crossref_primary_10_1038_s41419_020_02968_y
crossref_primary_10_3390_ijms22073378
crossref_primary_10_1007_s10495_019_01543_x
crossref_primary_10_3389_fimmu_2019_00949
crossref_primary_10_3389_fphar_2019_01242
crossref_primary_10_1038_s41380_021_01118_w
crossref_primary_10_1007_s10555_025_10253_7
crossref_primary_10_1038_s41416_020_0839_1
crossref_primary_10_3390_vaccines8040615
crossref_primary_10_14336_AD_2023_0520
crossref_primary_10_2174_0113895575296174240323172754
crossref_primary_10_1039_D4RA05014B
crossref_primary_10_1080_17460441_2024_2387122
crossref_primary_10_1002_jbm4_10694
crossref_primary_10_1016_j_bcp_2022_114944
crossref_primary_10_1007_s11033_022_07204_8
crossref_primary_10_3390_cancers13020259
crossref_primary_10_3389_fphar_2018_00874
crossref_primary_10_3390_cancers10060155
crossref_primary_10_5483_BMBRep_2021_54_10_092
crossref_primary_10_1016_j_bcp_2020_114224
crossref_primary_10_1158_1078_0432_CCR_21_1141
crossref_primary_10_1016_j_trecan_2020_02_003
crossref_primary_10_3390_jcm8070912
crossref_primary_10_1016_j_lfs_2020_118211
crossref_primary_10_3390_cancers11020148
crossref_primary_10_3390_ijms20061291
crossref_primary_10_1080_08923973_2024_2412110
crossref_primary_10_3389_fonc_2022_938052
crossref_primary_10_3389_fonc_2019_01534
crossref_primary_10_18632_oncotarget_26460
crossref_primary_10_1016_j_omto_2020_05_001
crossref_primary_10_3390_ijms222111810
crossref_primary_10_1080_23723556_2019_1705731
crossref_primary_10_3390_ijms20133259
crossref_primary_10_1186_s12935_022_02582_2
crossref_primary_10_3390_cancers13071746
crossref_primary_10_1016_j_molcel_2021_12_015
crossref_primary_10_1111_cbdd_14366
crossref_primary_10_3390_ijms20030714
crossref_primary_10_1007_s11033_021_06173_8
crossref_primary_10_3390_cancers11101617
crossref_primary_10_1021_acsabm_1c00430
crossref_primary_10_1021_acs_jnatprod_4c00843
crossref_primary_10_1007_s13770_019_00223_w
crossref_primary_10_3390_cells10051262
crossref_primary_10_1002_mco2_173
crossref_primary_10_1038_s42003_023_05674_5
crossref_primary_10_1186_s13148_019_0675_4
crossref_primary_10_4155_fsoa_2018_0037
crossref_primary_10_1016_j_ceca_2019_102109
crossref_primary_10_1016_j_omto_2020_08_017
crossref_primary_10_1002_cam4_4454
crossref_primary_10_3389_fcell_2020_589016
crossref_primary_10_1016_j_jtumed_2022_07_004
crossref_primary_10_2174_0118715206272112231102063919
crossref_primary_10_3390_cancers12082304
crossref_primary_10_1016_j_abb_2024_110262
crossref_primary_10_1093_nar_gkab473
crossref_primary_10_1016_j_semcancer_2021_01_005
crossref_primary_10_1016_j_drudis_2019_02_003
crossref_primary_10_1097_MD_0000000000026554
crossref_primary_10_1371_journal_pone_0291779
crossref_primary_10_36401_JIPO_20_18
crossref_primary_10_1136_jitc_2021_003217
crossref_primary_10_1038_s41392_020_00361_x
crossref_primary_10_3390_ph17070867
crossref_primary_10_2174_0929867329666220922105615
crossref_primary_10_1097_MD_0000000000026788
crossref_primary_10_1016_j_abb_2024_110172
crossref_primary_10_3389_fphar_2023_1275833
crossref_primary_10_1016_j_clml_2024_11_015
crossref_primary_10_1016_j_jddst_2022_103645
crossref_primary_10_1016_j_xcrm_2023_101354
crossref_primary_10_1016_j_bioorg_2025_108169
crossref_primary_10_1186_s13148_022_01228_4
crossref_primary_10_3390_ph14070670
crossref_primary_10_1097_PPO_0000000000000479
crossref_primary_10_1016_j_phymed_2020_153442
crossref_primary_10_1021_acsptsci_4c00358
crossref_primary_10_3390_cancers14041070
crossref_primary_10_15616_BSL_2019_25_4_293
crossref_primary_10_1002_nano_202000118
crossref_primary_10_1016_j_ejmech_2024_116884
crossref_primary_10_1016_j_biocel_2023_106398
crossref_primary_10_3390_molecules25194394
crossref_primary_10_1155_2022_2523066
crossref_primary_10_3390_cells11030468
crossref_primary_10_1016_j_semnephrol_2020_01_005
crossref_primary_10_1515_pac_2021_0111
crossref_primary_10_3390_cells11243951
crossref_primary_10_1002_cam4_2108
crossref_primary_10_1038_s41388_021_01931_1
crossref_primary_10_1038_s41698_023_00417_5
crossref_primary_10_1002_adtp_202000211
crossref_primary_10_1186_s12943_019_1127_7
crossref_primary_10_3390_cancers14071753
crossref_primary_10_1021_acsmedchemlett_9b00561
crossref_primary_10_1002_ange_202001205
crossref_primary_10_1016_j_jddst_2020_102294
crossref_primary_10_1002_anse_202100001
crossref_primary_10_3389_fcell_2020_00400
crossref_primary_10_3389_fimmu_2022_844866
crossref_primary_10_3389_fimmu_2024_1523034
crossref_primary_10_1016_j_ejmech_2021_113745
crossref_primary_10_1038_s41467_020_17630_6
crossref_primary_10_3322_caac_21652
crossref_primary_10_1016_j_neo_2021_04_003
crossref_primary_10_1038_s41388_022_02399_3
crossref_primary_10_1080_08830185_2021_1990277
crossref_primary_10_1186_s13045_021_01111_4
crossref_primary_10_1016_j_sajb_2019_07_022
crossref_primary_10_1007_s12094_022_02779_x
crossref_primary_10_1016_j_intimp_2021_108114
crossref_primary_10_1016_j_ejps_2020_105401
crossref_primary_10_2174_1566524021666211206092437
crossref_primary_10_1016_j_pharmthera_2022_108301
crossref_primary_10_1007_s12017_021_08660_4
crossref_primary_10_1155_2020_8876265
crossref_primary_10_3389_fcell_2020_00425
crossref_primary_10_35754_0234_5730_2021_66_2_263_279
crossref_primary_10_1080_16078454_2023_2219930
crossref_primary_10_1007_s40199_024_00514_1
crossref_primary_10_4155_tde_2023_0089
crossref_primary_10_1007_s00044_020_02530_7
crossref_primary_10_2147_CMAR_S252292
crossref_primary_10_3389_fmmed_2024_1426454
crossref_primary_10_1080_09205063_2022_2112303
crossref_primary_10_3390_ijms241713660
crossref_primary_10_1007_s10787_019_00663_9
crossref_primary_10_3390_biomedicines10020251
crossref_primary_10_1021_acs_jcim_3c01473
crossref_primary_10_1016_j_jep_2022_115521
crossref_primary_10_1021_acsptsci_3c00202
crossref_primary_10_1038_s41419_022_05256_z
crossref_primary_10_38079_igusabder_1469350
crossref_primary_10_1039_D2CS00220E
crossref_primary_10_3390_molecules24132407
crossref_primary_10_1177_2040620719866081
crossref_primary_10_3390_genes11050556
crossref_primary_10_1016_j_biopha_2021_111485
crossref_primary_10_3389_fimmu_2019_02746
crossref_primary_10_1016_j_bioorg_2024_107930
crossref_primary_10_1016_j_canlet_2023_216121
crossref_primary_10_1016_j_ejmech_2024_116324
crossref_primary_10_3390_cancers12071760
crossref_primary_10_3390_cells8091102
crossref_primary_10_1021_acs_jmedchem_2c01418
crossref_primary_10_1038_s41368_019_0053_2
crossref_primary_10_14336_AD_2019_1126
crossref_primary_10_1038_s41584_020_00543_5
crossref_primary_10_1101_cshperspect_a036194
crossref_primary_10_18632_aging_203091
crossref_primary_10_2174_0115748855275769231114094037
crossref_primary_10_3390_cancers12123589
crossref_primary_10_2174_0118715303262653231120043819
crossref_primary_10_3390_cancers14030695
crossref_primary_10_3389_fgene_2021_719456
crossref_primary_10_1016_j_freeradbiomed_2019_12_021
crossref_primary_10_1080_14756366_2021_1933465
crossref_primary_10_3390_ijms21134747
crossref_primary_10_1089_dna_2021_1118
crossref_primary_10_1017_erm_2021_3
crossref_primary_10_3389_fonc_2021_735940
crossref_primary_10_1007_s00011_019_01272_6
crossref_primary_10_1016_j_celrep_2019_10_101
crossref_primary_10_1007_s40264_018_0773_9
crossref_primary_10_1158_1078_0432_CCR_20_2487
crossref_primary_10_1172_jci_insight_149232
crossref_primary_10_1038_s41698_021_00173_4
crossref_primary_10_1016_j_ejphar_2022_175328
crossref_primary_10_1021_acs_jmedchem_4c01859
crossref_primary_10_1371_journal_pone_0306168
crossref_primary_10_1016_j_brainres_2023_148515
crossref_primary_10_1002_cai2_113
crossref_primary_10_1016_j_ejmech_2022_114544
crossref_primary_10_1016_j_ejmech_2020_113095
crossref_primary_10_2217_epi_2020_0348
crossref_primary_10_1002_cncr_31817
crossref_primary_10_1111_bph_15570
crossref_primary_10_3390_cells11050775
crossref_primary_10_1016_j_ejphar_2022_175216
crossref_primary_10_1093_neuonc_noad170
crossref_primary_10_1152_ajpcell_00460_2019
crossref_primary_10_1186_s12964_022_01007_x
crossref_primary_10_1155_2022_4985781
crossref_primary_10_1016_j_ejmech_2023_115800
crossref_primary_10_1186_s40164_022_00282_1
crossref_primary_10_1371_journal_pone_0213095
crossref_primary_10_1038_s41598_020_69737_x
crossref_primary_10_3390_ijms222413405
crossref_primary_10_1002_adtp_201900151
crossref_primary_10_3390_cancers12020337
crossref_primary_10_1021_acs_jmedchem_0c01357
crossref_primary_10_1016_j_compbiomed_2023_107518
crossref_primary_10_3390_ijms20092241
crossref_primary_10_1016_j_bioorg_2020_103934
crossref_primary_10_1021_acs_jmedchem_0c00193
crossref_primary_10_3390_cancers14194769
crossref_primary_10_3390_cancers15061769
crossref_primary_10_3390_ph14121244
crossref_primary_10_3390_ijms232113657
crossref_primary_10_1007_s13577_022_00724_2
crossref_primary_10_1007_s13346_024_01674_y
crossref_primary_10_3390_cells8020165
crossref_primary_10_1074_jbc_RA119_010524
crossref_primary_10_1155_2022_9346767
crossref_primary_10_1158_0008_5472_CAN_22_2042
crossref_primary_10_1158_2159_8290_CD_20_1145
crossref_primary_10_1016_j_radonc_2020_06_041
crossref_primary_10_1111_imr_13079
crossref_primary_10_2174_1568026622666220303113445
crossref_primary_10_3390_ijms20040833
crossref_primary_10_1007_s43450_021_00138_5
crossref_primary_10_1267_ahc_18044
crossref_primary_10_1016_j_ymthe_2019_04_008
crossref_primary_10_3389_fonc_2024_1499950
crossref_primary_10_53879_id_60_09_13729
crossref_primary_10_3389_fonc_2023_1241532
crossref_primary_10_1016_j_neuropharm_2019_03_002
crossref_primary_10_1038_s41467_023_43290_3
crossref_primary_10_1016_j_heliyon_2024_e41589
crossref_primary_10_3389_fcell_2023_1116805
crossref_primary_10_4103_JIPO_JIPO_1_20
crossref_primary_10_1186_s13148_021_01001_z
crossref_primary_10_1007_s00432_023_04641_1
crossref_primary_10_1016_j_ijpddr_2020_12_003
crossref_primary_10_3390_ijms25042181
crossref_primary_10_1002_rmv_2085
crossref_primary_10_3389_fgene_2019_00986
crossref_primary_10_1038_s41389_021_00331_0
crossref_primary_10_3390_ijms25021130
crossref_primary_10_1016_j_neuro_2022_04_009
crossref_primary_10_1002_cncr_35096
crossref_primary_10_1016_j_chembiol_2021_07_002
crossref_primary_10_1007_s13167_021_00242_5
crossref_primary_10_1007_s44178_024_00094_9
crossref_primary_10_3390_cancers13040634
crossref_primary_10_3390_ijms21218198
crossref_primary_10_1021_acsmedchemlett_0c00551
crossref_primary_10_1016_j_bmcl_2023_129305
crossref_primary_10_3390_ph15040438
crossref_primary_10_1158_1535_7163_MCT_19_0330
crossref_primary_10_3390_v11050431
crossref_primary_10_1038_s41556_018_0258_1
crossref_primary_10_1016_j_tranon_2018_11_016
crossref_primary_10_1080_17435390_2022_2142169
crossref_primary_10_1074_jbc_RA120_012518
crossref_primary_10_1016_j_preteyeres_2024_101318
crossref_primary_10_1186_s13148_019_0700_7
crossref_primary_10_2174_1570159X17666191010094849
crossref_primary_10_1016_j_pharmthera_2022_108171
crossref_primary_10_1080_15287394_2023_2254807
crossref_primary_10_1177_15353702211067718
crossref_primary_10_1016_j_tips_2018_12_004
crossref_primary_10_1186_s13072_020_00354_8
crossref_primary_10_1039_D1TB00279A
crossref_primary_10_3390_ijms21031102
crossref_primary_10_1021_acs_jmedchem_1c02026
crossref_primary_10_3390_ijms22020536
crossref_primary_10_1038_s41392_021_00572_w
crossref_primary_10_1186_s40659_020_00294_3
crossref_primary_10_1136_jitc_2024_010179
crossref_primary_10_1016_j_bioorg_2022_105702
crossref_primary_10_1016_j_bmc_2021_116454
crossref_primary_10_1007_s10565_023_09818_5
crossref_primary_10_1016_j_phrs_2023_106950
crossref_primary_10_3389_fphar_2020_00992
crossref_primary_10_1038_s41598_022_10740_9
crossref_primary_10_3390_cancers13061376
crossref_primary_10_3390_cancers13143575
crossref_primary_10_4155_fmc_2021_0206
crossref_primary_10_1016_j_tranon_2022_101345
crossref_primary_10_3892_or_2023_8480
crossref_primary_10_1016_j_biopha_2023_115741
crossref_primary_10_1080_14656566_2022_2150966
crossref_primary_10_1158_0008_5472_CAN_19_2528
crossref_primary_10_1158_0008_5472_CAN_19_3738
crossref_primary_10_1007_s10157_020_01995_5
crossref_primary_10_1002_cmdc_202100473
crossref_primary_10_1186_s13046_019_1350_5
crossref_primary_10_3390_cancers11111794
crossref_primary_10_4155_fmc_2023_0105
crossref_primary_10_1016_j_molcel_2022_10_027
crossref_primary_10_1002_ijc_34144
crossref_primary_10_1371_journal_pone_0293075
crossref_primary_10_1002_pbc_27785
crossref_primary_10_1038_s41467_024_52757_w
crossref_primary_10_1016_j_medidd_2020_100040
crossref_primary_10_1038_s12276_020_0382_4
crossref_primary_10_1002_cncr_31791
crossref_primary_10_1021_acs_jproteome_1c00791
crossref_primary_10_1073_pnas_2015808118
crossref_primary_10_2174_1568026619666190125145110
crossref_primary_10_3390_pharmaceutics14010209
crossref_primary_10_3390_diagnostics11030517
crossref_primary_10_3390_ijms20071601
crossref_primary_10_1038_s41591_019_0376_8
crossref_primary_10_3389_fimmu_2022_915094
crossref_primary_10_3390_ijms23063218
crossref_primary_10_3390_ijms22168582
crossref_primary_10_1016_j_ccr_2023_215485
crossref_primary_10_1093_ecco_jcc_jjab176
crossref_primary_10_1021_acs_jmedchem_9b01888
crossref_primary_10_3389_fcell_2021_759237
crossref_primary_10_3390_biomedicines9121749
crossref_primary_10_1016_j_jconrel_2023_04_006
crossref_primary_10_1158_1535_7163_MCT_22_0798
crossref_primary_10_3390_cancers12030767
crossref_primary_10_1016_j_ejmech_2020_112831
crossref_primary_10_3390_cancers11070934
crossref_primary_10_1002_ptr_6869
crossref_primary_10_3390_genes12020260
crossref_primary_10_1007_s00280_020_04109_w
crossref_primary_10_3390_cells8050485
crossref_primary_10_1016_j_ejmech_2023_115529
crossref_primary_10_1016_j_heliyon_2024_e34033
crossref_primary_10_1002_ddr_22026
crossref_primary_10_18632_aging_103536
crossref_primary_10_1080_14756366_2023_2195991
crossref_primary_10_1016_j_semcancer_2020_07_015
crossref_primary_10_1002_anie_202001205
crossref_primary_10_1080_10428194_2021_1876857
crossref_primary_10_1007_s12029_020_00370_7
crossref_primary_10_3390_epigenomes2020008
crossref_primary_10_3389_fphar_2020_529881
crossref_primary_10_1016_j_ejmech_2020_112844
crossref_primary_10_1186_s12906_023_03872_6
crossref_primary_10_1186_s40001_024_02108_8
crossref_primary_10_3390_cancers11030304
crossref_primary_10_1038_s41388_024_03054_9
crossref_primary_10_1021_acsabm_9b00643
crossref_primary_10_1016_j_isci_2020_101619
crossref_primary_10_1016_j_biopha_2022_113490
crossref_primary_10_1016_j_ymthe_2022_02_006
crossref_primary_10_1016_j_ejmech_2023_115938
crossref_primary_10_3390_cells11152380
crossref_primary_10_3390_cells11071211
crossref_primary_10_3389_fonc_2021_648023
crossref_primary_10_1155_2022_2197071
crossref_primary_10_1007_s00280_020_04229_3
crossref_primary_10_3390_cancers13236040
crossref_primary_10_1016_j_colsurfb_2020_111144
crossref_primary_10_1016_j_semcancer_2020_12_006
crossref_primary_10_1016_j_lungcan_2020_04_002
crossref_primary_10_2174_0929867328666210901144658
crossref_primary_10_3389_fcell_2025_1480192
crossref_primary_10_1038_s41598_021_87890_9
crossref_primary_10_3390_ijms221910671
crossref_primary_10_1016_j_ctarc_2022_100509
crossref_primary_10_1038_s41598_021_81620_x
crossref_primary_10_2217_fon_2020_0385
crossref_primary_10_1016_j_intimp_2025_114193
crossref_primary_10_1186_s12885_021_08579_w
crossref_primary_10_3390_cancers13051145
crossref_primary_10_1016_j_arr_2022_101598
crossref_primary_10_2147_JEP_S254334
crossref_primary_10_3233_CBM_190729
crossref_primary_10_12677_HJMCe_2023_112015
crossref_primary_10_1002_mc_23277
crossref_primary_10_1016_j_ejmech_2019_02_054
crossref_primary_10_1016_j_biopha_2024_116902
crossref_primary_10_3390_cancers14030552
crossref_primary_10_1158_1535_7163_MCT_20_0699
crossref_primary_10_3389_fonc_2021_696512
crossref_primary_10_1016_j_bbcan_2022_188676
crossref_primary_10_1002_cncr_34974
crossref_primary_10_3390_cancers13112551
crossref_primary_10_1016_j_bioorg_2022_105848
crossref_primary_10_1021_acs_jmedchem_4c01062
crossref_primary_10_1080_14756366_2023_2295241
crossref_primary_10_1016_j_brainres_2020_146932
crossref_primary_10_1016_j_dnarep_2020_102940
crossref_primary_10_1186_s13578_020_00415_1
crossref_primary_10_1016_j_ejphar_2020_173727
crossref_primary_10_1016_j_jinorgbio_2021_111656
crossref_primary_10_3389_fcell_2021_626708
crossref_primary_10_4155_fmc_2021_0102
crossref_primary_10_1038_s41573_019_0044_1
crossref_primary_10_1007_s00726_023_03298_x
crossref_primary_10_1016_j_canlet_2019_12_029
crossref_primary_10_1016_j_ejphar_2024_176943
crossref_primary_10_3390_ijms22115545
crossref_primary_10_1016_j_fct_2020_111303
crossref_primary_10_1021_jacsau_4c00828
crossref_primary_10_1038_s41568_021_00340_6
crossref_primary_10_1016_j_ejmech_2019_111756
crossref_primary_10_1016_j_ejmech_2020_112800
crossref_primary_10_1016_j_ygyno_2020_11_008
Cites_doi 10.3390/ijms18071414
10.1038/bjc.2013.21
10.1016/j.canlet.2012.09.018
10.1182/blood-2006-03-009142
10.1124/jpet.105.084145
10.1158/1078-0432.ccr-03-0561
10.18632/oncotarget.17950
10.1016/s1470-2045(16)30498-3
10.1182/blood-2006-04-016055
10.1182/blood-2012-10-459883
10.1158/0008-5472.CAN-09-1947
10.1146/annurev-biochem-061809-100002
10.1158/1078-0432.CCR-08-2714
10.1200/JCO.2009.24.9094
10.1007/s11060-007-9402-7
10.1038/sj.bjc.6604199
10.1634/theoncologist.12-10-1247
10.1586/era.10.88
10.1016/S0305-7372(79)80057-2
10.1200/JCO.2009.22.1291
10.1038/sj.cdd.4400874
10.1038/sj.bjc.6604557
10.1080/2162402X.2016.1219008
10.1111/ajco.12698
10.1146/annurev.biochem.78.081507.101607
10.1002/cncr.24597
10.1038/nrd2133
10.1038/onc.2015.46
10.1186/s40425-015-0059-z
10.18632/oncotarget.7180
10.1038/sj.onc.1209417
10.1038/35106079
10.1186/s13148-017-0358-y
10.1016/j.currproblcancer.2008.08.002
10.1038/bjc.2011.156
10.1016/j.jinorgbio.2016.06.021
10.2147/tcrm.2006.2.3.271
10.1159/000279388
10.1248/bpb.34.1774
10.1158/0008-5472.CAN-06-3996
10.1634/theoncologist.2012-0465
10.1158/1535-7163.MCT-12-1242
10.1042/bst0350012
10.1016/j.molonc.2007.01.001
10.1002/cncr.22652
10.1507/endocrj.K08E-016
10.1038/sj.onc.1210620
10.1074/jbc.M500403200
10.1007/s10549-005-6001-1
10.1016/j.leukres.2004.11.022
10.1158/1078-0432.Ccr-17-0741
10.1002/ijc.23885
10.1093/annonc/mdp270
10.1038/onc.2011.267
10.1126/science.272.5260.408
10.1038/sj.bjc.6605726
10.1002/bies.201600070
10.1016/j.bcp.2007.03.009
10.1093/annonc/mdn703
10.1111/j.1582-4934.2011.01296.x
10.4061/2010/201367
10.1158/2326-6066.Cir-15-0077-t
10.1002/med.20056
10.1038/sj.bjc.6605293
10.1124/mi.7.4.8
10.1111/j.1600-0609.2009.01384.x
10.1002/cncr.25584
10.1073/pnas.0503221102
10.1593/neo.08474
10.1016/s1470-2045(08)70004-4
10.3324/haematol.2009.015495
10.1038/85798
10.1007/s13148-010-0012-4
10.1158/1535-7163.MCT-07-2140
10.1016/j.canlet.2008.06.005
10.1002/jcb.20045
10.1200/JCO.2006.08.6165
10.1158/1078-0432.CCR-08-0122
10.2217/fon-2016-0086
10.1080/10428190701817258
10.1111/j.1365-2141.2010.08342.x
10.4161/cbt.6.2.3578
10.1371/journal.pone.0074253
10.1158/1078-0432.CCR-08-1930
10.1158/1078-0432.CCR-15-0887
10.1002/ijc.28924
10.1056/NEJMoa1706450
10.1093/carcin/bgp220
10.1038/sj.onc.1207515
10.1002/jcp.25053
10.3892/ol.2017.5585
10.3389/fonc.2014.00086
10.1073/pnas.0830918100
10.1158/1535-7163.MCT-08-0985
10.1158/0008-5472.CAN-07-6091
10.1073/pnas.1008522107
10.1073/pnas.1410626111
10.1186/2045-3701-4-45
10.4161/15592294.2014.983367
10.1038/onc.2011.384
10.4155/fmc.12.3
10.1158/1078-0432.CCR-08-0469
10.3390/molecules20033898
10.1146/annurev.biochem.73.011303.073651
10.1146/annurev.immunol.15.1.177
10.1080/23723556.2015.1053594
10.1097/CCO.0b013e3283127095
10.1093/nar/gkh703
10.2217/fon.09.36
10.1586/ecp.09.44
10.2217/epi.15.118
10.1158/1535-7163.MCT-11-0433
10.1016/j.ctrv.2007.08.001
10.2217/fon.11.2
10.1177/2040620715592567
10.1002/1097-0142(20011101)92:9<2247::AID-CNCR1570>3.0.CO;2-Y
10.1016/S0891-5849(00)00313-0
10.1186/1476-4598-7-70
10.1158/1078-0432.CCR-05-2689
10.1016/j.juro.2010.10.034
10.1101/cshperspect.a026831
10.1158/0008-5472.CAN-06-0080
10.1016/j.cell.2015.03.030
10.1016/0305-7372(85)90015-5
10.1007/s00280-010-1289-x
10.1158/1078-0432.Ccr-17-1178
10.1002/pros.21187
10.1158/1078-0432.CCR-05-1073
10.1158/0008-5472.can-04-2478
10.1038/38664
10.1200/JCO.2003.10.038
10.1016/j.lungcan.2011.02.019
10.1074/jbc.274.44.31127
10.1200/JCO.2005.07.450
10.1146/annurev.biochem.67.1.425
10.1158/1535-7163.MCT-06-0144
10.1177/1756287215597637
10.1016/j.drup.2014.12.001
10.2174/156720105774370294
10.1158/1055-9965.EPI-06-1069
10.1016/j.molcel.2012.08.003
10.1021/mp200329f
10.1158/1078-0432.CCR-07-0162
10.1158/1078-0432.Ccr-07-2114
10.4161/cc.3.6.927
10.1158/1078-0432.Ccr-08-0684
ContentType Journal Article
Copyright Copyright © 2018 Suraweera, O’Byrne and Richard. 2018 Suraweera, O’Byrne and Richard
Copyright_xml – notice: Copyright © 2018 Suraweera, O’Byrne and Richard. 2018 Suraweera, O’Byrne and Richard
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fonc.2018.00092
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2234-943X
ExternalDocumentID oai_doaj_org_article_1898e8ba1a3e48a3bbc927c603082b4e
PMC5884928
29651407
10_3389_fonc_2018_00092
Genre Journal Article
Review
GrantInformation_xml – fundername: National Health and Medical Research Council
  grantid: 1066550
– fundername: Cancer Council Queensland
– fundername: Australian Research Council
  grantid: DP 120103099
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-7ced7157187539c7bbc749902e353e6618751ef0b068cc1c9619c78ff126c32c3
IEDL.DBID M48
ISSN 2234-943X
IngestDate Wed Aug 27 01:30:36 EDT 2025
Thu Aug 21 14:01:13 EDT 2025
Thu Sep 04 16:42:50 EDT 2025
Wed Feb 19 02:43:27 EST 2025
Thu Apr 24 22:52:33 EDT 2025
Tue Jul 01 03:12:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords combination therapy
histone deacetylases
cancer
chemotherapeutic drugs
histone deacetylase inhibitors
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-7ced7157187539c7bbc749902e353e6618751ef0b068cc1c9619c78ff126c32c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: K. B. Harikumar, Rajiv Gandhi Centre for Biotechnology, India; Lucia Altucci, Università degli Studi della Campania “Luigi Vanvitelli” Caserta, Italy; James W. Hodge, National Institutes of Health (NIH), United States
Specialty section: This article was submitted to Cancer Molecular Targets and Therapeutics, a section of the journal Frontiers in Oncology
Edited by: Suzie Chen, Rutgers, The State University of New Jersey, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fonc.2018.00092
PMID 29651407
PQID 2025312870
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1898e8ba1a3e48a3bbc927c603082b4e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5884928
proquest_miscellaneous_2025312870
pubmed_primary_29651407
crossref_citationtrail_10_3389_fonc_2018_00092
crossref_primary_10_3389_fonc_2018_00092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-29
PublicationDateYYYYMMDD 2018-03-29
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-29
  day: 29
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in oncology
PublicationTitleAlternate Front Oncol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Luu (B109) 2008; 14
Mithraprabhu (B24) 2014; 9
Lavin (B47) 1997; 15
Zhang (B122) 2008; 14
Sawas (B29) 2015; 6
Khanna (B40) 2001; 27
Richardson (B92) 2008; 49
Weichert (B21) 2008; 10
Shah (B143) 2006; 12
Wagner (B150) 2010; 1
Langer (B11) 2016; 17
Field-Smith (B91) 2006; 2
Marks (B13) 2001; 1
Ropero (B14) 2007; 1
Khanna (B42) 2001; 8
Ramalingam (B82) 2007; 13
Derissen (B125) 2013; 18
Chung (B33) 2001; 21
Thurn (B46) 2013; 12
Munster (B72) 2009; 101
Niewerth (B104) 2015; 18
Pili (B142) 2017; 23
Baxter (B2) 2014; 4
Fantin (B148) 2008; 68
Nolan (B37) 2008; 99
Munster (B70) 2007; 25
Shen (B134) 2016; 8
Oehme (B23) 2009; 15
Mazzone (B133) 2017; 9
LeBlanc (B89) 2002; 62
Saleh-Gohari (B41) 2004; 32
Harrap (B80) 1985; 12
Yoon (B78) 2011; 185
Lurje (B120) 2009; 77
Moore (B30) 2016; 41
Gryder (B145) 2012; 4
Jekimovs (B149) 2014; 4
Blander (B18) 2004; 73
Lee (B43) 2010; 107
Fukuoka (B123) 2003; 21
Bradley (B112) 2009; 115
Li (B20) 2016; 6
Shabason (B58) 2011; 15
Grunstein (B12) 1997; 389
Chen (B55) 2007; 67
Tomita (B140) 2016; 5
Niesvizky (B93) 2011; 117
Lopez (B65) 2009; 15
Eot-Houllier (B48) 2009; 274
Thurn (B57) 2011; 7
Xiao (B62) 2013; 8
Marrocco (B115) 2007; 6
Kaushik (B116) 2015; 7
Pei (B95) 2004; 10
Booth (B135) 2017; 8
Ocio (B97) 2010; 95
Witta (B124) 2009; 20
Pommier (B31) 2004; 23
Lassen (B81) 2010; 103
Lindemann (B38) 2004; 3
Huang (B102) 2017; 13
Woods (B136) 2015; 3
Suraweera (B86) 2012; 48
Hideshima (B99) 2011; 10
Karagiannis (B56) 2006; 25
Shen (B77) 2007; 73
Mottamal (B1) 2015; 20
Diyabalanage (B25) 2013; 329
Rodgers (B39) 2016; 231
Kim (B49) 1999; 274
Bolden (B19) 2006; 5
Minamiya (B85) 2011; 74
Kortuem (B103) 2013; 121
Robson (B53) 2017; 377
Terenzi (B74) 2016; 165
Pfeiffer (B114) 2010; 70
Prestayko (B73) 1979; 6
Marchion (B50) 2009; 8
Valentini (B79) 2014; 6
Molife (B111) 2010; 21
Rudek (B129) 2005; 23
Goldberg (B90) 2007; 35
Hershko (B87) 1998; 67
Xu (B15) 2007; 26
Catley (B98) 2006; 108
Marchion (B64) 2005; 11
Decatris (B6) 2016; 12
Chen (B63) 2013; 82
Lee (B83) 2008; 20
Garcia-Manero (B128) 2006; 108
Gore (B130) 2006; 66
Munster (B71) 2009; 15
Basu (B76) 2010; 2010
Bjorkman (B113) 2008; 123
Fu (B121) 2005; 280
Grant (B28) 2010; 10
Munster (B67) 2011; 104
Galluzzi (B75) 2012; 31
Lin (B54) 2006; 26
Buglio (B101) 2010; 151
Yang (B127) 2005; 29
Groselj (B17) 2013; 108
Das (B66) 2007; 85
Krishnan (B4) 2007; 16
Eckschlager (B26) 2017; 18
Kurkjian (B126) 2008; 32
Rathkopf (B110) 2010; 66
Ramsay (B10) 2005; 2
Kim (B52) 2015; 21
Takeuchi (B118) 2011; 34
Ismael (B5) 2008; 34
Arora (B119) 2005; 315
Mayer (B8) 2007; 7
Mann (B27) 2007; 12
Marchion (B68) 2004; 92
Marrocco-Tallarigo (B117) 2009; 2
Romano (B131) 2015; 3
Bonneterre (B105) 2001; 92
Finley (B88) 2009; 78
Orillion (B139) 2017; 23
Robey (B34) 2011; 8
Cao (B137) 2015; 34
Dejligbjerg (B146) 2008; 7
Venturelli (B61) 2007; 109
Chou (B9) 2010; 70
Weichert (B22) 2008; 9
Sharma (B132) 2015; 161
Hideshima (B94) 2005; 102
Lane (B144) 2009; 27
Powis (B32) 2000; 29
Prince (B60) 2009; 5
Gameiro (B141) 2016; 7
Halsall (B36) 2016; 38
Kim (B138) 2014; 111
Taunton (B16) 1996; 272
Marchion (B69) 2005; 65
Campbell (B96) 2010; 84
Hui (B100) 2014; 135
Roberts (B7) 2017; 13
Spiegel (B44) 2012; 31
Weichert (B108) 2008; 98
Sistigu (B51) 2016; 3
Fantin (B35) 2007; 13
Ramalingam (B84) 2010; 28
Sharma (B3) 2010; 31
Noguchi (B59) 2009; 56
Gregory (B106) 1998; 58
Miyanaga (B147) 2008; 7
Zhang (B107) 2005; 94
Rothkamm (B45) 2003; 100
References_xml – volume: 18
  start-page: 1414
  year: 2017
  ident: B26
  article-title: Histone deacetylase inhibitors as anticancer drugs
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18071414
– volume: 108
  start-page: 748
  year: 2013
  ident: B17
  article-title: Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2013.21
– volume: 329
  start-page: 1
  year: 2013
  ident: B25
  article-title: Combination therapy: histone deacetylase inhibitors and platinum-based chemotherapeutics for cancer
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2012.09.018
– volume: 108
  start-page: 3271
  year: 2006
  ident: B128
  article-title: Phase 1/2 study of the combination of 5-aza-2’-deoxycytidine with valproic acid in patients with leukemia
  publication-title: Blood
  doi: 10.1182/blood-2006-03-009142
– volume: 315
  start-page: 971
  year: 2005
  ident: B119
  article-title: Role of tyrosine kinase inhibitors in cancer therapy
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.105.084145
– volume: 10
  start-page: 3839
  year: 2004
  ident: B95
  article-title: Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.ccr-03-0561
– volume: 8
  start-page: 83155
  year: 2017
  ident: B135
  article-title: HDAC inhibitors enhance the immunotherapy response of melanoma cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17950
– volume: 17
  start-page: 1497
  year: 2016
  ident: B11
  article-title: Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study
  publication-title: Lancet Oncol
  doi: 10.1016/s1470-2045(16)30498-3
– volume: 108
  start-page: 3441
  year: 2006
  ident: B98
  article-title: Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells
  publication-title: Blood
  doi: 10.1182/blood-2006-04-016055
– volume: 121
  start-page: 893
  year: 2013
  ident: B103
  article-title: Carfilzomib
  publication-title: Blood
  doi: 10.1182/blood-2012-10-459883
– volume: 70
  start-page: 440
  year: 2010
  ident: B9
  article-title: Drug combination studies and their synergy quantification using the Chou-Talalay method
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-1947
– volume: 82
  start-page: 139
  year: 2013
  ident: B63
  article-title: New mechanistic and functional insights into DNA topoisomerases
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-061809-100002
– volume: 15
  start-page: 3472
  year: 2009
  ident: B65
  article-title: Combining PCI-24781, a novel histone deacetylase inhibitor, with chemotherapy for the treatment of soft tissue sarcoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-2714
– volume: 28
  start-page: 56
  year: 2010
  ident: B84
  article-title: Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.24.9094
– volume: 85
  start-page: 159
  year: 2007
  ident: B66
  article-title: Valproic acid induces p21 and topoisomerase-II (alpha/beta) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines
  publication-title: J Neurooncol
  doi: 10.1007/s11060-007-9402-7
– volume: 98
  start-page: 604
  year: 2008
  ident: B108
  article-title: Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6604199
– volume: 12
  start-page: 1247
  year: 2007
  ident: B27
  article-title: FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma
  publication-title: Oncologist
  doi: 10.1634/theoncologist.12-10-1247
– volume: 10
  start-page: 997
  year: 2010
  ident: B28
  article-title: Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors
  publication-title: Expert Rev Anticancer Ther
  doi: 10.1586/era.10.88
– volume: 6
  start-page: 17
  year: 1979
  ident: B73
  article-title: Cisplatin (cis-diamminedichloroplatinum II)
  publication-title: Cancer Treat Rev
  doi: 10.1016/S0305-7372(79)80057-2
– volume: 27
  start-page: 5459
  year: 2009
  ident: B144
  article-title: Histone deacetylase inhibitors in cancer therapy
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.22.1291
– volume: 8
  start-page: 1052
  year: 2001
  ident: B42
  article-title: ATM, a central controller of cellular responses to DNA damage
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4400874
– volume: 99
  start-page: 689
  year: 2008
  ident: B37
  article-title: Will histone deacetylase inhibitors require combination with other agents to fulfil their therapeutic potential?
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6604557
– volume: 5
  start-page: e1219008
  year: 2016
  ident: B140
  article-title: The interplay of epigenetic therapy and immunity in locally recurrent or metastatic estrogen receptor-positive breast cancer: correlative analysis of ENCORE 301, a randomized, placebo-controlled phase II trial of exemestane with or without entinostat
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2016.1219008
– volume: 13
  start-page: 277
  year: 2017
  ident: B7
  article-title: Immune checkpoint inhibitors: navigating a new paradigm of treatment toxicities
  publication-title: Asia Pac J Clin Oncol
  doi: 10.1111/ajco.12698
– volume: 78
  start-page: 477
  year: 2009
  ident: B88
  article-title: Recognition and processing of ubiquitin-protein conjugates by the proteasome
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.78.081507.101607
– volume: 115
  start-page: 5541
  year: 2009
  ident: B112
  article-title: Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute trial 6862): trial results and interleukin-6 analysis: a study by the department of defense prostate cancer clinical trial consortium and University of Chicago phase 2 consortium
  publication-title: Cancer
  doi: 10.1002/cncr.24597
– volume: 5
  start-page: 769
  year: 2006
  ident: B19
  article-title: Anticancer activities of histone deacetylase inhibitors
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2133
– volume: 34
  start-page: 5960
  year: 2015
  ident: B137
  article-title: Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity
  publication-title: Oncogene
  doi: 10.1038/onc.2015.46
– volume: 3
  start-page: 15
  year: 2015
  ident: B131
  article-title: The therapeutic promise of disrupting the PD-1/PD-L1 immune checkpoint in cancer: unleashing the CD8 T cell mediated anti-tumor activity results in significant, unprecedented clinical efficacy in various solid tumors
  publication-title: J Immunother Cancer
  doi: 10.1186/s40425-015-0059-z
– volume: 7
  start-page: 7390
  year: 2016
  ident: B141
  article-title: Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7180
– volume: 25
  start-page: 3885
  year: 2006
  ident: B56
  article-title: Modulation of cellular radiation responses by histone deacetylase inhibitors
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209417
– volume: 1
  start-page: 194
  year: 2001
  ident: B13
  article-title: Histone deacetylases and cancer: causes and therapies
  publication-title: Nat Rev Cancer
  doi: 10.1038/35106079
– volume: 9
  start-page: 59
  year: 2017
  ident: B133
  article-title: Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy
  publication-title: Clin Epigenetics
  doi: 10.1186/s13148-017-0358-y
– volume: 32
  start-page: 187
  year: 2008
  ident: B126
  article-title: DNA methylation: its role in cancer development and therapy
  publication-title: Curr Probl Cancer
  doi: 10.1016/j.currproblcancer.2008.08.002
– volume: 104
  start-page: 1828
  year: 2011
  ident: B67
  article-title: A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2011.156
– volume: 165
  start-page: 71
  year: 2016
  ident: B74
  article-title: Anticancer metal drugs and immunogenic cell death
  publication-title: J Inorg Biochem
  doi: 10.1016/j.jinorgbio.2016.06.021
– volume: 2
  start-page: 271
  year: 2006
  ident: B91
  article-title: Bortezomib (velcadetrade mark) in the treatment of multiple myeloma
  publication-title: Ther Clin Risk Manag
  doi: 10.2147/tcrm.2006.2.3.271
– volume: 77
  start-page: 400
  year: 2009
  ident: B120
  article-title: EGFR signaling and drug discovery
  publication-title: Oncology
  doi: 10.1159/000279388
– volume: 34
  start-page: 1774
  year: 2011
  ident: B118
  article-title: Receptor tyrosine kinases and targeted cancer therapeutics
  publication-title: Biol Pharm Bull
  doi: 10.1248/bpb.34.1774
– volume: 67
  start-page: 5318
  year: 2007
  ident: B55
  article-title: Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-3996
– volume: 18
  start-page: 619
  year: 2013
  ident: B125
  article-title: Concise drug review: azacitidine and decitabine
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2012-0465
– volume: 12
  start-page: 2078
  year: 2013
  ident: B46
  article-title: Histone deacetylase regulation of ATM-mediated DNA damage signaling
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-12-1242
– volume: 35
  start-page: 12
  year: 2007
  ident: B90
  article-title: Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy
  publication-title: Biochem Soc Trans
  doi: 10.1042/bst0350012
– volume: 1
  start-page: 19
  year: 2007
  ident: B14
  article-title: The role of histone deacetylases (HDACs) in human cancer
  publication-title: Mol Oncol
  doi: 10.1016/j.molonc.2007.01.001
– volume: 109
  start-page: 2132
  year: 2007
  ident: B61
  article-title: Epigenetic combination therapy as a tumor-selective treatment approach for hepatocellular carcinoma
  publication-title: Cancer
  doi: 10.1002/cncr.22652
– volume: 56
  start-page: 245
  year: 2009
  ident: B59
  article-title: Successful treatment of anaplastic thyroid carcinoma with a combination of oral valproic acid, chemotherapy, radiation and surgery
  publication-title: Endocr J
  doi: 10.1507/endocrj.K08E-016
– volume: 26
  start-page: 5541
  year: 2007
  ident: B15
  article-title: Histone deacetylase inhibitors: molecular mechanisms of action
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210620
– volume: 280
  start-page: 16934
  year: 2005
  ident: B121
  article-title: Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M500403200
– volume: 94
  start-page: 11
  year: 2005
  ident: B107
  article-title: Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast*
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-005-6001-1
– volume: 29
  start-page: 739
  year: 2005
  ident: B127
  article-title: Antileukemia activity of the combination of 5-aza-2’-deoxycytidine with valproic acid
  publication-title: Leuk Res
  doi: 10.1016/j.leukres.2004.11.022
– volume: 23
  start-page: 5187
  year: 2017
  ident: B139
  article-title: Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.Ccr-17-0741
– volume: 123
  start-page: 2774
  year: 2008
  ident: B113
  article-title: Defining the molecular action of HDAC inhibitors and synergism with androgen deprivation in ERG-positive prostate cancer
  publication-title: Int J Cancer
  doi: 10.1002/ijc.23885
– volume: 21
  start-page: 109
  year: 2010
  ident: B111
  article-title: Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC)
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdp270
– volume: 31
  start-page: 537
  year: 2012
  ident: B44
  article-title: Endogenous modulators and pharmacological inhibitors of histone deacetylases in cancer therapy
  publication-title: Oncogene
  doi: 10.1038/onc.2011.267
– volume: 272
  start-page: 408
  year: 1996
  ident: B16
  article-title: A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p
  publication-title: Science
  doi: 10.1126/science.272.5260.408
– volume: 103
  start-page: 12
  year: 2010
  ident: B81
  article-title: A phase I study of the safety and pharmacokinetics of the histone deacetylase inhibitor belinostat administered in combination with carboplatin and/or paclitaxel in patients with solid tumours
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6605726
– volume: 38
  start-page: 1102
  year: 2016
  ident: B36
  article-title: Histone deacetylase inhibitors for cancer therapy: an evolutionarily ancient resistance response may explain their limited success
  publication-title: Bioessays
  doi: 10.1002/bies.201600070
– volume: 73
  start-page: 1901
  year: 2007
  ident: B77
  article-title: Enhancement of cisplatin induced apoptosis by suberoylanilide hydroxamic acid in human oral squamous cell carcinoma cell lines
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2007.03.009
– volume: 20
  start-page: 689
  year: 2009
  ident: B124
  article-title: ErbB-3 expression is associated with E-cadherin and their coexpression restores response to gefitinib in non-small-cell lung cancer (NSCLC)
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdn703
– volume: 15
  start-page: 2735
  year: 2011
  ident: B58
  article-title: Grand rounds at the National Institutes of Health: HDAC inhibitors as radiation modifiers, from bench to clinic
  publication-title: J Cell Mol Med
  doi: 10.1111/j.1582-4934.2011.01296.x
– volume: 2010
  start-page: 201367
  year: 2010
  ident: B76
  article-title: Cellular responses to cisplatin-induced DNA damage
  publication-title: J Nucleic Acids
  doi: 10.4061/2010/201367
– volume: 3
  start-page: 1375
  year: 2015
  ident: B136
  article-title: HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.Cir-15-0077-t
– volume: 26
  start-page: 397
  year: 2006
  ident: B54
  article-title: Targeting histone deacetylase in cancer therapy
  publication-title: Med Res Rev
  doi: 10.1002/med.20056
– volume: 101
  start-page: 1044
  year: 2009
  ident: B72
  article-title: Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6605293
– volume: 7
  start-page: 216
  year: 2007
  ident: B8
  article-title: Optimizing combination chemotherapy by controlling drug ratios
  publication-title: Mol Interv
  doi: 10.1124/mi.7.4.8
– volume: 84
  start-page: 201
  year: 2010
  ident: B96
  article-title: Vorinostat enhances the antimyeloma effects of melphalan and bortezomib
  publication-title: Eur J Haematol
  doi: 10.1111/j.1600-0609.2009.01384.x
– volume: 117
  start-page: 336
  year: 2011
  ident: B93
  article-title: Phase 2 trial of the histone deacetylase inhibitor romidepsin for the treatment of refractory multiple myeloma
  publication-title: Cancer
  doi: 10.1002/cncr.25584
– volume: 102
  start-page: 8567
  year: 2005
  ident: B94
  article-title: Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0503221102
– volume: 10
  start-page: 1021
  year: 2008
  ident: B21
  article-title: Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas
  publication-title: Neoplasia
  doi: 10.1593/neo.08474
– volume: 9
  start-page: 139
  year: 2008
  ident: B22
  article-title: Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis
  publication-title: Lancet Oncol
  doi: 10.1016/s1470-2045(08)70004-4
– volume: 95
  start-page: 794
  year: 2010
  ident: B97
  article-title: In vitro and in vivo rationale for the triple combination of panobinostat (LBH589) and dexamethasone with either bortezomib or lenalidomide in multiple myeloma
  publication-title: Haematologica
  doi: 10.3324/haematol.2009.015495
– volume: 27
  start-page: 247
  year: 2001
  ident: B40
  article-title: DNA double-strand breaks: signaling, repair and the cancer connection
  publication-title: Nat Genet
  doi: 10.1038/85798
– volume: 1
  start-page: 117
  year: 2010
  ident: B150
  article-title: Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy
  publication-title: Clin Epigenetics
  doi: 10.1007/s13148-010-0012-4
– volume: 7
  start-page: 1923
  year: 2008
  ident: B147
  article-title: Antitumor activity of histone deacetylase inhibitors in non-small cell lung cancer cells: development of a molecular predictive model
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-07-2140
– volume: 274
  start-page: 169
  year: 2009
  ident: B48
  article-title: Histone deacetylase inhibitors and genomic instability
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2008.06.005
– volume: 58
  start-page: 5718
  year: 1998
  ident: B106
  article-title: Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes
  publication-title: Cancer Res
– volume: 92
  start-page: 223
  year: 2004
  ident: B68
  article-title: Sequence-specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.20045
– volume: 25
  start-page: 1979
  year: 2007
  ident: B70
  article-title: Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2006.08.6165
– volume: 14
  start-page: 7138
  year: 2008
  ident: B109
  article-title: A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-0122
– volume: 12
  start-page: 1805
  year: 2016
  ident: B6
  article-title: Immune checkpoint inhibitors as first-line and salvage therapy for advanced non-small-cell lung cancer
  publication-title: Future Oncol
  doi: 10.2217/fon-2016-0086
– volume: 49
  start-page: 502
  year: 2008
  ident: B92
  article-title: Phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma
  publication-title: Leuk Lymphoma
  doi: 10.1080/10428190701817258
– volume: 151
  start-page: 387
  year: 2010
  ident: B101
  article-title: The class-I HDAC inhibitor MGCD0103 induces apoptosis in Hodgkin lymphoma cell lines and synergizes with proteasome inhibitors by an HDAC6-independent mechanism
  publication-title: Br J Haematol
  doi: 10.1111/j.1365-2141.2010.08342.x
– volume: 6
  start-page: 185
  year: 2014
  ident: B79
  article-title: Valproic acid induces apoptosis, p16INK4Aupregulation and sensitization to chemotherapy in human melanoma cells
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.6.2.3578
– volume: 8
  start-page: e74253
  year: 2013
  ident: B62
  article-title: Combination therapy with the histone deacetylase inhibitor LBH589 and radiation is an effective regimen for prostate cancer cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0074253
– volume: 15
  start-page: 2488
  year: 2009
  ident: B71
  article-title: Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-1930
– volume: 21
  start-page: 4257
  year: 2015
  ident: B52
  article-title: FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-15-0887
– volume: 135
  start-page: 2950
  year: 2014
  ident: B100
  article-title: Combination of proteasome and class I HDAC inhibitors induces apoptosis of NPC cells through an HDAC6-independent ER stress-induced mechanism
  publication-title: Int J Cancer
  doi: 10.1002/ijc.28924
– volume: 377
  start-page: 523
  year: 2017
  ident: B53
  article-title: Olaparib for metastatic breast cancer in patients with a germline BRCA mutation
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1706450
– volume: 31
  start-page: 27
  year: 2010
  ident: B3
  article-title: Epigenetics in cancer
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgp220
– volume: 23
  start-page: 2934
  year: 2004
  ident: B31
  article-title: Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207515
– volume: 231
  start-page: 15
  year: 2016
  ident: B39
  article-title: Error-prone repair of DNA double-strand breaks
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.25053
– volume: 13
  start-page: 1058
  year: 2017
  ident: B102
  article-title: Proteasome inhibitors in glioblastoma
  publication-title: Oncol Lett
  doi: 10.3892/ol.2017.5585
– volume: 4
  start-page: 86
  year: 2014
  ident: B149
  article-title: Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: the good, the bad, and the promising
  publication-title: Front Oncol
  doi: 10.3389/fonc.2014.00086
– volume: 100
  start-page: 5057
  year: 2003
  ident: B45
  article-title: Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0830918100
– volume: 8
  start-page: 794
  year: 2009
  ident: B50
  article-title: HDAC2 regulates chromatin plasticity and enhances DNA vulnerability
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-08-0985
– volume: 68
  start-page: 3785
  year: 2008
  ident: B148
  article-title: Constitutive activation of signal transducers and activators of transcription predicts vorinostat resistance in cutaneous T-cell lymphoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-6091
– volume: 107
  start-page: 14639
  year: 2010
  ident: B43
  article-title: Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1008522107
– volume: 111
  start-page: 11774
  year: 2014
  ident: B138
  article-title: Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1410626111
– volume: 4
  start-page: 45
  year: 2014
  ident: B2
  article-title: Epigenetic regulation in cancer progression
  publication-title: Cell Biosci
  doi: 10.1186/2045-3701-4-45
– volume: 9
  start-page: 1511
  year: 2014
  ident: B24
  article-title: Dysregulated class I histone deacetylases are indicators of poor prognosis in multiple myeloma
  publication-title: Epigenetics
  doi: 10.4161/15592294.2014.983367
– volume: 31
  start-page: 1869
  year: 2012
  ident: B75
  article-title: Molecular mechanisms of cisplatin resistance
  publication-title: Oncogene
  doi: 10.1038/onc.2011.384
– volume: 4
  start-page: 505
  year: 2012
  ident: B145
  article-title: Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed
  publication-title: Future Med Chem
  doi: 10.4155/fmc.12.3
– volume: 14
  start-page: 5385
  year: 2008
  ident: B122
  article-title: Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-0469
– volume: 20
  start-page: 3898
  year: 2015
  ident: B1
  article-title: Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents
  publication-title: Molecules
  doi: 10.3390/molecules20033898
– volume: 62
  start-page: 4996
  year: 2002
  ident: B89
  article-title: Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model
  publication-title: Cancer Res
– volume: 73
  start-page: 417
  year: 2004
  ident: B18
  article-title: The Sir2 family of protein deacetylases
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.73.011303.073651
– volume: 15
  start-page: 177
  year: 1997
  ident: B47
  article-title: The genetic defect in ataxia-telangiectasia
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.15.1.177
– volume: 3
  start-page: e1053594
  year: 2016
  ident: B51
  article-title: Trial watch – inhibiting PARP enzymes for anticancer therapy
  publication-title: Mol Cell Oncol
  doi: 10.1080/23723556.2015.1053594
– volume: 20
  start-page: 639
  year: 2008
  ident: B83
  article-title: Histone deacetylase inhibitors in cancer therapy
  publication-title: Curr Opin Oncol
  doi: 10.1097/CCO.0b013e3283127095
– volume: 32
  start-page: 3683
  year: 2004
  ident: B41
  article-title: Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh703
– volume: 5
  start-page: 601
  year: 2009
  ident: B60
  article-title: Panobinostat (LBH589): a potent pan-deacetylase inhibitor with promising activity against hematologic and solid tumors
  publication-title: Future Oncol
  doi: 10.2217/fon.09.36
– volume: 2
  start-page: 619
  year: 2009
  ident: B117
  article-title: Finding the place of histone deacetylase inhibitors in prostate cancer therapy
  publication-title: Expert Rev Clin Pharmacol
  doi: 10.1586/ecp.09.44
– volume: 8
  start-page: 415
  year: 2016
  ident: B134
  article-title: Histone deacetylase inhibitors as immunomodulators in cancer therapeutics
  publication-title: Epigenomics
  doi: 10.2217/epi.15.118
– volume: 10
  start-page: 2034
  year: 2011
  ident: B99
  article-title: Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-11-0433
– volume: 34
  start-page: 81
  year: 2008
  ident: B5
  article-title: Novel cytotoxic drugs: old challenges, new solutions
  publication-title: Cancer Treat Rev
  doi: 10.1016/j.ctrv.2007.08.001
– volume: 7
  start-page: 263
  year: 2011
  ident: B57
  article-title: Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer
  publication-title: Future Oncol
  doi: 10.2217/fon.11.2
– volume: 21
  start-page: 1129
  year: 2001
  ident: B33
  article-title: Increased expression of peroxiredoxin II confers resistance to cisplatin
  publication-title: Anticancer Res
– volume: 6
  start-page: 202
  year: 2015
  ident: B29
  article-title: Belinostat in patients with refractory or relapsed peripheral T-cell lymphoma: a perspective review
  publication-title: Ther Adv Hematol
  doi: 10.1177/2040620715592567
– volume: 92
  start-page: 2247
  year: 2001
  ident: B105
  article-title: Anastrozole is superior to tamoxifen as first-line therapy in hormone receptor positive advanced breast carcinoma
  publication-title: Cancer
  doi: 10.1002/1097-0142(20011101)92:9<2247::AID-CNCR1570>3.0.CO;2-Y
– volume: 29
  start-page: 312
  year: 2000
  ident: B32
  article-title: The role of the redox protein thioredoxin in cell growth and cancer
  publication-title: Free Radic Biol Med
  doi: 10.1016/S0891-5849(00)00313-0
– volume: 7
  start-page: 70
  year: 2008
  ident: B146
  article-title: Differential effects of class I isoform histone deacetylase depletion and enzymatic inhibition by belinostat or valproic acid in HeLa cells
  publication-title: Mol Cancer
  doi: 10.1186/1476-4598-7-70
– volume: 12
  start-page: 3997
  year: 2006
  ident: B143
  article-title: Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-05-2689
– volume: 185
  start-page: 1102
  year: 2011
  ident: B78
  article-title: The histone deacetylase inhibitor trichostatin A synergistically resensitizes a cisplatin resistant human bladder cancer cell line
  publication-title: J Urol
  doi: 10.1016/j.juro.2010.10.034
– volume: 6
  start-page: a026831
  year: 2016
  ident: B20
  article-title: HDACs and HDAC inhibitors in cancer development and therapy
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a026831
– volume: 66
  start-page: 6361
  year: 2006
  ident: B130
  article-title: Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-0080
– volume: 161
  start-page: 205
  year: 2015
  ident: B132
  article-title: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.030
– volume: 12
  start-page: 21
  year: 1985
  ident: B80
  article-title: Preclinical studies identifying carboplatin as a viable cisplatin alternative
  publication-title: Cancer Treat Rev
  doi: 10.1016/0305-7372(85)90015-5
– volume: 66
  start-page: 181
  year: 2010
  ident: B110
  article-title: A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-010-1289-x
– volume: 23
  start-page: 7199
  year: 2017
  ident: B142
  article-title: Immunomodulation by entinostat in renal cell carcinoma patients receiving high-dose interleukin 2: a multicenter, single-arm, phase I/II trial (NCI-CTEP#7870)
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.Ccr-17-1178
– volume: 70
  start-page: 1524
  year: 2010
  ident: B114
  article-title: An in vitro model for preclinical testing of endocrine therapy combinations for prostate cancer
  publication-title: Prostate
  doi: 10.1002/pros.21187
– volume: 11
  start-page: 8467
  year: 2005
  ident: B64
  article-title: Synergistic interaction between histone deacetylase and topoisomerase II inhibitors is mediated through topoisomerase IIbeta
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-05-1073
– volume: 65
  start-page: 3815
  year: 2005
  ident: B69
  article-title: Valproic acid alters chromatin structure by regulation of chromatin modulation proteins
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.can-04-2478
– volume: 389
  start-page: 349
  year: 1997
  ident: B12
  article-title: Histone acetylation in chromatin structure and transcription
  publication-title: Nature
  doi: 10.1038/38664
– volume: 21
  start-page: 2237
  year: 2003
  ident: B123
  article-title: Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (the IDEAL 1 trial) [corrected]
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2003.10.038
– volume: 74
  start-page: 300
  year: 2011
  ident: B85
  article-title: Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2011.02.019
– volume: 274
  start-page: 31127
  year: 1999
  ident: B49
  article-title: Sensing of ionizing radiation-induced DNA damage by ATM through interaction with histone deacetylase
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.44.31127
– volume: 23
  start-page: 3906
  year: 2005
  ident: B129
  article-title: Pharmacokinetics of 5-azacitidine administered with phenylbutyrate in patients with refractory solid tumors or hematologic malignancies
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.07.450
– volume: 67
  start-page: 425
  year: 1998
  ident: B87
  article-title: The ubiquitin system
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.67.1.425
– volume: 6
  start-page: 51
  year: 2007
  ident: B115
  article-title: Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-06-0144
– volume: 7
  start-page: 388
  year: 2015
  ident: B116
  article-title: Histone deacetylase inhibitors in castration-resistant prostate cancer: molecular mechanism of action and recent clinical trials
  publication-title: Ther Adv Urol
  doi: 10.1177/1756287215597637
– volume: 18
  start-page: 18
  year: 2015
  ident: B104
  article-title: Molecular basis of resistance to proteasome inhibitors in hematological malignancies
  publication-title: Drug Resist Updat
  doi: 10.1016/j.drup.2014.12.001
– volume: 41
  start-page: 296
  year: 2016
  ident: B30
  article-title: Panobinostat (Farydak): a novel option for the treatment of relapsed or relapsed and refractory multiple myeloma
  publication-title: P T
– volume: 2
  start-page: 341
  year: 2005
  ident: B10
  article-title: The formulation of lipid-based nanotechnologies for the delivery of fixed dose anticancer drug combinations
  publication-title: Curr Drug Deliv
  doi: 10.2174/156720105774370294
– volume: 16
  start-page: 377
  year: 2007
  ident: B4
  article-title: Non-Hodgkin lymphoma secondary to cancer chemotherapy
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-06-1069
– volume: 48
  start-page: 242
  year: 2012
  ident: B86
  article-title: Failure of amino acid homeostasis causes cell death following proteasome inhibition
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.08.003
– volume: 8
  start-page: 2021
  year: 2011
  ident: B34
  article-title: Histone deacetylase inhibitors: emerging mechanisms of resistance
  publication-title: Mol Pharm
  doi: 10.1021/mp200329f
– volume: 13
  start-page: 3605
  year: 2007
  ident: B82
  article-title: Phase I and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-0162
– volume: 13
  start-page: 7237
  year: 2007
  ident: B35
  article-title: Mechanisms of resistance to histone deacetylase inhibitors and their therapeutic implications
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.Ccr-07-2114
– volume: 3
  start-page: 777
  year: 2004
  ident: B38
  article-title: Histone-deacetylase inhibitors for the treatment of cancer
  publication-title: Cell Cycle
  doi: 10.4161/cc.3.6.927
– volume: 15
  start-page: 91
  year: 2009
  ident: B23
  article-title: Histone deacetylase 8 in neuroblastoma tumorigenesis
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.Ccr-08-0684
SSID ssj0000650103
Score 2.6217315
SecondaryResourceType review_article
Snippet Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 92
SubjectTerms cancer
chemotherapeutic drugs
combination therapy
histone deacetylase inhibitors
histone deacetylases
Oncology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQB8QFFUpp-JIr9UAPgdhJ7JjbshRtkUAcFsEtir1jbSSUrWg48Cf4zcw42dVu1aqXXh07dmbG9jx78oaxr6pQoEHquFLCxplwMq6EV7HDUu9BJ0bS_843t2p0n10_5o9Lqb4oJqyjB-4EdyYKU0BhK1GlkBVVaq0zUjsVeFZsBrT6JiZZAlPdGpxTAoOOywdRmDnzs4YYCwWFTiZGrmxDga3_Ty7m75GSS1vP1Qe21fuMfNCNdZutQbPDNm76W_GP7A0nNQLcIGM-7mgC-EPdTnkgAWmAX-LCB-0resrAfzTT2taUZIefjC4Hw_obR8eVoyPIx_Oocz7zfEj28HzOB25aAx07hCoEWfs-wjk4v5u1FHCE48M24X277P7q-3g4ivs8C7HLctPG2sFEixx3KcQuxmkUsUYglEhI8xRwA8dyAT6xiSqcE84g6HK68F5I5VLp0k9svcGP-cz4RGtjKYe6TB26OtJamYGX2QRRjUZfNGKnc7GXrichp1wYTyWCEdJTSXoqSU9l0FPEThYNfnb8G3-vekF6XFQj4uxQgOZU9uZU_sucIvZlbgUlTjS6PakamL38wo4krld0Lxyxvc4qFl1Jo9DxTHTE9Iq9rIxl9UlTTwOZN_0obGSx_z8Gf8A2SRwUIifNIVtvn1_gCH2m1h6H6fEOU8wU9Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi
URI https://www.ncbi.nlm.nih.gov/pubmed/29651407
https://www.proquest.com/docview/2025312870
https://pubmed.ncbi.nlm.nih.gov/PMC5884928
https://doaj.org/article/1898e8ba1a3e48a3bbc927c603082b4e
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgSIgXxO9lg8lIPIyHjNpJ7BgJodIxClIRD63oWxS7ZxppSqDLJPZP8Ddz56RlReWFlzw4dpz47nz32c53jL1QuQINUselEjZOhZNxKbyKHZZ6D3pgJP3vPPmsxrP00zyb_0kH1A_gxU5oR_mkZqvzk58_rt6iwb8hxIn-9pVvaiIjFHQqEp99k91Ct6QIiU36WL-bljPKadDR--xqR7zARmEAQallrzmpwOW_KwD9-xzlNcd0do_d7SNKPuxU4D67AfUDdnvS75k_ZL_Q5BH-BgnwaUciwL9W7ZIHipAa-ClOi9BeYRwN_GO9rGxFKXj48fh0OKpecgxrOYaJfLo-k84bz0ekLavXfOiWFdCiRKhCgLbvI6yS8y9NS8eR8P2wTXjeIzY7ez8djeM-C0Ps0sy0sXaw0CJDH4bIxjhtrdMIkwYSkiwBdO9YLsAP7EDlzglnEJI5nXsvpHKJdMljtlfjx-wzvtDaWMqwLhOHgZC0VqbgZbpAzKMxUo3YyXrYC9dTlFOmjPMCoQqJrCCRFSSyIogsYsebBt87do5_V31HctxUI1rtUNCsvhW9lRYiNznkthRlAmleJvitRmqnAqmPTSFiz9daUKAZ0t5KWUNzeYEdSZzNaNc4Yk86rdh0tdaqiOktfdl6l-07dbUMVN_0G7GR-cF_tzxkd2gM6NScNE_ZXru6hGcYRrX2KCw_4PXDXBwFU_kNqyQe4A
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+Therapy+With+Histone+Deacetylase+Inhibitors+%28HDACi%29+for+the+Treatment+of+Cancer%3A+Achieving+the+Full+Therapeutic+Potential+of+HDACi&rft.jtitle=Frontiers+in+oncology&rft.au=Suraweera%2C+Amila&rft.au=O%E2%80%99Byrne%2C+Kenneth+J.&rft.au=Richard%2C+Derek+J.&rft.date=2018-03-29&rft.pub=Frontiers+Media+S.A&rft.eissn=2234-943X&rft.volume=8&rft_id=info:doi/10.3389%2Ffonc.2018.00092&rft_id=info%3Apmid%2F29651407&rft.externalDocID=PMC5884928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon