Three-dimensional Si/hard-carbon/graphene network as high-performance anode material for lithium ion batteries
The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of...
Saved in:
Published in | Journal of materials science Vol. 53; no. 3; pp. 2149 - 2160 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2018
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0022-2461 1573-4803 |
DOI | 10.1007/s10853-017-1676-3 |
Cover
Abstract | The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of 800 °C. The as-prepared three-dimensional Si/HC/G composite is composed of the Si/HC microspheres on the graphene network. In the portion about Si/HC, some of the Si nanoparticles are embedded into the hard carbon, which can provide the great strength alleviating the volume expansion and shrinkage of Si. The graphene portion can connect Si/HC microspheres preventing the electrode cracks and can provide the pathway to improve the transport of electrons and diffusion of lithium ions. Hence, the Si/HC/G composite could not only avoid the pulverization of the Si-based material but also enhance the electronic conductivity, displaying excellent electrochemical performances. Compared with the HC and Si/HC samples, the Si/HC/G composite possesses the specific charge capacity of 514.8 mA h g
−1
at the high current density of 2 A g
−1
and has the high charge capacity of 818 mA h g
−1
at the current density of 100 mA g
−1
after 100 charge and discharge cycles. Resultantly, the Si/HC/G composite shows great potential for the application of lithium ion battery anode material in the future. |
---|---|
AbstractList | The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of 800 °C. The as-prepared three-dimensional Si/HC/G composite is composed of the Si/HC microspheres on the graphene network. In the portion about Si/HC, some of the Si nanoparticles are embedded into the hard carbon, which can provide the great strength alleviating the volume expansion and shrinkage of Si. The graphene portion can connect Si/HC microspheres preventing the electrode cracks and can provide the pathway to improve the transport of electrons and diffusion of lithium ions. Hence, the Si/HC/G composite could not only avoid the pulverization of the Si-based material but also enhance the electronic conductivity, displaying excellent electrochemical performances. Compared with the HC and Si/HC samples, the Si/HC/G composite possesses the specific charge capacity of 514.8 mA h g.sup.-1 at the high current density of 2 A g.sup.-1 and has the high charge capacity of 818 mA h g.sup.-1 at the current density of 100 mA g.sup.-1 after 100 charge and discharge cycles. Resultantly, the Si/HC/G composite shows great potential for the application of lithium ion battery anode material in the future. The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of 800 °C. The as-prepared three-dimensional Si/HC/G composite is composed of the Si/HC microspheres on the graphene network. In the portion about Si/HC, some of the Si nanoparticles are embedded into the hard carbon, which can provide the great strength alleviating the volume expansion and shrinkage of Si. The graphene portion can connect Si/HC microspheres preventing the electrode cracks and can provide the pathway to improve the transport of electrons and diffusion of lithium ions. Hence, the Si/HC/G composite could not only avoid the pulverization of the Si-based material but also enhance the electronic conductivity, displaying excellent electrochemical performances. Compared with the HC and Si/HC samples, the Si/HC/G composite possesses the specific charge capacity of 514.8 mA h g−1 at the high current density of 2 A g−1 and has the high charge capacity of 818 mA h g−1 at the current density of 100 mA g−1 after 100 charge and discharge cycles. Resultantly, the Si/HC/G composite shows great potential for the application of lithium ion battery anode material in the future. The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of 800 °C. The as-prepared three-dimensional Si/HC/G composite is composed of the Si/HC microspheres on the graphene network. In the portion about Si/HC, some of the Si nanoparticles are embedded into the hard carbon, which can provide the great strength alleviating the volume expansion and shrinkage of Si. The graphene portion can connect Si/HC microspheres preventing the electrode cracks and can provide the pathway to improve the transport of electrons and diffusion of lithium ions. Hence, the Si/HC/G composite could not only avoid the pulverization of the Si-based material but also enhance the electronic conductivity, displaying excellent electrochemical performances. Compared with the HC and Si/HC samples, the Si/HC/G composite possesses the specific charge capacity of 514.8 mA h g⁻¹ at the high current density of 2 A g⁻¹ and has the high charge capacity of 818 mA h g⁻¹ at the current density of 100 mA g⁻¹ after 100 charge and discharge cycles. Resultantly, the Si/HC/G composite shows great potential for the application of lithium ion battery anode material in the future. The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of 800 °C. The as-prepared three-dimensional Si/HC/G composite is composed of the Si/HC microspheres on the graphene network. In the portion about Si/HC, some of the Si nanoparticles are embedded into the hard carbon, which can provide the great strength alleviating the volume expansion and shrinkage of Si. The graphene portion can connect Si/HC microspheres preventing the electrode cracks and can provide the pathway to improve the transport of electrons and diffusion of lithium ions. Hence, the Si/HC/G composite could not only avoid the pulverization of the Si-based material but also enhance the electronic conductivity, displaying excellent electrochemical performances. Compared with the HC and Si/HC samples, the Si/HC/G composite possesses the specific charge capacity of 514.8 mA h g −1 at the high current density of 2 A g −1 and has the high charge capacity of 818 mA h g −1 at the current density of 100 mA g −1 after 100 charge and discharge cycles. Resultantly, the Si/HC/G composite shows great potential for the application of lithium ion battery anode material in the future. |
Audience | Academic |
Author | Jiao, Miao-lun Qi, Jie Wang, Cheng-yang Shi, Zhi-qiang |
Author_xml | – sequence: 1 givenname: Miao-lun orcidid: 0000-0001-6662-659X surname: Jiao fullname: Jiao, Miao-lun organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 2 givenname: Jie orcidid: 0000-0002-2873-540X surname: Qi fullname: Qi, Jie organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 3 givenname: Zhi-qiang orcidid: 0000-0003-0941-5870 surname: Shi fullname: Shi, Zhi-qiang email: shizhiqiang@tjpu.edu.cn organization: Laboratory of Fiber Modification and Functional Fiber, College of Materials Science and Engineering, Tianjin Polytechnic University – sequence: 4 givenname: Cheng-yang orcidid: 0000-0002-1830-5350 surname: Wang fullname: Wang, Cheng-yang email: cywang@tju.edu.cn organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) |
BookMark | eNp9kV9r1jAUxoNM8N30A3hX8EYvsjd_2qa9HEO3wUBw8zqctidtZpu8JinTb29eK8gGSi4CJ7_nOTnnOSUnzjsk5C1n55wxtY-cNZWkjCvKa1VT-YLseKUkLRsmT8iOMSGoKGv-ipzG-MAYq5TgO-Lup4BIB7ugi9Y7mIs7u58gDLSH0Hm3HwMcJnRYOEyPPnwrIBaTHSd6wGB8WMD1WIDzAxYLJAw2W-R6Mds02XUpsmnRQTq-YHxNXhqYI775c5-Rr58-3l9e09vPVzeXF7e0L6s2USWkANZKVpfMKAbCdEYKMTQNmhbrFgYYkA8dN4CiznM2Td3JSvYNU8YIkGfk_eZ7CP77ijHpxcYe5xkc-jVq8XsBtRAqo--eoQ9-DXkRmRJVW3MpRZmp840aYUZtnfEpQJ_PgIvtcxbG5vpFxcuybEV1tP3wRJCZhD_SCGuM-ubuy1OWb2wffIwBjT4Eu0D4qTnTx3j1Fq_O8epjvFpmjXqm6W2ClLedP2bn_yrFpoy5ixsx_B3436JfKJ661Q |
CitedBy_id | crossref_primary_10_1016_j_tsf_2019_137516 crossref_primary_10_1039_D4TA02070G crossref_primary_10_1016_j_jelechem_2019_04_072 crossref_primary_10_1088_1361_6528_ab8edc crossref_primary_10_1007_s11164_019_03799_z crossref_primary_10_1002_aesr_202100081 crossref_primary_10_1016_j_jallcom_2020_155774 crossref_primary_10_20964_2019_02_64 crossref_primary_10_1016_j_jallcom_2021_159716 crossref_primary_10_1016_j_jpowsour_2019_227692 crossref_primary_10_1038_s41598_020_79205_1 crossref_primary_10_1007_s10853_020_04807_z crossref_primary_10_1016_j_ceramint_2019_05_255 crossref_primary_10_1016_j_electacta_2020_135729 crossref_primary_10_1021_acsami_0c10064 crossref_primary_10_3390_nano11123454 crossref_primary_10_1002_celc_201901111 crossref_primary_10_20964_2019_06_77 crossref_primary_10_1016_j_carbon_2022_10_010 crossref_primary_10_1016_j_jssc_2018_12_011 crossref_primary_10_1016_j_ensm_2023_102946 crossref_primary_10_1007_s10854_019_01372_3 crossref_primary_10_1016_j_ensm_2020_02_008 crossref_primary_10_1080_10408436_2023_2169658 crossref_primary_10_1016_j_jallcom_2024_175873 crossref_primary_10_1016_j_jpcs_2019_05_010 crossref_primary_10_1039_C8NJ05098H crossref_primary_10_1016_j_jallcom_2024_177012 crossref_primary_10_1007_s11581_022_04527_1 |
Cites_doi | 10.1021/acsami.6b13028 10.1186/s11671-016-1414-9 10.1016/j.jallcom.2016.12.242 10.1021/acsami.5b11628 10.1016/j.electacta.2015.11.020 10.1016/j.electacta.2016.01.103 10.1149/2.0101701jes 10.1016/j.jallcom.2016.08.265 10.1002/adfm.201502959 10.1016/j.jelechem.2015.03.034 10.1039/C6CP06788C 10.1021/acsnano.5b07977 10.1002/aenm.201600904 10.1038/ncomms9844 10.1021/acs.chemmater.5b04931 10.1021/acsnano.6b00218 10.1038/nchem.1802 10.1021/acsami.5b10548 10.1039/C6NR01559J 10.1038/nnano.2017.16 10.1039/C6TA10631E 10.1016/j.ijhydene.2016.07.220 10.1039/C4TA01013B 10.1039/C6NJ01042C 10.1016/j.apsusc.2016.11.045 10.1039/C5TA07487H 10.1016/j.electacta.2016.09.048 10.1016/j.electacta.2017.01.173 10.1016/j.nanoen.2016.08.012 10.1016/j.carbon.2015.11.048 10.1038/ncomms10998 10.1016/j.jpowsour.2013.12.128 10.1021/nl902058c 10.1021/acsnano.6b04522 10.1002/aenm.201600943 10.1039/C5NR05116A 10.1016/j.electacta.2016.01.096 10.1021/jacs.6b06673 10.1016/j.jpowsour.2016.04.016 10.1039/C6TA04386K 10.1186/s11671-015-1209-4 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2017 COPYRIGHT 2018 Springer Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2017 – notice: COPYRIGHT 2018 Springer – notice: Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION ISR 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 |
DOI | 10.1007/s10853-017-1676-3 |
DatabaseName | CrossRef Gale In Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database (subscription) Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Materials Science Collection AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-4803 |
EndPage | 2160 |
ExternalDocumentID | A514449257 10_1007_s10853_017_1676_3 |
GrantInformation_xml | – fundername: Nature Science Foundation of Tianjin city grantid: 14RCHZGX00859 |
GroupedDBID | -4Y -58 -5G -BR -EM -XW -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29K 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IFM IGS IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF- PKN PT4 PT5 PTHSS QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z91 Z92 ZE2 ZMTXR ZY4 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c459t-7232a0930640f70a2fbf322d88ef9e69adade1db1fae26157886b353c807ff2a3 |
IEDL.DBID | U2A |
ISSN | 0022-2461 |
IngestDate | Fri Sep 05 13:39:17 EDT 2025 Fri Jul 25 09:22:20 EDT 2025 Tue Jun 10 21:21:47 EDT 2025 Fri Jun 27 05:29:53 EDT 2025 Tue Jul 01 01:25:58 EDT 2025 Thu Apr 24 22:53:50 EDT 2025 Fri Feb 21 02:45:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Silicon Anode Materials Silicon Nanoparticles Lithium Ion Insertion Specific Charge Capacity Hard Carbon |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-7232a0930640f70a2fbf322d88ef9e69adade1db1fae26157886b353c807ff2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6662-659X 0000-0002-1830-5350 0000-0002-2873-540X 0000-0003-0941-5870 |
PQID | 2259613324 |
PQPubID | 2043599 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000576227 proquest_journals_2259613324 gale_infotracacademiconefile_A514449257 gale_incontextgauss_ISR_A514449257 crossref_primary_10_1007_s10853_017_1676_3 crossref_citationtrail_10_1007_s10853_017_1676_3 springer_journals_10_1007_s10853_017_1676_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | Full Set - Includes `Journal of Materials Science Letters |
PublicationTitle | Journal of materials science |
PublicationTitleAbbrev | J Mater Sci |
PublicationYear | 2018 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Ryu, Hong, Choi, Park (CR34) 2016; 10 Kim, Kim, Ding, Lee, Lim, Yoon, Kang (CR2) 2016; 6 Loveridge, Lain, Huang, Wan, Roberts, Pappas, Bhagat (CR20) 2016; 18 Fu, Wang, Dai, Carter, Hu (CR4) 2016; 28 Wang, Gao, Pan, Wang, Liu (CR13) 2014; 256 Tokur, Algul, Ozcan, Cetinkaya, Uysal, Akbulut (CR31) 2016; 216 Jeena, Bok, Kim, Park, Kim, Park, Ryu (CR40) 2016; 8 Shen, Jiang, Sun, Wang, Dong, Hu, Yang (CR37) 2017; 691 Park, Kim, Dar, Shim, Kim (CR6) 2017; 698 Zhu, Wang, Fan, Mei, Lu (CR25) 2016; 10 Ji, Wan, Yang, Li, Xiong, Li, Han, Guo, Luo (CR24) 2016; 192 Sun, Hu, Liu, Zhang, Liu, Yang, Wang, Zhu (CR19) 2016; 191 Mi, Li, Xu, Li, Chai, He, Li, Liu (CR26) 2016; 11 Tao, Xiong, Zhu, Yang, Zhang (CR38) 2016; 41 Sun, Hu, Zhang, Liu, Zhu (CR21) 2016; 318 Lin, Liu, Cui (CR3) 2017; 12 Yu, Xin, You, Yu, Lin, Xu, Qiao, Huang, Yang, Yu, Goodenough (CR30) 2016; 138 Wu, Shi, Wang, Jin (CR15) 2015; 746 Agyeman, Song, Lee, Park, Kang (CR23) 2016; 6 Liu, Guo, Liu, Xie, Liu, He (CR8) 2017; 396 Kim, Oh, Kim, Kim, Jeong, Bae, Hong, Lee (CR7) 2017; 164 Wang, Luo, Lu, Rong, Liu, Chu, Sun, Quan, Zheng, Li, Gu, Qiu, Li, Chen (CR9) 2017; 9 Rahman, Song, Bhatt, Wong, Wen (CR1) 2016; 26 Park, Kim, Joo, Kim, Kim, Ahn, Cui, Cho (CR16) 2009; 9 Wang, Wu, Chen, McDowell, Cui, Bao (CR18) 2013; 5 Ashuri, He, Shaw (CR12) 2015; 8 Li, Tian, Zhao, Wang, Song, Guo, Chen, Liu (CR28) 2016; 40 David, Bhandavat, Barrera, Singh (CR5) 2016; 7 Higgins, Park, King, Zhang, McEvoy, Berner, Daly, Shmeliov, Khan, Duesberg, Nicolosi, Coleman (CR10) 2016; 10 Wei, Hou, Wei (CR11) 2017; 229 Wu, Qin, Miao, He, Liang, Zhou, Liu, Han, Li, Kang (CR36) 2016; 98 Sun, Hu, Zhang, Wang, Yang, Liu, Zhu (CR41) 2016; 187 Kim, Lee, Kim, Kim, Yang, Park (CR17) 2016; 8 Hu, Sun, Chen, Zeng, Zhu (CR22) 2014; 2 Kim, Kim, Han, Lee, Choe, Kwak, Choi, Son, Shin, Park (CR27) 2016; 27 Sun, Wan, Li, Zhao, Yan (CR32) 2016; 4 Ren, Wang, Zhang, Tan, Zhong, Su (CR35) 2016; 4 Wang, Zhu, Chen, Yang, Qin, Li, Cheng, Yu, Xu, Lu (CR39) 2017; 5 Xiao, Gu, Yang, Li, Zhang, Liu, Liu, Dai, Yang, Liu, Xiao, Liu, Zhao, Zhang, Wang, Lu, Cai (CR14) 2015; 6 Jiao, Liu, Shi, Wang (CR29) 2017; 4 Fei, Williams, Yoo, Kim, Shoorideh, Joo (CR33) 2016; 8 X Li (1676_CR28) 2016; 40 C Wang (1676_CR9) 2017; 9 J Ryu (1676_CR34) 2016; 10 C Wang (1676_CR18) 2013; 5 J Wu (1676_CR36) 2016; 98 W Sun (1676_CR32) 2016; 4 L David (1676_CR5) 2016; 7 ZL Yu (1676_CR30) 2016; 138 L Fei (1676_CR33) 2016; 8 DA Agyeman (1676_CR23) 2016; 6 MA Rahman (1676_CR1) 2016; 26 W Sun (1676_CR21) 2016; 318 D Ji (1676_CR24) 2016; 192 MT Jeena (1676_CR40) 2016; 8 X Wu (1676_CR15) 2015; 746 M Ashuri (1676_CR12) 2015; 8 MH Park (1676_CR16) 2009; 9 N Kim (1676_CR7) 2017; 164 M Tokur (1676_CR31) 2016; 216 TM Higgins (1676_CR10) 2016; 10 MJ Loveridge (1676_CR20) 2016; 18 L Wei (1676_CR11) 2017; 229 W Sun (1676_CR19) 2016; 191 W Ren (1676_CR35) 2016; 4 SY Kim (1676_CR17) 2016; 8 SW Park (1676_CR6) 2017; 698 D Wang (1676_CR13) 2014; 256 W Sun (1676_CR41) 2016; 187 T Wang (1676_CR39) 2017; 5 J Zhu (1676_CR25) 2016; 10 H Kim (1676_CR2) 2016; 6 H Mi (1676_CR26) 2016; 11 R Hu (1676_CR22) 2014; 2 D Lin (1676_CR3) 2017; 12 KK Fu (1676_CR4) 2016; 28 SJ Kim (1676_CR27) 2016; 27 M Jiao (1676_CR29) 2017; 4 H Tao (1676_CR38) 2016; 41 X Shen (1676_CR37) 2017; 691 Z Liu (1676_CR8) 2017; 396 Q Xiao (1676_CR14) 2015; 6 |
References_xml | – volume: 9 start-page: 2806 issue: 3 year: 2017 end-page: 2814 ident: CR9 article-title: A well-defined silicon nanocone–carbon structure for demonstrating exclusive influences of carbon coating on silicon anode of lithium-ion batteries publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b13028 – volume: 11 start-page: 1 year: 2016 end-page: 9 ident: CR26 article-title: A tremella-like nanostructure of silicon@void@graphene-like nanosheets composite as an anode for lithium-ion batteries publication-title: Nanoscale Res Lett doi: 10.1186/s11671-016-1414-9 – volume: 698 start-page: 525 year: 2017 end-page: 531 ident: CR6 article-title: Enhanced cycle stability of silicon coated with waste poly(vinyl butyral)-directed carbon for lithium-ion battery anodes publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2016.12.242 – volume: 8 start-page: 12109 year: 2016 end-page: 12117 ident: CR17 article-title: Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b11628 – volume: 187 start-page: 1 year: 2016 end-page: 10 ident: CR41 article-title: A long-life nano-silicon anode for lithium ion batteries: supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.11.020 – volume: 192 start-page: 22 year: 2016 end-page: 29 ident: CR24 article-title: Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel nanocomposite for lithium-ion batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.01.103 – volume: 164 start-page: A6075 year: 2017 end-page: A6083 ident: CR7 article-title: High-performance Li-ion battery anodes based on silicon-graphene self-assemblies publication-title: J Electrochem Soc doi: 10.1149/2.0101701jes – volume: 691 start-page: 178 year: 2017 end-page: 184 ident: CR37 article-title: Ionic liquid assist to prepare Si@ -doped carbon nanoparticles and its high performance in lithium ion batteries publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2016.08.265 – volume: 26 start-page: 647 year: 2016 end-page: 678 ident: CR1 article-title: Nanostructured silicon anodes for high-performance lithium-ion batteries publication-title: Adv Funct Mater doi: 10.1002/adfm.201502959 – volume: 746 start-page: 62 year: 2015 end-page: 67 ident: CR15 article-title: Nanostructured SiO /C composites prepared via electrospinning and their electrochemical properties for lithium ion batteries publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2015.03.034 – volume: 18 start-page: 30677 year: 2016 end-page: 30685 ident: CR20 article-title: Enhancing cycling durability of Li-ion batteries with hierarchical structured silicon–graphene hybrid anodes publication-title: Phys Chem Chem Phys doi: 10.1039/C6CP06788C – volume: 10 start-page: 2843 year: 2016 end-page: 2851 ident: CR34 article-title: Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes publication-title: ACS Nano doi: 10.1021/acsnano.5b07977 – volume: 6 start-page: 1600904 year: 2016 ident: CR23 article-title: Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery publication-title: Adv Energy Mater doi: 10.1002/aenm.201600904 – volume: 6 start-page: 8844 year: 2015 ident: CR14 article-title: Inward lithium-ion breathing of hierarchically porous silicon anodes publication-title: Nat Commun doi: 10.1038/ncomms9844 – volume: 28 start-page: 3527 year: 2016 end-page: 3539 ident: CR4 article-title: Transient electronics: materials and devices publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b04931 – volume: 10 start-page: 3702 year: 2016 end-page: 3713 ident: CR10 article-title: A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes publication-title: ACS Nano doi: 10.1021/acsnano.6b00218 – volume: 5 start-page: 1042 year: 2013 end-page: 1048 ident: CR18 article-title: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries publication-title: Nat Chem doi: 10.1038/nchem.1802 – volume: 8 start-page: 5243 year: 2016 end-page: 5250 ident: CR33 article-title: Graphene folding in Si rich carbon nanofibers for highly stable, high capacity Li-Ion battery anodes publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b10548 – volume: 8 start-page: 9245 year: 2016 end-page: 9253 ident: CR40 article-title: A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries publication-title: Nanoscale doi: 10.1039/C6NR01559J – volume: 12 start-page: 194 year: 2017 end-page: 206 ident: CR3 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat Nanotechnol doi: 10.1038/nnano.2017.16 – volume: 5 start-page: 4809 year: 2017 end-page: 4817 ident: CR39 article-title: Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes publication-title: J Mater Chem A doi: 10.1039/C6TA10631E – volume: 41 start-page: 21268 year: 2016 end-page: 21277 ident: CR38 article-title: Flexible binder-free reduced graphene oxide wrapped Si/carbon fibers paper anode for high-performance lithium ion batteries publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2016.07.220 – volume: 2 start-page: 9118 year: 2014 end-page: 9125 ident: CR22 article-title: Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries publication-title: J Mater Chem A doi: 10.1039/C4TA01013B – volume: 40 start-page: 8961 year: 2016 end-page: 8968 ident: CR28 article-title: A self-assembly strategy for fabricating highly stable silicon/reduced graphene oxide anodes for lithium-ion batteries publication-title: New J Chem doi: 10.1039/C6NJ01042C – volume: 396 start-page: 41 year: 2017 end-page: 47 ident: CR8 article-title: Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.11.045 – volume: 4 start-page: 552 year: 2016 end-page: 560 ident: CR35 article-title: Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener? publication-title: J Mater Chem A doi: 10.1039/C5TA07487H – volume: 216 start-page: 312 year: 2016 end-page: 319 ident: CR31 article-title: Closing to scaling-up high reversible Si/rGO nanocomposite anodes for lithium ion batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.09.048 – volume: 229 start-page: 445 year: 2017 end-page: 451 ident: CR11 article-title: Porous sandwiched graphene/silicon anodes for lithium storage publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.01.173 – volume: 27 start-page: 545 year: 2016 end-page: 553 ident: CR27 article-title: 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.012 – volume: 98 start-page: 582 year: 2016 end-page: 591 ident: CR36 article-title: A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes publication-title: Carbon doi: 10.1016/j.carbon.2015.11.048 – volume: 7 start-page: 10998 year: 2016 ident: CR5 article-title: Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries publication-title: Nat Commun doi: 10.1038/ncomms10998 – volume: 256 start-page: 190 year: 2014 end-page: 199 ident: CR13 article-title: High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization publication-title: J Power Sour doi: 10.1016/j.jpowsour.2013.12.128 – volume: 9 start-page: 3844 year: 2009 end-page: 3847 ident: CR16 article-title: Silicon nanotube battery anodes publication-title: Nano Lett doi: 10.1021/nl902058c – volume: 10 start-page: 8243 year: 2016 end-page: 8251 ident: CR25 article-title: Atomic-scale control of silicon expansion space as ultrastable battery anodes publication-title: ACS Nano doi: 10.1021/acsnano.6b04522 – volume: 6 start-page: 1600943 year: 2016 ident: CR2 article-title: Recent progress in electrode materials for sodium-ion batteries publication-title: Adv Energy Mater doi: 10.1002/aenm.201600943 – volume: 8 start-page: 74 year: 2015 end-page: 103 ident: CR12 article-title: Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter publication-title: Nanoscale doi: 10.1039/C5NR05116A – volume: 191 start-page: 462 year: 2016 end-page: 472 ident: CR19 article-title: Silicon/Wolfram Carbide@Graphene composite: enhancing conductivity and structure stability in amorphous-silicon for high lithium storage performance publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.01.096 – volume: 138 start-page: 14915 year: 2016 end-page: 14922 ident: CR30 article-title: Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage publication-title: J Am Chem Soc doi: 10.1021/jacs.6b06673 – volume: 4 start-page: 542 year: 2017 end-page: 549 ident: CR29 article-title: SiO /carbon composite microspheres with hollow core-shell structure as a high-stability electrode for lithium-ion batteries publication-title: Chem Electro Chem – volume: 318 start-page: 113 year: 2016 end-page: 120 ident: CR21 article-title: Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries publication-title: J Power Sour doi: 10.1016/j.jpowsour.2016.04.016 – volume: 4 start-page: 10948 year: 2016 end-page: 10955 ident: CR32 article-title: Bean pod-like Si@dopamine-derived amorphous carbon@ -doped graphene nanosheet scrolls for high performance lithium storage publication-title: J Mater Chem A doi: 10.1039/C6TA04386K – volume: 6 start-page: 8844 year: 2015 ident: 1676_CR14 publication-title: Nat Commun doi: 10.1038/ncomms9844 – volume: 5 start-page: 4809 year: 2017 ident: 1676_CR39 publication-title: J Mater Chem A doi: 10.1039/C6TA10631E – volume: 4 start-page: 10948 year: 2016 ident: 1676_CR32 publication-title: J Mater Chem A doi: 10.1039/C6TA04386K – volume: 8 start-page: 5243 year: 2016 ident: 1676_CR33 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b10548 – volume: 256 start-page: 190 year: 2014 ident: 1676_CR13 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2013.12.128 – volume: 9 start-page: 3844 year: 2009 ident: 1676_CR16 publication-title: Nano Lett doi: 10.1021/nl902058c – volume: 191 start-page: 462 year: 2016 ident: 1676_CR19 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.01.096 – volume: 4 start-page: 552 year: 2016 ident: 1676_CR35 publication-title: J Mater Chem A doi: 10.1039/C5TA07487H – volume: 98 start-page: 582 year: 2016 ident: 1676_CR36 publication-title: Carbon doi: 10.1016/j.carbon.2015.11.048 – volume: 216 start-page: 312 year: 2016 ident: 1676_CR31 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.09.048 – volume: 12 start-page: 194 year: 2017 ident: 1676_CR3 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2017.16 – volume: 11 start-page: 1 year: 2016 ident: 1676_CR26 publication-title: Nanoscale Res Lett doi: 10.1186/s11671-015-1209-4 – volume: 28 start-page: 3527 year: 2016 ident: 1676_CR4 publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b04931 – volume: 26 start-page: 647 year: 2016 ident: 1676_CR1 publication-title: Adv Funct Mater doi: 10.1002/adfm.201502959 – volume: 138 start-page: 14915 year: 2016 ident: 1676_CR30 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b06673 – volume: 2 start-page: 9118 year: 2014 ident: 1676_CR22 publication-title: J Mater Chem A doi: 10.1039/C4TA01013B – volume: 6 start-page: 1600943 year: 2016 ident: 1676_CR2 publication-title: Adv Energy Mater doi: 10.1002/aenm.201600943 – volume: 40 start-page: 8961 year: 2016 ident: 1676_CR28 publication-title: New J Chem doi: 10.1039/C6NJ01042C – volume: 9 start-page: 2806 issue: 3 year: 2017 ident: 1676_CR9 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b13028 – volume: 8 start-page: 74 year: 2015 ident: 1676_CR12 publication-title: Nanoscale doi: 10.1039/C5NR05116A – volume: 10 start-page: 8243 year: 2016 ident: 1676_CR25 publication-title: ACS Nano doi: 10.1021/acsnano.6b04522 – volume: 27 start-page: 545 year: 2016 ident: 1676_CR27 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.012 – volume: 229 start-page: 445 year: 2017 ident: 1676_CR11 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.01.173 – volume: 691 start-page: 178 year: 2017 ident: 1676_CR37 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2016.08.265 – volume: 396 start-page: 41 year: 2017 ident: 1676_CR8 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.11.045 – volume: 41 start-page: 21268 year: 2016 ident: 1676_CR38 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2016.07.220 – volume: 18 start-page: 30677 year: 2016 ident: 1676_CR20 publication-title: Phys Chem Chem Phys doi: 10.1039/C6CP06788C – volume: 164 start-page: A6075 year: 2017 ident: 1676_CR7 publication-title: J Electrochem Soc doi: 10.1149/2.0101701jes – volume: 192 start-page: 22 year: 2016 ident: 1676_CR24 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.01.103 – volume: 698 start-page: 525 year: 2017 ident: 1676_CR6 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2016.12.242 – volume: 5 start-page: 1042 year: 2013 ident: 1676_CR18 publication-title: Nat Chem doi: 10.1038/nchem.1802 – volume: 187 start-page: 1 year: 2016 ident: 1676_CR41 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.11.020 – volume: 10 start-page: 3702 year: 2016 ident: 1676_CR10 publication-title: ACS Nano doi: 10.1021/acsnano.6b00218 – volume: 4 start-page: 542 year: 2017 ident: 1676_CR29 publication-title: Chem Electro Chem – volume: 6 start-page: 1600904 year: 2016 ident: 1676_CR23 publication-title: Adv Energy Mater doi: 10.1002/aenm.201600904 – volume: 10 start-page: 2843 year: 2016 ident: 1676_CR34 publication-title: ACS Nano doi: 10.1021/acsnano.5b07977 – volume: 8 start-page: 9245 year: 2016 ident: 1676_CR40 publication-title: Nanoscale doi: 10.1039/C6NR01559J – volume: 746 start-page: 62 year: 2015 ident: 1676_CR15 publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2015.03.034 – volume: 8 start-page: 12109 year: 2016 ident: 1676_CR17 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b11628 – volume: 7 start-page: 10998 year: 2016 ident: 1676_CR5 publication-title: Nat Commun doi: 10.1038/ncomms10998 – volume: 318 start-page: 113 year: 2016 ident: 1676_CR21 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2016.04.016 |
SSID | ssj0005721 |
Score | 2.4016228 |
Snippet | The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2149 |
SubjectTerms | annealing Anodes Batteries Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Composite materials Cracks Crystallography and Scattering Methods Current density Electric properties electrochemistry Electrode materials electrons Emulsion polymerization emulsions Energy Materials Formaldehyde Graphene ions Lithium lithium batteries Lithium-ion batteries Materials Science microparticles Microspheres Nanoparticles Polymer Sciences Polymerization Product design Rechargeable batteries resorcinol Shrinkage Silicon Solid Mechanics Three dimensional composites |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAKA-xUJBBSEggaxPHseMTqlCXggQH2kq9WXZsQ6XWWZrd_89M4jQURK-J4yTjedkz8w0hb5yqGq-kYFpHzoSVDXNNqFhrY1nHIMoiYoHz12_y8ER8Oa1P84Fbn9MqJ504KGrftXhGvgS-02B6wP5_WP9i2DUKo6u5hcZtcqfkYGuxUnz1aU7xULyc0MIRN22Kao6lc2CoGOroUirJqmt26W_t_E-YdLA-qwfkfnYb6f64zrvkVkgPyb0_wAQfkXQMyxKYR7j-EWqDHp0tsagKSHLpurQcwKlBt9E05n5T21OEK2bruXqA2tT5QMGPHViTwnUKnvrPs-0FhUmpG_A4YXv9mJysDo4_HrLcTYG1otYbpsB3soXGHUcRVWF5dBGk2TdNiDpIbb31ofSujDbAtgokuZGuqqu2KVSM3FZPyE7qUnhKaJCiboXj3HkldKhd0DW3PvoapNtZsSDFREvTZqhx7HhxbmaQZCS_AfIbJL-pFuTd1SPrEWfjpsGvcYEM4lckTJD5Ybd9bz4ffTf74AAKBFxUC_I2D4odvLy1ud4AfgEhr66N3JsW2mQJ7s3Mbwvy6uo2yB4GVGwK3bbHFp7AY5JzmOL9xCDzFP_9_mc3v_A5uQtuWTPmhu-Rnc3lNrwA12fjXg78_RvNz_98 priority: 102 providerName: ProQuest |
Title | Three-dimensional Si/hard-carbon/graphene network as high-performance anode material for lithium ion batteries |
URI | https://link.springer.com/article/10.1007/s10853-017-1676-3 https://www.proquest.com/docview/2259613324 https://www.proquest.com/docview/2000576227 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe4ED4ikWysogJCSQ1cRxEvu4i3ZbQKxQ25XKybJjGyqBUzW7_5-ZPLp90EqcLCXOJBnPjD_LM58JeWfLTLqyEEypwJkwhWRW-oxVJqR58CJNAhY4f1sUB0vx5SQ_6eu4myHbfdiSbCP1pWI3mFoYRtW0KAuWbZGdHOmkwIiXfLLJ6yh5OlCEI1nasJX5LxFXJqPrIfnG3mg75cwfkYc9VqSTbnAfk3s-PiEPLjEIPiXxGMbCM4cc_R2_Bj063cNKKtDDua3jXstIDQGNxi7hm5qGIkcxO9uUDFATa-cpgNfWHilcpwDPf52u_1AQSm1Lwglr6mdkOZ8dfzpg_REKrBK5WrESAJNJFC4zklAmhgcbwIWdlD4oXyjjjPOps2kwHtZS4L6ysFmeVTIpQ-Ame062Yx39C0J9IfJKWM6tK4XyufUq58YFl4NLWyNGJBl0qaueXxyPufitN8zIqH4N6teofp2NyIeLR846co27Or_FAdJIWhExK-anWTeN_nx0qCeA-gSyLJYj8r7vFGp4eWX6IgP4BeS5utJzdxho3bttoyG4KcA3ADJH5M3FbXA43EUx0dfrBs_tBBsrOAcRHwcD2Yi49ftf_lfvV-Q-QDPZ5Yfvku3V-dq_BvizsmOyJef7Y7IzmU-nC2z3f3ydQTudLb4fjltn-AszcAG- |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioYBBICSQtRvHeR0qVKDVLm1XqN1KvRk7tqESJEuzK8Sf47cxk0dDQfTWa-I4yXg8D8_MNwDPTRKmNoklzzIvuNRxyk3qQp5rH0TeyWDsqcB5fxZPjuSH4-h4DX51tTCUVtnJxFpQ2zKnM_IR8l2Gqgf1_5vFd05doyi62rXQ0G1rBbtZQ4y1hR277ucPdOGqzel7XO8XQuxsz99NeNtlgOcyypY8QZtCo19PIS2fjLXwxiOX2zR1PnNxpq22LrAm8Nqhu4EcnsYmjMI8HSfeCx3ivFdgXdIBygDW327PPh70SSaJCDq8ckJu6-KqTfEeqkpOWiKIk5iH5zTj3_rhn0Btrf92bsKN1nBlWw2n3YI1V9yG63_AGd6BYo6M4bilhgEN2Ac7PBlRWRcuyqkpi1ENj43SlRVN9jnTFSPAZL7o6xeYLkrrGFrS9eZgeJ2hr_DlZPWN4aTM1Iig6ODfhaNLofQ9GBRl4e4Dc7GMcmmEMDaRmYuMyyKhrbcRyhej5RDGHS1V3oKdU8-Nr6qHaSbyKyS_IvKrcAivzh5ZNEgfFw1-RgukCEGjoBSdz3pVVWp6eKC20ASVBPmYDOFlO8iX-PJctxUP-AsEunVu5Ea30KqVIZXqOX4IT89u4-6nkI4uXLmqqIko8lgsBE7xumOQfor_fv-Di1_4BK5O5vt7am86230I19BITJtM9Q0YLE9X7hEaYkvzuOV2Bp8ue4P9BnfpQy4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfgJiF44HvasQEBISGBsutH-vV4gh0bgwmxTRpPIWkSmID0tLYv--uxr-1uGx8S4rV13cRxHEe2fwZ4prM4N1kqeFG4iAuV5lznNualcmHirAgDRwXO7_fS7UPx9ig56vuc1kO2-xCS7GoaCKXJN5O5cZNzhW94zHCysGGapTy-CiuCWkiMYGX65tPu1jLLI4vCATCcoNOGwObvmFw4mi4b6F8ipYsDaHYLPg9D7_JOvm22jd4sTy-hOv7H3G7Dzd45ZdNOm-7AFevvwo1zkIX3wB_g4ltuqClAB-jB9o8nVLqFgj_RlZ8sILDRgjLfZZgzVTMCRebzZY0CU74ylqG3vNgADJ8zvA98PW5_MGTK9AL1Ey_x9-FwtnXwapv3PRt4KZKi4Rl6aCoo6F4TuCxQkdMObYbJc-sKmxbKKGNDo0OnLF7e0F7kqY6TuMyDzLlIxasw8pW3a8BsKpJS6CjSJhOFTbQtkkgZZxK0IVqJMQTDcsmyBzSnvhrf5RKKmUQpUZSSRCnjMbw4-2TeoXn8jfgp6YAklAxPaThfVFvXcmf_o5yimykI1jEbw_OeyFX481L1VQ04BQLWukC5MeiS7O1ELdGaFuhQoVc7hidnr3GHU9hGeVu1NTUKRTVOowhZvBzUZ8nij-N_8E_Uj-Hah9cz-W5nb3cdrqNbmHe56Rswak5a-xBdr0Y_6rfXT8WMJLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+Si%2Fhard-carbon%2Fgraphene+network+as+high-performance+anode+material+for+lithium+ion+batteries&rft.jtitle=Journal+of+materials+science&rft.au=Jiao%2C+Miao-lun&rft.au=Qi%2C+Jie&rft.au=Shi%2C+Zhi-qiang&rft.au=Wang%2C+Cheng-yang&rft.date=2018-02-01&rft.issn=0022-2461&rft.volume=53&rft.issue=3+p.2149-2160&rft.spage=2149&rft.epage=2160&rft_id=info:doi/10.1007%2Fs10853-017-1676-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon |