Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms

Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic map...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 8; p. 1434
Main Authors N’Diaye, Amidou, Haile, Jemanesh K., Fowler, D. Brian, Ammar, Karim, Pozniak, Curtis J.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 23.08.2017
Subjects
Online AccessGet full text
ISSN1664-462X
1664-462X
DOI10.3389/fpls.2017.01434

Cover

Abstract Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly.
AbstractList Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called ‘large p, small n’ problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly.
Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly.Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly.
Author N’Diaye, Amidou
Pozniak, Curtis J.
Haile, Jemanesh K.
Ammar, Karim
Fowler, D. Brian
AuthorAffiliation 1 Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon SK, Canada
2 International Maize and Wheat Improvement Center (CIMMYT) Texcoco, Mexico
AuthorAffiliation_xml – name: 1 Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon SK, Canada
– name: 2 International Maize and Wheat Improvement Center (CIMMYT) Texcoco, Mexico
Author_xml – sequence: 1
  givenname: Amidou
  surname: N’Diaye
  fullname: N’Diaye, Amidou
– sequence: 2
  givenname: Jemanesh K.
  surname: Haile
  fullname: Haile, Jemanesh K.
– sequence: 3
  givenname: D. Brian
  surname: Fowler
  fullname: Fowler, D. Brian
– sequence: 4
  givenname: Karim
  surname: Ammar
  fullname: Ammar, Karim
– sequence: 5
  givenname: Curtis J.
  surname: Pozniak
  fullname: Pozniak, Curtis J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28878789$$D View this record in MEDLINE/PubMed
BookMark eNqNkctv1DAQxi1URB_0zA3lyCVbO3ZeF6Rqu7SVFsGBStwsPyZZF68d7Cywp_7rOE2pWiQk7IPt8Te_Gfs7RgfOO0DoDcELSpv2rBtsXBSY1AtMGGUv0BGpKpazqvh68GR_iE5jvMVplBi3bf0KHRZNU6fZHqG7VdeBGjPfZUufR-gD9GI0rs8-ivANQsy8y65Mv8kvwEUz7rNLcDAale6HmAmns88BtFGjScJESeFs9WsQSZwCN3FGqY1xkK1BBDcFzm3vgxk32_gaveyEjXD6sJ6gmw-rL8urfP3p8np5vs4VK9sxr2pcdwrTRlMJrNVU04ZKVtJKS9FKyRioUtECqCaEsQ4kSKnK6aBlwwQ9QdczV3txy4dgtiLsuReG3wd86LkI6VkWeCEYEF01LZGKsenHVNcI0EVi4Y4ViYVn1s4NYv9TWPsIJJhP1vDJGj5Zw--tSSnv55RhJ7egFbgxCPusj-c3zmx473_wsqwLWtEEePcACP77DuLItyYqsFY48LvISUurqmCknNp7-7TWY5E_pifB2SxQwccYoPuP9su_MpQZxWR5atbYf-b9BmIg1Es
CitedBy_id crossref_primary_10_3389_fpls_2023_1054914
crossref_primary_10_1016_j_bbrep_2024_101678
crossref_primary_10_1534_g3_119_400684
crossref_primary_10_1038_s41598_020_61708_6
crossref_primary_10_1007_s12298_021_01041_y
crossref_primary_10_1371_journal_pcbi_1008980
crossref_primary_10_1111_age_13462
crossref_primary_10_1080_07060661_2020_1843073
crossref_primary_10_1093_gigascience_giad092
Cites_doi 10.1534/genetics.107.084293
10.1093/dnares/dsv038
10.1101/gr.4237406
10.1016/S0044-8486(99)00335-X
10.2135/cropsci2006.11.0690
10.1186/s12864-015-2242-5
10.1038/hortres.2016.57
10.1534/genetics.104.038026
10.1016/j.compag.2015.11.018
10.1371/journal.pone.0145714
10.1080/15287394.2012.674910
10.1093/bioinformatics/bti222
10.1371/journal.pone.0083052
10.1104/pp.013474
10.5424/sjar/2014122-4439
10.13031/2013.12541
10.1093/genetics/162.2.861
10.1534/genetics.111.127324
10.1093/genetics/155.1.407
10.5402/2013/471632
10.3389/fpls.2016.00133
10.1139/g97-797
10.1093/genetics/164.2.741
10.1242/jcs.123604
10.1371/journal.pone.0122485
10.2527/jas.2007-0010
10.1093/bioinformatics/btt563
10.1007/s10681-005-1681-5
10.1007/s00122-005-0124-y
10.1186/1471-2164-12-4
10.1007/978-94-007-2220-0_5
10.1371/journal.pone.0160623
10.1086/302861
10.1111/j.1439-0388.2007.00702.x
10.1007/s001220051399
10.2135/cropsci2008.03.0131
10.1007/s00122-006-0483-z
10.1007/s00122-009-1200-5
10.1186/s12864-016-3370-2
10.1111/j.1365-313X.1993.00739.x
10.1590/S1415-47572010005000033
10.1371/journal.pone.0029453
10.1038/nrg703
10.1371/journal.pone.0133161
10.1023/A:1009651919792
10.1038/nrg2796
10.1214/ss/1009213726
10.1534/genetics.106.055871
10.1093/genetics/165.2.849
10.1534/genetics.106.057638
10.3835/plantgenome2015.09.0081
10.1073/pnas.90.17.7980
10.1109/BIBM.2014.6999119
10.1111/pbi.12485
10.1371/journal.pone.0098628
10.1139/g96-061
10.1093/bib/bbp045
10.1371/journal.pone.0156571
10.1111/insr.12016
10.1186/s12864-016-2555-z
10.1534/genetics.106.063982
10.1086/338920
10.1007/s11295-010-0281-2
10.4236/ns.2010.26073
10.1111/pbi.12113
10.1093/genetics/132.4.1141
10.1186/1471-2164-15-823
10.1186/s12864-016-2781-4
10.1186/1471-2156-9-85
10.1093/gbe/evv250
10.1007/s00122-008-0756-9
10.1007/978-1-4757-2440-0
10.1007/s10916-005-1101-3
10.2135/cropsci2011.09.0297
10.1093/genetics/157.4.1819
10.1038/srep32608
10.1371/journal.pone.0028334
10.1093/mp/sst135
10.17485/ijst/2016/v9i38/95032
10.1101/gr.5774507
10.1016/S0888-7543(05)80158-2
10.1002/mrm.22147
10.13005/bbra/2079
10.1094/PDIS-03-15-0340-FE
10.1534/g3.114.012468
10.1371/journal.pone.0152185
10.1371/journal.pgen.1000212
10.1093/genetics/118.3.519
10.1111/pbi.12183
10.1073/pnas.1217133110
10.1186/1471-2164-15-433
10.1093/bioinformatics/bti543
10.1007/s11032-015-0212-x
10.1038/srep08232
10.1016/j.tplants.2015.10.015
10.1371/journal.pone.0098855
10.1038/nrg3908
10.1023/a:1010933404324
10.1111/j.2007.0018-0661.02000.x
10.1111/pbi.12504
10.1111/pbi.12288
10.1093/genetics/165.4.2269
10.1105/tpc.12.9.1523
10.1007/s00122-005-0097-x
10.1371/journal.pone.0097288
10.1038/sj.hdy.6800173
10.1093/bfgp/elq001
10.1093/genetics/121.1.185
10.1016/B978-0-12-507850-4.50032-9
10.3389/fgene.2015.00220
10.1534/genetics.107.084285
10.1016/j.hpj.2016.11.003
10.1139/g97-798
10.1534/g3.114.012815
10.1104/pp.113.225862
10.1534/genetics.111.128082
10.1038/srep31741
10.1038/srep22482
10.1270/jsbbs.56.371
10.1007/BF00222001
10.1007/s11032-014-0176-2
10.1186/gb-2013-14-5-205
10.1016/0168-9525(91)90232-F
10.1590/S1415-47572004000300021
10.1023/a:1012487302797
10.1038/nrg1707
10.1093/dnares/dsu020
10.1007/s11032-012-9706-y
ContentType Journal Article
Copyright Copyright © 2017 N’Diaye, Haile, Fowler, Ammar and Pozniak. 2017 N’Diaye, Haile, Fowler, Ammar and Pozniak
Copyright_xml – notice: Copyright © 2017 N’Diaye, Haile, Fowler, Ammar and Pozniak. 2017 N’Diaye, Haile, Fowler, Ammar and Pozniak
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fpls.2017.01434
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_2a4e1d6891bc440997cf8aed214d0f42
10.3389/fpls.2017.01434
PMC5572363
28878789
10_3389_fpls_2017_01434
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c459t-6707fc038d3be49d3d383b4536dba9bb44ec5c32e3d1144febebbc5d114db84a3
IEDL.DBID UNPAY
ISSN 1664-462X
IngestDate Fri Oct 03 12:50:41 EDT 2025
Sun Oct 26 02:40:38 EDT 2025
Thu Aug 21 18:19:10 EDT 2025
Fri Sep 05 06:34:45 EDT 2025
Thu Jan 02 22:29:30 EST 2025
Wed Oct 01 01:29:19 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords single nucleotide polymorphism
prediction
wheat
genetic map
inflation factor
machine learning
map expansion
high-density
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-6707fc038d3be49d3d383b4536dba9bb44ec5c32e3d1144febebbc5d114db84a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Eduard Akhunov, Kansas State University, United States; Marco Maccaferri, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Italy
This article was submitted to Crop Science and Horticulture, a section of the journal Frontiers in Plant Science
Edited by: Agata Gadaleta, Università degli Studi di Bari Aldo Moro, Italy
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/fpls.2017.01434/pdf
PMID 28878789
PQID 1936624152
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2a4e1d6891bc440997cf8aed214d0f42
unpaywall_primary_10_3389_fpls_2017_01434
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5572363
proquest_miscellaneous_1936624152
pubmed_primary_28878789
crossref_primary_10_3389_fpls_2017_01434
crossref_citationtrail_10_3389_fpls_2017_01434
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-23
PublicationDateYYYYMMDD 2017-08-23
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-23
  day: 23
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Moumouni (B83) 2015; 35
Tanksley (B115) 1992; 132
Cheema (B19) 2009; 10
Drummond (B31) 2003; 46
Margarido (B76) 2007; 144
Zhang (B140) 2008
de Givry (B26) 2005; 21
Vision (B127) 2000; 155
Doerge (B28) 2002; 3
Kukar (B57) 2005; 29
Truong (B119) 2014; 4
Winfield (B131) 2016; 14
Cavanagh (B18) 2013; 110
Edae (B32) 2016; 17
Heslot (B49) 2012; 52
Stam (B109) 1993; 3
Bernardo (B9) 2008; 48
Rastas (B94) 2016; 8
Hall (B46); 40
Ren (B98) 2012; 7
Tan (B114) 2006; 173
Vapnik (B125) 1995
Zhou (B142) 2015; 10
Guyon (B44) 2002; 46
Grinberg (B43) 2016; 7
Seetan (B102) 2013
van Os (B122) 2006; 173
Yim (B136) 2002; 130
Goddard (B40) 2007; 124
Li (B61) 2006; 16
Maccaferri (B72) 2014; 13
Yu (B138) 2014; 12
Fowler (B36) 2016; 11
Talukder (B113) 2014; 9
Ferreira (B34) 2006; 29
Daetwyler (B25) 2011; 189
Vuylsteke (B128) 1999; 99
Witten (B134) 2005
Bansal (B8) 2007; 17
Liu (B66) 2001; 44
Hackett (B45) 2003; 90
Perez-Lara (B92) 2016; 11
Lee (B60) 2015; 5
Wang (B130) 2014; 12
Reddy (B96) 2014; 4
Chen (B21) 2014; 15
Ahn (B2) 1993; 90
Breiman (B11); 45
Doerge (B29) 1996; 2
Anderson (B5) 2003; 165
Breiman (B12); 16
Taylor (B116) 1978
Buetow (B14) 1991; 49
Ganal (B37) 2011; 6
Di Pierro (B27) 2016; 3
Paterson (B90) 2000; 12
Paran (B88) 1995; 90
Han (B48) 2016; 23
Ronin (B99) 2014
Wu (B135) 2008; 4
Zhou (B143) 2016; 17
Gonzales-Recio (B41) 2008; 178
Shekoofa (B105) 2014; 9
Strnadová (B110) 2014
Jeong (B53) 2016; 11
Liu (B67) 2016; 2
Liu (B69) 2016; 17
Paterson (B89) 1996
Winkler (B132) 2003; 164
Unterseer (B121) 2014; 15
Ornella (B85) 2012
van Os (B123); 112
Kuhn (B56) 2012
Shaik (B104) 2014; 164
Iwata (B51) 2006; 56
Marchini (B75) 2010; 11
Pompanon (B93) 2005; 6
Lincoln (B62) 1992; 14
Amores (B4) 2011; 188
Gardner (B38) 2016; 14
Oliveira (B84) 2004; 27
Lorieux (B71) 2012; 30
Schwender (B101) 2012; 75
Hall (B47); 40
Burr (B15) 1991; 7
Collard (B23) 2005; 142
Mahlein (B74) 2015; 100
Cartwright (B17) 2007; 176
Marinkovic (B77) 2009
Al-Hamed (B3) 2016; 13
Peleg (B91) 2008; 117
Mishra (B81) 2016; 9
Gonzalez-Sanchez (B42) 2014; 12
Agresti (B1) 2000; 185
Iehisa (B50) 2014; 21
Ren (B97) 2016; 6
Gianola (B39) 2008; 178
Teuscher (B117) 2005; 170
Witten (B133) 2005
Knox (B54) 2002; 162
Cunningham (B24) 1995; 6
Fierst (B35) 2015; 6
Avni (B6) 2014; 34
Breiman (B13) 1984
Kumar (B58) 2016; 9
Liu (B68) 2013; 8
Loh (B70) 2014; 82
Chen (B20) 2014; 7
Lander (B59) 1989; 121
Liu (B64) 2015; 16
Mohan (B82) 1997; 3
Rastas (B95) 2013; 29
Maenhout (B73) 2010; 120
Burr (B16) 1988; 118
Ronin (B100) 2010; 6
Mester (B78) 2003; 165
Sommer (B108) 2013; 126
van Os (B124); 112
Zhao (B141) 2008; 9
Ott (B86) 2015; 16
Singh (B106) 2016; 21
Bai (B7) 2016; 6
Sybenga (B112) 1996; 39
Bernardo (B10) 2007; 47
Vengadessan (B126) 2013; 2013
Liu (B63) 2014; 9
Yip (B137) 2013; 14
Falque (B33) 2005; 21
Meuwissen (B80) 2001; 157
Douglas (B30) 2000; 66
Liu (B65) 1998; 611
Tong (B118) 2010; 6
Wahabzada (B129) 2016; 6
Sobel (B107) 2002; 70
Jannink (B52) 2010; 9
Chutimanitsakun (B22) 2011; 12
Semagn (B103) 2006; 5
Sun (B111) 2007; 114
Mester (B79) 2015; 10
Kohavi (B55) 1995
Pantazi (B87) 2016; 121
Zacharaki (B139) 2009; 62
Tyrka (B120) 2016; 10
26957018 - Sci Rep. 2016 Mar 09;6:22482
20156985 - Brief Funct Genomics. 2010 Mar;9(2):166-77
20517342 - Nat Rev Genet. 2010 Jul;11(7):499-511
22174790 - PLoS One. 2011;6(12):e28334
24235132 - Plant Physiol. 2014 Jan;164(1):481-95
25424506 - Plant Biotechnol J. 2015 Jun;13(5):648-63
24646323 - Plant Biotechnol J. 2014 Aug;12(6):787-96
17663699 - Hereditas. 2007 Jul;144(3):78-9
24898122 - BMC Genomics. 2014 Jun 04;15:433
10739757 - Am J Hum Genet. 2000 Apr;66(4):1287-97
27530597 - Sci Rep. 2016 Aug 17;6:31741
26668116 - Genome Biol Evol. 2015 Dec 14;8(1):78-93
25867943 - PLoS One. 2015 Apr 13;10(4):e0122485
15961443 - Bioinformatics. 2005 Aug 15;21(16):3441-2
27317430 - BMC Genomics. 2016 Jun 17;17 :466
3366363 - Genetics. 1988 Mar;118(3):519-26
25014030 - PLoS One. 2014 Jul 11;9(7):e98628
26651918 - Trends Plant Sci. 2016 Feb;21(2):110-24
1928104 - Am J Hum Genet. 1991 Nov;49(5):985-94
24121292 - Mol Plant. 2014 Mar;7(3):541-53
10790413 - Genetics. 2000 May;155(1):407-20
23731483 - Genome Biol. 2013 May 29;14(5):205
8103599 - Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980-4
15839329 - J Med Syst. 2005 Feb;29(1):13-32
19077279 - BMC Genet. 2008 Dec 12;9:85
25266061 - BMC Genomics. 2014 Sep 29;15:823
12481051 - Plant Physiol. 2002 Dec;130(4):1686-96
19904522 - Theor Appl Genet. 2010 Jan;120(2):415-27
11290733 - Genetics. 2001 Apr;157(4):1819-29
27019468 - PLoS One. 2016 Mar 28;11(3):e0152185
22686303 - J Toxicol Environ Health A. 2012;75(8-10):438-46
27898771 - Plant Genome. 2016 Mar;9(1):null
18464862 - Genome. 1997 Oct;40(5):744-54
26466852 - Plant Biotechnol J. 2016 May;14 (5):1195-206
26182149 - PLoS One. 2015 Jul 16;10(7):e0133161
18437346 - Theor Appl Genet. 2008 Jun;117(1):103-15
11823790 - Nat Rev Genet. 2002 Jan;3(1):43-52
2563713 - Genetics. 1989 Jan;121(1):185-99
15598829 - Bioinformatics. 2005 Apr 15;21(8):1703-4
12522423 - Heredity (Edinb). 2003 Jan;90(1):33-8
25227227 - G3 (Bethesda). 2014 Sep 15;4(11):2219-30
25128435 - G3 (Bethesda). 2014 Aug 15;4(10):1963-9
24905985 - PLoS One. 2014 Jun 06;9(6):e98855
19859947 - Magn Reson Med. 2009 Dec;62(6):1609-18
27513976 - PLoS One. 2016 Aug 11;11(8):e0160623
26904088 - Front Plant Sci. 2016 Feb 12;7:133
24173949 - Theor Appl Genet. 1995 Mar;90(3-4):542-8
25648560 - Sci Rep. 2015 Feb 04;5:8232
17426959 - Theor Appl Genet. 2007 May;114(8):1305-17
27257967 - PLoS One. 2016 Jun 03;11(6):e0156571
26744365 - DNA Res. 2016 Apr;23 (2):81-91
21828280 - Genetics. 2011 Aug;188(4):799-808
24034357 - Plant Biotechnol J. 2014 Jan;12(1):28-37
27587236 - Sci Rep. 2016 Sep 02;6:32608
24259662 - J Cell Sci. 2013 Dec 15;126(Pt 24):5529-39
19933208 - Brief Bioinform. 2009 Nov;10(6):595-608
18430951 - Genetics. 2008 Apr;178(4):2305-13
16582432 - Genetics. 2006 Jun;173(2):1075-87
24386142 - PLoS One. 2013 Dec 26;8(12):e83052
24830330 - PLoS One. 2014 May 15;9(5):e97288
12399396 - Genetics. 2002 Oct;162(2):861-73
26801965 - Plant Biotechnol J. 2016 Jun;14 (6):1406-17
22247776 - PLoS One. 2012;7(1):e29453
18846212 - PLoS Genet. 2008 Oct;4(10):e1000212
17277374 - Genetics. 2007 Aug;176(4):2521-7
16228189 - Theor Appl Genet. 2005 Dec;112(1):30-40
18464863 - Genome. 1997 Oct;40(5):755-69
16783016 - Genetics. 2006 Aug;173(4):2383-90
14704202 - Genetics. 2003 Dec;165(4):2269-82
27917289 - Hortic Res. 2016 Nov 23;3:16057
27978816 - BMC Genomics. 2016 Dec 15;17 (1):1039
25824869 - Nat Rev Genet. 2015 May;16(5):275-84
21705746 - Genetics. 2011 Sep;189(1):317-27
2035192 - Trends Genet. 1991 Feb;7(2):55-60
15781703 - Genetics. 2005 Jun;170(2):875-9
17185644 - Genome Res. 2007 Feb;17(2):219-30
26150829 - Front Genet. 2015 Jun 19;6:220
11006329 - Plant Cell. 2000 Sep;12(9):1523-40
16258753 - Theor Appl Genet. 2005 Dec;112(1):187-94
11791215 - Am J Hum Genet. 2002 Feb;70(2):496-508
26940065 - BMC Genomics. 2016 Mar 03;17 :178
1360934 - Genetics. 1992 Dec;132(4):1141-60
18430950 - Genetics. 2008 Apr;178(4):2289-303
18469909 - Genome. 1996 Jun;39(3):473-84
23630259 - Proc Natl Acad Sci U S A. 2013 May 14;110(20):8057-62
18076469 - J Anim Breed Genet. 2007 Dec;124(6):323-30
14573493 - Genetics. 2003 Oct;165(2):849-65
24972598 - DNA Res. 2014 Oct;21(5):555-67
12807793 - Genetics. 2003 Jun;164(2):741-5
1427888 - Genomics. 1992 Nov;14(3):604-10
26717308 - PLoS One. 2015 Dec 30;10(12):e0145714
16424108 - Genome Res. 2006 Mar;16(3):414-27
26691201 - BMC Genomics. 2015 Dec 21;16:1078
24078685 - Bioinformatics. 2013 Dec 15;29(24):3128-34
16304600 - Nat Rev Genet. 2005 Nov;6(11):847-59
21205322 - BMC Genomics. 2011 Jan 04;12:4
References_xml – volume: 178
  start-page: 2305
  year: 2008
  ident: B41
  article-title: Non parametric methods for incorporating genomic information into genetic evaluation: an application to mortality in broilers.
  publication-title: Genet. Mol. Biol.
  doi: 10.1534/genetics.107.084293
– volume: 23
  start-page: 81
  year: 2016
  ident: B48
  article-title: An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum).
  publication-title: DNA Res.
  doi: 10.1093/dnares/dsv038
– volume: 16
  start-page: 414
  year: 2006
  ident: B61
  article-title: Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine.
  publication-title: Genome Res.
  doi: 10.1101/gr.4237406
– volume: 185
  start-page: 43
  year: 2000
  ident: B1
  article-title: Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci.
  publication-title: Aquaculture
  doi: 10.1016/S0044-8486(99)00335-X
– volume: 47
  start-page: 1082
  year: 2007
  ident: B10
  article-title: Prospects for genome-wide selection for quantitative traits in maize.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2006.11.0690
– volume: 16
  year: 2015
  ident: B64
  article-title: An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-2242-5
– volume: 3
  year: 2016
  ident: B27
  article-title: A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species.
  publication-title: Hortic. Res.
  doi: 10.1038/hortres.2016.57
– volume: 170
  start-page: 875
  year: 2005
  ident: B117
  article-title: The map expansion obtained with recombinant inbred strains and intermated recombinant inbred populations for finite generation designs.
  publication-title: Genetics
  doi: 10.1534/genetics.104.038026
– volume: 121
  start-page: 57
  year: 2016
  ident: B87
  article-title: Wheat yield prediction using machine learning and advanced sensing techniques.
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.11.018
– year: 2013
  ident: B102
  article-title: “A fast and scalable clustering-based approach for constructing reliable radiation hybrid maps,” in
  publication-title: Proceedings of the 12th International Workshop on Data Mining in Bioinformatics
– volume: 10
  year: 2016
  ident: B120
  article-title: Genetic map of triticale integrating microsatellite, DArT and SNP markers.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0145714
– start-page: 1321
  year: 2008
  ident: B140
  article-title: “A neural network model for predicting cotton yields,” in
  publication-title: Computer and Computing Technologies in Agriculture: First IFIP TC 12 International Conference on Computer and Computing Technologies in Agriculture (CCTA 2007)
– volume: 75
  start-page: 438
  year: 2012
  ident: B101
  article-title: Imputing missing genotypes with weighted k nearest neighbors.
  publication-title: J. Toxicol. Environ. Health A
  doi: 10.1080/15287394.2012.674910
– volume: 21
  start-page: 1703
  year: 2005
  ident: B26
  article-title: CarthaGene: multipopulation integrated genetic and radiation hybrid mapping.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti222
– volume: 44
  start-page: 705
  year: 2001
  ident: B66
  article-title: Neural network for setting target corn yields.
  publication-title: Trans. ASAE
– volume: 8
  year: 2013
  ident: B68
  article-title: A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0083052
– volume: 130
  start-page: 1686
  year: 2002
  ident: B136
  article-title: Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.013474
– volume: 12
  start-page: 313
  year: 2014
  ident: B42
  article-title: Predictive ability of machine learning methods for massive crop yield prediction.
  publication-title: Span. J. Agric. Res.
  doi: 10.5424/sjar/2014122-4439
– volume: 611
  year: 1998
  ident: B65
  publication-title: Statistical Genomics, Linkage, Mapping and QTL Analysis.
– volume: 46
  start-page: 5
  year: 2003
  ident: B31
  article-title: Statistical and neural methods for site-specific yield prediction.
  publication-title: Trans. ASAE
  doi: 10.13031/2013.12541
– volume: 162
  start-page: 861
  year: 2002
  ident: B54
  article-title: Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations.
  publication-title: Genetics
  doi: 10.1093/genetics/162.2.861
– volume: 188
  start-page: 799
  year: 2011
  ident: B4
  article-title: Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication.
  publication-title: Genetics
  doi: 10.1534/genetics.111.127324
– volume: 155
  start-page: 407
  year: 2000
  ident: B127
  article-title: Selective mapping: a strategy for optimizing the construction of high-density linkage maps.
  publication-title: Genetics
  doi: 10.1093/genetics/155.1.407
– volume: 2013
  year: 2013
  ident: B126
  article-title: Construction of genetic linkage map and QTL analysis of sink-size traits in pearl millet (Pennisetum glaucum).
  publication-title: ISRN Genetics
  doi: 10.5402/2013/471632
– start-page: 1
  year: 2009
  ident: B77
  article-title: “Data mining approach for predictive modeling of agricultural yield data,” in
  publication-title: Proceedings of the First International Workshop on Sensing Technologies in Agriculture, Forestry and Environment (BioSense09)
– volume: 7
  year: 2016
  ident: B43
  article-title: Implementation of genomic prediction in Lolium perenne (L.) breeding populations.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00133
– volume: 40
  start-page: 744
  ident: B47
  article-title: The relationship between genetic and cytogenetic maps of pea. I. Standard and translocation karyotypes.
  publication-title: Genome
  doi: 10.1139/g97-797
– volume: 164
  start-page: 741
  year: 2003
  ident: B132
  article-title: On the determination of recombination rates in intermated recombinant inbred populations.
  publication-title: Genetics
  doi: 10.1093/genetics/164.2.741
– volume: 6
  start-page: 69
  year: 1995
  ident: B24
  article-title: Machine learning and statistics: a matter of perspective.
  publication-title: N. Z. J. Comput.
– volume: 126
  start-page: 5529
  year: 2013
  ident: B108
  article-title: Machine learning in cell biology – teaching computers to recognize phenotypes.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.123604
– volume: 10
  year: 2015
  ident: B79
  article-title: Fast and accurate construction of ultra-dense consensus genetic maps using evolution strategy optimization.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0122485
– volume: 29
  start-page: 187
  year: 2006
  ident: B34
  article-title: Estimating the effects of population size and type on the accuracy of genetic maps.
  publication-title: Genet. Mol. Biol.
  doi: 10.2527/jas.2007-0010
– volume: 29
  start-page: 3128
  year: 2013
  ident: B95
  article-title: Lep-MAP: fast and accurate linkage map construction for large SNP datasets.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt563
– volume: 142
  start-page: 169
  year: 2005
  ident: B23
  article-title: An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts.
  publication-title: Euphytica
  doi: 10.1007/s10681-005-1681-5
– volume: 112
  start-page: 187
  ident: B124
  article-title: SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-005-0124-y
– volume: 12
  year: 2011
  ident: B22
  article-title: Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-4
– start-page: 163
  year: 2012
  ident: B85
  article-title: “Applications of machine learning in breeding for stress tolerance in maize,” in
  publication-title: Crop Stress and Its Management: Perspectives and Strategies
  doi: 10.1007/978-94-007-2220-0_5
– volume: 5
  start-page: 2569
  year: 2006
  ident: B103
  article-title: Principles, requirements and prospects of genetic mapping in plants.
  publication-title: Afr. J. Biotechnol.
– volume: 11
  year: 2016
  ident: B92
  article-title: QTLs associated with agronomic traits in the cutler × AC barrie spring wheat mapping population using single nucleotide polymorphic markers.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0160623
– volume: 66
  start-page: 1287
  year: 2000
  ident: B30
  article-title: A multipoint method for detecting genotyping errors and mutations in sibling-pair linkage data.
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/302861
– volume: 124
  start-page: 323
  year: 2007
  ident: B40
  article-title: Genomic selection.
  publication-title: J. Anim. Breed. Genet.
  doi: 10.1111/j.1439-0388.2007.00702.x
– volume: 99
  start-page: 921
  year: 1999
  ident: B128
  article-title: Two high-density AFLP® linkage maps of Zea mays L.: analysis of distribution of AFLP markers.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s001220051399
– volume: 48
  start-page: 1649
  year: 2008
  ident: B9
  article-title: Molecular markers and selection for complex traits in plants: learning from the last 20 years.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2008.03.0131
– volume: 114
  start-page: 1305
  year: 2007
  ident: B111
  article-title: An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-006-0483-z
– volume: 120
  start-page: 415
  year: 2010
  ident: B73
  article-title: Prediction of maize single-cross hybrid performance: support vector machine regression versus best linear prediction.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-009-1200-5
– volume: 17
  year: 2016
  ident: B32
  article-title: Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-3370-2
– volume: 3
  start-page: 739
  year: 1993
  ident: B109
  article-title: Construction of integrated genetic-linkage maps by means of a new computer package: JoinMap.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.1993.00739.x
– volume: 2
  start-page: 121
  year: 1996
  ident: B29
  article-title: Constructing genetic maps by rapid chain delineation.
  publication-title: J. Quant. Trait Loci
  doi: 10.1590/S1415-47572010005000033
– volume: 7
  year: 2012
  ident: B98
  article-title: A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0029453
– volume: 3
  start-page: 43
  year: 2002
  ident: B28
  article-title: Mapping and analysis of quantitative trait loci in experimental populations.
  publication-title: Nat. Rev.
  doi: 10.1038/nrg703
– volume: 10
  year: 2015
  ident: B142
  article-title: Construction of high-density genetic map in barley through restriction-site associated DNA sequencing.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0133161
– volume: 3
  start-page: 87
  year: 1997
  ident: B82
  article-title: Genome mapping, molecular markers and marker-assisted selection in crop plants.
  publication-title: Mol. Breed.
  doi: 10.1023/A:1009651919792
– year: 1984
  ident: B13
  publication-title: Classification and Regression Trees.
– volume: 11
  start-page: 499
  year: 2010
  ident: B75
  article-title: Genotype imputation for genome-wide association studies.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2796
– volume: 16
  start-page: 199
  ident: B12
  article-title: Statistical modeling: the two cultures.
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009213726
– volume: 173
  start-page: 1075
  year: 2006
  ident: B122
  article-title: Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map.
  publication-title: Genetics
  doi: 10.1534/genetics.106.055871
– volume: 165
  start-page: 849
  year: 2003
  ident: B5
  article-title: High-resolution crossover maps for each bivalent of Zea mays using recombination nodules.
  publication-title: Genetics
  doi: 10.1093/genetics/165.2.849
– volume: 173
  start-page: 2383
  year: 2006
  ident: B114
  article-title: A novel method for estimating linkage maps.
  publication-title: Genetics
  doi: 10.1534/genetics.106.057638
– start-page: 23
  year: 1996
  ident: B89
  article-title: “Making genetic maps,” in
  publication-title: Genome Mapping in Plants
– volume: 9
  year: 2016
  ident: B58
  article-title: Dissection of genetic factors underlying wheat kernel shape and size in an Elite × Nonadapted cross using a high density SNP linkage map.
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2015.09.0081
– volume: 90
  start-page: 7980
  year: 1993
  ident: B2
  article-title: Comparative linkage maps of the rice and maize genomes.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.90.17.7980
– start-page: 3
  year: 2014
  ident: B110
  article-title: “Efficient and accurate clustering for large-scale genetic mapping,” in
  publication-title: Proceedings of the 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  doi: 10.1109/BIBM.2014.6999119
– volume: 14
  start-page: 1195
  year: 2016
  ident: B131
  article-title: High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12485
– volume: 9
  year: 2014
  ident: B113
  article-title: A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098628
– volume: 39
  start-page: 473
  year: 1996
  ident: B112
  article-title: Recombination and chiasmata: few but intriguing discrepancies.
  publication-title: Genome
  doi: 10.1139/g96-061
– volume: 10
  start-page: 595
  year: 2009
  ident: B19
  article-title: Computational approaches and software tools for genetic linkage map estimation in plants.
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbp045
– volume: 11
  year: 2016
  ident: B53
  article-title: Random forests for global and regional crop yield predictions.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0156571
– volume: 82
  start-page: 329
  year: 2014
  ident: B70
  article-title: Fifty years of classification and regression trees.
  publication-title: Int. Stat. Rev.
  doi: 10.1111/insr.12016
– volume: 17
  year: 2016
  ident: B143
  article-title: Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-2555-z
– volume: 176
  start-page: 2521
  year: 2007
  ident: B17
  article-title: Genetic mapping in the presence of genotyping errors.
  publication-title: Genetics
  doi: 10.1534/genetics.106.063982
– year: 2012
  ident: B56
  publication-title: Caret: Classification and Regression Training. R Package Version 5.15-044.
– volume: 70
  start-page: 496
  year: 2002
  ident: B107
  article-title: Detection and integration of genotyping errors in statistical genetics.
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/338920
– volume: 6
  start-page: 651
  year: 2010
  ident: B118
  article-title: A hidden Markov model approach to multilocus linkage analysis in a full-sib family.
  publication-title: Tree Genet. Genomes
  doi: 10.1007/s11295-010-0281-2
– volume: 6
  start-page: 576
  year: 2010
  ident: B100
  article-title: Building reliable genetic maps: different mapping strategies may result in different maps.
  publication-title: Nat. Sci.
  doi: 10.4236/ns.2010.26073
– volume: 12
  start-page: 28
  year: 2014
  ident: B138
  article-title: A whole-genome SNP array (RICE6K) for genomic breeding in rice.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12113
– volume: 49
  start-page: 985
  year: 1991
  ident: B14
  article-title: Influence of aberrant observations on high-resolution linkage analysis outcomes.
  publication-title: Am. J. Hum. Genet.
– volume: 132
  start-page: 1141
  year: 1992
  ident: B115
  article-title: High density molecular linkage maps of the tomato and potato genomes.
  publication-title: Genetics
  doi: 10.1093/genetics/132.4.1141
– volume: 15
  year: 2014
  ident: B121
  article-title: A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-823
– volume: 17
  year: 2016
  ident: B69
  article-title: Construction of a high-density, high-quality genetic map of cultivated lotus (Nelumbo nucifera) using next-generation sequencing.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-2781-4
– volume: 9
  year: 2008
  ident: B141
  article-title: Imputation of missing genotypes: an empirical evaluation of IMPUTE.
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-9-85
– volume: 8
  start-page: 78
  year: 2016
  ident: B94
  article-title: Construction of ultradense linkage maps with lep-MAP2: stickleback F 2 recombinant crosses as an example.
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evv250
– volume: 117
  start-page: 103
  year: 2008
  ident: B91
  article-title: High-density genetic map of durum wheat x wild emmer wheat based on SSR and DArT markers.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-008-0756-9
– year: 1995
  ident: B125
  publication-title: The Nature of Statistical Learning Theory.
  doi: 10.1007/978-1-4757-2440-0
– volume: 29
  start-page: 13
  year: 2005
  ident: B57
  article-title: Transductive machine learning for reliable medical diagnostics.
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-005-1101-3
– volume: 52
  start-page: 146
  year: 2012
  ident: B49
  article-title: Genomic selection in plant breeding: a comparison of models.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2011.09.0297
– volume: 157
  start-page: 1819
  year: 2001
  ident: B80
  article-title: Prediction of total genetic value using genome-wide dense marker maps.
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 6
  year: 2016
  ident: B7
  article-title: Construction of a high-density genetic map and QTL mapping for pearl quality-related traits in Hyriopsis cumingii.
  publication-title: Sci. Rep.
  doi: 10.1038/srep32608
– volume: 6
  year: 2011
  ident: B37
  article-title: A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0028334
– volume: 7
  start-page: 541
  year: 2014
  ident: B20
  article-title: A high-density SNP genotyping array for rice biology and molecular breeding.
  publication-title: Mol. Plant
  doi: 10.1093/mp/sst135
– volume: 9
  year: 2016
  ident: B81
  article-title: Applications of machine learning techniques in agricultural crop production: a review paper.
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/ijst/2016/v9i38/95032
– year: 2005
  ident: B134
  publication-title: Data Mining: Practical Machine Learning Tools and Techniques.
– volume: 17
  start-page: 219
  year: 2007
  ident: B8
  article-title: Evidence for large inversion polymorphisms in the human genome from HapMap data.
  publication-title: Genome Res.
  doi: 10.1101/gr.5774507
– volume: 14
  start-page: 604
  year: 1992
  ident: B62
  article-title: Systematic detection of errors in genetic linkage data.
  publication-title: Genomics
  doi: 10.1016/S0888-7543(05)80158-2
– volume: 62
  start-page: 1609
  year: 2009
  ident: B139
  article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22147
– volume: 13
  start-page: 631
  year: 2016
  ident: B3
  article-title: Prediction of potato yield based on energy inputs using artificial neural networks and C-sharp under Saudi Arabia conditions.
  publication-title: Biosci. Biotech. Res. Asia
  doi: 10.13005/bbra/2079
– volume: 100
  start-page: 241
  year: 2015
  ident: B74
  article-title: Plant disease detection by imaging sensors – parallels and specific demands for precision agriculture and plant phenotyping.
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-03-15-0340-FE
– volume: 4
  start-page: 1963
  year: 2014
  ident: B119
  article-title: Resolution of genetic map expansion caused by excess heterozygosity in plant recombinant inbred populations.
  publication-title: G
  doi: 10.1534/g3.114.012468
– volume: 11
  year: 2016
  ident: B36
  article-title: Quantitative trait loci associated with phenological development, low-temperature tolerance, grain quality, and agronomic characters in wheat (Triticum aestivum L.).
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0152185
– volume: 4
  year: 2008
  ident: B135
  article-title: Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph.
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000212
– volume: 118
  start-page: 519
  year: 1988
  ident: B16
  article-title: Gene mapping with recombinant inbreds in maize.
  publication-title: Genetics
  doi: 10.1093/genetics/118.3.519
– volume: 12
  start-page: 787
  year: 2014
  ident: B130
  article-title: Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12183
– volume: 110
  start-page: 8057
  year: 2013
  ident: B18
  article-title: Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1217133110
– volume: 15
  year: 2014
  ident: B21
  article-title: An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-433
– volume: 21
  start-page: 3441
  year: 2005
  ident: B33
  article-title: IRILmap: linkage map distance correction for intermated recombinant inbred lines/advanced recombinant inbred strains.
  publication-title: Bioinform. Appl. Notes
  doi: 10.1093/bioinformatics/bti543
– volume: 35
  year: 2015
  ident: B83
  article-title: Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach.
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-015-0212-x
– volume: 5
  year: 2015
  ident: B60
  article-title: A consensus linkage map of oil palm and a major QTL for stem height.
  publication-title: Sci. Rep.
  doi: 10.1038/srep08232
– volume: 21
  start-page: 110
  year: 2016
  ident: B106
  article-title: Machine learning for high-throughput stress phenotyping in plants.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.10.015
– year: 2014
  ident: B99
  article-title: “Building ultra-dens genetic maps in the presence of genotyping errors and missing data,” in
  publication-title: Proceedings of the 12th IWG
– volume: 9
  year: 2014
  ident: B63
  article-title: Construction and analysis of high-density linkage map using high-throughput sequencing data.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098855
– volume: 16
  start-page: 275
  year: 2015
  ident: B86
  article-title: Genetic linkage analysis in the age of whole-genome sequencing.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3908
– volume: 45
  start-page: 5
  ident: B11
  article-title: Random forests.
  publication-title: Mach. Learn.
  doi: 10.1023/a:1010933404324
– volume: 144
  start-page: 78
  year: 2007
  ident: B76
  article-title: OneMap: software for genetic mapping in outcrossing species.
  publication-title: Hereditas
  doi: 10.1111/j.2007.0018-0661.02000.x
– volume: 14
  start-page: 1406
  year: 2016
  ident: B38
  article-title: A highly recombined, high-density, eight-founder wheat MAGIC map reveals extensive segregation distortion and genomic locations of introgression segments.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12504
– volume: 13
  start-page: 648
  year: 2014
  ident: B72
  article-title: A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12288
– year: 2005
  ident: B133
  publication-title: Data Mining: Practical machine learning tools and Techniques
– volume: 165
  start-page: 2269
  year: 2003
  ident: B78
  article-title: Constructing large-scale genetic maps using an evolutionary strategy algorithm.
  publication-title: Genetics
  doi: 10.1093/genetics/165.4.2269
– volume: 12
  start-page: 1523
  year: 2000
  ident: B90
  article-title: Comparative genomics of plant chromosomes.
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.9.1523
– volume: 112
  start-page: 30
  ident: B123
  article-title: RECORD: a novel method for ordering loci on a genetic linkage map.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-005-0097-x
– volume: 9
  year: 2014
  ident: B105
  article-title: Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: a new avenue in intelligent agriculture.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0097288
– volume: 90
  start-page: 33
  year: 2003
  ident: B45
  article-title: Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps.
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6800173
– volume: 9
  start-page: 166
  year: 2010
  ident: B52
  article-title: Genomic selection in plant breeding: from theory to practice.
  publication-title: Brief. Funct. Genomics
  doi: 10.1093/bfgp/elq001
– volume: 121
  start-page: 185
  year: 1989
  ident: B59
  article-title: Mapping mendelian factors underlying quantitative traits using RFLP linkage maps.
  publication-title: Genetics
  doi: 10.1093/genetics/121.1.185
– start-page: 423
  year: 1978
  ident: B116
  article-title: “Recombinant inbred strains: use in gene mapping,” in
  publication-title: Origins of Inbred Mice
  doi: 10.1016/B978-0-12-507850-4.50032-9
– volume: 6
  year: 2015
  ident: B35
  article-title: Using linkage maps to correct and scaffold de novo genome assemblies: methods, challenges, and computational tools.
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2015.00220
– volume: 178
  start-page: 2289
  year: 2008
  ident: B39
  article-title: Reproducing Kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits.
  publication-title: Genet. Mol. Biol.
  doi: 10.1534/genetics.107.084285
– volume: 2
  start-page: 217
  year: 2016
  ident: B67
  article-title: A high density linkage map facilitates QTL mapping of flowering time in Brassica rapa.
  publication-title: Hortic. Plant J.
  doi: 10.1016/j.hpj.2016.11.003
– volume: 40
  start-page: 755
  ident: B46
  article-title: The relationship between genetic and cytogenetic maps of pea. II. Physical maps of linkage mapping populations.
  publication-title: Genome
  doi: 10.1139/g97-798
– volume: 4
  start-page: 2219
  year: 2014
  ident: B96
  article-title: High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon.
  publication-title: G
  doi: 10.1534/g3.114.012815
– volume: 164
  start-page: 481
  year: 2014
  ident: B104
  article-title: Machine learning approaches distinguish multiple stress conditions using stress-responsive genes and identify candidate genes for broad resistance in rice.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.225862
– volume: 189
  start-page: 317
  year: 2011
  ident: B25
  article-title: Imputation of missing genotypes from sparse to high density using long-range phasing.
  publication-title: Genetics
  doi: 10.1534/genetics.111.128082
– volume: 6
  year: 2016
  ident: B97
  article-title: SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley.
  publication-title: Sci. Rep.
  doi: 10.1038/srep31741
– volume: 6
  year: 2016
  ident: B129
  article-title: Plant phenotyping using probabilistic topic models: uncovering the hyperspectral language of plants.
  publication-title: Sci. Rep.
  doi: 10.1038/srep22482
– volume: 56
  start-page: 371
  year: 2006
  ident: B51
  article-title: AntMap: constructing genetic linkage maps using an ant colony optimization algorithm.
  publication-title: Breed. Sci.
  doi: 10.1270/jsbbs.56.371
– year: 1995
  ident: B55
  article-title: “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in
  publication-title: Proceedings of the 14th International Joint Conference on Artificial Intelligence
– volume: 90
  start-page: 542
  year: 1995
  ident: B88
  article-title: Recombinant inbred lines for genetic mapping in tomato.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/BF00222001
– volume: 34
  start-page: 1549
  year: 2014
  ident: B6
  article-title: Ultra-dense genetic map of durum wheat × wild emmer wheat developed using the 90K iSelect SNP genotyping assay.
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-014-0176-2
– volume: 14
  year: 2013
  ident: B137
  article-title: Machine learning and genome annotation: a match meant to be?
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-5-205
– volume: 7
  start-page: 55
  year: 1991
  ident: B15
  article-title: Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations.
  publication-title: Trends Genet.
  doi: 10.1016/0168-9525(91)90232-F
– volume: 27
  start-page: 437
  year: 2004
  ident: B84
  article-title: Skewed RAPD markers in linkage maps of Citrus.
  publication-title: Genet. Mol. Biol.
  doi: 10.1590/S1415-47572004000300021
– volume: 46
  start-page: 389
  year: 2002
  ident: B44
  article-title: Gene selection for cancer classification using support vector machines.
  publication-title: Mach. Learn.
  doi: 10.1023/a:1012487302797
– volume: 6
  start-page: 847
  year: 2005
  ident: B93
  article-title: Genotyping errors: causes, consequences and solutions.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1707
– volume: 21
  start-page: 555
  year: 2014
  ident: B50
  article-title: A high-density genetic map with array-based markers facilitates structural and quantitative trait locus analyses of the common wheat genome.
  publication-title: DNA Res.
  doi: 10.1093/dnares/dsu020
– volume: 30
  start-page: 1231
  year: 2012
  ident: B71
  article-title: MapDisto: fast and efficient computation of genetic linkage maps.
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-012-9706-y
– reference: 15781703 - Genetics. 2005 Jun;170(2):875-9
– reference: 25867943 - PLoS One. 2015 Apr 13;10(4):e0122485
– reference: 27530597 - Sci Rep. 2016 Aug 17;6:31741
– reference: 26904088 - Front Plant Sci. 2016 Feb 12;7:133
– reference: 26651918 - Trends Plant Sci. 2016 Feb;21(2):110-24
– reference: 26150829 - Front Genet. 2015 Jun 19;6:220
– reference: 18430950 - Genetics. 2008 Apr;178(4):2289-303
– reference: 12522423 - Heredity (Edinb). 2003 Jan;90(1):33-8
– reference: 15961443 - Bioinformatics. 2005 Aug 15;21(16):3441-2
– reference: 2035192 - Trends Genet. 1991 Feb;7(2):55-60
– reference: 14704202 - Genetics. 2003 Dec;165(4):2269-82
– reference: 24905985 - PLoS One. 2014 Jun 06;9(6):e98855
– reference: 11823790 - Nat Rev Genet. 2002 Jan;3(1):43-52
– reference: 12481051 - Plant Physiol. 2002 Dec;130(4):1686-96
– reference: 27978816 - BMC Genomics. 2016 Dec 15;17 (1):1039
– reference: 24078685 - Bioinformatics. 2013 Dec 15;29(24):3128-34
– reference: 3366363 - Genetics. 1988 Mar;118(3):519-26
– reference: 19904522 - Theor Appl Genet. 2010 Jan;120(2):415-27
– reference: 18464863 - Genome. 1997 Oct;40(5):755-69
– reference: 26466852 - Plant Biotechnol J. 2016 May;14 (5):1195-206
– reference: 23630259 - Proc Natl Acad Sci U S A. 2013 May 14;110(20):8057-62
– reference: 11290733 - Genetics. 2001 Apr;157(4):1819-29
– reference: 24121292 - Mol Plant. 2014 Mar;7(3):541-53
– reference: 18437346 - Theor Appl Genet. 2008 Jun;117(1):103-15
– reference: 10739757 - Am J Hum Genet. 2000 Apr;66(4):1287-97
– reference: 14573493 - Genetics. 2003 Oct;165(2):849-65
– reference: 24646323 - Plant Biotechnol J. 2014 Aug;12(6):787-96
– reference: 25014030 - PLoS One. 2014 Jul 11;9(7):e98628
– reference: 24830330 - PLoS One. 2014 May 15;9(5):e97288
– reference: 20517342 - Nat Rev Genet. 2010 Jul;11(7):499-511
– reference: 25227227 - G3 (Bethesda). 2014 Sep 15;4(11):2219-30
– reference: 21828280 - Genetics. 2011 Aug;188(4):799-808
– reference: 23731483 - Genome Biol. 2013 May 29;14(5):205
– reference: 27513976 - PLoS One. 2016 Aug 11;11(8):e0160623
– reference: 12807793 - Genetics. 2003 Jun;164(2):741-5
– reference: 1427888 - Genomics. 1992 Nov;14(3):604-10
– reference: 24259662 - J Cell Sci. 2013 Dec 15;126(Pt 24):5529-39
– reference: 21705746 - Genetics. 2011 Sep;189(1):317-27
– reference: 12399396 - Genetics. 2002 Oct;162(2):861-73
– reference: 11006329 - Plant Cell. 2000 Sep;12(9):1523-40
– reference: 26801965 - Plant Biotechnol J. 2016 Jun;14 (6):1406-17
– reference: 26691201 - BMC Genomics. 2015 Dec 21;16:1078
– reference: 1928104 - Am J Hum Genet. 1991 Nov;49(5):985-94
– reference: 25266061 - BMC Genomics. 2014 Sep 29;15:823
– reference: 20156985 - Brief Funct Genomics. 2010 Mar;9(2):166-77
– reference: 16582432 - Genetics. 2006 Jun;173(2):1075-87
– reference: 25824869 - Nat Rev Genet. 2015 May;16(5):275-84
– reference: 18846212 - PLoS Genet. 2008 Oct;4(10):e1000212
– reference: 22174790 - PLoS One. 2011;6(12):e28334
– reference: 26940065 - BMC Genomics. 2016 Mar 03;17 :178
– reference: 24173949 - Theor Appl Genet. 1995 Mar;90(3-4):542-8
– reference: 16424108 - Genome Res. 2006 Mar;16(3):414-27
– reference: 27917289 - Hortic Res. 2016 Nov 23;3:16057
– reference: 27898771 - Plant Genome. 2016 Mar;9(1):null
– reference: 19933208 - Brief Bioinform. 2009 Nov;10(6):595-608
– reference: 27257967 - PLoS One. 2016 Jun 03;11(6):e0156571
– reference: 21205322 - BMC Genomics. 2011 Jan 04;12:4
– reference: 24972598 - DNA Res. 2014 Oct;21(5):555-67
– reference: 25424506 - Plant Biotechnol J. 2015 Jun;13(5):648-63
– reference: 17185644 - Genome Res. 2007 Feb;17(2):219-30
– reference: 10790413 - Genetics. 2000 May;155(1):407-20
– reference: 16258753 - Theor Appl Genet. 2005 Dec;112(1):187-94
– reference: 26182149 - PLoS One. 2015 Jul 16;10(7):e0133161
– reference: 19077279 - BMC Genet. 2008 Dec 12;9:85
– reference: 18430951 - Genetics. 2008 Apr;178(4):2305-13
– reference: 24386142 - PLoS One. 2013 Dec 26;8(12):e83052
– reference: 17663699 - Hereditas. 2007 Jul;144(3):78-9
– reference: 26668116 - Genome Biol Evol. 2015 Dec 14;8(1):78-93
– reference: 18076469 - J Anim Breed Genet. 2007 Dec;124(6):323-30
– reference: 22686303 - J Toxicol Environ Health A. 2012;75(8-10):438-46
– reference: 17426959 - Theor Appl Genet. 2007 May;114(8):1305-17
– reference: 2563713 - Genetics. 1989 Jan;121(1):185-99
– reference: 17277374 - Genetics. 2007 Aug;176(4):2521-7
– reference: 24898122 - BMC Genomics. 2014 Jun 04;15:433
– reference: 1360934 - Genetics. 1992 Dec;132(4):1141-60
– reference: 25648560 - Sci Rep. 2015 Feb 04;5:8232
– reference: 27019468 - PLoS One. 2016 Mar 28;11(3):e0152185
– reference: 27587236 - Sci Rep. 2016 Sep 02;6:32608
– reference: 26744365 - DNA Res. 2016 Apr;23 (2):81-91
– reference: 25128435 - G3 (Bethesda). 2014 Aug 15;4(10):1963-9
– reference: 15598829 - Bioinformatics. 2005 Apr 15;21(8):1703-4
– reference: 24034357 - Plant Biotechnol J. 2014 Jan;12(1):28-37
– reference: 11791215 - Am J Hum Genet. 2002 Feb;70(2):496-508
– reference: 16304600 - Nat Rev Genet. 2005 Nov;6(11):847-59
– reference: 18464862 - Genome. 1997 Oct;40(5):744-54
– reference: 26957018 - Sci Rep. 2016 Mar 09;6:22482
– reference: 8103599 - Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980-4
– reference: 27317430 - BMC Genomics. 2016 Jun 17;17 :466
– reference: 19859947 - Magn Reson Med. 2009 Dec;62(6):1609-18
– reference: 18469909 - Genome. 1996 Jun;39(3):473-84
– reference: 16783016 - Genetics. 2006 Aug;173(4):2383-90
– reference: 16228189 - Theor Appl Genet. 2005 Dec;112(1):30-40
– reference: 24235132 - Plant Physiol. 2014 Jan;164(1):481-95
– reference: 15839329 - J Med Syst. 2005 Feb;29(1):13-32
– reference: 22247776 - PLoS One. 2012;7(1):e29453
– reference: 26717308 - PLoS One. 2015 Dec 30;10(12):e0145714
SSID ssj0000500997
Score 2.1995006
Snippet Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1434
SubjectTerms genetic map
high-density
map expansion
Plant Science
prediction
single nucleotide polymorphism
wheat
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhQQXxJvwkpE4wCFtEjsPH9vSqkICcaBSb9b4ta2UOqvdrGBP_HVmknS1K0C9oJxiO47tGdvf2OPPjL0PUNU5WEg9eEhlVWGfk0almBxUKENQw81zX75WZ-fy80V5sXXVF_mEjfTAY8MdFCB97qpG5cZKSec8bWjAuyKXLgtyGH2zRm0ZUyOrN0GfeuTyQStMHYR5S-zceb1PjHZyZxoa2Pr_BjH_9JS8t4pzWP-Att2ahk4fsgcTfuSHY7kfsTs-PmZ3jzrEeOsn7NdIRsy7wI-7dOnRmCYGjTjjdCYHkR7vIifXjvQTOa73a06005gVxs-XHKLj3xa0dUPiolwwmJ_8xBGDFtX44F-AYeR_6flEzTrjh-2sW1z1l9fLp-z89OT78Vk6XbGQWlmqPq3qrA42E40TxkvlhEOL1chSVM6AMkZKb0srCi8cGk4yoMiNsSW9ONNIEM_YXuyif8E4zvMGLMI5FdDmRolBUQYrLSDkMxmYhO3ftLi2E_84XYPRarRDSESaRKRJRHoQUcI-bD6Yj9Qb_056RCLcJCPO7CEANUlPmqRv06SEvbtRAI19jDZOIPputdQIclGJCeok7PmoEJtfFThK46MSVu-oyk5ZdmPi1eXA412WdSEqkbCPG6W6raIv_0dFX7H7lCOtjBfiNdvrFyv_BqFVb94Oveg3A64ksA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9NAEF1BQaKXqnwVQ0GLxAEODol3vc4eEGpLqwqpiAORcrP2M61k1qntiObUv86M7QQiUqGcvF6v15432Tf2-A0h77wS2UgZFTvlVMyFAJ_jWsbQXUmfei_bynMX38T5hH-dptM_5YD6G1hvDe2wntSkKgY318vP4PCfMOKE9fajnxcovD3KBihWx--TB7BMSazjcNFz_U7oG9lQW2xFCA7TSqad1M-2MVAjGNwPfnJjwWp1_beR0X9zKh8twlwtf6mi-GvBOtsnez3TpEcdNB6Tey48IQ-PS2CDy6fktpMtpqWnJ2VcOwi7UWsjzCh-vQOckJaBYhJI_AVT3JslRYFqGAr2z2uqgqXfK3zJg4bFUaCZnt7Afws-fqNtJgK0Yaamo72I64weFbOyumouf9bPyOTs9MfJedwXY4gNT2UTi2yYeTNkY8u049IyC7Gt5ikTViupNefOpIYljlkIsbgHcGhtUtyweswVe052QhncC0KBEWhlgPhJD9G5FWOVpN5wo4Ac6qHSERms7nhueqVyLJhR5BCxoLVytFaO1spba0Xk_fqAeSfScXfXYzThuhuqa7cNZTXLe2fNE8XdCOYlR9pwjqgxfqycTeBahp4nEXm7AkAO3oivWFRw5aLOgQ4D3JEUReSgA8T6VCtARSTbgMrGXDb3hKvLVvE7TbOECRaRD2tQ_e9CX955_ldkF7vhg_GEHZKdplq418CsGv2m9ZjfemUhVw
  priority: 102
  providerName: Scholars Portal
Title Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/28878789
https://www.proquest.com/docview/1936624152
https://pubmed.ncbi.nlm.nih.gov/PMC5572363
https://www.frontiersin.org/articles/10.3389/fpls.2017.01434/pdf
https://doaj.org/article/2a4e1d6891bc440997cf8aed214d0f42
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: GX1
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M48
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegQ2IXvjfCx2QkDnBI18aOEx-7sTEhbdqBSuUU2Y7dVQQnalNBufCv816SVisMIYQiRYrzYsf2e_HvOc8_E_LaKZEMlVGhVVaFXAiwOa5lCOJKutg52ew8d34hzsb8wySeXFvFj2GVDpfu40bQM98yBXchYmjh4FHJQ1cVyLQ9TPrITscPq9zdJjsiBjTeIzvji8vRJ_SzhOBQejRpGX1uenJrMGo4-28Cmr_HS95d-kqtvqqiuDYYnd4nal2NNgblc39Z6775_gvD4__U8wG51yFVOmrFH5Jb1j8id45KQJOrx-RHS3tMS0ePy3BhwW1Hrg4_pbj6B0qjpacYRBK-wxD5ekWR4BqygvvVgiqf08s5_iRCxcBcIJmefINvE07f0SaSAdIw0tPSjgR2SkfFtJzP6qsviydkfHry8fgs7DZzCA2PZR2KZJA4M2BpzrTlMmc5-Maax0zkWkmtObcmNiyyLAcXjTtQLq1NjBe5Trlie6TnS2-fEgqIQisDwFE68O5zkaoodoYbBeBSD5QOSH_dq5npmM5xw40iA48HGzbDhs2wYbOmYQPyZvNA1ZJ8_Fn0CNVkI4bs3E0CdGDWdWAWKW6H8F5yqA3nuDbZuFTZPIK6DByPAvJqrWQZWDP-olHelstFBnAazAVBVUD2W6XbFBXBeACHDEiypY5b77J9x8-uGsbwOE4iJlhA3m4U928VffYPss_JLl7gVHvEXpBePV_al4DVan3QzHHA-f1kCOdznh50BvoTr6pDzQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagi8ReeMOGl4zEAQ7ptvEj9bG77GqFxGoPVCqnyHbsbkVwojYVlAt_nZkkrbawCCGUU-xJ_JqJv3HGnwl57bVMh9rq2GmnYy4l2Bw3KgZxrbzwXjUnz304l2cT_n4qpld28WNYpcet-3gQ9Dy0TMFdiBhaOHhU6tBXBTJtD9M-stPxwyr3N8meFIDGe2Rvcn4x_oR-lpQcSk-mLaPPdU_uTEYNZ_91QPP3eMnbq1Dp9VddFFcmo9O7RG-a0cagfO6vatO3339hePyfdt4jdzqkSset-H1yw4UH5NZRCWhy_ZD8aGmPaenpcRkvHbjtyNURZhR3_0BptAwUg0jidxgiX68pElzDqyC_WlIdcnqxwJ9EqBj4FkimJ9_g24TLd7SJZIA0jPR0tCOBndFxMSsX8_ryy_IRmZyefDw-i7vDHGLLhapjmQ5SbwdslDPjuMpZDr6x4YLJ3GhlDOfOCssSx3Jw0bgH5TLGCrzJzYhr9pj0QhncAaGAKIy2AByVB-8-lyOdCG-51QAuzUCbiPQ3o5rZjukcD9woMvB4sGMz7NgMOzZrOjYib7YPVC3Jx59Fj1BNtmLIzt0kwABm3QBmieZuCPVSQ2M5x73J1o-0yxNoy8DzJCKvNkqWgTXjLxodXLlaZgCnwVwQVEXkSat026ISmA_gUhFJd9Rxpy67OWF-2TCGC5EmTLKIvN0q7t8a-vQfZJ-RfbzBpfaEPSe9erFyLwCr1eZlZ44_AQyaQQ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Co-segregating+Markers+on+High-Density+Genetic+Maps+and+Prediction+of+Map+Expansion+Using+Machine+Learning+Algorithms&rft.jtitle=Frontiers+in+plant+science&rft.au=N%27Diaye%2C+Amidou&rft.au=Haile%2C+Jemanesh+K&rft.au=Fowler%2C+D+Brian&rft.au=Ammar%2C+Karim&rft.date=2017-08-23&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=8&rft.spage=1434&rft_id=info:doi/10.3389%2Ffpls.2017.01434&rft_id=info%3Apmid%2F28878789&rft.externalDocID=28878789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon