Three-dimensional Si/hard-carbon/graphene network as high-performance anode material for lithium ion batteries

The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science Vol. 53; no. 3; pp. 2149 - 2160
Main Authors Jiao, Miao-lun, Qi, Jie, Shi, Zhi-qiang, Wang, Cheng-yang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2018
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-2461
1573-4803
DOI10.1007/s10853-017-1676-3

Cover

Abstract The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of 800 °C. The as-prepared three-dimensional Si/HC/G composite is composed of the Si/HC microspheres on the graphene network. In the portion about Si/HC, some of the Si nanoparticles are embedded into the hard carbon, which can provide the great strength alleviating the volume expansion and shrinkage of Si. The graphene portion can connect Si/HC microspheres preventing the electrode cracks and can provide the pathway to improve the transport of electrons and diffusion of lithium ions. Hence, the Si/HC/G composite could not only avoid the pulverization of the Si-based material but also enhance the electronic conductivity, displaying excellent electrochemical performances. Compared with the HC and Si/HC samples, the Si/HC/G composite possesses the specific charge capacity of 514.8 mA h g −1 at the high current density of 2 A g −1 and has the high charge capacity of 818 mA h g −1 at the current density of 100 mA g −1 after 100 charge and discharge cycles. Resultantly, the Si/HC/G composite shows great potential for the application of lithium ion battery anode material in the future.
AbstractList The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of 800 °C. The as-prepared three-dimensional Si/HC/G composite is composed of the Si/HC microspheres on the graphene network. In the portion about Si/HC, some of the Si nanoparticles are embedded into the hard carbon, which can provide the great strength alleviating the volume expansion and shrinkage of Si. The graphene portion can connect Si/HC microspheres preventing the electrode cracks and can provide the pathway to improve the transport of electrons and diffusion of lithium ions. Hence, the Si/HC/G composite could not only avoid the pulverization of the Si-based material but also enhance the electronic conductivity, displaying excellent electrochemical performances. Compared with the HC and Si/HC samples, the Si/HC/G composite possesses the specific charge capacity of 514.8 mA h g.sup.-1 at the high current density of 2 A g.sup.-1 and has the high charge capacity of 818 mA h g.sup.-1 at the current density of 100 mA g.sup.-1 after 100 charge and discharge cycles. Resultantly, the Si/HC/G composite shows great potential for the application of lithium ion battery anode material in the future.
The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of 800 °C. The as-prepared three-dimensional Si/HC/G composite is composed of the Si/HC microspheres on the graphene network. In the portion about Si/HC, some of the Si nanoparticles are embedded into the hard carbon, which can provide the great strength alleviating the volume expansion and shrinkage of Si. The graphene portion can connect Si/HC microspheres preventing the electrode cracks and can provide the pathway to improve the transport of electrons and diffusion of lithium ions. Hence, the Si/HC/G composite could not only avoid the pulverization of the Si-based material but also enhance the electronic conductivity, displaying excellent electrochemical performances. Compared with the HC and Si/HC samples, the Si/HC/G composite possesses the specific charge capacity of 514.8 mA h g−1 at the high current density of 2 A g−1 and has the high charge capacity of 818 mA h g−1 at the current density of 100 mA g−1 after 100 charge and discharge cycles. Resultantly, the Si/HC/G composite shows great potential for the application of lithium ion battery anode material in the future.
The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of 800 °C. The as-prepared three-dimensional Si/HC/G composite is composed of the Si/HC microspheres on the graphene network. In the portion about Si/HC, some of the Si nanoparticles are embedded into the hard carbon, which can provide the great strength alleviating the volume expansion and shrinkage of Si. The graphene portion can connect Si/HC microspheres preventing the electrode cracks and can provide the pathway to improve the transport of electrons and diffusion of lithium ions. Hence, the Si/HC/G composite could not only avoid the pulverization of the Si-based material but also enhance the electronic conductivity, displaying excellent electrochemical performances. Compared with the HC and Si/HC samples, the Si/HC/G composite possesses the specific charge capacity of 514.8 mA h g⁻¹ at the high current density of 2 A g⁻¹ and has the high charge capacity of 818 mA h g⁻¹ at the current density of 100 mA g⁻¹ after 100 charge and discharge cycles. Resultantly, the Si/HC/G composite shows great potential for the application of lithium ion battery anode material in the future.
The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of 800 °C. The as-prepared three-dimensional Si/HC/G composite is composed of the Si/HC microspheres on the graphene network. In the portion about Si/HC, some of the Si nanoparticles are embedded into the hard carbon, which can provide the great strength alleviating the volume expansion and shrinkage of Si. The graphene portion can connect Si/HC microspheres preventing the electrode cracks and can provide the pathway to improve the transport of electrons and diffusion of lithium ions. Hence, the Si/HC/G composite could not only avoid the pulverization of the Si-based material but also enhance the electronic conductivity, displaying excellent electrochemical performances. Compared with the HC and Si/HC samples, the Si/HC/G composite possesses the specific charge capacity of 514.8 mA h g −1 at the high current density of 2 A g −1 and has the high charge capacity of 818 mA h g −1 at the current density of 100 mA g −1 after 100 charge and discharge cycles. Resultantly, the Si/HC/G composite shows great potential for the application of lithium ion battery anode material in the future.
Audience Academic
Author Jiao, Miao-lun
Qi, Jie
Wang, Cheng-yang
Shi, Zhi-qiang
Author_xml – sequence: 1
  givenname: Miao-lun
  orcidid: 0000-0001-6662-659X
  surname: Jiao
  fullname: Jiao, Miao-lun
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 2
  givenname: Jie
  orcidid: 0000-0002-2873-540X
  surname: Qi
  fullname: Qi, Jie
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 3
  givenname: Zhi-qiang
  orcidid: 0000-0003-0941-5870
  surname: Shi
  fullname: Shi, Zhi-qiang
  email: shizhiqiang@tjpu.edu.cn
  organization: Laboratory of Fiber Modification and Functional Fiber, College of Materials Science and Engineering, Tianjin Polytechnic University
– sequence: 4
  givenname: Cheng-yang
  orcidid: 0000-0002-1830-5350
  surname: Wang
  fullname: Wang, Cheng-yang
  email: cywang@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
BookMark eNp9kV9r1jAUxoNM8N30A3hX8EYvsjd_2qa9HEO3wUBw8zqctidtZpu8JinTb29eK8gGSi4CJ7_nOTnnOSUnzjsk5C1n55wxtY-cNZWkjCvKa1VT-YLseKUkLRsmT8iOMSGoKGv-ipzG-MAYq5TgO-Lup4BIB7ugi9Y7mIs7u58gDLSH0Hm3HwMcJnRYOEyPPnwrIBaTHSd6wGB8WMD1WIDzAxYLJAw2W-R6Mds02XUpsmnRQTq-YHxNXhqYI775c5-Rr58-3l9e09vPVzeXF7e0L6s2USWkANZKVpfMKAbCdEYKMTQNmhbrFgYYkA8dN4CiznM2Td3JSvYNU8YIkGfk_eZ7CP77ijHpxcYe5xkc-jVq8XsBtRAqo--eoQ9-DXkRmRJVW3MpRZmp840aYUZtnfEpQJ_PgIvtcxbG5vpFxcuybEV1tP3wRJCZhD_SCGuM-ubuy1OWb2wffIwBjT4Eu0D4qTnTx3j1Fq_O8epjvFpmjXqm6W2ClLedP2bn_yrFpoy5ixsx_B3436JfKJ661Q
CitedBy_id crossref_primary_10_1016_j_tsf_2019_137516
crossref_primary_10_1039_D4TA02070G
crossref_primary_10_1016_j_jelechem_2019_04_072
crossref_primary_10_1088_1361_6528_ab8edc
crossref_primary_10_1007_s11164_019_03799_z
crossref_primary_10_1002_aesr_202100081
crossref_primary_10_1016_j_jallcom_2020_155774
crossref_primary_10_20964_2019_02_64
crossref_primary_10_1016_j_jallcom_2021_159716
crossref_primary_10_1016_j_jpowsour_2019_227692
crossref_primary_10_1038_s41598_020_79205_1
crossref_primary_10_1007_s10853_020_04807_z
crossref_primary_10_1016_j_ceramint_2019_05_255
crossref_primary_10_1016_j_electacta_2020_135729
crossref_primary_10_1021_acsami_0c10064
crossref_primary_10_3390_nano11123454
crossref_primary_10_1002_celc_201901111
crossref_primary_10_20964_2019_06_77
crossref_primary_10_1016_j_carbon_2022_10_010
crossref_primary_10_1016_j_jssc_2018_12_011
crossref_primary_10_1016_j_ensm_2023_102946
crossref_primary_10_1007_s10854_019_01372_3
crossref_primary_10_1016_j_ensm_2020_02_008
crossref_primary_10_1080_10408436_2023_2169658
crossref_primary_10_1016_j_jallcom_2024_175873
crossref_primary_10_1016_j_jpcs_2019_05_010
crossref_primary_10_1039_C8NJ05098H
crossref_primary_10_1016_j_jallcom_2024_177012
crossref_primary_10_1007_s11581_022_04527_1
Cites_doi 10.1021/acsami.6b13028
10.1186/s11671-016-1414-9
10.1016/j.jallcom.2016.12.242
10.1021/acsami.5b11628
10.1016/j.electacta.2015.11.020
10.1016/j.electacta.2016.01.103
10.1149/2.0101701jes
10.1016/j.jallcom.2016.08.265
10.1002/adfm.201502959
10.1016/j.jelechem.2015.03.034
10.1039/C6CP06788C
10.1021/acsnano.5b07977
10.1002/aenm.201600904
10.1038/ncomms9844
10.1021/acs.chemmater.5b04931
10.1021/acsnano.6b00218
10.1038/nchem.1802
10.1021/acsami.5b10548
10.1039/C6NR01559J
10.1038/nnano.2017.16
10.1039/C6TA10631E
10.1016/j.ijhydene.2016.07.220
10.1039/C4TA01013B
10.1039/C6NJ01042C
10.1016/j.apsusc.2016.11.045
10.1039/C5TA07487H
10.1016/j.electacta.2016.09.048
10.1016/j.electacta.2017.01.173
10.1016/j.nanoen.2016.08.012
10.1016/j.carbon.2015.11.048
10.1038/ncomms10998
10.1016/j.jpowsour.2013.12.128
10.1021/nl902058c
10.1021/acsnano.6b04522
10.1002/aenm.201600943
10.1039/C5NR05116A
10.1016/j.electacta.2016.01.096
10.1021/jacs.6b06673
10.1016/j.jpowsour.2016.04.016
10.1039/C6TA04386K
10.1186/s11671-015-1209-4
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2017
COPYRIGHT 2018 Springer
Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC 2017
– notice: COPYRIGHT 2018 Springer
– notice: Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOI 10.1007/s10853-017-1676-3
DatabaseName CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database (subscription)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Materials Science Collection
AGRICOLA

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-4803
EndPage 2160
ExternalDocumentID A514449257
10_1007_s10853_017_1676_3
GrantInformation_xml – fundername: Nature Science Foundation of Tianjin city
  grantid: 14RCHZGX00859
GroupedDBID -4Y
-58
-5G
-BR
-EM
-XW
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
29K
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IGS
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF-
PKN
PT4
PT5
PTHSS
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z91
Z92
ZE2
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c459t-7232a0930640f70a2fbf322d88ef9e69adade1db1fae26157886b353c807ff2a3
IEDL.DBID U2A
ISSN 0022-2461
IngestDate Fri Sep 05 13:39:17 EDT 2025
Fri Jul 25 09:22:20 EDT 2025
Tue Jun 10 21:21:47 EDT 2025
Fri Jun 27 05:29:53 EDT 2025
Tue Jul 01 01:25:58 EDT 2025
Thu Apr 24 22:53:50 EDT 2025
Fri Feb 21 02:45:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Silicon Anode Materials
Silicon Nanoparticles
Lithium Ion Insertion
Specific Charge Capacity
Hard Carbon
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-7232a0930640f70a2fbf322d88ef9e69adade1db1fae26157886b353c807ff2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6662-659X
0000-0002-1830-5350
0000-0002-2873-540X
0000-0003-0941-5870
PQID 2259613324
PQPubID 2043599
PageCount 12
ParticipantIDs proquest_miscellaneous_2000576227
proquest_journals_2259613324
gale_infotracacademiconefile_A514449257
gale_incontextgauss_ISR_A514449257
crossref_primary_10_1007_s10853_017_1676_3
crossref_citationtrail_10_1007_s10853_017_1676_3
springer_journals_10_1007_s10853_017_1676_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Full Set - Includes `Journal of Materials Science Letters
PublicationTitle Journal of materials science
PublicationTitleAbbrev J Mater Sci
PublicationYear 2018
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Ryu, Hong, Choi, Park (CR34) 2016; 10
Kim, Kim, Ding, Lee, Lim, Yoon, Kang (CR2) 2016; 6
Loveridge, Lain, Huang, Wan, Roberts, Pappas, Bhagat (CR20) 2016; 18
Fu, Wang, Dai, Carter, Hu (CR4) 2016; 28
Wang, Gao, Pan, Wang, Liu (CR13) 2014; 256
Tokur, Algul, Ozcan, Cetinkaya, Uysal, Akbulut (CR31) 2016; 216
Jeena, Bok, Kim, Park, Kim, Park, Ryu (CR40) 2016; 8
Shen, Jiang, Sun, Wang, Dong, Hu, Yang (CR37) 2017; 691
Park, Kim, Dar, Shim, Kim (CR6) 2017; 698
Zhu, Wang, Fan, Mei, Lu (CR25) 2016; 10
Ji, Wan, Yang, Li, Xiong, Li, Han, Guo, Luo (CR24) 2016; 192
Sun, Hu, Liu, Zhang, Liu, Yang, Wang, Zhu (CR19) 2016; 191
Mi, Li, Xu, Li, Chai, He, Li, Liu (CR26) 2016; 11
Tao, Xiong, Zhu, Yang, Zhang (CR38) 2016; 41
Sun, Hu, Zhang, Liu, Zhu (CR21) 2016; 318
Lin, Liu, Cui (CR3) 2017; 12
Yu, Xin, You, Yu, Lin, Xu, Qiao, Huang, Yang, Yu, Goodenough (CR30) 2016; 138
Wu, Shi, Wang, Jin (CR15) 2015; 746
Agyeman, Song, Lee, Park, Kang (CR23) 2016; 6
Liu, Guo, Liu, Xie, Liu, He (CR8) 2017; 396
Kim, Oh, Kim, Kim, Jeong, Bae, Hong, Lee (CR7) 2017; 164
Wang, Luo, Lu, Rong, Liu, Chu, Sun, Quan, Zheng, Li, Gu, Qiu, Li, Chen (CR9) 2017; 9
Rahman, Song, Bhatt, Wong, Wen (CR1) 2016; 26
Park, Kim, Joo, Kim, Kim, Ahn, Cui, Cho (CR16) 2009; 9
Wang, Wu, Chen, McDowell, Cui, Bao (CR18) 2013; 5
Ashuri, He, Shaw (CR12) 2015; 8
Li, Tian, Zhao, Wang, Song, Guo, Chen, Liu (CR28) 2016; 40
David, Bhandavat, Barrera, Singh (CR5) 2016; 7
Higgins, Park, King, Zhang, McEvoy, Berner, Daly, Shmeliov, Khan, Duesberg, Nicolosi, Coleman (CR10) 2016; 10
Wei, Hou, Wei (CR11) 2017; 229
Wu, Qin, Miao, He, Liang, Zhou, Liu, Han, Li, Kang (CR36) 2016; 98
Sun, Hu, Zhang, Wang, Yang, Liu, Zhu (CR41) 2016; 187
Kim, Lee, Kim, Kim, Yang, Park (CR17) 2016; 8
Hu, Sun, Chen, Zeng, Zhu (CR22) 2014; 2
Kim, Kim, Han, Lee, Choe, Kwak, Choi, Son, Shin, Park (CR27) 2016; 27
Sun, Wan, Li, Zhao, Yan (CR32) 2016; 4
Ren, Wang, Zhang, Tan, Zhong, Su (CR35) 2016; 4
Wang, Zhu, Chen, Yang, Qin, Li, Cheng, Yu, Xu, Lu (CR39) 2017; 5
Xiao, Gu, Yang, Li, Zhang, Liu, Liu, Dai, Yang, Liu, Xiao, Liu, Zhao, Zhang, Wang, Lu, Cai (CR14) 2015; 6
Jiao, Liu, Shi, Wang (CR29) 2017; 4
Fei, Williams, Yoo, Kim, Shoorideh, Joo (CR33) 2016; 8
X Li (1676_CR28) 2016; 40
C Wang (1676_CR9) 2017; 9
J Ryu (1676_CR34) 2016; 10
C Wang (1676_CR18) 2013; 5
J Wu (1676_CR36) 2016; 98
W Sun (1676_CR32) 2016; 4
L David (1676_CR5) 2016; 7
ZL Yu (1676_CR30) 2016; 138
L Fei (1676_CR33) 2016; 8
DA Agyeman (1676_CR23) 2016; 6
MA Rahman (1676_CR1) 2016; 26
W Sun (1676_CR21) 2016; 318
D Ji (1676_CR24) 2016; 192
MT Jeena (1676_CR40) 2016; 8
X Wu (1676_CR15) 2015; 746
M Ashuri (1676_CR12) 2015; 8
MH Park (1676_CR16) 2009; 9
N Kim (1676_CR7) 2017; 164
M Tokur (1676_CR31) 2016; 216
TM Higgins (1676_CR10) 2016; 10
MJ Loveridge (1676_CR20) 2016; 18
L Wei (1676_CR11) 2017; 229
W Sun (1676_CR19) 2016; 191
W Ren (1676_CR35) 2016; 4
SY Kim (1676_CR17) 2016; 8
SW Park (1676_CR6) 2017; 698
D Wang (1676_CR13) 2014; 256
W Sun (1676_CR41) 2016; 187
T Wang (1676_CR39) 2017; 5
J Zhu (1676_CR25) 2016; 10
H Kim (1676_CR2) 2016; 6
H Mi (1676_CR26) 2016; 11
R Hu (1676_CR22) 2014; 2
D Lin (1676_CR3) 2017; 12
KK Fu (1676_CR4) 2016; 28
SJ Kim (1676_CR27) 2016; 27
M Jiao (1676_CR29) 2017; 4
H Tao (1676_CR38) 2016; 41
X Shen (1676_CR37) 2017; 691
Z Liu (1676_CR8) 2017; 396
Q Xiao (1676_CR14) 2015; 6
References_xml – volume: 9
  start-page: 2806
  issue: 3
  year: 2017
  end-page: 2814
  ident: CR9
  article-title: A well-defined silicon nanocone–carbon structure for demonstrating exclusive influences of carbon coating on silicon anode of lithium-ion batteries
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b13028
– volume: 11
  start-page: 1
  year: 2016
  end-page: 9
  ident: CR26
  article-title: A tremella-like nanostructure of silicon@void@graphene-like nanosheets composite as an anode for lithium-ion batteries
  publication-title: Nanoscale Res Lett
  doi: 10.1186/s11671-016-1414-9
– volume: 698
  start-page: 525
  year: 2017
  end-page: 531
  ident: CR6
  article-title: Enhanced cycle stability of silicon coated with waste poly(vinyl butyral)-directed carbon for lithium-ion battery anodes
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2016.12.242
– volume: 8
  start-page: 12109
  year: 2016
  end-page: 12117
  ident: CR17
  article-title: Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b11628
– volume: 187
  start-page: 1
  year: 2016
  end-page: 10
  ident: CR41
  article-title: A long-life nano-silicon anode for lithium ion batteries: supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.11.020
– volume: 192
  start-page: 22
  year: 2016
  end-page: 29
  ident: CR24
  article-title: Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel nanocomposite for lithium-ion batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.01.103
– volume: 164
  start-page: A6075
  year: 2017
  end-page: A6083
  ident: CR7
  article-title: High-performance Li-ion battery anodes based on silicon-graphene self-assemblies
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0101701jes
– volume: 691
  start-page: 178
  year: 2017
  end-page: 184
  ident: CR37
  article-title: Ionic liquid assist to prepare Si@ -doped carbon nanoparticles and its high performance in lithium ion batteries
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2016.08.265
– volume: 26
  start-page: 647
  year: 2016
  end-page: 678
  ident: CR1
  article-title: Nanostructured silicon anodes for high-performance lithium-ion batteries
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201502959
– volume: 746
  start-page: 62
  year: 2015
  end-page: 67
  ident: CR15
  article-title: Nanostructured SiO /C composites prepared via electrospinning and their electrochemical properties for lithium ion batteries
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2015.03.034
– volume: 18
  start-page: 30677
  year: 2016
  end-page: 30685
  ident: CR20
  article-title: Enhancing cycling durability of Li-ion batteries with hierarchical structured silicon–graphene hybrid anodes
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C6CP06788C
– volume: 10
  start-page: 2843
  year: 2016
  end-page: 2851
  ident: CR34
  article-title: Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07977
– volume: 6
  start-page: 1600904
  year: 2016
  ident: CR23
  article-title: Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201600904
– volume: 6
  start-page: 8844
  year: 2015
  ident: CR14
  article-title: Inward lithium-ion breathing of hierarchically porous silicon anodes
  publication-title: Nat Commun
  doi: 10.1038/ncomms9844
– volume: 28
  start-page: 3527
  year: 2016
  end-page: 3539
  ident: CR4
  article-title: Transient electronics: materials and devices
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b04931
– volume: 10
  start-page: 3702
  year: 2016
  end-page: 3713
  ident: CR10
  article-title: A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00218
– volume: 5
  start-page: 1042
  year: 2013
  end-page: 1048
  ident: CR18
  article-title: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
  publication-title: Nat Chem
  doi: 10.1038/nchem.1802
– volume: 8
  start-page: 5243
  year: 2016
  end-page: 5250
  ident: CR33
  article-title: Graphene folding in Si rich carbon nanofibers for highly stable, high capacity Li-Ion battery anodes
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b10548
– volume: 8
  start-page: 9245
  year: 2016
  end-page: 9253
  ident: CR40
  article-title: A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries
  publication-title: Nanoscale
  doi: 10.1039/C6NR01559J
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  ident: CR3
  article-title: Reviving the lithium metal anode for high-energy batteries
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2017.16
– volume: 5
  start-page: 4809
  year: 2017
  end-page: 4817
  ident: CR39
  article-title: Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA10631E
– volume: 41
  start-page: 21268
  year: 2016
  end-page: 21277
  ident: CR38
  article-title: Flexible binder-free reduced graphene oxide wrapped Si/carbon fibers paper anode for high-performance lithium ion batteries
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2016.07.220
– volume: 2
  start-page: 9118
  year: 2014
  end-page: 9125
  ident: CR22
  article-title: Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA01013B
– volume: 40
  start-page: 8961
  year: 2016
  end-page: 8968
  ident: CR28
  article-title: A self-assembly strategy for fabricating highly stable silicon/reduced graphene oxide anodes for lithium-ion batteries
  publication-title: New J Chem
  doi: 10.1039/C6NJ01042C
– volume: 396
  start-page: 41
  year: 2017
  end-page: 47
  ident: CR8
  article-title: Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.11.045
– volume: 4
  start-page: 552
  year: 2016
  end-page: 560
  ident: CR35
  article-title: Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener?
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA07487H
– volume: 216
  start-page: 312
  year: 2016
  end-page: 319
  ident: CR31
  article-title: Closing to scaling-up high reversible Si/rGO nanocomposite anodes for lithium ion batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.09.048
– volume: 229
  start-page: 445
  year: 2017
  end-page: 451
  ident: CR11
  article-title: Porous sandwiched graphene/silicon anodes for lithium storage
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2017.01.173
– volume: 27
  start-page: 545
  year: 2016
  end-page: 553
  ident: CR27
  article-title: 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.012
– volume: 98
  start-page: 582
  year: 2016
  end-page: 591
  ident: CR36
  article-title: A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.11.048
– volume: 7
  start-page: 10998
  year: 2016
  ident: CR5
  article-title: Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries
  publication-title: Nat Commun
  doi: 10.1038/ncomms10998
– volume: 256
  start-page: 190
  year: 2014
  end-page: 199
  ident: CR13
  article-title: High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2013.12.128
– volume: 9
  start-page: 3844
  year: 2009
  end-page: 3847
  ident: CR16
  article-title: Silicon nanotube battery anodes
  publication-title: Nano Lett
  doi: 10.1021/nl902058c
– volume: 10
  start-page: 8243
  year: 2016
  end-page: 8251
  ident: CR25
  article-title: Atomic-scale control of silicon expansion space as ultrastable battery anodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04522
– volume: 6
  start-page: 1600943
  year: 2016
  ident: CR2
  article-title: Recent progress in electrode materials for sodium-ion batteries
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201600943
– volume: 8
  start-page: 74
  year: 2015
  end-page: 103
  ident: CR12
  article-title: Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter
  publication-title: Nanoscale
  doi: 10.1039/C5NR05116A
– volume: 191
  start-page: 462
  year: 2016
  end-page: 472
  ident: CR19
  article-title: Silicon/Wolfram Carbide@Graphene composite: enhancing conductivity and structure stability in amorphous-silicon for high lithium storage performance
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.01.096
– volume: 138
  start-page: 14915
  year: 2016
  end-page: 14922
  ident: CR30
  article-title: Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b06673
– volume: 4
  start-page: 542
  year: 2017
  end-page: 549
  ident: CR29
  article-title: SiO /carbon composite microspheres with hollow core-shell structure as a high-stability electrode for lithium-ion batteries
  publication-title: Chem Electro Chem
– volume: 318
  start-page: 113
  year: 2016
  end-page: 120
  ident: CR21
  article-title: Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2016.04.016
– volume: 4
  start-page: 10948
  year: 2016
  end-page: 10955
  ident: CR32
  article-title: Bean pod-like Si@dopamine-derived amorphous carbon@ -doped graphene nanosheet scrolls for high performance lithium storage
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA04386K
– volume: 6
  start-page: 8844
  year: 2015
  ident: 1676_CR14
  publication-title: Nat Commun
  doi: 10.1038/ncomms9844
– volume: 5
  start-page: 4809
  year: 2017
  ident: 1676_CR39
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA10631E
– volume: 4
  start-page: 10948
  year: 2016
  ident: 1676_CR32
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA04386K
– volume: 8
  start-page: 5243
  year: 2016
  ident: 1676_CR33
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b10548
– volume: 256
  start-page: 190
  year: 2014
  ident: 1676_CR13
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2013.12.128
– volume: 9
  start-page: 3844
  year: 2009
  ident: 1676_CR16
  publication-title: Nano Lett
  doi: 10.1021/nl902058c
– volume: 191
  start-page: 462
  year: 2016
  ident: 1676_CR19
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.01.096
– volume: 4
  start-page: 552
  year: 2016
  ident: 1676_CR35
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA07487H
– volume: 98
  start-page: 582
  year: 2016
  ident: 1676_CR36
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.11.048
– volume: 216
  start-page: 312
  year: 2016
  ident: 1676_CR31
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.09.048
– volume: 12
  start-page: 194
  year: 2017
  ident: 1676_CR3
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2017.16
– volume: 11
  start-page: 1
  year: 2016
  ident: 1676_CR26
  publication-title: Nanoscale Res Lett
  doi: 10.1186/s11671-015-1209-4
– volume: 28
  start-page: 3527
  year: 2016
  ident: 1676_CR4
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b04931
– volume: 26
  start-page: 647
  year: 2016
  ident: 1676_CR1
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201502959
– volume: 138
  start-page: 14915
  year: 2016
  ident: 1676_CR30
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b06673
– volume: 2
  start-page: 9118
  year: 2014
  ident: 1676_CR22
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA01013B
– volume: 6
  start-page: 1600943
  year: 2016
  ident: 1676_CR2
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201600943
– volume: 40
  start-page: 8961
  year: 2016
  ident: 1676_CR28
  publication-title: New J Chem
  doi: 10.1039/C6NJ01042C
– volume: 9
  start-page: 2806
  issue: 3
  year: 2017
  ident: 1676_CR9
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b13028
– volume: 8
  start-page: 74
  year: 2015
  ident: 1676_CR12
  publication-title: Nanoscale
  doi: 10.1039/C5NR05116A
– volume: 10
  start-page: 8243
  year: 2016
  ident: 1676_CR25
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04522
– volume: 27
  start-page: 545
  year: 2016
  ident: 1676_CR27
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.012
– volume: 229
  start-page: 445
  year: 2017
  ident: 1676_CR11
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2017.01.173
– volume: 691
  start-page: 178
  year: 2017
  ident: 1676_CR37
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2016.08.265
– volume: 396
  start-page: 41
  year: 2017
  ident: 1676_CR8
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.11.045
– volume: 41
  start-page: 21268
  year: 2016
  ident: 1676_CR38
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2016.07.220
– volume: 18
  start-page: 30677
  year: 2016
  ident: 1676_CR20
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C6CP06788C
– volume: 164
  start-page: A6075
  year: 2017
  ident: 1676_CR7
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0101701jes
– volume: 192
  start-page: 22
  year: 2016
  ident: 1676_CR24
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.01.103
– volume: 698
  start-page: 525
  year: 2017
  ident: 1676_CR6
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2016.12.242
– volume: 5
  start-page: 1042
  year: 2013
  ident: 1676_CR18
  publication-title: Nat Chem
  doi: 10.1038/nchem.1802
– volume: 187
  start-page: 1
  year: 2016
  ident: 1676_CR41
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.11.020
– volume: 10
  start-page: 3702
  year: 2016
  ident: 1676_CR10
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00218
– volume: 4
  start-page: 542
  year: 2017
  ident: 1676_CR29
  publication-title: Chem Electro Chem
– volume: 6
  start-page: 1600904
  year: 2016
  ident: 1676_CR23
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201600904
– volume: 10
  start-page: 2843
  year: 2016
  ident: 1676_CR34
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07977
– volume: 8
  start-page: 9245
  year: 2016
  ident: 1676_CR40
  publication-title: Nanoscale
  doi: 10.1039/C6NR01559J
– volume: 746
  start-page: 62
  year: 2015
  ident: 1676_CR15
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2015.03.034
– volume: 8
  start-page: 12109
  year: 2016
  ident: 1676_CR17
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b11628
– volume: 7
  start-page: 10998
  year: 2016
  ident: 1676_CR5
  publication-title: Nat Commun
  doi: 10.1038/ncomms10998
– volume: 318
  start-page: 113
  year: 2016
  ident: 1676_CR21
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2016.04.016
SSID ssj0005721
Score 2.4016228
Snippet The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2149
SubjectTerms annealing
Anodes
Batteries
Carbon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Composite materials
Cracks
Crystallography and Scattering Methods
Current density
Electric properties
electrochemistry
Electrode materials
electrons
Emulsion polymerization
emulsions
Energy Materials
Formaldehyde
Graphene
ions
Lithium
lithium batteries
Lithium-ion batteries
Materials Science
microparticles
Microspheres
Nanoparticles
Polymer Sciences
Polymerization
Product design
Rechargeable batteries
resorcinol
Shrinkage
Silicon
Solid Mechanics
Three dimensional composites
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAKA-xUJBBSEggaxPHseMTqlCXggQH2kq9WXZsQ6XWWZrd_89M4jQURK-J4yTjedkz8w0hb5yqGq-kYFpHzoSVDXNNqFhrY1nHIMoiYoHz12_y8ER8Oa1P84Fbn9MqJ504KGrftXhGvgS-02B6wP5_WP9i2DUKo6u5hcZtcqfkYGuxUnz1aU7xULyc0MIRN22Kao6lc2CoGOroUirJqmt26W_t_E-YdLA-qwfkfnYb6f64zrvkVkgPyb0_wAQfkXQMyxKYR7j-EWqDHp0tsagKSHLpurQcwKlBt9E05n5T21OEK2bruXqA2tT5QMGPHViTwnUKnvrPs-0FhUmpG_A4YXv9mJysDo4_HrLcTYG1otYbpsB3soXGHUcRVWF5dBGk2TdNiDpIbb31ofSujDbAtgokuZGuqqu2KVSM3FZPyE7qUnhKaJCiboXj3HkldKhd0DW3PvoapNtZsSDFREvTZqhx7HhxbmaQZCS_AfIbJL-pFuTd1SPrEWfjpsGvcYEM4lckTJD5Ybd9bz4ffTf74AAKBFxUC_I2D4odvLy1ud4AfgEhr66N3JsW2mQJ7s3Mbwvy6uo2yB4GVGwK3bbHFp7AY5JzmOL9xCDzFP_9_mc3v_A5uQtuWTPmhu-Rnc3lNrwA12fjXg78_RvNz_98
  priority: 102
  providerName: ProQuest
Title Three-dimensional Si/hard-carbon/graphene network as high-performance anode material for lithium ion batteries
URI https://link.springer.com/article/10.1007/s10853-017-1676-3
https://www.proquest.com/docview/2259613324
https://www.proquest.com/docview/2000576227
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe4ED4ikWysogJCSQ1cRxEvu4i3ZbQKxQ25XKybJjGyqBUzW7_5-ZPLp90EqcLCXOJBnPjD_LM58JeWfLTLqyEEypwJkwhWRW-oxVJqR58CJNAhY4f1sUB0vx5SQ_6eu4myHbfdiSbCP1pWI3mFoYRtW0KAuWbZGdHOmkwIiXfLLJ6yh5OlCEI1nasJX5LxFXJqPrIfnG3mg75cwfkYc9VqSTbnAfk3s-PiEPLjEIPiXxGMbCM4cc_R2_Bj063cNKKtDDua3jXstIDQGNxi7hm5qGIkcxO9uUDFATa-cpgNfWHilcpwDPf52u_1AQSm1Lwglr6mdkOZ8dfzpg_REKrBK5WrESAJNJFC4zklAmhgcbwIWdlD4oXyjjjPOps2kwHtZS4L6ysFmeVTIpQ-Ame062Yx39C0J9IfJKWM6tK4XyufUq58YFl4NLWyNGJBl0qaueXxyPufitN8zIqH4N6teofp2NyIeLR846co27Or_FAdJIWhExK-anWTeN_nx0qCeA-gSyLJYj8r7vFGp4eWX6IgP4BeS5utJzdxho3bttoyG4KcA3ADJH5M3FbXA43EUx0dfrBs_tBBsrOAcRHwcD2Yi49ftf_lfvV-Q-QDPZ5Yfvku3V-dq_BvizsmOyJef7Y7IzmU-nC2z3f3ydQTudLb4fjltn-AszcAG-
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioYBBICSQtRvHeR0qVKDVLm1XqN1KvRk7tqESJEuzK8Sf47cxk0dDQfTWa-I4yXg8D8_MNwDPTRKmNoklzzIvuNRxyk3qQp5rH0TeyWDsqcB5fxZPjuSH4-h4DX51tTCUVtnJxFpQ2zKnM_IR8l2Gqgf1_5vFd05doyi62rXQ0G1rBbtZQ4y1hR277ucPdOGqzel7XO8XQuxsz99NeNtlgOcyypY8QZtCo19PIS2fjLXwxiOX2zR1PnNxpq22LrAm8Nqhu4EcnsYmjMI8HSfeCx3ivFdgXdIBygDW327PPh70SSaJCDq8ckJu6-KqTfEeqkpOWiKIk5iH5zTj3_rhn0Btrf92bsKN1nBlWw2n3YI1V9yG63_AGd6BYo6M4bilhgEN2Ac7PBlRWRcuyqkpi1ENj43SlRVN9jnTFSPAZL7o6xeYLkrrGFrS9eZgeJ2hr_DlZPWN4aTM1Iig6ODfhaNLofQ9GBRl4e4Dc7GMcmmEMDaRmYuMyyKhrbcRyhej5RDGHS1V3oKdU8-Nr6qHaSbyKyS_IvKrcAivzh5ZNEgfFw1-RgukCEGjoBSdz3pVVWp6eKC20ASVBPmYDOFlO8iX-PJctxUP-AsEunVu5Ea30KqVIZXqOX4IT89u4-6nkI4uXLmqqIko8lgsBE7xumOQfor_fv-Di1_4BK5O5vt7am86230I19BITJtM9Q0YLE9X7hEaYkvzuOV2Bp8ue4P9BnfpQy4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfgJiF44HvasQEBISGBsutH-vV4gh0bgwmxTRpPIWkSmID0tLYv--uxr-1uGx8S4rV13cRxHEe2fwZ4prM4N1kqeFG4iAuV5lznNualcmHirAgDRwXO7_fS7UPx9ig56vuc1kO2-xCS7GoaCKXJN5O5cZNzhW94zHCysGGapTy-CiuCWkiMYGX65tPu1jLLI4vCATCcoNOGwObvmFw4mi4b6F8ipYsDaHYLPg9D7_JOvm22jd4sTy-hOv7H3G7Dzd45ZdNOm-7AFevvwo1zkIX3wB_g4ltuqClAB-jB9o8nVLqFgj_RlZ8sILDRgjLfZZgzVTMCRebzZY0CU74ylqG3vNgADJ8zvA98PW5_MGTK9AL1Ey_x9-FwtnXwapv3PRt4KZKi4Rl6aCoo6F4TuCxQkdMObYbJc-sKmxbKKGNDo0OnLF7e0F7kqY6TuMyDzLlIxasw8pW3a8BsKpJS6CjSJhOFTbQtkkgZZxK0IVqJMQTDcsmyBzSnvhrf5RKKmUQpUZSSRCnjMbw4-2TeoXn8jfgp6YAklAxPaThfVFvXcmf_o5yimykI1jEbw_OeyFX481L1VQ04BQLWukC5MeiS7O1ELdGaFuhQoVc7hidnr3GHU9hGeVu1NTUKRTVOowhZvBzUZ8nij-N_8E_Uj-Hah9cz-W5nb3cdrqNbmHe56Rswak5a-xBdr0Y_6rfXT8WMJLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+Si%2Fhard-carbon%2Fgraphene+network+as+high-performance+anode+material+for+lithium+ion+batteries&rft.jtitle=Journal+of+materials+science&rft.au=Jiao%2C+Miao-lun&rft.au=Qi%2C+Jie&rft.au=Shi%2C+Zhi-qiang&rft.au=Wang%2C+Cheng-yang&rft.date=2018-02-01&rft.issn=0022-2461&rft.volume=53&rft.issue=3+p.2149-2160&rft.spage=2149&rft.epage=2160&rft_id=info:doi/10.1007%2Fs10853-017-1676-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon