ACTA1 H40Y mutant iPSC-derived skeletal myocytes display mitochondrial defects in an in vitro model of nemaline myopathy

Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal...

Full description

Saved in:
Bibliographic Details
Published inExperimental cell research Vol. 424; no. 2; p. 113507
Main Authors Gartz, Melanie, Haberman, Margaret, Sutton, Jessica, Slick, Rebecca A., Luttrell, Shawn M., Mack, David L., Lawlor, Michael W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.03.2023
Subjects
Online AccessGet full text
ISSN0014-4827
1090-2422
1090-2422
DOI10.1016/j.yexcr.2023.113507

Cover

Abstract Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study. •Directed differentiation of ACTA1 H40Y nemaline myopathy (NM) iPSCs into skeletal myotubes.•Nemaline myopathy iPSC-derived skeletal myocytes (NM-iSkM) do not display nemaline rods.•NM-iSkM show mitochondrial dysfunction under conditions of stress.•NM-iSkM are vulnerable to oxidative stress.
AbstractList Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.
Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.
Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin ( NEB ) and skeletal muscle actin ( ACTA1 ), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear. To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ ADP/ phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.
Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study. •Directed differentiation of ACTA1 H40Y nemaline myopathy (NM) iPSCs into skeletal myotubes.•Nemaline myopathy iPSC-derived skeletal myocytes (NM-iSkM) do not display nemaline rods.•NM-iSkM show mitochondrial dysfunction under conditions of stress.•NM-iSkM are vulnerable to oxidative stress.
ArticleNumber 113507
Author Mack, David L.
Haberman, Margaret
Sutton, Jessica
Lawlor, Michael W.
Luttrell, Shawn M.
Gartz, Melanie
Slick, Rebecca A.
AuthorAffiliation 5 Curi Bio Inc., 3000 Western Avenue, Seattle, WA 98121
3 Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
1 Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI
7 Institute for Stem Cell and Regenerative Medicine, UW Medicine, Seattle, WA
4 Diverge Translational Science Laboratory, Milwaukee, WI
2 Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI
6 Department of Rehabilitation Medicine, University of Washington, Seattle, WA
AuthorAffiliation_xml – name: 6 Department of Rehabilitation Medicine, University of Washington, Seattle, WA
– name: 2 Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI
– name: 4 Diverge Translational Science Laboratory, Milwaukee, WI
– name: 7 Institute for Stem Cell and Regenerative Medicine, UW Medicine, Seattle, WA
– name: 1 Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI
– name: 5 Curi Bio Inc., 3000 Western Avenue, Seattle, WA 98121
– name: 3 Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
Author_xml – sequence: 1
  givenname: Melanie
  orcidid: 0000-0001-8117-0906
  surname: Gartz
  fullname: Gartz, Melanie
  email: mgartz@mcw.edu
  organization: Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
– sequence: 2
  givenname: Margaret
  surname: Haberman
  fullname: Haberman, Margaret
  organization: Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
– sequence: 3
  givenname: Jessica
  surname: Sutton
  fullname: Sutton, Jessica
  organization: Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
– sequence: 4
  givenname: Rebecca A.
  orcidid: 0000-0002-0276-2522
  surname: Slick
  fullname: Slick, Rebecca A.
  organization: Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
– sequence: 5
  givenname: Shawn M.
  surname: Luttrell
  fullname: Luttrell, Shawn M.
  organization: Curi Bio Inc., 3000 Western Avenue, Seattle, WA, 98121, USA
– sequence: 6
  givenname: David L.
  surname: Mack
  fullname: Mack, David L.
  organization: Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
– sequence: 7
  givenname: Michael W.
  surname: Lawlor
  fullname: Lawlor, Michael W.
  organization: Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36796746$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFuEzEQtVARTQNfgIR85LLBXu_a6wNIUVRapEogUQ6cLMeeJQ67drCdqPv3OE2pgAPI0vgw7715M-8CnfngAaGXlCwoofzNdjHBnYmLmtRsQSlriXiCZpRIUtVNXZ-hGSG0qZquFufoIqUtIaTrKH-GzhkXkouGz9DdcnW7pPi6IV_xuM_aZ-w-fV5VFqI7gMXpOwyQ9YDHKZgpQ8LWpd2gJzy6HMwmeBtdaVvoweSEncfaH-vB5RjwGCwMOPTYw6gH5-Gos9N5Mz1HT3s9JHjx8M_Rl_eXt6vr6ubj1YfV8qYyTStzJQizjFFBi_PimnMrxNqALEs1jLe2b7kkVhogBkTfaiugoaZvCG9B837N5ujdSXe3X49gDfgc9aB20Y06Tipop_7seLdR38JBSSlZU94cvX4QiOHHHlJWo0sGhkF7CPukaiE62RHesQJ99fusxyG_zl0A7AQwMaQUoX-EUKKOoaqtug9VHUNVp1ALS_7FMi7r7MLRsBv-w3174kK58cFBVMk48AasiyUwZYP7J_8nYvC__A
CitedBy_id crossref_primary_10_3233_JND_230076
crossref_primary_10_1155_2024_6496088
crossref_primary_10_3390_ijms25021014
Cites_doi 10.1002/glia.24153
10.1093/jnen/nlab139
10.3389/fnins.2018.00086
10.1093/brain/awr274
10.1002/mus.24606
10.1007/s10974-019-09519-9
10.1046/j.1365-201x.2001.00835.x
10.1038/nprot.2016.110
10.3791/52032-v
10.1016/S0730-725X(02)00646-X
10.1016/j.yjmcc.2009.02.021
10.1161/CIRCRESAHA.113.300376
10.1007/s00401-015-1430-3
10.1016/S0009-8981(01)00392-8
10.1097/NEN.0b013e318293b1cc
10.1523/JNEUROSCI.20-15-05715.2000
10.1016/j.nmd.2004.03.006
10.1016/j.bbrc.2016.11.088
10.1002/mus.21327
10.1002/humu.20370
10.1016/j.scr.2020.101729
10.1097/WCO.0b013e328364d681
10.1002/ana.1080
10.1016/j.freeradbiomed.2012.06.041
10.1242/dmm.045559
10.1016/S1471-4914(01)02089-5
10.1016/j.scr.2019.101559
10.1242/jcs.01172
10.1093/hmg/ddh185
10.1186/s40478-022-01491-9
10.1212/WNL.0b013e31824e8ebe
10.1093/hmg/ddx431
10.1371/journal.pone.0072294
10.1002/ana.20157
10.1093/hmg/ddv489
10.1007/s00401-012-1019-z
10.1002/ana.21035
10.3390/cells9030571
10.1007/s11033-014-3584-9
10.1177/1074248416636477
10.1016/j.scr.2021.102429
10.1093/hmg/ddab199
10.1016/j.ajpath.2016.02.008
10.3389/fcell.2022.886879
10.1016/S0960-8966(02)00065-2
10.1212/WNL.0b013e3181d8c35f
10.1212/01.wnl.0000180362.90078.dc
10.1038/13837
10.4252/wjsc.v11.i1.33
10.1371/journal.pone.0195850
10.1016/j.niox.2011.12.007
10.1016/S0960-8966(01)00278-4
10.1093/hmg/ddab112
10.1016/j.mehy.2015.08.015
10.1016/j.nmd.2017.10.007
10.1016/j.nmd.2016.08.004
10.1016/j.bbadis.2016.04.013
10.1093/emboj/18.3.522
10.1007/s00415-009-5409-7
10.1371/journal.pone.0061517
10.1016/j.jsb.2009.11.013
10.1016/j.pediatrneurol.2017.04.002
10.3233/JND-160200
10.1016/j.scr.2021.102273
10.1186/s13041-017-0300-4
10.1016/S0960-8966(00)00172-3
10.1097/CND.0b013e3181903126
10.1073/pnas.0610270104
10.1159/000179893
10.1136/jmg.34.9.705
10.1007/s10974-014-9380-2
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.yexcr.2023.113507
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1090-2422
EndPage 113507
ExternalDocumentID PMC9993434
36796746
10_1016_j_yexcr_2023_113507
S001448272300054X
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK017047
– fundername: NHLBI NIH HHS
  grantid: R01 HL134932
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABOCM
ABPPZ
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACPRK
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TEORI
TWZ
VQA
WH7
Y6R
YZZ
ZA5
ZCA
ZMT
ZU3
~G-
~KM
.55
.GJ
29G
3O-
53G
9M8
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FA8
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
LPU
MVM
NEJ
OHT
R2-
SBG
VH1
WUQ
X7L
X7M
XOL
XPP
YYP
ZGI
ZKB
~HD
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ACLOT
5PM
ID FETCH-LOGICAL-c459t-703d3317188136766d77bce98274365df5690d9ce0ce7f5ad7e41cf4065ea6fb3
IEDL.DBID .~1
ISSN 0014-4827
1090-2422
IngestDate Thu Aug 21 18:34:51 EDT 2025
Sun Sep 28 02:39:41 EDT 2025
Mon Jul 21 05:53:24 EDT 2025
Thu Apr 24 22:57:36 EDT 2025
Thu Sep 18 00:09:59 EDT 2025
Fri Feb 23 02:38:34 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Mitochondria
Skeletal myotube
Nemaline myopathy
iPSC
Stress injury
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-703d3317188136766d77bce98274365df5690d9ce0ce7f5ad7e41cf4065ea6fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author Contributions: M.G. conceived this project, oversaw and performed assays, wrote the manuscript, performed statistical analyses and interpreted results from experiments. M.H., J.S. and R.A.S. performed all iPSC culturing. M.H. performed live cell imaging for downstream analysis. M.H and J.S. performed immunofluorescent staining. R.A.S. performed western blots. M.H., J.S. and R.A.S. have revised this manuscript. D.L.M and S.M.L. generated the iPSCs, provided guidance on differentiation protocols and revised this manuscript. M.W.L oversaw western blot analysis and histological analysis, and revised this manuscript. All authors have reviewed this manuscript and approve this final version.
ORCID 0000-0001-8117-0906
0000-0002-0276-2522
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9993434
PMID 36796746
PQID 2778980683
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9993434
proquest_miscellaneous_2778980683
pubmed_primary_36796746
crossref_primary_10_1016_j_yexcr_2023_113507
crossref_citationtrail_10_1016_j_yexcr_2023_113507
elsevier_sciencedirect_doi_10_1016_j_yexcr_2023_113507
PublicationCentury 2000
PublicationDate 2023-03-15
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Experimental cell research
PublicationTitleAlternate Exp Cell Res
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mancuso, Orsucci, LoGerfo, Rocchi, Petrozzi, Nesti (bib77) 2010; 257
Ma, Zhang, Yang, Li, Guan, Lv (bib29) 2019; 40
Afzal, Reiter, Gastonguay, McGivern, Guan, Ge (bib31) 2016; 21
Gartz, Lin, Sussman, Lawlor, Strande (bib35) 2020; 13
Lehtokari, Pelin, Sandbacka, Ranta, Donner, Muntoni (bib7) 2006; 27
Sharma, Atri, Sharma, Sarkar, Jagannathan (bib63) 2003; 21
Nguyen, Joya, Kee, Domazetovska, Yang, Hook (bib23) 2011; 134
Vincent, Grady, Rocha, Alston, Rygiel, Barresi (bib74) 2016; 26
Romero, Sandaradura, Clarke (bib1) 2013; 26
Gineste, Le Fur, Vilmen, Le Troter, Pecchi, Cozzone (bib21) 2013; 8
Madill, McDonagh, Ma, Vajda, McLoughlin, O'Brien (bib51) 2017; 10
Chahin, Selcen, Engel (bib13) 2005; 65
Angelin, Tiepolo, Sabatelli, Grumati, Bergamin, Golfieri (bib70) 2007; 104
Costa, Rommelaere, Waterschoot, Sethi, Nowak, Laing (bib10) 2004; 117
Machiraju, Greenway (bib59) 2019; 11
Chan, Fan, Messer, Marston, Iwamoto, Ochala (bib24) 2016; 1862
Fujiwara, Yamamoto, Kubota, Tazumi, Sabuta, Takahashi (bib60) 2022; 10
Dubowitz, Sewry, Oldfors (bib15) 2020
Canton, Menazza, Di Lisa (bib78) 2014; 35
Gartz, Darlington, Afzal, Strande (bib32) 2018; 1
Allison, Welby, Khayrullina, Burnett, Ebert (bib55) 2022; 70
Doenst, Nguyen, Abel (bib65) 2013; 113
Cole, Rafael, Taylor, Lodi, Davies, Styles (bib66) 2002; 12
Moreno, Neto, Donkervoort, Hu, Reed, Oliveira (bib16) 2017; 75
Tinklenberg, Siebers, Beatka, Meng, Yang, Zhang (bib26) 2018; 27
Ryan, Schnell, Strickland, Shield, Morgan, Iannaccone (bib4) 2001; 50
Nowak, Ravenscroft, Laing (bib39) 2013; 125
Turki, Hayot, Carnac, Pillard, Passerieux, Bommart (bib71) 2012; 53
Sanoudou, Beggs (bib3) 2001; 7
Luetjens, Bui, Sengpiel, Münstermann, Poppe, Krohn (bib48) 2000; 20
Wallgren-Pettersson, Pelin, Nowak, Muntoni, Romero, Goebel (bib11) 2004; 14
Biswas, Adebanjo, Freedman, Anandatheerthavarada, Vijayasarathy, Zaidi (bib40) 1999; 18
(bib38) 2011
Nowak, Wattanasirichaigoon, Goebel, Wilce, Pelin, Donner (bib50) 1999; 23
Lindqvist, Cheng, Renaud, Hardeman, Ochala (bib22) 2013; 72
Erlacher, Lercher, Falkensammer, Nassonov, Samsonov, Shtutman (bib43) 2001; 306
Clayton, Scriba, Romero, Malfatti, Saker, Larmonier (bib30) 2021; 53
Chal, Al Tanoury, Hestin, Gobert, Aivio, Hick (bib33) 2016; 11
Ranu, Laitila, Dugdale, Mariano, Kolb, Wallgren-Pettersson (bib64) 2022; 10
Sztal, Zhao, Williams, Oorschot, Parslow, Giousoh (bib17) 2015; 130
Afzal, Strande (bib56) 2015
Sewry, Brown, Pelin, Jungbluth, Wallgren-Pettersson, Labeit (bib58) 2001; 11
Beekman, Janson, Baghat, van Deutekom, Datson (bib34) 2018; 13
Seminary, Santarriaga, Wheeler, Mejaki, Abrudan, Demos (bib52) 2020; 9
Timpani, Hayes, Rybalka (bib72) 2015; 85
Halestrap (bib41) 2009; 46
Vakifahmetoglu-Norberg, Ouchida, Norberg (bib69) 2017; 482
Bevilacqua, Malfatti, Labasse, Brochier, Madelaine, Lacène (bib14) 2022; 81
Gartz, Beatka, Prom, Strande, Lawlor (bib36) 2021
Houweling, Coles, Tiong, Nielsen, Graham, McDonald (bib27) 2021; 54
Seminary, Sison, Ebert (bib53) 2018; 12
Ohtani, Katoh, Tanaka, Saotome, Urushida, Satoh (bib42) 2012; 26
Agrawal, Strickland, Midgett, Morales, Newburger, Poulos (bib12) 2004; 56
Gineste, Duhamel, Le Fur, Vilmen, Cozzone, Nowak (bib68) 2013; 8
Sewry, Laitila, Wallgren-Pettersson (bib6) 2019; 40
Baltgalvis, Call, Nikas, Lowe (bib75) 2009; 40
Nowak, Sewry, Navarro, Squier, Reina, Ricoy (bib8) 2007; 61
North, Laing, Wallgren-Pettersson (bib2) 1997; 34
Liu, Lin (bib20) 2022
Jain, Jayawant, Squier, Muntoni, Sewry, Manzur (bib25) 2012; 78
Gramegna, Giannoccaro, Manners, Testa, Zanigni, Evangelisti (bib73) 2018; 28
Smith, Luttrell, Dupont, Gray, Lih, Fleming (bib37) 2022
Ilkovski, Nowak, Domazetovska, Maxwell, Clement, Davies (bib18) 2004; 13
Ma, Zhang, Li, Yang, Li, Guan (bib28) 2020; 43
András, Ponyi, Constantin, Csiki, Szekanecz, Szodoray (bib76) 2008; 35
van Adel, Tarnopolsky (bib61) 2009; 10
Tinklenberg, Meng, Yang, Liu, Hoffmann, Dasgupta (bib19) 2016; 186
Wallgren-Pettersson, Donner, Sewry, Bijlsma, Lammens, Bushby (bib57) 2002; 12
de Winter, Ottenheijm (bib5) 2017; 4
Kawai, Candau (bib67) 2010
Weber, Roebling, Kassubek, Hoffmann, Rosenbohm, Wolf (bib62) 2010; 74
Gissel, Clausen (bib46) 2001; 171
de Winter, Gineste, Minardi, Brocca, Rossi, Borsboom (bib49) 2021; 30
Ottenheijm, Hooijman, DeChene, Stienen, Beggs, Granzier (bib9) 2010; 170
Nie, Wang, Song, Ma, Kong, Zhang (bib47) 2014; 41
Giampietro, Clerico, Buzzigoli, Del Chicca, Boni, Carpi (bib44) 1984; 19
Patitucci, Ebert (bib54) 2016; 25
Nance, Mammen (bib45) 2015; 51
Chal (10.1016/j.yexcr.2023.113507_bib33) 2016; 11
Sztal (10.1016/j.yexcr.2023.113507_bib17) 2015; 130
Weber (10.1016/j.yexcr.2023.113507_bib62) 2010; 74
Ryan (10.1016/j.yexcr.2023.113507_bib4) 2001; 50
Gartz (10.1016/j.yexcr.2023.113507_bib36) 2021
Ma (10.1016/j.yexcr.2023.113507_bib28) 2020; 43
Sewry (10.1016/j.yexcr.2023.113507_bib6) 2019; 40
Nowak (10.1016/j.yexcr.2023.113507_bib50) 1999; 23
Vakifahmetoglu-Norberg (10.1016/j.yexcr.2023.113507_bib69) 2017; 482
Ma (10.1016/j.yexcr.2023.113507_bib29) 2019; 40
Angelin (10.1016/j.yexcr.2023.113507_bib70) 2007; 104
Turki (10.1016/j.yexcr.2023.113507_bib71) 2012; 53
Timpani (10.1016/j.yexcr.2023.113507_bib72) 2015; 85
de Winter (10.1016/j.yexcr.2023.113507_bib49) 2021; 30
Giampietro (10.1016/j.yexcr.2023.113507_bib44) 1984; 19
Lindqvist (10.1016/j.yexcr.2023.113507_bib22) 2013; 72
Ohtani (10.1016/j.yexcr.2023.113507_bib42) 2012; 26
Fujiwara (10.1016/j.yexcr.2023.113507_bib60) 2022; 10
Chan (10.1016/j.yexcr.2023.113507_bib24) 2016; 1862
Seminary (10.1016/j.yexcr.2023.113507_bib53) 2018; 12
Erlacher (10.1016/j.yexcr.2023.113507_bib43) 2001; 306
Nance (10.1016/j.yexcr.2023.113507_bib45) 2015; 51
Costa (10.1016/j.yexcr.2023.113507_bib10) 2004; 117
András (10.1016/j.yexcr.2023.113507_bib76) 2008; 35
Gineste (10.1016/j.yexcr.2023.113507_bib21) 2013; 8
North (10.1016/j.yexcr.2023.113507_bib2) 1997; 34
Bevilacqua (10.1016/j.yexcr.2023.113507_bib14) 2022; 81
Allison (10.1016/j.yexcr.2023.113507_bib55) 2022; 70
Dubowitz (10.1016/j.yexcr.2023.113507_bib15) 2020
Beekman (10.1016/j.yexcr.2023.113507_bib34) 2018; 13
Jain (10.1016/j.yexcr.2023.113507_bib25) 2012; 78
Baltgalvis (10.1016/j.yexcr.2023.113507_bib75) 2009; 40
Gramegna (10.1016/j.yexcr.2023.113507_bib73) 2018; 28
Nowak (10.1016/j.yexcr.2023.113507_bib8) 2007; 61
Seminary (10.1016/j.yexcr.2023.113507_bib52) 2020; 9
Gineste (10.1016/j.yexcr.2023.113507_bib68) 2013; 8
Gartz (10.1016/j.yexcr.2023.113507_bib35) 2020; 13
Madill (10.1016/j.yexcr.2023.113507_bib51) 2017; 10
Ilkovski (10.1016/j.yexcr.2023.113507_bib18) 2004; 13
Afzal (10.1016/j.yexcr.2023.113507_bib56) 2015
Clayton (10.1016/j.yexcr.2023.113507_bib30) 2021; 53
Tinklenberg (10.1016/j.yexcr.2023.113507_bib26) 2018; 27
Kawai (10.1016/j.yexcr.2023.113507_bib67) 2010
Sewry (10.1016/j.yexcr.2023.113507_bib58) 2001; 11
de Winter (10.1016/j.yexcr.2023.113507_bib5) 2017; 4
Moreno (10.1016/j.yexcr.2023.113507_bib16) 2017; 75
Patitucci (10.1016/j.yexcr.2023.113507_bib54) 2016; 25
Lehtokari (10.1016/j.yexcr.2023.113507_bib7) 2006; 27
Houweling (10.1016/j.yexcr.2023.113507_bib27) 2021; 54
Gissel (10.1016/j.yexcr.2023.113507_bib46) 2001; 171
Chahin (10.1016/j.yexcr.2023.113507_bib13) 2005; 65
Nguyen (10.1016/j.yexcr.2023.113507_bib23) 2011; 134
Luetjens (10.1016/j.yexcr.2023.113507_bib48) 2000; 20
Biswas (10.1016/j.yexcr.2023.113507_bib40) 1999; 18
Machiraju (10.1016/j.yexcr.2023.113507_bib59) 2019; 11
Agrawal (10.1016/j.yexcr.2023.113507_bib12) 2004; 56
van Adel (10.1016/j.yexcr.2023.113507_bib61) 2009; 10
Ottenheijm (10.1016/j.yexcr.2023.113507_bib9) 2010; 170
Nie (10.1016/j.yexcr.2023.113507_bib47) 2014; 41
Vincent (10.1016/j.yexcr.2023.113507_bib74) 2016; 26
Wallgren-Pettersson (10.1016/j.yexcr.2023.113507_bib11) 2004; 14
Ranu (10.1016/j.yexcr.2023.113507_bib64) 2022; 10
Liu (10.1016/j.yexcr.2023.113507_bib20) 2022
Gartz (10.1016/j.yexcr.2023.113507_bib32) 2018; 1
Canton (10.1016/j.yexcr.2023.113507_bib78) 2014; 35
Doenst (10.1016/j.yexcr.2023.113507_bib65) 2013; 113
Afzal (10.1016/j.yexcr.2023.113507_bib31) 2016; 21
Sharma (10.1016/j.yexcr.2023.113507_bib63) 2003; 21
Romero (10.1016/j.yexcr.2023.113507_bib1) 2013; 26
Tinklenberg (10.1016/j.yexcr.2023.113507_bib19) 2016; 186
Nowak (10.1016/j.yexcr.2023.113507_bib39) 2013; 125
Sanoudou (10.1016/j.yexcr.2023.113507_bib3) 2001; 7
(10.1016/j.yexcr.2023.113507_bib38) 2011
Halestrap (10.1016/j.yexcr.2023.113507_bib41) 2009; 46
Cole (10.1016/j.yexcr.2023.113507_bib66) 2002; 12
Smith (10.1016/j.yexcr.2023.113507_bib37) 2022
Wallgren-Pettersson (10.1016/j.yexcr.2023.113507_bib57) 2002; 12
Mancuso (10.1016/j.yexcr.2023.113507_bib77) 2010; 257
References_xml – volume: 65
  start-page: 1158
  year: 2005
  end-page: 1164
  ident: bib13
  article-title: Sporadic late onset nemaline myopathy
  publication-title: Neurology
– volume: 186
  start-page: 1568
  year: 2016
  end-page: 1581
  ident: bib19
  article-title: Treatment with ActRIIB-mFc produces myofiber growth and improves lifespan in the Acta1 H40Y murine model of nemaline myopathy
  publication-title: Am. J. Pathol.
– volume: 26
  start-page: 691
  year: 2016
  end-page: 701
  ident: bib74
  article-title: Mitochondrial dysfunction in myofibrillar myopathy
  publication-title: Neuromuscul. Disord.
– volume: 43
  year: 2020
  ident: bib28
  article-title: An integration-free iPSC line (SDQLCHi017-A) derived from a patient with nemaline myopathy-2 disease carrying compound heterozygote mutations in NEB gene
  publication-title: Stem Cell Res.
– volume: 26
  start-page: 519
  year: 2013
  end-page: 526
  ident: bib1
  article-title: Recent advances in nemaline myopathy
  publication-title: Curr. Opin. Neurol.
– year: 2011
  ident: bib38
  publication-title: Nemaline Myopathies. Seminars in Pediatric Neurology
– volume: 8
  year: 2013
  ident: bib21
  article-title: Combined MRI and 31P-MRS investigations of the ACTA1 (H40Y) mouse model of nemaline myopathy show impaired muscle function and altered energy metabolism
  publication-title: PLoS One
– year: 2015
  ident: bib56
  article-title: Generation of induced pluripotent stem cells from muscular dystrophy patients: efficient integration-free reprogramming of urine derived cells
  publication-title: JoVE
– volume: 72
  start-page: 472
  year: 2013
  end-page: 481
  ident: bib22
  article-title: Distinct underlying mechanisms of limb and respiratory muscle fiber weaknesses in nemaline myopathy
  publication-title: J. Neuropathol. Exp. Neurol.
– start-page: 2022
  year: 2022
  ident: bib20
  article-title: Structural and functional alterations of neuromuscular synapses in a mouse model of <em>ACTA1</em> congenital myopathy
  publication-title: bioRxiv
– volume: 171
  start-page: 327
  year: 2001
  end-page: 334
  ident: bib46
  article-title: Excitation-induced Ca2+ influx and skeletal muscle cell damage
  publication-title: Acta Physiol. Scand.
– volume: 56
  start-page: 86
  year: 2004
  end-page: 96
  ident: bib12
  article-title: Heterogeneity of nemaline myopathy cases with skeletal muscle α‐actin gene mutations
  publication-title: Ann. Neurol.
– volume: 11
  start-page: 33
  year: 2019
  end-page: 43
  ident: bib59
  article-title: Current methods for the maturation of induced pluripotent stem cell-derived cardiomyocytes
  publication-title: World J. Stem Cell.
– volume: 18
  start-page: 522
  year: 1999
  end-page: 533
  ident: bib40
  article-title: Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk
  publication-title: EMBO J.
– volume: 27
  start-page: 946
  year: 2006
  end-page: 956
  ident: bib7
  article-title: Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy
  publication-title: Hum. Mutat.
– volume: 61
  start-page: 175
  year: 2007
  end-page: 184
  ident: bib8
  article-title: Nemaline myopathy caused by absence of alpha-skeletal muscle actin
  publication-title: Ann. Neurol.
– volume: 12
  start-page: 86
  year: 2018
  ident: bib53
  article-title: Modeling protein aggregation and the heat shock response in ALS iPSC-derived motor neurons
  publication-title: Front. Neurosci.
– volume: 13
  start-page: 1727
  year: 2004
  end-page: 1743
  ident: bib18
  article-title: Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms
  publication-title: Hum. Mol. Genet.
– volume: 74
  start-page: 1108
  year: 2010
  end-page: 1117
  ident: bib62
  article-title: Comparative analysis of brain structure, metabolism, and cognition in myotonic dystrophy 1 and 2
  publication-title: Neurology
– volume: 10
  year: 2022
  ident: bib60
  article-title: Mature myotubes generated from human-induced pluripotent stem cells without forced gene expression
  publication-title: Front. Cell Dev. Biol.
– volume: 13
  year: 2018
  ident: bib34
  article-title: Use of capillary Western immunoassay (Wes) for quantification of dystrophin levels in skeletal muscle of healthy controls and individuals with Becker and Duchenne muscular dystrophy
  publication-title: PLoS One
– volume: 19
  start-page: 232
  year: 1984
  end-page: 242
  ident: bib44
  article-title: Detection of hypothyroid myopathy by measurement of various serum muscle markers–myoglobin, creatine kinase, lactate dehydrogenase and their isoenzymes
  publication-title: Hormone Research in Paediatrics
– volume: 51
  start-page: 793
  year: 2015
  end-page: 810
  ident: bib45
  article-title: Diagnostic evaluation of rhabdomyolysis
  publication-title: Muscle Nerve
– volume: 8
  year: 2013
  ident: bib68
  article-title: Multimodal MRI and 31P-MRS investigations of the ACTA1 (Asp286Gly) mouse model of nemaline myopathy provide evidence of impaired in vivo muscle function, altered muscle structure and disturbed energy metabolism
  publication-title: PLoS One
– volume: 12
  start-page: 674
  year: 2002
  end-page: 679
  ident: bib57
  article-title: Mutations in the nebulin gene can cause severe congenital nemaline myopathy
  publication-title: Neuromuscul. Disord.
– volume: 11
  start-page: 1833
  year: 2016
  end-page: 1850
  ident: bib33
  article-title: Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro
  publication-title: Nat. Protoc.
– volume: 306
  start-page: 27
  year: 2001
  end-page: 33
  ident: bib43
  article-title: Cardiac troponin and β-type myosin heavy chain concentrations in patients with polymyositis or dermatomyositis
  publication-title: Clin. Chim. Acta
– volume: 12
  start-page: 247
  year: 2002
  end-page: 257
  ident: bib66
  article-title: A quantitative study of bioenergetics in skeletal muscle lacking utrophin and dystrophin
  publication-title: Neuromuscul. Disord.
– volume: 257
  start-page: 774
  year: 2010
  end-page: 781
  ident: bib77
  article-title: Oxidative stress biomarkers in mitochondrial myopathies, basally and after cysteine donor supplementation
  publication-title: J. Neurol.
– volume: 35
  start-page: 438
  year: 2008
  end-page: 444
  ident: bib76
  article-title: Dermatomyositis and polymyositis associated with malignancy: a 21-year retrospective study
  publication-title: J. Rheumatol.
– volume: 10
  start-page: 185
  year: 2022
  ident: bib64
  article-title: NEB mutations disrupt the super-relaxed state of myosin and remodel the muscle metabolic proteome in nemaline myopathy
  publication-title: Acta Neuropathologica Communications
– volume: 4
  start-page: 99
  year: 2017
  end-page: 113
  ident: bib5
  article-title: Sarcomere dysfunction in nemaline myopathy
  publication-title: J. Neuromuscul. Dis.
– volume: 170
  start-page: 334
  year: 2010
  end-page: 343
  ident: bib9
  article-title: Altered myofilament function depresses force generation in patients with nebulin-based nemaline myopathy (NEM2)
  publication-title: J. Struct. Biol.
– volume: 27
  start-page: 638
  year: 2018
  end-page: 648
  ident: bib26
  article-title: Myostatin inhibition using mRK35 produces skeletal muscle growth and tubular aggregate formation in wild type and Tg ACTA1 D286G nemaline myopathy mice
  publication-title: Hum. Mol. Genet.
– volume: 134
  start-page: 3516
  year: 2011
  end-page: 3529
  ident: bib23
  article-title: Hypertrophy and dietary tyrosine ameliorate the phenotypes of a mouse model of severe nemaline myopathy
  publication-title: Brain
– start-page: 3
  year: 2010
  end-page: 25
  ident: bib67
  article-title: Muscle contraction and supplying ATP to muscle cells
  publication-title: Handbook of Exercise Physiology–From a Cellular to an Integrative Approach Connes P
– volume: 46
  start-page: 821
  year: 2009
  end-page: 831
  ident: bib41
  article-title: What is the mitochondrial permeability transition pore?
  publication-title: J. Mol. Cell. Cardiol.
– volume: 20
  start-page: 5715
  year: 2000
  end-page: 5723
  ident: bib48
  article-title: Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production
  publication-title: J. Neurosci.
– volume: 54
  year: 2021
  ident: bib27
  article-title: Generating an iPSC line (with isogenic control) from the PBMCs of an ACTA1 (p.Gly148Asp) nemaline myopathy patient
  publication-title: Stem Cell Res.
– volume: 41
  start-page: 6975
  year: 2014
  end-page: 6983
  ident: bib47
  article-title: Mitofusin 2 deficiency leads to oxidative stress that contributes to insulin resistance in rat skeletal muscle cells
  publication-title: Mol. Biol. Rep.
– volume: 25
  start-page: 514
  year: 2016
  end-page: 523
  ident: bib54
  article-title: SMN deficiency does not induce oxidative stress in SMA iPSC-derived astrocytes or motor neurons
  publication-title: Hum. Mol. Genet.
– volume: 10
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib51
  article-title: Amyotrophic lateral sclerosis patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms
  publication-title: Mol. Brain
– volume: 40
  start-page: 443
  year: 2009
  end-page: 454
  ident: bib75
  article-title: Effects of prednisolone on skeletal muscle contractility in mdx mice
  publication-title: Muscle Nerve: Off. J. Am. Assoc. Electrodiagnostic Medicine
– volume: 10
  year: 2009
  ident: bib61
  article-title: Metabolic myopathies: update 2009
  publication-title: J. Clin. Neuromuscul. Dis.
– volume: 113
  start-page: 709
  year: 2013
  end-page: 724
  ident: bib65
  article-title: Cardiac metabolism in heart failure: implications beyond ATP production
  publication-title: Circ. Res.
– volume: 1
  year: 2018
  ident: bib32
  article-title: Exosomes exert cardioprotection in dystrophin-deficient cardiomyocytes via ERK1/2-p38/MAPK signaling
  publication-title: Sci. Rep.
– volume: 40
  start-page: 111
  year: 2019
  end-page: 126
  ident: bib6
  article-title: Nemaline myopathies: a current view
  publication-title: J. Muscle Res. Cell Motil.
– volume: 30
  start-page: 1305
  year: 2021
  end-page: 1320
  ident: bib49
  article-title: Acute and chronic tirasemtiv treatment improves in vivo and in vitro muscle performance in actin-based nemaline myopathy mice
  publication-title: Hum. Mol. Genet.
– volume: 78
  start-page: 1100
  year: 2012
  end-page: 1103
  ident: bib25
  article-title: Nemaline myopathy with stiffness and hypertonia associated with an ACTA1 mutation
  publication-title: Neurology
– volume: 26
  start-page: 95
  year: 2012
  end-page: 101
  ident: bib42
  article-title: Effects of nitric oxide on mitochondrial permeability transition pore and thiol-mediated responses in cardiac myocytes
  publication-title: Nitric Oxide
– volume: 81
  start-page: 304
  year: 2022
  end-page: 307
  ident: bib14
  article-title: Congenital nemaline myopathy with dense protein masses
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 53
  year: 2021
  ident: bib30
  article-title: Generation of two isogenic induced pluripotent stem cell lines from a 4-month-old severe nemaline myopathy patient with a heterozygous dominant c.553C > A (p.Arg183Ser) variant in the ACTA1 gene
  publication-title: Stem Cell Res.
– volume: 125
  start-page: 19
  year: 2013
  end-page: 32
  ident: bib39
  article-title: Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms
  publication-title: Acta Neuropathol.
– volume: 50
  start-page: 312
  year: 2001
  end-page: 320
  ident: bib4
  article-title: Nemaline myopathy: a clinical study of 143 cases
  publication-title: Ann. Neurol.
– year: 2021
  ident: bib36
  article-title: Cardiomyocyte-produced miR-339-5p mediates pathology in Duchenne muscular dystrophy cardiomyopathy
  publication-title: Hum. Mol. Genet.
– volume: 23
  start-page: 208
  year: 1999
  end-page: 212
  ident: bib50
  article-title: Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy
  publication-title: Nat. Genet.
– year: 2020
  ident: bib15
  article-title: Muscle Biopsy E-Book: A Practical Approach
– volume: 40
  year: 2019
  ident: bib29
  article-title: Establishment of a human induced pluripotent stem cell line (SDQLCHi004-A) from a patient with nemaline myopathy-4 disease carrying heterozygous mutation in TPM2 gene
  publication-title: Stem Cell Res.
– start-page: 2022
  year: 2022
  ident: bib37
  article-title: High-throughput, real-time monitoring of engineered skeletal muscle function using magnetic sensing
  publication-title: bioRxiv
– volume: 70
  start-page: 989
  year: 2022
  end-page: 1004
  ident: bib55
  article-title: Viral mediated knockdown of GATA6 in SMA iPSC‐derived astrocytes prevents motor neuron loss and microglial activation
  publication-title: Glia
– volume: 21
  start-page: 145
  year: 2003
  end-page: 153
  ident: bib63
  article-title: Skeletal muscle metabolism in Duchenne muscular dystrophy (DMD): an in-vitro proton NMR spectroscopy study
  publication-title: Magn. Reson. Imaging
– volume: 117
  start-page: 3367
  year: 2004
  end-page: 3377
  ident: bib10
  article-title: Myopathy mutations in α-skeletal-muscle actin cause a range of molecular defects
  publication-title: J. Cell Sci.
– volume: 35
  start-page: 23
  year: 2014
  end-page: 36
  ident: bib78
  article-title: Oxidative stress in muscular dystrophy: from generic evidence to specific sources and targets
  publication-title: J. Muscle Res. Cell Motil.
– volume: 34
  start-page: 705
  year: 1997
  ident: bib2
  article-title: Nemaline myopathy: current concepts. The ENMC international consortium and nemaline myopathy
  publication-title: J. Med. Genet.
– volume: 7
  start-page: 362
  year: 2001
  end-page: 368
  ident: bib3
  article-title: Clinical and genetic heterogeneity in nemaline myopathy–a disease of skeletal muscle thin filaments
  publication-title: Trends Mol. Med.
– volume: 482
  start-page: 426
  year: 2017
  end-page: 431
  ident: bib69
  article-title: The role of mitochondria in metabolism and cell death
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 1862
  start-page: 1453
  year: 2016
  end-page: 1458
  ident: bib24
  article-title: Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function
  publication-title: Biochim. Biophys. Acta (BBA) - Mol. Basis Dis.
– volume: 75
  start-page: 11
  year: 2017
  end-page: 16
  ident: bib16
  article-title: Clinical and histologic findings in ACTA1-related nemaline myopathy: case series and review of the literature
  publication-title: Pediatr. Neurol.
– volume: 130
  start-page: 389
  year: 2015
  end-page: 406
  ident: bib17
  article-title: Zebrafish models for nemaline myopathy reveal a spectrum of nemaline bodies contributing to reduced muscle function
  publication-title: Acta Neuropathol.
– volume: 14
  start-page: 461
  year: 2004
  end-page: 470
  ident: bib11
  article-title: Genotype–phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle α-actin
  publication-title: Neuromuscul. Disord.
– volume: 11
  start-page: 146
  year: 2001
  end-page: 153
  ident: bib58
  article-title: Abnormalities in the expression of nebulin in chromosome-2 linked nemaline myopathy
  publication-title: Neuromuscul. Disord.
– volume: 21
  start-page: 549
  year: 2016
  ident: bib31
  article-title: Nicorandil, a nitric oxide donor and ATP-sensitive potassium channel opener, protects against dystrophin-deficient cardiomyopathy
  publication-title: J. Cardiovasc. Pharmacol. Therapeut.
– volume: 9
  start-page: 571
  year: 2020
  ident: bib52
  article-title: Motor neuron generation from iPSCs from identical twins discordant for amyotrophic lateral sclerosis
  publication-title: Cells
– volume: 28
  start-page: 144
  year: 2018
  end-page: 149
  ident: bib73
  article-title: Mitochondrial dysfunction in myotonic dystrophy type 1
  publication-title: Neuromuscul. Disord.
– volume: 13
  year: 2020
  ident: bib35
  article-title: Duchenne muscular dystrophy (DMD) cardiomyocyte-secreted exosomes promote the pathogenesis of DMD-associated cardiomyopathy
  publication-title: Dis Model Mech
– volume: 104
  start-page: 991
  year: 2007
  end-page: 996
  ident: bib70
  article-title: Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 85
  start-page: 1021
  year: 2015
  end-page: 1033
  ident: bib72
  article-title: Revisiting the dystrophin-ATP connection: how half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology
  publication-title: Med. Hypotheses
– volume: 53
  start-page: 1068
  year: 2012
  end-page: 1079
  ident: bib71
  article-title: Functional muscle impairment in facioscapulohumeral muscular dystrophy is correlated with oxidative stress and mitochondrial dysfunction
  publication-title: Free Radic. Biol. Med.
– volume: 70
  start-page: 989
  issue: 5
  year: 2022
  ident: 10.1016/j.yexcr.2023.113507_bib55
  article-title: Viral mediated knockdown of GATA6 in SMA iPSC‐derived astrocytes prevents motor neuron loss and microglial activation
  publication-title: Glia
  doi: 10.1002/glia.24153
– volume: 81
  start-page: 304
  issue: 4
  year: 2022
  ident: 10.1016/j.yexcr.2023.113507_bib14
  article-title: Congenital nemaline myopathy with dense protein masses
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1093/jnen/nlab139
– volume: 12
  start-page: 86
  year: 2018
  ident: 10.1016/j.yexcr.2023.113507_bib53
  article-title: Modeling protein aggregation and the heat shock response in ALS iPSC-derived motor neurons
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00086
– volume: 134
  start-page: 3516
  issue: 12
  year: 2011
  ident: 10.1016/j.yexcr.2023.113507_bib23
  article-title: Hypertrophy and dietary tyrosine ameliorate the phenotypes of a mouse model of severe nemaline myopathy
  publication-title: Brain
  doi: 10.1093/brain/awr274
– volume: 51
  start-page: 793
  issue: 6
  year: 2015
  ident: 10.1016/j.yexcr.2023.113507_bib45
  article-title: Diagnostic evaluation of rhabdomyolysis
  publication-title: Muscle Nerve
  doi: 10.1002/mus.24606
– volume: 40
  start-page: 111
  issue: 2
  year: 2019
  ident: 10.1016/j.yexcr.2023.113507_bib6
  article-title: Nemaline myopathies: a current view
  publication-title: J. Muscle Res. Cell Motil.
  doi: 10.1007/s10974-019-09519-9
– volume: 171
  start-page: 327
  issue: 3
  year: 2001
  ident: 10.1016/j.yexcr.2023.113507_bib46
  article-title: Excitation-induced Ca2+ influx and skeletal muscle cell damage
  publication-title: Acta Physiol. Scand.
  doi: 10.1046/j.1365-201x.2001.00835.x
– volume: 1
  issue: 8
  year: 2018
  ident: 10.1016/j.yexcr.2023.113507_bib32
  article-title: Exosomes exert cardioprotection in dystrophin-deficient cardiomyocytes via ERK1/2-p38/MAPK signaling
  publication-title: Sci. Rep.
– volume: 11
  start-page: 1833
  issue: 10
  year: 2016
  ident: 10.1016/j.yexcr.2023.113507_bib33
  article-title: Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.110
– issue: 95
  year: 2015
  ident: 10.1016/j.yexcr.2023.113507_bib56
  article-title: Generation of induced pluripotent stem cells from muscular dystrophy patients: efficient integration-free reprogramming of urine derived cells
  publication-title: JoVE
  doi: 10.3791/52032-v
– volume: 21
  start-page: 145
  issue: 2
  year: 2003
  ident: 10.1016/j.yexcr.2023.113507_bib63
  article-title: Skeletal muscle metabolism in Duchenne muscular dystrophy (DMD): an in-vitro proton NMR spectroscopy study
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(02)00646-X
– volume: 46
  start-page: 821
  issue: 6
  year: 2009
  ident: 10.1016/j.yexcr.2023.113507_bib41
  article-title: What is the mitochondrial permeability transition pore?
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2009.02.021
– volume: 113
  start-page: 709
  issue: 6
  year: 2013
  ident: 10.1016/j.yexcr.2023.113507_bib65
  article-title: Cardiac metabolism in heart failure: implications beyond ATP production
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.113.300376
– volume: 130
  start-page: 389
  issue: 3
  year: 2015
  ident: 10.1016/j.yexcr.2023.113507_bib17
  article-title: Zebrafish models for nemaline myopathy reveal a spectrum of nemaline bodies contributing to reduced muscle function
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-015-1430-3
– volume: 306
  start-page: 27
  issue: 1–2
  year: 2001
  ident: 10.1016/j.yexcr.2023.113507_bib43
  article-title: Cardiac troponin and β-type myosin heavy chain concentrations in patients with polymyositis or dermatomyositis
  publication-title: Clin. Chim. Acta
  doi: 10.1016/S0009-8981(01)00392-8
– volume: 72
  start-page: 472
  issue: 6
  year: 2013
  ident: 10.1016/j.yexcr.2023.113507_bib22
  article-title: Distinct underlying mechanisms of limb and respiratory muscle fiber weaknesses in nemaline myopathy
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/NEN.0b013e318293b1cc
– volume: 20
  start-page: 5715
  issue: 15
  year: 2000
  ident: 10.1016/j.yexcr.2023.113507_bib48
  article-title: Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-15-05715.2000
– volume: 14
  start-page: 461
  issue: 8–9
  year: 2004
  ident: 10.1016/j.yexcr.2023.113507_bib11
  article-title: Genotype–phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle α-actin
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/j.nmd.2004.03.006
– volume: 482
  start-page: 426
  issue: 3
  year: 2017
  ident: 10.1016/j.yexcr.2023.113507_bib69
  article-title: The role of mitochondria in metabolism and cell death
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.11.088
– volume: 40
  start-page: 443
  issue: 3
  year: 2009
  ident: 10.1016/j.yexcr.2023.113507_bib75
  article-title: Effects of prednisolone on skeletal muscle contractility in mdx mice
  publication-title: Muscle Nerve: Off. J. Am. Assoc. Electrodiagnostic Medicine
  doi: 10.1002/mus.21327
– volume: 27
  start-page: 946
  issue: 9
  year: 2006
  ident: 10.1016/j.yexcr.2023.113507_bib7
  article-title: Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.20370
– volume: 43
  year: 2020
  ident: 10.1016/j.yexcr.2023.113507_bib28
  article-title: An integration-free iPSC line (SDQLCHi017-A) derived from a patient with nemaline myopathy-2 disease carrying compound heterozygote mutations in NEB gene
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2020.101729
– start-page: 3
  year: 2010
  ident: 10.1016/j.yexcr.2023.113507_bib67
  article-title: Muscle contraction and supplying ATP to muscle cells
– year: 2020
  ident: 10.1016/j.yexcr.2023.113507_bib15
– volume: 26
  start-page: 519
  issue: 5
  year: 2013
  ident: 10.1016/j.yexcr.2023.113507_bib1
  article-title: Recent advances in nemaline myopathy
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e328364d681
– volume: 50
  start-page: 312
  issue: 3
  year: 2001
  ident: 10.1016/j.yexcr.2023.113507_bib4
  article-title: Nemaline myopathy: a clinical study of 143 cases
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.1080
– volume: 53
  start-page: 1068
  issue: 5
  year: 2012
  ident: 10.1016/j.yexcr.2023.113507_bib71
  article-title: Functional muscle impairment in facioscapulohumeral muscular dystrophy is correlated with oxidative stress and mitochondrial dysfunction
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.06.041
– volume: 13
  issue: 11
  year: 2020
  ident: 10.1016/j.yexcr.2023.113507_bib35
  article-title: Duchenne muscular dystrophy (DMD) cardiomyocyte-secreted exosomes promote the pathogenesis of DMD-associated cardiomyopathy
  publication-title: Dis Model Mech
  doi: 10.1242/dmm.045559
– volume: 7
  start-page: 362
  issue: 8
  year: 2001
  ident: 10.1016/j.yexcr.2023.113507_bib3
  article-title: Clinical and genetic heterogeneity in nemaline myopathy–a disease of skeletal muscle thin filaments
  publication-title: Trends Mol. Med.
  doi: 10.1016/S1471-4914(01)02089-5
– volume: 40
  year: 2019
  ident: 10.1016/j.yexcr.2023.113507_bib29
  article-title: Establishment of a human induced pluripotent stem cell line (SDQLCHi004-A) from a patient with nemaline myopathy-4 disease carrying heterozygous mutation in TPM2 gene
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2019.101559
– volume: 117
  start-page: 3367
  issue: 15
  year: 2004
  ident: 10.1016/j.yexcr.2023.113507_bib10
  article-title: Myopathy mutations in α-skeletal-muscle actin cause a range of molecular defects
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01172
– volume: 13
  start-page: 1727
  issue: 16
  year: 2004
  ident: 10.1016/j.yexcr.2023.113507_bib18
  article-title: Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddh185
– volume: 10
  start-page: 185
  issue: 1
  year: 2022
  ident: 10.1016/j.yexcr.2023.113507_bib64
  article-title: NEB mutations disrupt the super-relaxed state of myosin and remodel the muscle metabolic proteome in nemaline myopathy
  publication-title: Acta Neuropathologica Communications
  doi: 10.1186/s40478-022-01491-9
– year: 2011
  ident: 10.1016/j.yexcr.2023.113507_bib38
– volume: 78
  start-page: 1100
  issue: 14
  year: 2012
  ident: 10.1016/j.yexcr.2023.113507_bib25
  article-title: Nemaline myopathy with stiffness and hypertonia associated with an ACTA1 mutation
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31824e8ebe
– volume: 27
  start-page: 638
  issue: 4
  year: 2018
  ident: 10.1016/j.yexcr.2023.113507_bib26
  article-title: Myostatin inhibition using mRK35 produces skeletal muscle growth and tubular aggregate formation in wild type and Tg ACTA1 D286G nemaline myopathy mice
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddx431
– volume: 8
  issue: 8
  year: 2013
  ident: 10.1016/j.yexcr.2023.113507_bib68
  article-title: Multimodal MRI and 31P-MRS investigations of the ACTA1 (Asp286Gly) mouse model of nemaline myopathy provide evidence of impaired in vivo muscle function, altered muscle structure and disturbed energy metabolism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0072294
– volume: 56
  start-page: 86
  issue: 1
  year: 2004
  ident: 10.1016/j.yexcr.2023.113507_bib12
  article-title: Heterogeneity of nemaline myopathy cases with skeletal muscle α‐actin gene mutations
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20157
– volume: 25
  start-page: 514
  issue: 3
  year: 2016
  ident: 10.1016/j.yexcr.2023.113507_bib54
  article-title: SMN deficiency does not induce oxidative stress in SMA iPSC-derived astrocytes or motor neurons
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddv489
– volume: 125
  start-page: 19
  issue: 1
  year: 2013
  ident: 10.1016/j.yexcr.2023.113507_bib39
  article-title: Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-012-1019-z
– volume: 61
  start-page: 175
  issue: 2
  year: 2007
  ident: 10.1016/j.yexcr.2023.113507_bib8
  article-title: Nemaline myopathy caused by absence of alpha-skeletal muscle actin
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21035
– volume: 9
  start-page: 571
  issue: 3
  year: 2020
  ident: 10.1016/j.yexcr.2023.113507_bib52
  article-title: Motor neuron generation from iPSCs from identical twins discordant for amyotrophic lateral sclerosis
  publication-title: Cells
  doi: 10.3390/cells9030571
– volume: 41
  start-page: 6975
  issue: 10
  year: 2014
  ident: 10.1016/j.yexcr.2023.113507_bib47
  article-title: Mitofusin 2 deficiency leads to oxidative stress that contributes to insulin resistance in rat skeletal muscle cells
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-014-3584-9
– volume: 21
  start-page: 549
  issue: 6
  year: 2016
  ident: 10.1016/j.yexcr.2023.113507_bib31
  article-title: Nicorandil, a nitric oxide donor and ATP-sensitive potassium channel opener, protects against dystrophin-deficient cardiomyopathy
  publication-title: J. Cardiovasc. Pharmacol. Therapeut.
  doi: 10.1177/1074248416636477
– volume: 54
  year: 2021
  ident: 10.1016/j.yexcr.2023.113507_bib27
  article-title: Generating an iPSC line (with isogenic control) from the PBMCs of an ACTA1 (p.Gly148Asp) nemaline myopathy patient
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2021.102429
– year: 2021
  ident: 10.1016/j.yexcr.2023.113507_bib36
  article-title: Cardiomyocyte-produced miR-339-5p mediates pathology in Duchenne muscular dystrophy cardiomyopathy
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddab199
– volume: 186
  start-page: 1568
  issue: 6
  year: 2016
  ident: 10.1016/j.yexcr.2023.113507_bib19
  article-title: Treatment with ActRIIB-mFc produces myofiber growth and improves lifespan in the Acta1 H40Y murine model of nemaline myopathy
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2016.02.008
– volume: 10
  year: 2022
  ident: 10.1016/j.yexcr.2023.113507_bib60
  article-title: Mature myotubes generated from human-induced pluripotent stem cells without forced gene expression
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2022.886879
– volume: 12
  start-page: 674
  issue: 7–8
  year: 2002
  ident: 10.1016/j.yexcr.2023.113507_bib57
  article-title: Mutations in the nebulin gene can cause severe congenital nemaline myopathy
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/S0960-8966(02)00065-2
– volume: 74
  start-page: 1108
  issue: 14
  year: 2010
  ident: 10.1016/j.yexcr.2023.113507_bib62
  article-title: Comparative analysis of brain structure, metabolism, and cognition in myotonic dystrophy 1 and 2
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181d8c35f
– volume: 35
  start-page: 438
  issue: 3
  year: 2008
  ident: 10.1016/j.yexcr.2023.113507_bib76
  article-title: Dermatomyositis and polymyositis associated with malignancy: a 21-year retrospective study
  publication-title: J. Rheumatol.
– volume: 65
  start-page: 1158
  issue: 8
  year: 2005
  ident: 10.1016/j.yexcr.2023.113507_bib13
  article-title: Sporadic late onset nemaline myopathy
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000180362.90078.dc
– volume: 23
  start-page: 208
  issue: 2
  year: 1999
  ident: 10.1016/j.yexcr.2023.113507_bib50
  article-title: Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy
  publication-title: Nat. Genet.
  doi: 10.1038/13837
– volume: 11
  start-page: 33
  issue: 1
  year: 2019
  ident: 10.1016/j.yexcr.2023.113507_bib59
  article-title: Current methods for the maturation of induced pluripotent stem cell-derived cardiomyocytes
  publication-title: World J. Stem Cell.
  doi: 10.4252/wjsc.v11.i1.33
– start-page: 2022
  year: 2022
  ident: 10.1016/j.yexcr.2023.113507_bib37
  article-title: High-throughput, real-time monitoring of engineered skeletal muscle function using magnetic sensing
  publication-title: bioRxiv
– volume: 13
  issue: 4
  year: 2018
  ident: 10.1016/j.yexcr.2023.113507_bib34
  article-title: Use of capillary Western immunoassay (Wes) for quantification of dystrophin levels in skeletal muscle of healthy controls and individuals with Becker and Duchenne muscular dystrophy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0195850
– volume: 26
  start-page: 95
  issue: 2
  year: 2012
  ident: 10.1016/j.yexcr.2023.113507_bib42
  article-title: Effects of nitric oxide on mitochondrial permeability transition pore and thiol-mediated responses in cardiac myocytes
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2011.12.007
– volume: 12
  start-page: 247
  issue: 3
  year: 2002
  ident: 10.1016/j.yexcr.2023.113507_bib66
  article-title: A quantitative study of bioenergetics in skeletal muscle lacking utrophin and dystrophin
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/S0960-8966(01)00278-4
– volume: 30
  start-page: 1305
  issue: 14
  year: 2021
  ident: 10.1016/j.yexcr.2023.113507_bib49
  article-title: Acute and chronic tirasemtiv treatment improves in vivo and in vitro muscle performance in actin-based nemaline myopathy mice
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddab112
– volume: 85
  start-page: 1021
  issue: 6
  year: 2015
  ident: 10.1016/j.yexcr.2023.113507_bib72
  article-title: Revisiting the dystrophin-ATP connection: how half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2015.08.015
– volume: 28
  start-page: 144
  issue: 2
  year: 2018
  ident: 10.1016/j.yexcr.2023.113507_bib73
  article-title: Mitochondrial dysfunction in myotonic dystrophy type 1
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/j.nmd.2017.10.007
– volume: 26
  start-page: 691
  issue: 10
  year: 2016
  ident: 10.1016/j.yexcr.2023.113507_bib74
  article-title: Mitochondrial dysfunction in myofibrillar myopathy
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/j.nmd.2016.08.004
– volume: 1862
  start-page: 1453
  issue: 8
  year: 2016
  ident: 10.1016/j.yexcr.2023.113507_bib24
  article-title: Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function
  publication-title: Biochim. Biophys. Acta (BBA) - Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2016.04.013
– volume: 18
  start-page: 522
  issue: 3
  year: 1999
  ident: 10.1016/j.yexcr.2023.113507_bib40
  article-title: Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.3.522
– volume: 257
  start-page: 774
  issue: 5
  year: 2010
  ident: 10.1016/j.yexcr.2023.113507_bib77
  article-title: Oxidative stress biomarkers in mitochondrial myopathies, basally and after cysteine donor supplementation
  publication-title: J. Neurol.
  doi: 10.1007/s00415-009-5409-7
– volume: 8
  issue: 4
  year: 2013
  ident: 10.1016/j.yexcr.2023.113507_bib21
  article-title: Combined MRI and 31P-MRS investigations of the ACTA1 (H40Y) mouse model of nemaline myopathy show impaired muscle function and altered energy metabolism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061517
– volume: 170
  start-page: 334
  issue: 2
  year: 2010
  ident: 10.1016/j.yexcr.2023.113507_bib9
  article-title: Altered myofilament function depresses force generation in patients with nebulin-based nemaline myopathy (NEM2)
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2009.11.013
– volume: 75
  start-page: 11
  year: 2017
  ident: 10.1016/j.yexcr.2023.113507_bib16
  article-title: Clinical and histologic findings in ACTA1-related nemaline myopathy: case series and review of the literature
  publication-title: Pediatr. Neurol.
  doi: 10.1016/j.pediatrneurol.2017.04.002
– volume: 4
  start-page: 99
  year: 2017
  ident: 10.1016/j.yexcr.2023.113507_bib5
  article-title: Sarcomere dysfunction in nemaline myopathy
  publication-title: J. Neuromuscul. Dis.
  doi: 10.3233/JND-160200
– start-page: 2022
  year: 2022
  ident: 10.1016/j.yexcr.2023.113507_bib20
  article-title: Structural and functional alterations of neuromuscular synapses in a mouse model of ACTA1 congenital myopathy
  publication-title: bioRxiv
– volume: 53
  year: 2021
  ident: 10.1016/j.yexcr.2023.113507_bib30
  article-title: Generation of two isogenic induced pluripotent stem cell lines from a 4-month-old severe nemaline myopathy patient with a heterozygous dominant c.553C > A (p.Arg183Ser) variant in the ACTA1 gene
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2021.102273
– volume: 10
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.yexcr.2023.113507_bib51
  article-title: Amyotrophic lateral sclerosis patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms
  publication-title: Mol. Brain
  doi: 10.1186/s13041-017-0300-4
– volume: 11
  start-page: 146
  issue: 2
  year: 2001
  ident: 10.1016/j.yexcr.2023.113507_bib58
  article-title: Abnormalities in the expression of nebulin in chromosome-2 linked nemaline myopathy
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/S0960-8966(00)00172-3
– volume: 10
  issue: 3
  year: 2009
  ident: 10.1016/j.yexcr.2023.113507_bib61
  article-title: Metabolic myopathies: update 2009
  publication-title: J. Clin. Neuromuscul. Dis.
  doi: 10.1097/CND.0b013e3181903126
– volume: 104
  start-page: 991
  issue: 3
  year: 2007
  ident: 10.1016/j.yexcr.2023.113507_bib70
  article-title: Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0610270104
– volume: 19
  start-page: 232
  issue: 4
  year: 1984
  ident: 10.1016/j.yexcr.2023.113507_bib44
  article-title: Detection of hypothyroid myopathy by measurement of various serum muscle markers–myoglobin, creatine kinase, lactate dehydrogenase and their isoenzymes
  publication-title: Hormone Research in Paediatrics
  doi: 10.1159/000179893
– volume: 34
  start-page: 705
  issue: 9
  year: 1997
  ident: 10.1016/j.yexcr.2023.113507_bib2
  article-title: Nemaline myopathy: current concepts. The ENMC international consortium and nemaline myopathy
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.34.9.705
– volume: 35
  start-page: 23
  issue: 1
  year: 2014
  ident: 10.1016/j.yexcr.2023.113507_bib78
  article-title: Oxidative stress in muscular dystrophy: from generic evidence to specific sources and targets
  publication-title: J. Muscle Res. Cell Motil.
  doi: 10.1007/s10974-014-9380-2
SSID ssj0008816
Score 2.428867
Snippet Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113507
SubjectTerms Actins - genetics
Actins - metabolism
Adenosine Triphosphate - metabolism
Humans
Induced Pluripotent Stem Cells - metabolism
iPSC
Mitochondria
Mitochondria - metabolism
Muscle Fibers, Skeletal - metabolism
Muscle Weakness - genetics
Muscle Weakness - pathology
Muscle, Skeletal - metabolism
Mutation
Myopathies, Nemaline - genetics
Myopathies, Nemaline - pathology
Nemaline myopathy
Skeletal myotube
Stress injury
Superoxides - metabolism
Title ACTA1 H40Y mutant iPSC-derived skeletal myocytes display mitochondrial defects in an in vitro model of nemaline myopathy
URI https://dx.doi.org/10.1016/j.yexcr.2023.113507
https://www.ncbi.nlm.nih.gov/pubmed/36796746
https://www.proquest.com/docview/2778980683
https://pubmed.ncbi.nlm.nih.gov/PMC9993434
Volume 424
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-2422
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008816
  issn: 0014-4827
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1090-2422
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008816
  issn: 0014-4827
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1090-2422
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008816
  issn: 0014-4827
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1090-2422
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008816
  issn: 0014-4827
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2422
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008816
  issn: 0014-4827
  databaseCode: AKRWK
  dateStart: 19500101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG6WFcGL-HZ8LC14NO4k_cxxGFxGhUVwF8ZTk-kHRnc6w87Msrn4263qJKOjsgcvgSSd0HR1dX2VfF0fIa9lUVhI2EKWe0hXOfhEVnpWZkUIEA0qiOg2sS1O5eycf5iL-QGZDnthkFbZr_3dmp5W6_7KcT-ax6u6xj2-kAzoQgGIRuAxxx3sXCKt7-2PXzQPrZP8KTbOsPVQeShxvFp_bbEoaMFQ20Sgpuy_o9Pf6PNPEuVvUenkHrnbw0k66Xp8nxz4-IDc7gQm24fkejI9m-R0xsdf6HKLgsG0_vR5mjmYd1fe0fV3iDoAv-mybWwLqJO6er26qFq6BE-HlTE6nKDU-cT6oHWkVcTjVb25bGiS0aFNoNEvK8Sr-B7UOG4fkfOTd2fTWdZrLWSWi3KTgeM7Blgih_HCIm7SKbWwvoQR40wKFwSk0a60fmy9CqJyyvPcBoADwlcyLNhjchib6J8SyhZg4eC0sHDfag15apAKoqWoKuWFGJFiGGNj-0LkqIdxYQbG2TeTDGPQMKYzzIi82T206upw3NxcDsYze9PJQKS4-cFXg6kNOBr-Pamib7ZrUyilSz2Wmo3Ik870u54w_BqnuBwRtTcpdg2wiPf-nVh_TcW8AaAzzviz_-3wc3IHz5AWl4sX5HBzufUvASdtFkfJEY7Ircn7j7PTnyCpEzE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVAguiDfhuUgcsRp7d732MYqoXFoiJFIpnFbOPlRDY0dNUtX_nhk_IgKoBy4-eHet1c7rG3s8H8CHOIoMJmw-CB2mqwJtIkgdT4PIe4wGOUZ001RbTOPsXHyey_kBTPp_YaissvP9rU9vvHV356g7zaNVUdA_vpgMJJFCEE3AY34HDoVEnzyAw_HJaTbdOeQkaRhQaX5AC_rmQ02ZV-1uDPUFjTjRm0iilf13gPobgP5ZR_lbYDp-CA86RMnG7aYfwYErH8PdlmOyfgI348lsHLJMjL6z5ZY4g1nx9dsksKh6186y9U8MPIjA2bKuTI3Ak9livbrMa7ZEY0fnWFrSUWZdU_jBipLlJV2vi81VxRomHVZ5VrplTpCVnkM0x_VTOD_-NJtkQUe3EBgh002Atm85wokQz4v6uMVWqYVxKZ6Y4LG0XmImbVPjRsYpL3OrnAiNR0QgXR77BX8Gg7Iq3QtgfIFC9jaRBsdNkmCq6mOFAVPmuXJSDiHqz1ibrhc5UWJc6r7o7IduBKNJMLoVzBA-7hat2lYct0-Pe-HpPY3SGCxuX_i-F7VGW6MPKHnpqu1aR0olaTKKEz6E563odzvh9EJOiXgIak8pdhOoj_f-SFlcNP28EaNzwcXL_93wO7iXzb6c6bOT6ekruE8jVCUXytcw2Fxt3RuETZvF284sfgFqKBXc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACTA1+H40Y+mutant+iPSC-derived+skeletal+myocytes+display+mitochondrial+defects+in+an+in+vitro+model+of+nemaline+myopathy&rft.jtitle=Experimental+cell+research&rft.au=Gartz%2C+Melanie&rft.au=Haberman%2C+Margaret&rft.au=Sutton%2C+Jessica&rft.au=Slick%2C+Rebecca+A&rft.date=2023-03-15&rft.issn=1090-2422&rft.eissn=1090-2422&rft.volume=424&rft.issue=2&rft.spage=113507&rft_id=info:doi/10.1016%2Fj.yexcr.2023.113507&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4827&client=summon