A Non-invasive Method to Diagnose Lung Adenocarcinoma

To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to fea...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in oncology Vol. 10; p. 602
Main Authors Yan, Mengmeng, Wang, Weidong
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 29.04.2020
Subjects
Online AccessGet full text
ISSN2234-943X
2234-943X
DOI10.3389/fonc.2020.00602

Cover

Abstract To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to feature selection, and the last was used to construct and evaluate classification models. The research is divided into four steps: region of interest segmentation, feature extraction, feature selection, and model building and validation. The feature selection methods included the intraclass correlation coefficient, ReliefF coefficient, and Partition-Membership filter. The performance metrics of the classification model included accuracy (Acc), precision (Pre), area under curve (AUC), and kappa statistics. The 10 features (First order shape features: Sphericity and Compacity, Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis, and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity, Energy, Contrast, Correlation, and Dissimilarity) showed the most stable and classification capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee, have great performance both on the train and the test sets, and especially LR has the best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa = 0.974). Lung adenocarcinoma can be identified based on CT radiomics features. We can diagnose lung adenocarcinoma with CT non-invasively.
AbstractList Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. Methods: This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to feature selection, and the last was used to construct and evaluate classification models. The research is divided into four steps: region of interest segmentation, feature extraction, feature selection, and model building and validation. The feature selection methods included the intraclass correlation coefficient, ReliefF coefficient, and Partition-Membership filter. The performance metrics of the classification model included accuracy (Acc), precision (Pre), area under curve (AUC), and kappa statistics. Results: The 10 features (First order shape features: Sphericity and Compacity, Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis, and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity, Energy, Contrast, Correlation, and Dissimilarity) showed the most stable and classification capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee, have great performance both on the train and the test sets, and especially LR has the best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa = 0.974). Conclusion: Lung adenocarcinoma can be identified based on CT radiomics features. We can diagnose lung adenocarcinoma with CT non-invasively.Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. Methods: This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to feature selection, and the last was used to construct and evaluate classification models. The research is divided into four steps: region of interest segmentation, feature extraction, feature selection, and model building and validation. The feature selection methods included the intraclass correlation coefficient, ReliefF coefficient, and Partition-Membership filter. The performance metrics of the classification model included accuracy (Acc), precision (Pre), area under curve (AUC), and kappa statistics. Results: The 10 features (First order shape features: Sphericity and Compacity, Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis, and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity, Energy, Contrast, Correlation, and Dissimilarity) showed the most stable and classification capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee, have great performance both on the train and the test sets, and especially LR has the best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa = 0.974). Conclusion: Lung adenocarcinoma can be identified based on CT radiomics features. We can diagnose lung adenocarcinoma with CT non-invasively.
Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type.Methods: This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to feature selection, and the last was used to construct and evaluate classification models. The research is divided into four steps: region of interest segmentation, feature extraction, feature selection, and model building and validation. The feature selection methods included the intraclass correlation coefficient, ReliefF coefficient, and Partition-Membership filter. The performance metrics of the classification model included accuracy (Acc), precision (Pre), area under curve (AUC), and kappa statistics.Results: The 10 features (First order shape features: Sphericity and Compacity, Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis, and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity, Energy, Contrast, Correlation, and Dissimilarity) showed the most stable and classification capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee, have great performance both on the train and the test sets, and especially LR has the best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa = 0.974).Conclusion: Lung adenocarcinoma can be identified based on CT radiomics features. We can diagnose lung adenocarcinoma with CT non-invasively.
To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to feature selection, and the last was used to construct and evaluate classification models. The research is divided into four steps: region of interest segmentation, feature extraction, feature selection, and model building and validation. The feature selection methods included the intraclass correlation coefficient, ReliefF coefficient, and Partition-Membership filter. The performance metrics of the classification model included accuracy (Acc), precision (Pre), area under curve (AUC), and kappa statistics. The 10 features (First order shape features: Sphericity and Compacity, Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis, and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity, Energy, Contrast, Correlation, and Dissimilarity) showed the most stable and classification capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee, have great performance both on the train and the test sets, and especially LR has the best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa = 0.974). Lung adenocarcinoma can be identified based on CT radiomics features. We can diagnose lung adenocarcinoma with CT non-invasively.
Author Yan, Mengmeng
Wang, Weidong
AuthorAffiliation 3 Department of Radiation Oncology, Sichuan Cancer Hospital and Institute , Chengdu , China
2 School of Medicine, University of Electronic Science and Technology of China , Chengdu , China
4 Radiation Oncology Key Laboratory of Sichuan Province , Chengdu , China
1 Urban Vocational College of Sichuan , Chengdu , China
AuthorAffiliation_xml – name: 2 School of Medicine, University of Electronic Science and Technology of China , Chengdu , China
– name: 1 Urban Vocational College of Sichuan , Chengdu , China
– name: 3 Department of Radiation Oncology, Sichuan Cancer Hospital and Institute , Chengdu , China
– name: 4 Radiation Oncology Key Laboratory of Sichuan Province , Chengdu , China
Author_xml – sequence: 1
  givenname: Mengmeng
  surname: Yan
  fullname: Yan, Mengmeng
– sequence: 2
  givenname: Weidong
  surname: Wang
  fullname: Wang, Weidong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32411600$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtPHDEQxq2ICAihThdtmWaP8WsfTaQT5IF0JE0i0Vl-HkZ79sXevYj_Pl6OIKBI7MKWZ77fzHx-gw5CDBahdxgWlHb9mYtBLwgQWAA0QF6hY0Ioq3tGrw-e3I_Qac63UFbDAQM9REeUMIwbgGPEl9W3GGofdjL7na2u7HgTTTXG6sLLdYjZVqsprKulsSFqmbQPcSPfotdODtmePpwn6OfnTz_Ov9ar718uz5erWjPej3WjmtapnvaGcK6IMpZi2jCtQBmnjMId4a0GzBymmNPeuhJpeWPmNg1h9ARd7rkmyluxTX4j052I0ov7h5jWQqbR68EK6ooHrshs1zPeWtVIYltFOVZGW8CFBXvWFLby7rcchkcgBjEbKmZDxWyouDe0SD7uJdtJbWzBhDHJ4VkfzyPB34h13ImWAPRtWwAfHgAp_ppsHsXGZ22HQQYbpywIg7JZ19GS-v5prccif7-qJPB9gk4x52Sd0H6Uo49zaT_8Y4izF7r_jf0Hg7S3rA
CitedBy_id crossref_primary_10_1007_s10278_020_00385_3
crossref_primary_10_1002_acm2_13869
crossref_primary_10_3389_fonc_2021_691112
crossref_primary_10_1016_j_ejro_2023_100480
crossref_primary_10_1155_2022_5952296
crossref_primary_10_1177_0036850421997295
crossref_primary_10_3390_cancers15051613
crossref_primary_10_1007_s00330_023_09643_8
Cites_doi 10.1007/s11517-018-1858-4
10.1097/CCO.0000000000000598
10.5152/dir.2019.19321
10.21873/anticanres.13949
10.21037/jtd.2018.03.126
10.7554/eLife.23421
10.1007/978-3-030-31171-1_13
10.1158/0008-5472.CAN-17-0339
10.2147/CMAR.S217887
10.3389/fonc.2019.00908
10.1007/s00259-018-3987-2
10.1002/mp.13808
10.1007/s00259-019-04592-1
10.1007/s11548-019-02093-y
10.1158/0008-5472.CAN-18-0125
10.1038/ncomms5644
10.1016/j.csbj.2019.07.001
10.3389/fonc.2019.00374
10.1097/MD.0000000000016224
10.1259/bjr.20190159
10.1186/s12938-019-0744-0
10.1038/s41598-018-27273-9
10.2147/CMAR.S232473
10.1111/1759-7714.13161
10.1371/journal.pone.0192859
10.1148/radiol.2522081593
10.1016/j.lungcan.2019.10.031
10.1016/j.ejca.2011.11.036
10.2214/AJR.18.20532
10.18632/oncotarget.22251
10.1038/srep23428
ContentType Journal Article
Copyright Copyright © 2020 Yan and Wang.
Copyright © 2020 Yan and Wang. 2020 Yan and Wang
Copyright_xml – notice: Copyright © 2020 Yan and Wang.
– notice: Copyright © 2020 Yan and Wang. 2020 Yan and Wang
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fonc.2020.00602
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2234-943X
ExternalDocumentID oai_doaj_org_article_3f060f03de89457eb6a2e7b351bdce01
10.3389/fonc.2020.00602
PMC7200977
32411600
10_3389_fonc_2020_00602
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c459t-6b67fb939d255b2bde31364cb0bdfbdb18257c014f131539efb0b756d0103d243
IEDL.DBID M48
ISSN 2234-943X
IngestDate Fri Oct 03 12:50:51 EDT 2025
Sun Oct 26 03:17:38 EDT 2025
Tue Sep 30 16:54:07 EDT 2025
Thu Oct 02 05:35:33 EDT 2025
Thu Jan 02 22:58:07 EST 2025
Wed Oct 01 01:19:02 EDT 2025
Thu Apr 24 22:58:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords radiomics
lung cancer histological types
multi-instance learning
lung adenocarcinoma
texture analysis
Language English
License Copyright © 2020 Yan and Wang.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-6b67fb939d255b2bde31364cb0bdfbdb18257c014f131539efb0b756d0103d243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Zhenyu Liu, Institute of Automation (CAS), China; Ahmad Chaddad, McGill University Health Centre, Canada
This article was submitted to Cancer Imaging and Image-directed Interventions, a section of the journal Frontiers in Oncology
Edited by: Seyedmehdi Payabvash, Yale University, United States
OpenAccessLink https://doaj.org/article/3f060f03de89457eb6a2e7b351bdce01
PMID 32411600
PQID 2404044883
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_3f060f03de89457eb6a2e7b351bdce01
unpaywall_primary_10_3389_fonc_2020_00602
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7200977
proquest_miscellaneous_2404044883
pubmed_primary_32411600
crossref_citationtrail_10_3389_fonc_2020_00602
crossref_primary_10_3389_fonc_2020_00602
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-29
PublicationDateYYYYMMDD 2020-04-29
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-29
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in oncology
PublicationTitleAlternate Front Oncol
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Erdal (B31) 2019
Kirienko (B4) 2018; 45
Bashir (B8) 2019; 92
Wang (B26) 2020; 139
Romeo (B23) 2020; 40
Aerts (B1) 2014; 5
Yang (B25) 2019; 9
Zhao (B22) 2019; 10
Yang (B19) 2019; 11
Zhang (B14) 2019
Voigt (B21) 2020; 32
Ferreira-Junior (B28) 2020; 15
Chaddad (B5) 2017; 8
Lee (B20) 2020
Meng (B11) 2019; 11
Chaddad (B12) 2018; 56
Lambin (B3) 2012; 48
Mendelson (B13) 2019; 212
Zhao (B9) 2009; 252
Koçak (B10) 2019; 25
Yang (B24) 2018; 10
Chaddad (B6) 2019; 9
Lee (B15) 2018; 8
Tunali (B33) 2019; 46
Yan (B7) 2019; 98
van Griethuysen (B16) 2017; 77
Grossmann (B17) 2017; 6
Tang (B27) 2020; 19
Carvalho (B18) 2018; 13
Weidmann (B30) 2003
Nioche (B35) 2017; 58
Frank (B29) 2013
Forghani (B2) 2019; 17
Zhao (B32) 2016; 6
Zwanenburg (B34) 2016
References_xml – volume: 56
  start-page: 2287
  year: 2018
  ident: B12
  article-title: Prediction of survival with multi-scale radiomic analysis in glioblastoma patients
  publication-title: Med Biol Eng Comput.
  doi: 10.1007/s11517-018-1858-4
– year: 2019
  ident: B31
  article-title: Are quantitative features of lung nodules reproducible at different CT acquisition and reconstruction parameters?
  publication-title: arXiv [preprint]
– year: 2016
  ident: B34
  article-title: Image biomarker standardisation initiative
  publication-title: arXiv [Preprint]
– volume: 32
  start-page: 68
  year: 2020
  ident: B21
  article-title: Beyond tissue biopsy: a diagnostic framework to address tumor heterogeneity in lung cancer
  publication-title: Curr Opin Oncol.
  doi: 10.1097/CCO.0000000000000598
– volume: 25
  start-page: 485
  year: 2019
  ident: B10
  article-title: Radiomics with artificial intelligence: a practical guide for beginners
  publication-title: Diagn Interv Radiol
  doi: 10.5152/dir.2019.19321
– volume: 40
  start-page: 271
  year: 2020
  ident: B23
  article-title: Prediction of tumor grade and nodal status in oropharyngeal and oral cavity squamous-cell carcinoma using a radiomic approach
  publication-title: Anticancer Res.
  doi: 10.21873/anticanres.13949
– start-page: 468
  volume-title: European Conference on Machine Learning.
  year: 2003
  ident: B30
  article-title: A two-level learning method for generalized multi-instance problems
– volume: 10
  start-page: S807
  year: 2018
  ident: B24
  article-title: A new approach to predict lymph node metastasis in solid lung adenocarcinoma: a radiomics nomogram
  publication-title: J Thorac Dis.
  doi: 10.21037/jtd.2018.03.126
– volume: 6
  start-page: e23421
  year: 2017
  ident: B17
  article-title: Defining the biological basis of radiomic phenotypes in lung cancer
  publication-title: Elife.
  doi: 10.7554/eLife.23421
– start-page: 221
  year: 2020
  ident: B20
  article-title: Radiomics and imaging genomics for evaluation of tumor response
  publication-title: Ther Response Imaging Oncol
  doi: 10.1007/978-3-030-31171-1_13
– volume: 77
  start-page: e104
  year: 2017
  ident: B16
  article-title: Computational radiomics System to Decode the Radiographic Phenotype
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0339
– volume: 11
  start-page: 7825
  year: 2019
  ident: B19
  article-title: Radiomic signature: a non-invasive biomarker for discriminating invasive and non-invasive cases of lung adenocarcinoma
  publication-title: Cancer Manag Res.
  doi: 10.2147/CMAR.S217887
– volume: 9
  start-page: 908
  year: 2019
  ident: B25
  article-title: Correlation study of 18-fluorodeoxyglucose positron emission tomography/computed tomography in pathological subtypes of invasive lung adenocarcinoma and prognosis
  publication-title: Front Oncol.
  doi: 10.3389/fonc.2019.00908
– volume: 45
  start-page: 1649
  year: 2018
  ident: B4
  article-title: Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-018-3987-2
– volume: 46
  start-page: 5075
  year: 2019
  ident: B33
  article-title: Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions
  publication-title: Med Phys.
  doi: 10.1002/mp.13808
– start-page: 1137
  year: 2019
  ident: B14
  article-title: Value of pre-therapy 18F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer
  publication-title: Eur J Nucl Med Mol Imaging.
  doi: 10.1007/s00259-019-04592-1
– volume: 15
  start-page: 163
  year: 2020
  ident: B28
  article-title: CT-based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms
  publication-title: Int J Comput Assist Radiol Surg.
  doi: 10.1007/s11548-019-02093-y
– volume: 58
  start-page: 1316
  year: 2017
  ident: B35
  article-title: A freeware for tumor heterogeneity characterization in PET, SPECT, CT, MRI and US to accelerate advances in radiomics
  publication-title: J Nucl Med.
  doi: 10.1158/0008-5472.CAN-18-0125
– volume: 5
  start-page: 4006
  year: 2014
  ident: B1
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
  doi: 10.1038/ncomms5644
– volume: 17
  start-page: 995
  year: 2019
  ident: B2
  article-title: Radiomics and artificial intelligence for biomarker and prediction model development in oncology
  publication-title: Comput Struct Biotechnol J.
  doi: 10.1016/j.csbj.2019.07.001
– volume: 9
  start-page: 374
  year: 2019
  ident: B6
  article-title: Radiomics in glioblastoma: current status and challenges facing clinical implementation
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.00374
– volume: 98
  start-page: e16224
  year: 2019
  ident: B7
  article-title: Lobar location of lesions in computed tomography-guided lung biopsy is correlated with major pneumothorax: a STROBE-compliant retrospective study with 1452 cases
  publication-title: Medicine
  doi: 10.1097/MD.0000000000016224
– volume: 92
  start-page: 20190159
  year: 2019
  ident: B8
  article-title: Non-invasive classifcation of non-small cell lung cancer: a comparison between random forest models utilising radiomic and semantic features
  publication-title: Br J Radiol.
  doi: 10.1259/bjr.20190159
– volume: 19
  start-page: 5
  year: 2020
  ident: B27
  article-title: Elaboration of a multimodal MRI-based radiomics signature for the preoperative prediction of the histological subtype in patients with non-small-cell lung cancer
  publication-title: BioMed Eng OnLine.
  doi: 10.1186/s12938-019-0744-0
– volume: 8
  start-page: 8968
  year: 2018
  ident: B15
  article-title: Deciphering clinicoradiologic phenotype for thymidylate synthase expression status in patients with advanced lung adenocarcinoma using a radiomics approach
  publication-title: Sci Rep.
  doi: 10.1038/s41598-018-27273-9
– volume: 11
  start-page: 10851
  year: 2019
  ident: B11
  article-title: Application of radiomics for personalized treatment of cancer patients
  publication-title: Cancer Manage Res
  doi: 10.2147/CMAR.S232473
– start-page: 362
  volume-title: Australasian Joint Conference on Artificial Intelligence.
  year: 2013
  ident: B29
  article-title: Propositionalisation of multi-instance data using random forests
– volume: 10
  start-page: 1893
  year: 2019
  ident: B22
  article-title: Convolution kernel and iterative reconstruction affect the diagnostic performance of radiomics and deep learning in lung adenocarcinoma pathological subtypes
  publication-title: Thorac Cancer.
  doi: 10.1111/1759-7714.13161
– volume: 13
  start-page: e0192859
  year: 2018
  ident: B18
  article-title: 18F-fluorodeoxyglucose positron-emission tomography (FDG-PET)-Radiomics of metastatic lymph nodes and primary tumor in non-small cell lung cancer (NSCLC) - a prospective externally validated study
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0192859
– volume: 252
  start-page: 263
  year: 2009
  ident: B9
  article-title: Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non–small cell lung cancer
  publication-title: Radiology.
  doi: 10.1148/radiol.2522081593
– volume: 139
  start-page: 103
  year: 2020
  ident: B26
  article-title: Joint use of the radiomics method and frozen sections should be considered in the prediction of the final classification of peripheral lung adenocarcinoma manifesting as ground-glass nodules
  publication-title: Lung Cancer.
  doi: 10.1016/j.lungcan.2019.10.031
– volume: 48
  start-page: 441
  year: 2012
  ident: B3
  article-title: Radiomics: extracting more information from medical images using advanced feature analysis
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2011.11.036
– volume: 212
  start-page: 293
  year: 2019
  ident: B13
  article-title: Artificial intelligence in breast imaging: potentials and limitations
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.18.20532
– volume: 8
  start-page: 104393
  year: 2017
  ident: B5
  article-title: Predicting survival time of lung cancer patients using radiomic analysis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.22251
– volume: 6
  start-page: 1
  year: 2016
  ident: B32
  article-title: Reproducibility of radiomics for deciphering tumor phenotype with imaging
  publication-title: Sci Rep.
  doi: 10.1038/srep23428
SSID ssj0000650103
Score 2.2921147
Snippet To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. This was a historical cohort study,...
Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. Methods: This was a...
Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type.Methods: This was a historical...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 602
SubjectTerms lung adenocarcinoma
lung cancer histological types
multi-instance learning
Oncology
radiomics
texture analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaKHNZdhj72cNsNLtDDdvBqW5IVHbNHEAxNTyvQmyBZEhYglYvUadF_X9JyggTb0Evhm_Ww9ImiSJMiCTnzNhcWzsEMNeSMOeEybVmd5aUuMc2D1hVeFJ5eVpMr9uuaX2-k-kKfsBgeOAJ3Tn1e5T6n1g0l45jBQ5dOGMoLY2sXb27lQ7mhTEUezDGBQYzlA1qYPPdNwIiFZefJ1f9EWR1DXbT-f4mYf3tK7i7DrX580PP5xjE03iNvevkxHcVx75MdFw7Iq2lvIT8kfJReNiGbhXuNjunptMsQnbZN-iM61bn0AvZ3OgJ-A8fYAlo1N_otuRr__P19kvWpEbKacdlmlamEN5JKCyqBKY11tKAVq01urDfWgNbARQ3qjy8o8DTpPJQIXllExZaMviOD0AT3gaTSCZB7hNfMOFZY6Ety7kHqqHldmFwk5OsKKVX3ccMxfcVcgf6A0CqEViG0qoM2IZ_XDW5jyIz_V_2G0K-rYazr7gVQgOopQD1HAQk5XS2cgr2BBg8dXLO8UyCtwAMsiibkfVzI9adAkCwKkPYSIraWeGss2yVh9qeLvy3QoiQAmC9rYnhuokcvMdFj8hp7RFtWKU_IoF0s3UcQiVrzqaP-J1I7CCk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6hrgRcWJ5LeClIHOCQksR2jI_lsaoQrThQqZwsO7a1qy3OaklB7K9nJkmrLSwClFNiO7EnY_sbzfgbgGfB5dLhPpiRhZxxL31mHK-zvDQlpXkwpqKDwrN5NV3w90uxHEiS6CzMBf89Gk_qZWgiEQ2WXQAWkUbuVQJB9wj2FvOPk8-UOq5kPFOcLXvinsta7ew5HTX_ZXjy97DIa-t4an58N6vVhT3ncB-mm972oSYn43Vrx_X5L0SO_zCcm3BjwJ3ppFeUW3DFx9twdTZ41u-AmKTzJmbH8ZuhgPZ01mWWTtsmfdsH4_n0A64L6QTXKdz-zrBV88XchcXhu09vptmQUiGruVBtVtlKBquYcmhK2NI6zwpW8drm1gXrLFobQtZoNoWC4VqofMASKSpH6SBcydk9GMUm-vuQKi8RL8lguPW8cPguJURAtFKLurC5TGC8EbquB75xSnux0mh3kDA0CUOTMHQnjASebxuc9lQbf676mv7ithpxZHcPUNZ6mHKaBawasNv-leKCcr-Y0kvLRGHxF-dFAk83OqBxTpGjxETfrL9qRDl44dLGEjjodWL7KQSgRYEoMQG5oy07fdkticdHHW-3JE-URMG82OrV3wb64D_qPoTrdEOurlI9glF7tvaPETG19skwW34CUeoP1g
  priority: 102
  providerName: Unpaywall
Title A Non-invasive Method to Diagnose Lung Adenocarcinoma
URI https://www.ncbi.nlm.nih.gov/pubmed/32411600
https://www.proquest.com/docview/2404044883
https://pubmed.ncbi.nlm.nih.gov/PMC7200977
https://doi.org/10.3389/fonc.2020.00602
https://doaj.org/article/3f060f03de89457eb6a2e7b351bdce01
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: GX1
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: M48
  dateStart: 20110601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLbQJo29TNwJlypIPMCDRxzbMX5AqFzGhGjFA5XKk2XHNkwqzta1wP495yRpWUUnFCkPiR0nn4_PJbbPR8jT6AvlwQ5SjJCpCCpQ60VNi9KWSPNgbYUbhUfj6ngiPk7l9C8dUA_g-dbQDvmkJvPZ4e-zi9cw4F9hxAn29kVsEiYjLNtFWphYchfMlEYeh1Hv63dqWSKnAZLNlVxQLfi0S_Wz7Rn7ZA88DcYq3Pl2yWC1ef23OaP_rqm8vkyn9uKXnc0uGayjG-Sg9zTzYScaN8m1kG6RvVE_l36byGE-bhI9ST8tLmHPRy2XdL5o8nfd8ruQfwJNkA9BM4HBm0Ot5oe9QyZH77-8PaY9iQKthdQLWrlKRae59hA8uNL5wBmvRO0K56PzDuILqWoIlCLjoP10iHBHycojWL4U_C7ZSU0K90mugwIPSUUrXBDMw7O0lBH8k1rWzBUqI4crpEzdZxhHoouZgUgDUTaIskGUTYtyRp6tK5x2yTWuLvoGoV8Xw6zY7YVm_s30g8zwCEUjvHZ4qYVEthdbBuW4ZA76pWAZebLqOAOjCKdGbArN8tyAwMAByoxn5F7XkeumVoKQEbXRxRvvsnknnXxvM3UrnHtSAMzztTD870MfXNn-Q7KPxXAqq9SPyM5ivgyPwSNauEH7JwHOH6Zs0Er9gOxOxp-HX_8AaukHrQ
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6hrgRcWJ5LeClIHOCQksR2jI_lsaoQrThQqZwsO7a1qy3OaklB7K9nJkmrLSwClFNiO7EnY_sbzfgbgGfB5dLhPpiRhZxxL31mHK-zvDQlpXkwpqKDwrN5NV3w90uxHEiS6CzMBf89Gk_qZWgiEQ2WXQAWkUbuVQJB9wj2FvOPk8-UOq5kPFOcLXvinsta7ew5HTX_ZXjy97DIa-t4an58N6vVhT3ncB-mm972oSYn43Vrx_X5L0SO_zCcm3BjwJ3ppFeUW3DFx9twdTZ41u-AmKTzJmbH8ZuhgPZ01mWWTtsmfdsH4_n0A64L6QTXKdz-zrBV88XchcXhu09vptmQUiGruVBtVtlKBquYcmhK2NI6zwpW8drm1gXrLFobQtZoNoWC4VqofMASKSpH6SBcydk9GMUm-vuQKi8RL8lguPW8cPguJURAtFKLurC5TGC8EbquB75xSnux0mh3kDA0CUOTMHQnjASebxuc9lQbf676mv7ithpxZHcPUNZ6mHKaBawasNv-leKCcr-Y0kvLRGHxF-dFAk83OqBxTpGjxETfrL9qRDl44dLGEjjodWL7KQSgRYEoMQG5oy07fdkticdHHW-3JE-URMG82OrV3wb64D_qPoTrdEOurlI9glF7tvaPETG19skwW34CUeoP1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Non-invasive+Method+to+Diagnose+Lung+Adenocarcinoma&rft.jtitle=Frontiers+in+oncology&rft.au=Yan%2C+Mengmeng&rft.au=Wang%2C+Weidong&rft.date=2020-04-29&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=10&rft.spage=602&rft_id=info:doi/10.3389%2Ffonc.2020.00602&rft_id=info%3Apmid%2F32411600&rft.externalDocID=32411600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon