A Non-invasive Method to Diagnose Lung Adenocarcinoma
To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to fea...
        Saved in:
      
    
          | Published in | Frontiers in oncology Vol. 10; p. 602 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          Frontiers Media S.A
    
        29.04.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2234-943X 2234-943X  | 
| DOI | 10.3389/fonc.2020.00602 | 
Cover
| Abstract | To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type.
This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to feature selection, and the last was used to construct and evaluate classification models. The research is divided into four steps: region of interest segmentation, feature extraction, feature selection, and model building and validation. The feature selection methods included the intraclass correlation coefficient, ReliefF coefficient, and Partition-Membership filter. The performance metrics of the classification model included accuracy (Acc), precision (Pre), area under curve (AUC), and kappa statistics.
The 10 features (First order shape features: Sphericity and Compacity, Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis, and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity, Energy, Contrast, Correlation, and Dissimilarity) showed the most stable and classification capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee, have great performance both on the train and the test sets, and especially LR has the best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa = 0.974).
Lung adenocarcinoma can be identified based on CT radiomics features. We can diagnose lung adenocarcinoma with CT non-invasively. | 
    
|---|---|
| AbstractList | Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. Methods: This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to feature selection, and the last was used to construct and evaluate classification models. The research is divided into four steps: region of interest segmentation, feature extraction, feature selection, and model building and validation. The feature selection methods included the intraclass correlation coefficient, ReliefF coefficient, and Partition-Membership filter. The performance metrics of the classification model included accuracy (Acc), precision (Pre), area under curve (AUC), and kappa statistics. Results: The 10 features (First order shape features: Sphericity and Compacity, Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis, and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity, Energy, Contrast, Correlation, and Dissimilarity) showed the most stable and classification capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee, have great performance both on the train and the test sets, and especially LR has the best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa = 0.974). Conclusion: Lung adenocarcinoma can be identified based on CT radiomics features. We can diagnose lung adenocarcinoma with CT non-invasively.Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. Methods: This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to feature selection, and the last was used to construct and evaluate classification models. The research is divided into four steps: region of interest segmentation, feature extraction, feature selection, and model building and validation. The feature selection methods included the intraclass correlation coefficient, ReliefF coefficient, and Partition-Membership filter. The performance metrics of the classification model included accuracy (Acc), precision (Pre), area under curve (AUC), and kappa statistics. Results: The 10 features (First order shape features: Sphericity and Compacity, Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis, and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity, Energy, Contrast, Correlation, and Dissimilarity) showed the most stable and classification capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee, have great performance both on the train and the test sets, and especially LR has the best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa = 0.974). Conclusion: Lung adenocarcinoma can be identified based on CT radiomics features. We can diagnose lung adenocarcinoma with CT non-invasively. Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type.Methods: This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to feature selection, and the last was used to construct and evaluate classification models. The research is divided into four steps: region of interest segmentation, feature extraction, feature selection, and model building and validation. The feature selection methods included the intraclass correlation coefficient, ReliefF coefficient, and Partition-Membership filter. The performance metrics of the classification model included accuracy (Acc), precision (Pre), area under curve (AUC), and kappa statistics.Results: The 10 features (First order shape features: Sphericity and Compacity, Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis, and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity, Energy, Contrast, Correlation, and Dissimilarity) showed the most stable and classification capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee, have great performance both on the train and the test sets, and especially LR has the best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa = 0.974).Conclusion: Lung adenocarcinoma can be identified based on CT radiomics features. We can diagnose lung adenocarcinoma with CT non-invasively. To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to feature selection, and the last was used to construct and evaluate classification models. The research is divided into four steps: region of interest segmentation, feature extraction, feature selection, and model building and validation. The feature selection methods included the intraclass correlation coefficient, ReliefF coefficient, and Partition-Membership filter. The performance metrics of the classification model included accuracy (Acc), precision (Pre), area under curve (AUC), and kappa statistics. The 10 features (First order shape features: Sphericity and Compacity, Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis, and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity, Energy, Contrast, Correlation, and Dissimilarity) showed the most stable and classification capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee, have great performance both on the train and the test sets, and especially LR has the best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa = 0.974). Lung adenocarcinoma can be identified based on CT radiomics features. We can diagnose lung adenocarcinoma with CT non-invasively.  | 
    
| Author | Yan, Mengmeng Wang, Weidong  | 
    
| AuthorAffiliation | 3 Department of Radiation Oncology, Sichuan Cancer Hospital and Institute , Chengdu , China 2 School of Medicine, University of Electronic Science and Technology of China , Chengdu , China 4 Radiation Oncology Key Laboratory of Sichuan Province , Chengdu , China 1 Urban Vocational College of Sichuan , Chengdu , China  | 
    
| AuthorAffiliation_xml | – name: 2 School of Medicine, University of Electronic Science and Technology of China , Chengdu , China – name: 1 Urban Vocational College of Sichuan , Chengdu , China – name: 3 Department of Radiation Oncology, Sichuan Cancer Hospital and Institute , Chengdu , China – name: 4 Radiation Oncology Key Laboratory of Sichuan Province , Chengdu , China  | 
    
| Author_xml | – sequence: 1 givenname: Mengmeng surname: Yan fullname: Yan, Mengmeng – sequence: 2 givenname: Weidong surname: Wang fullname: Wang, Weidong  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32411600$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkbtPHDEQxq2ICAihThdtmWaP8WsfTaQT5IF0JE0i0Vl-HkZ79sXevYj_Pl6OIKBI7MKWZ77fzHx-gw5CDBahdxgWlHb9mYtBLwgQWAA0QF6hY0Ioq3tGrw-e3I_Qac63UFbDAQM9REeUMIwbgGPEl9W3GGofdjL7na2u7HgTTTXG6sLLdYjZVqsprKulsSFqmbQPcSPfotdODtmePpwn6OfnTz_Ov9ar718uz5erWjPej3WjmtapnvaGcK6IMpZi2jCtQBmnjMId4a0GzBymmNPeuhJpeWPmNg1h9ARd7rkmyluxTX4j052I0ov7h5jWQqbR68EK6ooHrshs1zPeWtVIYltFOVZGW8CFBXvWFLby7rcchkcgBjEbKmZDxWyouDe0SD7uJdtJbWzBhDHJ4VkfzyPB34h13ImWAPRtWwAfHgAp_ppsHsXGZ22HQQYbpywIg7JZ19GS-v5prccif7-qJPB9gk4x52Sd0H6Uo49zaT_8Y4izF7r_jf0Hg7S3rA | 
    
| CitedBy_id | crossref_primary_10_1007_s10278_020_00385_3 crossref_primary_10_1002_acm2_13869 crossref_primary_10_3389_fonc_2021_691112 crossref_primary_10_1016_j_ejro_2023_100480 crossref_primary_10_1155_2022_5952296 crossref_primary_10_1177_0036850421997295 crossref_primary_10_3390_cancers15051613 crossref_primary_10_1007_s00330_023_09643_8  | 
    
| Cites_doi | 10.1007/s11517-018-1858-4 10.1097/CCO.0000000000000598 10.5152/dir.2019.19321 10.21873/anticanres.13949 10.21037/jtd.2018.03.126 10.7554/eLife.23421 10.1007/978-3-030-31171-1_13 10.1158/0008-5472.CAN-17-0339 10.2147/CMAR.S217887 10.3389/fonc.2019.00908 10.1007/s00259-018-3987-2 10.1002/mp.13808 10.1007/s00259-019-04592-1 10.1007/s11548-019-02093-y 10.1158/0008-5472.CAN-18-0125 10.1038/ncomms5644 10.1016/j.csbj.2019.07.001 10.3389/fonc.2019.00374 10.1097/MD.0000000000016224 10.1259/bjr.20190159 10.1186/s12938-019-0744-0 10.1038/s41598-018-27273-9 10.2147/CMAR.S232473 10.1111/1759-7714.13161 10.1371/journal.pone.0192859 10.1148/radiol.2522081593 10.1016/j.lungcan.2019.10.031 10.1016/j.ejca.2011.11.036 10.2214/AJR.18.20532 10.18632/oncotarget.22251 10.1038/srep23428  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2020 Yan and Wang. Copyright © 2020 Yan and Wang. 2020 Yan and Wang  | 
    
| Copyright_xml | – notice: Copyright © 2020 Yan and Wang. – notice: Copyright © 2020 Yan and Wang. 2020 Yan and Wang  | 
    
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3389/fonc.2020.00602 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2234-943X | 
    
| ExternalDocumentID | oai_doaj_org_article_3f060f03de89457eb6a2e7b351bdce01 10.3389/fonc.2020.00602 PMC7200977 32411600 10_3389_fonc_2020_00602  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c459t-6b67fb939d255b2bde31364cb0bdfbdb18257c014f131539efb0b756d0103d243 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 2234-943X | 
    
| IngestDate | Fri Oct 03 12:50:51 EDT 2025 Sun Oct 26 03:17:38 EDT 2025 Tue Sep 30 16:54:07 EDT 2025 Thu Oct 02 05:35:33 EDT 2025 Thu Jan 02 22:58:07 EST 2025 Wed Oct 01 01:19:02 EDT 2025 Thu Apr 24 22:58:32 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | radiomics lung cancer histological types multi-instance learning lung adenocarcinoma texture analysis  | 
    
| Language | English | 
    
| License | Copyright © 2020 Yan and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c459t-6b67fb939d255b2bde31364cb0bdfbdb18257c014f131539efb0b756d0103d243 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Zhenyu Liu, Institute of Automation (CAS), China; Ahmad Chaddad, McGill University Health Centre, Canada This article was submitted to Cancer Imaging and Image-directed Interventions, a section of the journal Frontiers in Oncology Edited by: Seyedmehdi Payabvash, Yale University, United States  | 
    
| OpenAccessLink | https://doaj.org/article/3f060f03de89457eb6a2e7b351bdce01 | 
    
| PMID | 32411600 | 
    
| PQID | 2404044883 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3f060f03de89457eb6a2e7b351bdce01 unpaywall_primary_10_3389_fonc_2020_00602 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7200977 proquest_miscellaneous_2404044883 pubmed_primary_32411600 crossref_citationtrail_10_3389_fonc_2020_00602 crossref_primary_10_3389_fonc_2020_00602  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-04-29 | 
    
| PublicationDateYYYYMMDD | 2020-04-29 | 
    
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-29 day: 29  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland | 
    
| PublicationTitle | Frontiers in oncology | 
    
| PublicationTitleAlternate | Front Oncol | 
    
| PublicationYear | 2020 | 
    
| Publisher | Frontiers Media S.A | 
    
| Publisher_xml | – name: Frontiers Media S.A | 
    
| References | Erdal (B31) 2019 Kirienko (B4) 2018; 45 Bashir (B8) 2019; 92 Wang (B26) 2020; 139 Romeo (B23) 2020; 40 Aerts (B1) 2014; 5 Yang (B25) 2019; 9 Zhao (B22) 2019; 10 Yang (B19) 2019; 11 Zhang (B14) 2019 Voigt (B21) 2020; 32 Ferreira-Junior (B28) 2020; 15 Chaddad (B5) 2017; 8 Lee (B20) 2020 Meng (B11) 2019; 11 Chaddad (B12) 2018; 56 Lambin (B3) 2012; 48 Mendelson (B13) 2019; 212 Zhao (B9) 2009; 252 Koçak (B10) 2019; 25 Yang (B24) 2018; 10 Chaddad (B6) 2019; 9 Lee (B15) 2018; 8 Tunali (B33) 2019; 46 Yan (B7) 2019; 98 van Griethuysen (B16) 2017; 77 Grossmann (B17) 2017; 6 Tang (B27) 2020; 19 Carvalho (B18) 2018; 13 Weidmann (B30) 2003 Nioche (B35) 2017; 58 Frank (B29) 2013 Forghani (B2) 2019; 17 Zhao (B32) 2016; 6 Zwanenburg (B34) 2016  | 
    
| References_xml | – volume: 56 start-page: 2287 year: 2018 ident: B12 article-title: Prediction of survival with multi-scale radiomic analysis in glioblastoma patients publication-title: Med Biol Eng Comput. doi: 10.1007/s11517-018-1858-4 – year: 2019 ident: B31 article-title: Are quantitative features of lung nodules reproducible at different CT acquisition and reconstruction parameters? publication-title: arXiv [preprint] – year: 2016 ident: B34 article-title: Image biomarker standardisation initiative publication-title: arXiv [Preprint] – volume: 32 start-page: 68 year: 2020 ident: B21 article-title: Beyond tissue biopsy: a diagnostic framework to address tumor heterogeneity in lung cancer publication-title: Curr Opin Oncol. doi: 10.1097/CCO.0000000000000598 – volume: 25 start-page: 485 year: 2019 ident: B10 article-title: Radiomics with artificial intelligence: a practical guide for beginners publication-title: Diagn Interv Radiol doi: 10.5152/dir.2019.19321 – volume: 40 start-page: 271 year: 2020 ident: B23 article-title: Prediction of tumor grade and nodal status in oropharyngeal and oral cavity squamous-cell carcinoma using a radiomic approach publication-title: Anticancer Res. doi: 10.21873/anticanres.13949 – start-page: 468 volume-title: European Conference on Machine Learning. year: 2003 ident: B30 article-title: A two-level learning method for generalized multi-instance problems – volume: 10 start-page: S807 year: 2018 ident: B24 article-title: A new approach to predict lymph node metastasis in solid lung adenocarcinoma: a radiomics nomogram publication-title: J Thorac Dis. doi: 10.21037/jtd.2018.03.126 – volume: 6 start-page: e23421 year: 2017 ident: B17 article-title: Defining the biological basis of radiomic phenotypes in lung cancer publication-title: Elife. doi: 10.7554/eLife.23421 – start-page: 221 year: 2020 ident: B20 article-title: Radiomics and imaging genomics for evaluation of tumor response publication-title: Ther Response Imaging Oncol doi: 10.1007/978-3-030-31171-1_13 – volume: 77 start-page: e104 year: 2017 ident: B16 article-title: Computational radiomics System to Decode the Radiographic Phenotype publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0339 – volume: 11 start-page: 7825 year: 2019 ident: B19 article-title: Radiomic signature: a non-invasive biomarker for discriminating invasive and non-invasive cases of lung adenocarcinoma publication-title: Cancer Manag Res. doi: 10.2147/CMAR.S217887 – volume: 9 start-page: 908 year: 2019 ident: B25 article-title: Correlation study of 18-fluorodeoxyglucose positron emission tomography/computed tomography in pathological subtypes of invasive lung adenocarcinoma and prognosis publication-title: Front Oncol. doi: 10.3389/fonc.2019.00908 – volume: 45 start-page: 1649 year: 2018 ident: B4 article-title: Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-018-3987-2 – volume: 46 start-page: 5075 year: 2019 ident: B33 article-title: Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions publication-title: Med Phys. doi: 10.1002/mp.13808 – start-page: 1137 year: 2019 ident: B14 article-title: Value of pre-therapy 18F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer publication-title: Eur J Nucl Med Mol Imaging. doi: 10.1007/s00259-019-04592-1 – volume: 15 start-page: 163 year: 2020 ident: B28 article-title: CT-based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms publication-title: Int J Comput Assist Radiol Surg. doi: 10.1007/s11548-019-02093-y – volume: 58 start-page: 1316 year: 2017 ident: B35 article-title: A freeware for tumor heterogeneity characterization in PET, SPECT, CT, MRI and US to accelerate advances in radiomics publication-title: J Nucl Med. doi: 10.1158/0008-5472.CAN-18-0125 – volume: 5 start-page: 4006 year: 2014 ident: B1 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun doi: 10.1038/ncomms5644 – volume: 17 start-page: 995 year: 2019 ident: B2 article-title: Radiomics and artificial intelligence for biomarker and prediction model development in oncology publication-title: Comput Struct Biotechnol J. doi: 10.1016/j.csbj.2019.07.001 – volume: 9 start-page: 374 year: 2019 ident: B6 article-title: Radiomics in glioblastoma: current status and challenges facing clinical implementation publication-title: Front Oncol doi: 10.3389/fonc.2019.00374 – volume: 98 start-page: e16224 year: 2019 ident: B7 article-title: Lobar location of lesions in computed tomography-guided lung biopsy is correlated with major pneumothorax: a STROBE-compliant retrospective study with 1452 cases publication-title: Medicine doi: 10.1097/MD.0000000000016224 – volume: 92 start-page: 20190159 year: 2019 ident: B8 article-title: Non-invasive classifcation of non-small cell lung cancer: a comparison between random forest models utilising radiomic and semantic features publication-title: Br J Radiol. doi: 10.1259/bjr.20190159 – volume: 19 start-page: 5 year: 2020 ident: B27 article-title: Elaboration of a multimodal MRI-based radiomics signature for the preoperative prediction of the histological subtype in patients with non-small-cell lung cancer publication-title: BioMed Eng OnLine. doi: 10.1186/s12938-019-0744-0 – volume: 8 start-page: 8968 year: 2018 ident: B15 article-title: Deciphering clinicoradiologic phenotype for thymidylate synthase expression status in patients with advanced lung adenocarcinoma using a radiomics approach publication-title: Sci Rep. doi: 10.1038/s41598-018-27273-9 – volume: 11 start-page: 10851 year: 2019 ident: B11 article-title: Application of radiomics for personalized treatment of cancer patients publication-title: Cancer Manage Res doi: 10.2147/CMAR.S232473 – start-page: 362 volume-title: Australasian Joint Conference on Artificial Intelligence. year: 2013 ident: B29 article-title: Propositionalisation of multi-instance data using random forests – volume: 10 start-page: 1893 year: 2019 ident: B22 article-title: Convolution kernel and iterative reconstruction affect the diagnostic performance of radiomics and deep learning in lung adenocarcinoma pathological subtypes publication-title: Thorac Cancer. doi: 10.1111/1759-7714.13161 – volume: 13 start-page: e0192859 year: 2018 ident: B18 article-title: 18F-fluorodeoxyglucose positron-emission tomography (FDG-PET)-Radiomics of metastatic lymph nodes and primary tumor in non-small cell lung cancer (NSCLC) - a prospective externally validated study publication-title: PLoS ONE. doi: 10.1371/journal.pone.0192859 – volume: 252 start-page: 263 year: 2009 ident: B9 article-title: Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non–small cell lung cancer publication-title: Radiology. doi: 10.1148/radiol.2522081593 – volume: 139 start-page: 103 year: 2020 ident: B26 article-title: Joint use of the radiomics method and frozen sections should be considered in the prediction of the final classification of peripheral lung adenocarcinoma manifesting as ground-glass nodules publication-title: Lung Cancer. doi: 10.1016/j.lungcan.2019.10.031 – volume: 48 start-page: 441 year: 2012 ident: B3 article-title: Radiomics: extracting more information from medical images using advanced feature analysis publication-title: Eur J Cancer doi: 10.1016/j.ejca.2011.11.036 – volume: 212 start-page: 293 year: 2019 ident: B13 article-title: Artificial intelligence in breast imaging: potentials and limitations publication-title: Am J Roentgenol doi: 10.2214/AJR.18.20532 – volume: 8 start-page: 104393 year: 2017 ident: B5 article-title: Predicting survival time of lung cancer patients using radiomic analysis publication-title: Oncotarget doi: 10.18632/oncotarget.22251 – volume: 6 start-page: 1 year: 2016 ident: B32 article-title: Reproducibility of radiomics for deciphering tumor phenotype with imaging publication-title: Sci Rep. doi: 10.1038/srep23428  | 
    
| SSID | ssj0000650103 | 
    
| Score | 2.2921147 | 
    
| Snippet | To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type.
This was a historical cohort study,... Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. Methods: This was a... Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type.Methods: This was a historical...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 602 | 
    
| SubjectTerms | lung adenocarcinoma lung cancer histological types multi-instance learning Oncology radiomics texture analysis  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaKHNZdhj72cNsNLtDDdvBqW5IVHbNHEAxNTyvQmyBZEhYglYvUadF_X9JyggTb0Evhm_Ww9ImiSJMiCTnzNhcWzsEMNeSMOeEybVmd5aUuMc2D1hVeFJ5eVpMr9uuaX2-k-kKfsBgeOAJ3Tn1e5T6n1g0l45jBQ5dOGMoLY2sXb27lQ7mhTEUezDGBQYzlA1qYPPdNwIiFZefJ1f9EWR1DXbT-f4mYf3tK7i7DrX580PP5xjE03iNvevkxHcVx75MdFw7Iq2lvIT8kfJReNiGbhXuNjunptMsQnbZN-iM61bn0AvZ3OgJ-A8fYAlo1N_otuRr__P19kvWpEbKacdlmlamEN5JKCyqBKY11tKAVq01urDfWgNbARQ3qjy8o8DTpPJQIXllExZaMviOD0AT3gaTSCZB7hNfMOFZY6Ety7kHqqHldmFwk5OsKKVX3ccMxfcVcgf6A0CqEViG0qoM2IZ_XDW5jyIz_V_2G0K-rYazr7gVQgOopQD1HAQk5XS2cgr2BBg8dXLO8UyCtwAMsiibkfVzI9adAkCwKkPYSIraWeGss2yVh9qeLvy3QoiQAmC9rYnhuokcvMdFj8hp7RFtWKU_IoF0s3UcQiVrzqaP-J1I7CCk priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6hrgRcWJ5LeClIHOCQksR2jI_lsaoQrThQqZwsO7a1qy3OaklB7K9nJkmrLSwClFNiO7EnY_sbzfgbgGfB5dLhPpiRhZxxL31mHK-zvDQlpXkwpqKDwrN5NV3w90uxHEiS6CzMBf89Gk_qZWgiEQ2WXQAWkUbuVQJB9wj2FvOPk8-UOq5kPFOcLXvinsta7ew5HTX_ZXjy97DIa-t4an58N6vVhT3ncB-mm972oSYn43Vrx_X5L0SO_zCcm3BjwJ3ppFeUW3DFx9twdTZ41u-AmKTzJmbH8ZuhgPZ01mWWTtsmfdsH4_n0A64L6QTXKdz-zrBV88XchcXhu09vptmQUiGruVBtVtlKBquYcmhK2NI6zwpW8drm1gXrLFobQtZoNoWC4VqofMASKSpH6SBcydk9GMUm-vuQKi8RL8lguPW8cPguJURAtFKLurC5TGC8EbquB75xSnux0mh3kDA0CUOTMHQnjASebxuc9lQbf676mv7ithpxZHcPUNZ6mHKaBawasNv-leKCcr-Y0kvLRGHxF-dFAk83OqBxTpGjxETfrL9qRDl44dLGEjjodWL7KQSgRYEoMQG5oy07fdkticdHHW-3JE-URMG82OrV3wb64D_qPoTrdEOurlI9glF7tvaPETG19skwW34CUeoP1g priority: 102 providerName: Unpaywall  | 
    
| Title | A Non-invasive Method to Diagnose Lung Adenocarcinoma | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32411600 https://www.proquest.com/docview/2404044883 https://pubmed.ncbi.nlm.nih.gov/PMC7200977 https://doi.org/10.3389/fonc.2020.00602 https://doaj.org/article/3f060f03de89457eb6a2e7b351bdce01  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: GX1 dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2234-943X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: M48 dateStart: 20110601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLbQJo29TNwJlypIPMCDRxzbMX5AqFzGhGjFA5XKk2XHNkwqzta1wP495yRpWUUnFCkPiR0nn4_PJbbPR8jT6AvlwQ5SjJCpCCpQ60VNi9KWSPNgbYUbhUfj6ngiPk7l9C8dUA_g-dbQDvmkJvPZ4e-zi9cw4F9hxAn29kVsEiYjLNtFWphYchfMlEYeh1Hv63dqWSKnAZLNlVxQLfi0S_Wz7Rn7ZA88DcYq3Pl2yWC1ef23OaP_rqm8vkyn9uKXnc0uGayjG-Sg9zTzYScaN8m1kG6RvVE_l36byGE-bhI9ST8tLmHPRy2XdL5o8nfd8ruQfwJNkA9BM4HBm0Ot5oe9QyZH77-8PaY9iQKthdQLWrlKRae59hA8uNL5wBmvRO0K56PzDuILqWoIlCLjoP10iHBHycojWL4U_C7ZSU0K90mugwIPSUUrXBDMw7O0lBH8k1rWzBUqI4crpEzdZxhHoouZgUgDUTaIskGUTYtyRp6tK5x2yTWuLvoGoV8Xw6zY7YVm_s30g8zwCEUjvHZ4qYVEthdbBuW4ZA76pWAZebLqOAOjCKdGbArN8tyAwMAByoxn5F7XkeumVoKQEbXRxRvvsnknnXxvM3UrnHtSAMzztTD870MfXNn-Q7KPxXAqq9SPyM5ivgyPwSNauEH7JwHOH6Zs0Er9gOxOxp-HX_8AaukHrQ | 
    
| linkProvider | Scholars Portal | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6hrgRcWJ5LeClIHOCQksR2jI_lsaoQrThQqZwsO7a1qy3OaklB7K9nJkmrLSwClFNiO7EnY_sbzfgbgGfB5dLhPpiRhZxxL31mHK-zvDQlpXkwpqKDwrN5NV3w90uxHEiS6CzMBf89Gk_qZWgiEQ2WXQAWkUbuVQJB9wj2FvOPk8-UOq5kPFOcLXvinsta7ew5HTX_ZXjy97DIa-t4an58N6vVhT3ncB-mm972oSYn43Vrx_X5L0SO_zCcm3BjwJ3ppFeUW3DFx9twdTZ41u-AmKTzJmbH8ZuhgPZ01mWWTtsmfdsH4_n0A64L6QTXKdz-zrBV88XchcXhu09vptmQUiGruVBtVtlKBquYcmhK2NI6zwpW8drm1gXrLFobQtZoNoWC4VqofMASKSpH6SBcydk9GMUm-vuQKi8RL8lguPW8cPguJURAtFKLurC5TGC8EbquB75xSnux0mh3kDA0CUOTMHQnjASebxuc9lQbf676mv7ithpxZHcPUNZ6mHKaBawasNv-leKCcr-Y0kvLRGHxF-dFAk83OqBxTpGjxETfrL9qRDl44dLGEjjodWL7KQSgRYEoMQG5oy07fdkticdHHW-3JE-URMG82OrV3wb64D_qPoTrdEOurlI9glF7tvaPETG19skwW34CUeoP1g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Non-invasive+Method+to+Diagnose+Lung+Adenocarcinoma&rft.jtitle=Frontiers+in+oncology&rft.au=Yan%2C+Mengmeng&rft.au=Wang%2C+Weidong&rft.date=2020-04-29&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=10&rft.spage=602&rft_id=info:doi/10.3389%2Ffonc.2020.00602&rft_id=info%3Apmid%2F32411600&rft.externalDocID=32411600 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon |