Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms
Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic map...
Saved in:
| Published in | Frontiers in plant science Vol. 8; p. 1434 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Media S.A
23.08.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1664-462X 1664-462X |
| DOI | 10.3389/fpls.2017.01434 |
Cover
| Abstract | Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly. |
|---|---|
| AbstractList | Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called ‘large p, small n’ problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly. Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly.Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly. |
| Author | N’Diaye, Amidou Pozniak, Curtis J. Haile, Jemanesh K. Ammar, Karim Fowler, D. Brian |
| AuthorAffiliation | 1 Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon SK, Canada 2 International Maize and Wheat Improvement Center (CIMMYT) Texcoco, Mexico |
| AuthorAffiliation_xml | – name: 1 Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon SK, Canada – name: 2 International Maize and Wheat Improvement Center (CIMMYT) Texcoco, Mexico |
| Author_xml | – sequence: 1 givenname: Amidou surname: N’Diaye fullname: N’Diaye, Amidou – sequence: 2 givenname: Jemanesh K. surname: Haile fullname: Haile, Jemanesh K. – sequence: 3 givenname: D. Brian surname: Fowler fullname: Fowler, D. Brian – sequence: 4 givenname: Karim surname: Ammar fullname: Ammar, Karim – sequence: 5 givenname: Curtis J. surname: Pozniak fullname: Pozniak, Curtis J. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28878789$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctv1DAQxi1URB_0zA3lyCVbO3ZeF6Rqu7SVFsGBStwsPyZZF68d7Cywp_7rOE2pWiQk7IPt8Te_Gfs7RgfOO0DoDcELSpv2rBtsXBSY1AtMGGUv0BGpKpazqvh68GR_iE5jvMVplBi3bf0KHRZNU6fZHqG7VdeBGjPfZUufR-gD9GI0rs8-ivANQsy8y65Mv8kvwEUz7rNLcDAale6HmAmns88BtFGjScJESeFs9WsQSZwCN3FGqY1xkK1BBDcFzm3vgxk32_gaveyEjXD6sJ6gmw-rL8urfP3p8np5vs4VK9sxr2pcdwrTRlMJrNVU04ZKVtJKS9FKyRioUtECqCaEsQ4kSKnK6aBlwwQ9QdczV3txy4dgtiLsuReG3wd86LkI6VkWeCEYEF01LZGKsenHVNcI0EVi4Y4ViYVn1s4NYv9TWPsIJJhP1vDJGj5Zw--tSSnv55RhJ7egFbgxCPusj-c3zmx473_wsqwLWtEEePcACP77DuLItyYqsFY48LvISUurqmCknNp7-7TWY5E_pifB2SxQwccYoPuP9su_MpQZxWR5atbYf-b9BmIg1Es |
| CitedBy_id | crossref_primary_10_3389_fpls_2023_1054914 crossref_primary_10_1016_j_bbrep_2024_101678 crossref_primary_10_1534_g3_119_400684 crossref_primary_10_1038_s41598_020_61708_6 crossref_primary_10_1007_s12298_021_01041_y crossref_primary_10_1371_journal_pcbi_1008980 crossref_primary_10_1111_age_13462 crossref_primary_10_1080_07060661_2020_1843073 crossref_primary_10_1093_gigascience_giad092 |
| Cites_doi | 10.1534/genetics.107.084293 10.1093/dnares/dsv038 10.1101/gr.4237406 10.1016/S0044-8486(99)00335-X 10.2135/cropsci2006.11.0690 10.1186/s12864-015-2242-5 10.1038/hortres.2016.57 10.1534/genetics.104.038026 10.1016/j.compag.2015.11.018 10.1371/journal.pone.0145714 10.1080/15287394.2012.674910 10.1093/bioinformatics/bti222 10.1371/journal.pone.0083052 10.1104/pp.013474 10.5424/sjar/2014122-4439 10.13031/2013.12541 10.1093/genetics/162.2.861 10.1534/genetics.111.127324 10.1093/genetics/155.1.407 10.5402/2013/471632 10.3389/fpls.2016.00133 10.1139/g97-797 10.1093/genetics/164.2.741 10.1242/jcs.123604 10.1371/journal.pone.0122485 10.2527/jas.2007-0010 10.1093/bioinformatics/btt563 10.1007/s10681-005-1681-5 10.1007/s00122-005-0124-y 10.1186/1471-2164-12-4 10.1007/978-94-007-2220-0_5 10.1371/journal.pone.0160623 10.1086/302861 10.1111/j.1439-0388.2007.00702.x 10.1007/s001220051399 10.2135/cropsci2008.03.0131 10.1007/s00122-006-0483-z 10.1007/s00122-009-1200-5 10.1186/s12864-016-3370-2 10.1111/j.1365-313X.1993.00739.x 10.1590/S1415-47572010005000033 10.1371/journal.pone.0029453 10.1038/nrg703 10.1371/journal.pone.0133161 10.1023/A:1009651919792 10.1038/nrg2796 10.1214/ss/1009213726 10.1534/genetics.106.055871 10.1093/genetics/165.2.849 10.1534/genetics.106.057638 10.3835/plantgenome2015.09.0081 10.1073/pnas.90.17.7980 10.1109/BIBM.2014.6999119 10.1111/pbi.12485 10.1371/journal.pone.0098628 10.1139/g96-061 10.1093/bib/bbp045 10.1371/journal.pone.0156571 10.1111/insr.12016 10.1186/s12864-016-2555-z 10.1534/genetics.106.063982 10.1086/338920 10.1007/s11295-010-0281-2 10.4236/ns.2010.26073 10.1111/pbi.12113 10.1093/genetics/132.4.1141 10.1186/1471-2164-15-823 10.1186/s12864-016-2781-4 10.1186/1471-2156-9-85 10.1093/gbe/evv250 10.1007/s00122-008-0756-9 10.1007/978-1-4757-2440-0 10.1007/s10916-005-1101-3 10.2135/cropsci2011.09.0297 10.1093/genetics/157.4.1819 10.1038/srep32608 10.1371/journal.pone.0028334 10.1093/mp/sst135 10.17485/ijst/2016/v9i38/95032 10.1101/gr.5774507 10.1016/S0888-7543(05)80158-2 10.1002/mrm.22147 10.13005/bbra/2079 10.1094/PDIS-03-15-0340-FE 10.1534/g3.114.012468 10.1371/journal.pone.0152185 10.1371/journal.pgen.1000212 10.1093/genetics/118.3.519 10.1111/pbi.12183 10.1073/pnas.1217133110 10.1186/1471-2164-15-433 10.1093/bioinformatics/bti543 10.1007/s11032-015-0212-x 10.1038/srep08232 10.1016/j.tplants.2015.10.015 10.1371/journal.pone.0098855 10.1038/nrg3908 10.1023/a:1010933404324 10.1111/j.2007.0018-0661.02000.x 10.1111/pbi.12504 10.1111/pbi.12288 10.1093/genetics/165.4.2269 10.1105/tpc.12.9.1523 10.1007/s00122-005-0097-x 10.1371/journal.pone.0097288 10.1038/sj.hdy.6800173 10.1093/bfgp/elq001 10.1093/genetics/121.1.185 10.1016/B978-0-12-507850-4.50032-9 10.3389/fgene.2015.00220 10.1534/genetics.107.084285 10.1016/j.hpj.2016.11.003 10.1139/g97-798 10.1534/g3.114.012815 10.1104/pp.113.225862 10.1534/genetics.111.128082 10.1038/srep31741 10.1038/srep22482 10.1270/jsbbs.56.371 10.1007/BF00222001 10.1007/s11032-014-0176-2 10.1186/gb-2013-14-5-205 10.1016/0168-9525(91)90232-F 10.1590/S1415-47572004000300021 10.1023/a:1012487302797 10.1038/nrg1707 10.1093/dnares/dsu020 10.1007/s11032-012-9706-y |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 N’Diaye, Haile, Fowler, Ammar and Pozniak. 2017 N’Diaye, Haile, Fowler, Ammar and Pozniak |
| Copyright_xml | – notice: Copyright © 2017 N’Diaye, Haile, Fowler, Ammar and Pozniak. 2017 N’Diaye, Haile, Fowler, Ammar and Pozniak |
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fpls.2017.01434 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1664-462X |
| ExternalDocumentID | oai_doaj_org_article_2a4e1d6891bc440997cf8aed214d0f42 10.3389/fpls.2017.01434 PMC5572363 28878789 10_3389_fpls_2017_01434 |
| Genre | Journal Article |
| GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c459t-6707fc038d3be49d3d383b4536dba9bb44ec5c32e3d1144febebbc5d114db84a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1664-462X |
| IngestDate | Fri Oct 03 12:50:41 EDT 2025 Sun Oct 26 02:40:38 EDT 2025 Thu Aug 21 18:19:10 EDT 2025 Fri Sep 05 06:34:45 EDT 2025 Thu Jan 02 22:29:30 EST 2025 Wed Oct 01 01:29:19 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | single nucleotide polymorphism prediction wheat genetic map inflation factor machine learning map expansion high-density |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-6707fc038d3be49d3d383b4536dba9bb44ec5c32e3d1144febebbc5d114db84a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Eduard Akhunov, Kansas State University, United States; Marco Maccaferri, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Italy This article was submitted to Crop Science and Horticulture, a section of the journal Frontiers in Plant Science Edited by: Agata Gadaleta, Università degli Studi di Bari Aldo Moro, Italy |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/fpls.2017.01434/pdf |
| PMID | 28878789 |
| PQID | 1936624152 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2a4e1d6891bc440997cf8aed214d0f42 unpaywall_primary_10_3389_fpls_2017_01434 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5572363 proquest_miscellaneous_1936624152 pubmed_primary_28878789 crossref_primary_10_3389_fpls_2017_01434 crossref_citationtrail_10_3389_fpls_2017_01434 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-23 |
| PublicationDateYYYYMMDD | 2017-08-23 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-23 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in plant science |
| PublicationTitleAlternate | Front Plant Sci |
| PublicationYear | 2017 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Moumouni (B83) 2015; 35 Tanksley (B115) 1992; 132 Cheema (B19) 2009; 10 Drummond (B31) 2003; 46 Margarido (B76) 2007; 144 Zhang (B140) 2008 de Givry (B26) 2005; 21 Vision (B127) 2000; 155 Doerge (B28) 2002; 3 Kukar (B57) 2005; 29 Truong (B119) 2014; 4 Winfield (B131) 2016; 14 Cavanagh (B18) 2013; 110 Edae (B32) 2016; 17 Heslot (B49) 2012; 52 Stam (B109) 1993; 3 Bernardo (B9) 2008; 48 Rastas (B94) 2016; 8 Hall (B46); 40 Ren (B98) 2012; 7 Tan (B114) 2006; 173 Vapnik (B125) 1995 Zhou (B142) 2015; 10 Guyon (B44) 2002; 46 Grinberg (B43) 2016; 7 Seetan (B102) 2013 van Os (B122) 2006; 173 Yim (B136) 2002; 130 Goddard (B40) 2007; 124 Li (B61) 2006; 16 Maccaferri (B72) 2014; 13 Yu (B138) 2014; 12 Fowler (B36) 2016; 11 Talukder (B113) 2014; 9 Ferreira (B34) 2006; 29 Daetwyler (B25) 2011; 189 Vuylsteke (B128) 1999; 99 Witten (B134) 2005 Bansal (B8) 2007; 17 Liu (B66) 2001; 44 Hackett (B45) 2003; 90 Perez-Lara (B92) 2016; 11 Lee (B60) 2015; 5 Wang (B130) 2014; 12 Reddy (B96) 2014; 4 Chen (B21) 2014; 15 Ahn (B2) 1993; 90 Breiman (B11); 45 Doerge (B29) 1996; 2 Anderson (B5) 2003; 165 Breiman (B12); 16 Taylor (B116) 1978 Buetow (B14) 1991; 49 Ganal (B37) 2011; 6 Di Pierro (B27) 2016; 3 Paterson (B90) 2000; 12 Paran (B88) 1995; 90 Han (B48) 2016; 23 Ronin (B99) 2014 Wu (B135) 2008; 4 Zhou (B143) 2016; 17 Gonzales-Recio (B41) 2008; 178 Shekoofa (B105) 2014; 9 Strnadová (B110) 2014 Jeong (B53) 2016; 11 Liu (B67) 2016; 2 Liu (B69) 2016; 17 Paterson (B89) 1996 Winkler (B132) 2003; 164 Unterseer (B121) 2014; 15 Ornella (B85) 2012 van Os (B123); 112 Kuhn (B56) 2012 Shaik (B104) 2014; 164 Iwata (B51) 2006; 56 Marchini (B75) 2010; 11 Pompanon (B93) 2005; 6 Lincoln (B62) 1992; 14 Amores (B4) 2011; 188 Gardner (B38) 2016; 14 Oliveira (B84) 2004; 27 Lorieux (B71) 2012; 30 Schwender (B101) 2012; 75 Hall (B47); 40 Burr (B15) 1991; 7 Collard (B23) 2005; 142 Mahlein (B74) 2015; 100 Cartwright (B17) 2007; 176 Marinkovic (B77) 2009 Al-Hamed (B3) 2016; 13 Peleg (B91) 2008; 117 Mishra (B81) 2016; 9 Gonzalez-Sanchez (B42) 2014; 12 Agresti (B1) 2000; 185 Iehisa (B50) 2014; 21 Ren (B97) 2016; 6 Gianola (B39) 2008; 178 Teuscher (B117) 2005; 170 Witten (B133) 2005 Knox (B54) 2002; 162 Cunningham (B24) 1995; 6 Fierst (B35) 2015; 6 Avni (B6) 2014; 34 Breiman (B13) 1984 Kumar (B58) 2016; 9 Liu (B68) 2013; 8 Loh (B70) 2014; 82 Chen (B20) 2014; 7 Lander (B59) 1989; 121 Liu (B64) 2015; 16 Mohan (B82) 1997; 3 Rastas (B95) 2013; 29 Maenhout (B73) 2010; 120 Burr (B16) 1988; 118 Ronin (B100) 2010; 6 Mester (B78) 2003; 165 Sommer (B108) 2013; 126 van Os (B124); 112 Zhao (B141) 2008; 9 Ott (B86) 2015; 16 Singh (B106) 2016; 21 Bai (B7) 2016; 6 Sybenga (B112) 1996; 39 Bernardo (B10) 2007; 47 Vengadessan (B126) 2013; 2013 Liu (B63) 2014; 9 Yip (B137) 2013; 14 Falque (B33) 2005; 21 Meuwissen (B80) 2001; 157 Douglas (B30) 2000; 66 Liu (B65) 1998; 611 Tong (B118) 2010; 6 Wahabzada (B129) 2016; 6 Sobel (B107) 2002; 70 Jannink (B52) 2010; 9 Chutimanitsakun (B22) 2011; 12 Semagn (B103) 2006; 5 Sun (B111) 2007; 114 Mester (B79) 2015; 10 Kohavi (B55) 1995 Pantazi (B87) 2016; 121 Zacharaki (B139) 2009; 62 Tyrka (B120) 2016; 10 26957018 - Sci Rep. 2016 Mar 09;6:22482 20156985 - Brief Funct Genomics. 2010 Mar;9(2):166-77 20517342 - Nat Rev Genet. 2010 Jul;11(7):499-511 22174790 - PLoS One. 2011;6(12):e28334 24235132 - Plant Physiol. 2014 Jan;164(1):481-95 25424506 - Plant Biotechnol J. 2015 Jun;13(5):648-63 24646323 - Plant Biotechnol J. 2014 Aug;12(6):787-96 17663699 - Hereditas. 2007 Jul;144(3):78-9 24898122 - BMC Genomics. 2014 Jun 04;15:433 10739757 - Am J Hum Genet. 2000 Apr;66(4):1287-97 27530597 - Sci Rep. 2016 Aug 17;6:31741 26668116 - Genome Biol Evol. 2015 Dec 14;8(1):78-93 25867943 - PLoS One. 2015 Apr 13;10(4):e0122485 15961443 - Bioinformatics. 2005 Aug 15;21(16):3441-2 27317430 - BMC Genomics. 2016 Jun 17;17 :466 3366363 - Genetics. 1988 Mar;118(3):519-26 25014030 - PLoS One. 2014 Jul 11;9(7):e98628 26651918 - Trends Plant Sci. 2016 Feb;21(2):110-24 1928104 - Am J Hum Genet. 1991 Nov;49(5):985-94 24121292 - Mol Plant. 2014 Mar;7(3):541-53 10790413 - Genetics. 2000 May;155(1):407-20 23731483 - Genome Biol. 2013 May 29;14(5):205 8103599 - Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980-4 15839329 - J Med Syst. 2005 Feb;29(1):13-32 19077279 - BMC Genet. 2008 Dec 12;9:85 25266061 - BMC Genomics. 2014 Sep 29;15:823 12481051 - Plant Physiol. 2002 Dec;130(4):1686-96 19904522 - Theor Appl Genet. 2010 Jan;120(2):415-27 11290733 - Genetics. 2001 Apr;157(4):1819-29 27019468 - PLoS One. 2016 Mar 28;11(3):e0152185 22686303 - J Toxicol Environ Health A. 2012;75(8-10):438-46 27898771 - Plant Genome. 2016 Mar;9(1):null 18464862 - Genome. 1997 Oct;40(5):744-54 26466852 - Plant Biotechnol J. 2016 May;14 (5):1195-206 26182149 - PLoS One. 2015 Jul 16;10(7):e0133161 18437346 - Theor Appl Genet. 2008 Jun;117(1):103-15 11823790 - Nat Rev Genet. 2002 Jan;3(1):43-52 2563713 - Genetics. 1989 Jan;121(1):185-99 15598829 - Bioinformatics. 2005 Apr 15;21(8):1703-4 12522423 - Heredity (Edinb). 2003 Jan;90(1):33-8 25227227 - G3 (Bethesda). 2014 Sep 15;4(11):2219-30 25128435 - G3 (Bethesda). 2014 Aug 15;4(10):1963-9 24905985 - PLoS One. 2014 Jun 06;9(6):e98855 19859947 - Magn Reson Med. 2009 Dec;62(6):1609-18 27513976 - PLoS One. 2016 Aug 11;11(8):e0160623 26904088 - Front Plant Sci. 2016 Feb 12;7:133 24173949 - Theor Appl Genet. 1995 Mar;90(3-4):542-8 25648560 - Sci Rep. 2015 Feb 04;5:8232 17426959 - Theor Appl Genet. 2007 May;114(8):1305-17 27257967 - PLoS One. 2016 Jun 03;11(6):e0156571 26744365 - DNA Res. 2016 Apr;23 (2):81-91 21828280 - Genetics. 2011 Aug;188(4):799-808 24034357 - Plant Biotechnol J. 2014 Jan;12(1):28-37 27587236 - Sci Rep. 2016 Sep 02;6:32608 24259662 - J Cell Sci. 2013 Dec 15;126(Pt 24):5529-39 19933208 - Brief Bioinform. 2009 Nov;10(6):595-608 18430951 - Genetics. 2008 Apr;178(4):2305-13 16582432 - Genetics. 2006 Jun;173(2):1075-87 24386142 - PLoS One. 2013 Dec 26;8(12):e83052 24830330 - PLoS One. 2014 May 15;9(5):e97288 12399396 - Genetics. 2002 Oct;162(2):861-73 26801965 - Plant Biotechnol J. 2016 Jun;14 (6):1406-17 22247776 - PLoS One. 2012;7(1):e29453 18846212 - PLoS Genet. 2008 Oct;4(10):e1000212 17277374 - Genetics. 2007 Aug;176(4):2521-7 16228189 - Theor Appl Genet. 2005 Dec;112(1):30-40 18464863 - Genome. 1997 Oct;40(5):755-69 16783016 - Genetics. 2006 Aug;173(4):2383-90 14704202 - Genetics. 2003 Dec;165(4):2269-82 27917289 - Hortic Res. 2016 Nov 23;3:16057 27978816 - BMC Genomics. 2016 Dec 15;17 (1):1039 25824869 - Nat Rev Genet. 2015 May;16(5):275-84 21705746 - Genetics. 2011 Sep;189(1):317-27 2035192 - Trends Genet. 1991 Feb;7(2):55-60 15781703 - Genetics. 2005 Jun;170(2):875-9 17185644 - Genome Res. 2007 Feb;17(2):219-30 26150829 - Front Genet. 2015 Jun 19;6:220 11006329 - Plant Cell. 2000 Sep;12(9):1523-40 16258753 - Theor Appl Genet. 2005 Dec;112(1):187-94 11791215 - Am J Hum Genet. 2002 Feb;70(2):496-508 26940065 - BMC Genomics. 2016 Mar 03;17 :178 1360934 - Genetics. 1992 Dec;132(4):1141-60 18430950 - Genetics. 2008 Apr;178(4):2289-303 18469909 - Genome. 1996 Jun;39(3):473-84 23630259 - Proc Natl Acad Sci U S A. 2013 May 14;110(20):8057-62 18076469 - J Anim Breed Genet. 2007 Dec;124(6):323-30 14573493 - Genetics. 2003 Oct;165(2):849-65 24972598 - DNA Res. 2014 Oct;21(5):555-67 12807793 - Genetics. 2003 Jun;164(2):741-5 1427888 - Genomics. 1992 Nov;14(3):604-10 26717308 - PLoS One. 2015 Dec 30;10(12):e0145714 16424108 - Genome Res. 2006 Mar;16(3):414-27 26691201 - BMC Genomics. 2015 Dec 21;16:1078 24078685 - Bioinformatics. 2013 Dec 15;29(24):3128-34 16304600 - Nat Rev Genet. 2005 Nov;6(11):847-59 21205322 - BMC Genomics. 2011 Jan 04;12:4 |
| References_xml | – volume: 178 start-page: 2305 year: 2008 ident: B41 article-title: Non parametric methods for incorporating genomic information into genetic evaluation: an application to mortality in broilers. publication-title: Genet. Mol. Biol. doi: 10.1534/genetics.107.084293 – volume: 23 start-page: 81 year: 2016 ident: B48 article-title: An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). publication-title: DNA Res. doi: 10.1093/dnares/dsv038 – volume: 16 start-page: 414 year: 2006 ident: B61 article-title: Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. publication-title: Genome Res. doi: 10.1101/gr.4237406 – volume: 185 start-page: 43 year: 2000 ident: B1 article-title: Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. publication-title: Aquaculture doi: 10.1016/S0044-8486(99)00335-X – volume: 47 start-page: 1082 year: 2007 ident: B10 article-title: Prospects for genome-wide selection for quantitative traits in maize. publication-title: Crop Sci. doi: 10.2135/cropsci2006.11.0690 – volume: 16 year: 2015 ident: B64 article-title: An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize. publication-title: BMC Genomics doi: 10.1186/s12864-015-2242-5 – volume: 3 year: 2016 ident: B27 article-title: A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. publication-title: Hortic. Res. doi: 10.1038/hortres.2016.57 – volume: 170 start-page: 875 year: 2005 ident: B117 article-title: The map expansion obtained with recombinant inbred strains and intermated recombinant inbred populations for finite generation designs. publication-title: Genetics doi: 10.1534/genetics.104.038026 – volume: 121 start-page: 57 year: 2016 ident: B87 article-title: Wheat yield prediction using machine learning and advanced sensing techniques. publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.11.018 – year: 2013 ident: B102 article-title: “A fast and scalable clustering-based approach for constructing reliable radiation hybrid maps,” in publication-title: Proceedings of the 12th International Workshop on Data Mining in Bioinformatics – volume: 10 year: 2016 ident: B120 article-title: Genetic map of triticale integrating microsatellite, DArT and SNP markers. publication-title: PLoS ONE doi: 10.1371/journal.pone.0145714 – start-page: 1321 year: 2008 ident: B140 article-title: “A neural network model for predicting cotton yields,” in publication-title: Computer and Computing Technologies in Agriculture: First IFIP TC 12 International Conference on Computer and Computing Technologies in Agriculture (CCTA 2007) – volume: 75 start-page: 438 year: 2012 ident: B101 article-title: Imputing missing genotypes with weighted k nearest neighbors. publication-title: J. Toxicol. Environ. Health A doi: 10.1080/15287394.2012.674910 – volume: 21 start-page: 1703 year: 2005 ident: B26 article-title: CarthaGene: multipopulation integrated genetic and radiation hybrid mapping. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti222 – volume: 44 start-page: 705 year: 2001 ident: B66 article-title: Neural network for setting target corn yields. publication-title: Trans. ASAE – volume: 8 year: 2013 ident: B68 article-title: A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. publication-title: PLoS ONE doi: 10.1371/journal.pone.0083052 – volume: 130 start-page: 1686 year: 2002 ident: B136 article-title: Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. publication-title: Plant Physiol. doi: 10.1104/pp.013474 – volume: 12 start-page: 313 year: 2014 ident: B42 article-title: Predictive ability of machine learning methods for massive crop yield prediction. publication-title: Span. J. Agric. Res. doi: 10.5424/sjar/2014122-4439 – volume: 611 year: 1998 ident: B65 publication-title: Statistical Genomics, Linkage, Mapping and QTL Analysis. – volume: 46 start-page: 5 year: 2003 ident: B31 article-title: Statistical and neural methods for site-specific yield prediction. publication-title: Trans. ASAE doi: 10.13031/2013.12541 – volume: 162 start-page: 861 year: 2002 ident: B54 article-title: Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations. publication-title: Genetics doi: 10.1093/genetics/162.2.861 – volume: 188 start-page: 799 year: 2011 ident: B4 article-title: Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. publication-title: Genetics doi: 10.1534/genetics.111.127324 – volume: 155 start-page: 407 year: 2000 ident: B127 article-title: Selective mapping: a strategy for optimizing the construction of high-density linkage maps. publication-title: Genetics doi: 10.1093/genetics/155.1.407 – volume: 2013 year: 2013 ident: B126 article-title: Construction of genetic linkage map and QTL analysis of sink-size traits in pearl millet (Pennisetum glaucum). publication-title: ISRN Genetics doi: 10.5402/2013/471632 – start-page: 1 year: 2009 ident: B77 article-title: “Data mining approach for predictive modeling of agricultural yield data,” in publication-title: Proceedings of the First International Workshop on Sensing Technologies in Agriculture, Forestry and Environment (BioSense09) – volume: 7 year: 2016 ident: B43 article-title: Implementation of genomic prediction in Lolium perenne (L.) breeding populations. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00133 – volume: 40 start-page: 744 ident: B47 article-title: The relationship between genetic and cytogenetic maps of pea. I. Standard and translocation karyotypes. publication-title: Genome doi: 10.1139/g97-797 – volume: 164 start-page: 741 year: 2003 ident: B132 article-title: On the determination of recombination rates in intermated recombinant inbred populations. publication-title: Genetics doi: 10.1093/genetics/164.2.741 – volume: 6 start-page: 69 year: 1995 ident: B24 article-title: Machine learning and statistics: a matter of perspective. publication-title: N. Z. J. Comput. – volume: 126 start-page: 5529 year: 2013 ident: B108 article-title: Machine learning in cell biology – teaching computers to recognize phenotypes. publication-title: J. Cell Sci. doi: 10.1242/jcs.123604 – volume: 10 year: 2015 ident: B79 article-title: Fast and accurate construction of ultra-dense consensus genetic maps using evolution strategy optimization. publication-title: PLoS ONE doi: 10.1371/journal.pone.0122485 – volume: 29 start-page: 187 year: 2006 ident: B34 article-title: Estimating the effects of population size and type on the accuracy of genetic maps. publication-title: Genet. Mol. Biol. doi: 10.2527/jas.2007-0010 – volume: 29 start-page: 3128 year: 2013 ident: B95 article-title: Lep-MAP: fast and accurate linkage map construction for large SNP datasets. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt563 – volume: 142 start-page: 169 year: 2005 ident: B23 article-title: An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. publication-title: Euphytica doi: 10.1007/s10681-005-1681-5 – volume: 112 start-page: 187 ident: B124 article-title: SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-005-0124-y – volume: 12 year: 2011 ident: B22 article-title: Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. publication-title: BMC Genomics doi: 10.1186/1471-2164-12-4 – start-page: 163 year: 2012 ident: B85 article-title: “Applications of machine learning in breeding for stress tolerance in maize,” in publication-title: Crop Stress and Its Management: Perspectives and Strategies doi: 10.1007/978-94-007-2220-0_5 – volume: 5 start-page: 2569 year: 2006 ident: B103 article-title: Principles, requirements and prospects of genetic mapping in plants. publication-title: Afr. J. Biotechnol. – volume: 11 year: 2016 ident: B92 article-title: QTLs associated with agronomic traits in the cutler × AC barrie spring wheat mapping population using single nucleotide polymorphic markers. publication-title: PLoS ONE doi: 10.1371/journal.pone.0160623 – volume: 66 start-page: 1287 year: 2000 ident: B30 article-title: A multipoint method for detecting genotyping errors and mutations in sibling-pair linkage data. publication-title: Am. J. Hum. Genet. doi: 10.1086/302861 – volume: 124 start-page: 323 year: 2007 ident: B40 article-title: Genomic selection. publication-title: J. Anim. Breed. Genet. doi: 10.1111/j.1439-0388.2007.00702.x – volume: 99 start-page: 921 year: 1999 ident: B128 article-title: Two high-density AFLP® linkage maps of Zea mays L.: analysis of distribution of AFLP markers. publication-title: Theor. Appl. Genet. doi: 10.1007/s001220051399 – volume: 48 start-page: 1649 year: 2008 ident: B9 article-title: Molecular markers and selection for complex traits in plants: learning from the last 20 years. publication-title: Crop Sci. doi: 10.2135/cropsci2008.03.0131 – volume: 114 start-page: 1305 year: 2007 ident: B111 article-title: An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-006-0483-z – volume: 120 start-page: 415 year: 2010 ident: B73 article-title: Prediction of maize single-cross hybrid performance: support vector machine regression versus best linear prediction. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-009-1200-5 – volume: 17 year: 2016 ident: B32 article-title: Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat. publication-title: BMC Genomics doi: 10.1186/s12864-016-3370-2 – volume: 3 start-page: 739 year: 1993 ident: B109 article-title: Construction of integrated genetic-linkage maps by means of a new computer package: JoinMap. publication-title: Plant J. doi: 10.1111/j.1365-313X.1993.00739.x – volume: 2 start-page: 121 year: 1996 ident: B29 article-title: Constructing genetic maps by rapid chain delineation. publication-title: J. Quant. Trait Loci doi: 10.1590/S1415-47572010005000033 – volume: 7 year: 2012 ident: B98 article-title: A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. publication-title: PLoS ONE doi: 10.1371/journal.pone.0029453 – volume: 3 start-page: 43 year: 2002 ident: B28 article-title: Mapping and analysis of quantitative trait loci in experimental populations. publication-title: Nat. Rev. doi: 10.1038/nrg703 – volume: 10 year: 2015 ident: B142 article-title: Construction of high-density genetic map in barley through restriction-site associated DNA sequencing. publication-title: PLoS ONE doi: 10.1371/journal.pone.0133161 – volume: 3 start-page: 87 year: 1997 ident: B82 article-title: Genome mapping, molecular markers and marker-assisted selection in crop plants. publication-title: Mol. Breed. doi: 10.1023/A:1009651919792 – year: 1984 ident: B13 publication-title: Classification and Regression Trees. – volume: 11 start-page: 499 year: 2010 ident: B75 article-title: Genotype imputation for genome-wide association studies. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2796 – volume: 16 start-page: 199 ident: B12 article-title: Statistical modeling: the two cultures. publication-title: Stat. Sci. doi: 10.1214/ss/1009213726 – volume: 173 start-page: 1075 year: 2006 ident: B122 article-title: Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. publication-title: Genetics doi: 10.1534/genetics.106.055871 – volume: 165 start-page: 849 year: 2003 ident: B5 article-title: High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. publication-title: Genetics doi: 10.1093/genetics/165.2.849 – volume: 173 start-page: 2383 year: 2006 ident: B114 article-title: A novel method for estimating linkage maps. publication-title: Genetics doi: 10.1534/genetics.106.057638 – start-page: 23 year: 1996 ident: B89 article-title: “Making genetic maps,” in publication-title: Genome Mapping in Plants – volume: 9 year: 2016 ident: B58 article-title: Dissection of genetic factors underlying wheat kernel shape and size in an Elite × Nonadapted cross using a high density SNP linkage map. publication-title: Plant Genome doi: 10.3835/plantgenome2015.09.0081 – volume: 90 start-page: 7980 year: 1993 ident: B2 article-title: Comparative linkage maps of the rice and maize genomes. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.90.17.7980 – start-page: 3 year: 2014 ident: B110 article-title: “Efficient and accurate clustering for large-scale genetic mapping,” in publication-title: Proceedings of the 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) doi: 10.1109/BIBM.2014.6999119 – volume: 14 start-page: 1195 year: 2016 ident: B131 article-title: High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12485 – volume: 9 year: 2014 ident: B113 article-title: A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12. publication-title: PLoS ONE doi: 10.1371/journal.pone.0098628 – volume: 39 start-page: 473 year: 1996 ident: B112 article-title: Recombination and chiasmata: few but intriguing discrepancies. publication-title: Genome doi: 10.1139/g96-061 – volume: 10 start-page: 595 year: 2009 ident: B19 article-title: Computational approaches and software tools for genetic linkage map estimation in plants. publication-title: Brief. Bioinform. doi: 10.1093/bib/bbp045 – volume: 11 year: 2016 ident: B53 article-title: Random forests for global and regional crop yield predictions. publication-title: PLoS ONE doi: 10.1371/journal.pone.0156571 – volume: 82 start-page: 329 year: 2014 ident: B70 article-title: Fifty years of classification and regression trees. publication-title: Int. Stat. Rev. doi: 10.1111/insr.12016 – volume: 17 year: 2016 ident: B143 article-title: Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. publication-title: BMC Genomics doi: 10.1186/s12864-016-2555-z – volume: 176 start-page: 2521 year: 2007 ident: B17 article-title: Genetic mapping in the presence of genotyping errors. publication-title: Genetics doi: 10.1534/genetics.106.063982 – year: 2012 ident: B56 publication-title: Caret: Classification and Regression Training. R Package Version 5.15-044. – volume: 70 start-page: 496 year: 2002 ident: B107 article-title: Detection and integration of genotyping errors in statistical genetics. publication-title: Am. J. Hum. Genet. doi: 10.1086/338920 – volume: 6 start-page: 651 year: 2010 ident: B118 article-title: A hidden Markov model approach to multilocus linkage analysis in a full-sib family. publication-title: Tree Genet. Genomes doi: 10.1007/s11295-010-0281-2 – volume: 6 start-page: 576 year: 2010 ident: B100 article-title: Building reliable genetic maps: different mapping strategies may result in different maps. publication-title: Nat. Sci. doi: 10.4236/ns.2010.26073 – volume: 12 start-page: 28 year: 2014 ident: B138 article-title: A whole-genome SNP array (RICE6K) for genomic breeding in rice. publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12113 – volume: 49 start-page: 985 year: 1991 ident: B14 article-title: Influence of aberrant observations on high-resolution linkage analysis outcomes. publication-title: Am. J. Hum. Genet. – volume: 132 start-page: 1141 year: 1992 ident: B115 article-title: High density molecular linkage maps of the tomato and potato genomes. publication-title: Genetics doi: 10.1093/genetics/132.4.1141 – volume: 15 year: 2014 ident: B121 article-title: A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. publication-title: BMC Genomics doi: 10.1186/1471-2164-15-823 – volume: 17 year: 2016 ident: B69 article-title: Construction of a high-density, high-quality genetic map of cultivated lotus (Nelumbo nucifera) using next-generation sequencing. publication-title: BMC Genomics doi: 10.1186/s12864-016-2781-4 – volume: 9 year: 2008 ident: B141 article-title: Imputation of missing genotypes: an empirical evaluation of IMPUTE. publication-title: BMC Genet. doi: 10.1186/1471-2156-9-85 – volume: 8 start-page: 78 year: 2016 ident: B94 article-title: Construction of ultradense linkage maps with lep-MAP2: stickleback F 2 recombinant crosses as an example. publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evv250 – volume: 117 start-page: 103 year: 2008 ident: B91 article-title: High-density genetic map of durum wheat x wild emmer wheat based on SSR and DArT markers. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-008-0756-9 – year: 1995 ident: B125 publication-title: The Nature of Statistical Learning Theory. doi: 10.1007/978-1-4757-2440-0 – volume: 29 start-page: 13 year: 2005 ident: B57 article-title: Transductive machine learning for reliable medical diagnostics. publication-title: J. Med. Syst. doi: 10.1007/s10916-005-1101-3 – volume: 52 start-page: 146 year: 2012 ident: B49 article-title: Genomic selection in plant breeding: a comparison of models. publication-title: Crop Sci. doi: 10.2135/cropsci2011.09.0297 – volume: 157 start-page: 1819 year: 2001 ident: B80 article-title: Prediction of total genetic value using genome-wide dense marker maps. publication-title: Genetics doi: 10.1093/genetics/157.4.1819 – volume: 6 year: 2016 ident: B7 article-title: Construction of a high-density genetic map and QTL mapping for pearl quality-related traits in Hyriopsis cumingii. publication-title: Sci. Rep. doi: 10.1038/srep32608 – volume: 6 year: 2011 ident: B37 article-title: A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. publication-title: PLoS ONE doi: 10.1371/journal.pone.0028334 – volume: 7 start-page: 541 year: 2014 ident: B20 article-title: A high-density SNP genotyping array for rice biology and molecular breeding. publication-title: Mol. Plant doi: 10.1093/mp/sst135 – volume: 9 year: 2016 ident: B81 article-title: Applications of machine learning techniques in agricultural crop production: a review paper. publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2016/v9i38/95032 – year: 2005 ident: B134 publication-title: Data Mining: Practical Machine Learning Tools and Techniques. – volume: 17 start-page: 219 year: 2007 ident: B8 article-title: Evidence for large inversion polymorphisms in the human genome from HapMap data. publication-title: Genome Res. doi: 10.1101/gr.5774507 – volume: 14 start-page: 604 year: 1992 ident: B62 article-title: Systematic detection of errors in genetic linkage data. publication-title: Genomics doi: 10.1016/S0888-7543(05)80158-2 – volume: 62 start-page: 1609 year: 2009 ident: B139 article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22147 – volume: 13 start-page: 631 year: 2016 ident: B3 article-title: Prediction of potato yield based on energy inputs using artificial neural networks and C-sharp under Saudi Arabia conditions. publication-title: Biosci. Biotech. Res. Asia doi: 10.13005/bbra/2079 – volume: 100 start-page: 241 year: 2015 ident: B74 article-title: Plant disease detection by imaging sensors – parallels and specific demands for precision agriculture and plant phenotyping. publication-title: Plant Dis. doi: 10.1094/PDIS-03-15-0340-FE – volume: 4 start-page: 1963 year: 2014 ident: B119 article-title: Resolution of genetic map expansion caused by excess heterozygosity in plant recombinant inbred populations. publication-title: G doi: 10.1534/g3.114.012468 – volume: 11 year: 2016 ident: B36 article-title: Quantitative trait loci associated with phenological development, low-temperature tolerance, grain quality, and agronomic characters in wheat (Triticum aestivum L.). publication-title: PLoS ONE doi: 10.1371/journal.pone.0152185 – volume: 4 year: 2008 ident: B135 article-title: Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000212 – volume: 118 start-page: 519 year: 1988 ident: B16 article-title: Gene mapping with recombinant inbreds in maize. publication-title: Genetics doi: 10.1093/genetics/118.3.519 – volume: 12 start-page: 787 year: 2014 ident: B130 article-title: Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12183 – volume: 110 start-page: 8057 year: 2013 ident: B18 article-title: Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1217133110 – volume: 15 year: 2014 ident: B21 article-title: An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. publication-title: BMC Genomics doi: 10.1186/1471-2164-15-433 – volume: 21 start-page: 3441 year: 2005 ident: B33 article-title: IRILmap: linkage map distance correction for intermated recombinant inbred lines/advanced recombinant inbred strains. publication-title: Bioinform. Appl. Notes doi: 10.1093/bioinformatics/bti543 – volume: 35 year: 2015 ident: B83 article-title: Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. publication-title: Mol. Breed. doi: 10.1007/s11032-015-0212-x – volume: 5 year: 2015 ident: B60 article-title: A consensus linkage map of oil palm and a major QTL for stem height. publication-title: Sci. Rep. doi: 10.1038/srep08232 – volume: 21 start-page: 110 year: 2016 ident: B106 article-title: Machine learning for high-throughput stress phenotyping in plants. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.10.015 – year: 2014 ident: B99 article-title: “Building ultra-dens genetic maps in the presence of genotyping errors and missing data,” in publication-title: Proceedings of the 12th IWG – volume: 9 year: 2014 ident: B63 article-title: Construction and analysis of high-density linkage map using high-throughput sequencing data. publication-title: PLoS ONE doi: 10.1371/journal.pone.0098855 – volume: 16 start-page: 275 year: 2015 ident: B86 article-title: Genetic linkage analysis in the age of whole-genome sequencing. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3908 – volume: 45 start-page: 5 ident: B11 article-title: Random forests. publication-title: Mach. Learn. doi: 10.1023/a:1010933404324 – volume: 144 start-page: 78 year: 2007 ident: B76 article-title: OneMap: software for genetic mapping in outcrossing species. publication-title: Hereditas doi: 10.1111/j.2007.0018-0661.02000.x – volume: 14 start-page: 1406 year: 2016 ident: B38 article-title: A highly recombined, high-density, eight-founder wheat MAGIC map reveals extensive segregation distortion and genomic locations of introgression segments. publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12504 – volume: 13 start-page: 648 year: 2014 ident: B72 article-title: A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12288 – year: 2005 ident: B133 publication-title: Data Mining: Practical machine learning tools and Techniques – volume: 165 start-page: 2269 year: 2003 ident: B78 article-title: Constructing large-scale genetic maps using an evolutionary strategy algorithm. publication-title: Genetics doi: 10.1093/genetics/165.4.2269 – volume: 12 start-page: 1523 year: 2000 ident: B90 article-title: Comparative genomics of plant chromosomes. publication-title: Plant Cell doi: 10.1105/tpc.12.9.1523 – volume: 112 start-page: 30 ident: B123 article-title: RECORD: a novel method for ordering loci on a genetic linkage map. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-005-0097-x – volume: 9 year: 2014 ident: B105 article-title: Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: a new avenue in intelligent agriculture. publication-title: PLoS ONE doi: 10.1371/journal.pone.0097288 – volume: 90 start-page: 33 year: 2003 ident: B45 article-title: Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. publication-title: Heredity doi: 10.1038/sj.hdy.6800173 – volume: 9 start-page: 166 year: 2010 ident: B52 article-title: Genomic selection in plant breeding: from theory to practice. publication-title: Brief. Funct. Genomics doi: 10.1093/bfgp/elq001 – volume: 121 start-page: 185 year: 1989 ident: B59 article-title: Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. publication-title: Genetics doi: 10.1093/genetics/121.1.185 – start-page: 423 year: 1978 ident: B116 article-title: “Recombinant inbred strains: use in gene mapping,” in publication-title: Origins of Inbred Mice doi: 10.1016/B978-0-12-507850-4.50032-9 – volume: 6 year: 2015 ident: B35 article-title: Using linkage maps to correct and scaffold de novo genome assemblies: methods, challenges, and computational tools. publication-title: Front. Genet. doi: 10.3389/fgene.2015.00220 – volume: 178 start-page: 2289 year: 2008 ident: B39 article-title: Reproducing Kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. publication-title: Genet. Mol. Biol. doi: 10.1534/genetics.107.084285 – volume: 2 start-page: 217 year: 2016 ident: B67 article-title: A high density linkage map facilitates QTL mapping of flowering time in Brassica rapa. publication-title: Hortic. Plant J. doi: 10.1016/j.hpj.2016.11.003 – volume: 40 start-page: 755 ident: B46 article-title: The relationship between genetic and cytogenetic maps of pea. II. Physical maps of linkage mapping populations. publication-title: Genome doi: 10.1139/g97-798 – volume: 4 start-page: 2219 year: 2014 ident: B96 article-title: High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon. publication-title: G doi: 10.1534/g3.114.012815 – volume: 164 start-page: 481 year: 2014 ident: B104 article-title: Machine learning approaches distinguish multiple stress conditions using stress-responsive genes and identify candidate genes for broad resistance in rice. publication-title: Plant Physiol. doi: 10.1104/pp.113.225862 – volume: 189 start-page: 317 year: 2011 ident: B25 article-title: Imputation of missing genotypes from sparse to high density using long-range phasing. publication-title: Genetics doi: 10.1534/genetics.111.128082 – volume: 6 year: 2016 ident: B97 article-title: SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley. publication-title: Sci. Rep. doi: 10.1038/srep31741 – volume: 6 year: 2016 ident: B129 article-title: Plant phenotyping using probabilistic topic models: uncovering the hyperspectral language of plants. publication-title: Sci. Rep. doi: 10.1038/srep22482 – volume: 56 start-page: 371 year: 2006 ident: B51 article-title: AntMap: constructing genetic linkage maps using an ant colony optimization algorithm. publication-title: Breed. Sci. doi: 10.1270/jsbbs.56.371 – year: 1995 ident: B55 article-title: “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in publication-title: Proceedings of the 14th International Joint Conference on Artificial Intelligence – volume: 90 start-page: 542 year: 1995 ident: B88 article-title: Recombinant inbred lines for genetic mapping in tomato. publication-title: Theor. Appl. Genet. doi: 10.1007/BF00222001 – volume: 34 start-page: 1549 year: 2014 ident: B6 article-title: Ultra-dense genetic map of durum wheat × wild emmer wheat developed using the 90K iSelect SNP genotyping assay. publication-title: Mol. Breed. doi: 10.1007/s11032-014-0176-2 – volume: 14 year: 2013 ident: B137 article-title: Machine learning and genome annotation: a match meant to be? publication-title: Genome Biol. doi: 10.1186/gb-2013-14-5-205 – volume: 7 start-page: 55 year: 1991 ident: B15 article-title: Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. publication-title: Trends Genet. doi: 10.1016/0168-9525(91)90232-F – volume: 27 start-page: 437 year: 2004 ident: B84 article-title: Skewed RAPD markers in linkage maps of Citrus. publication-title: Genet. Mol. Biol. doi: 10.1590/S1415-47572004000300021 – volume: 46 start-page: 389 year: 2002 ident: B44 article-title: Gene selection for cancer classification using support vector machines. publication-title: Mach. Learn. doi: 10.1023/a:1012487302797 – volume: 6 start-page: 847 year: 2005 ident: B93 article-title: Genotyping errors: causes, consequences and solutions. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1707 – volume: 21 start-page: 555 year: 2014 ident: B50 article-title: A high-density genetic map with array-based markers facilitates structural and quantitative trait locus analyses of the common wheat genome. publication-title: DNA Res. doi: 10.1093/dnares/dsu020 – volume: 30 start-page: 1231 year: 2012 ident: B71 article-title: MapDisto: fast and efficient computation of genetic linkage maps. publication-title: Mol. Breed. doi: 10.1007/s11032-012-9706-y – reference: 15781703 - Genetics. 2005 Jun;170(2):875-9 – reference: 25867943 - PLoS One. 2015 Apr 13;10(4):e0122485 – reference: 27530597 - Sci Rep. 2016 Aug 17;6:31741 – reference: 26904088 - Front Plant Sci. 2016 Feb 12;7:133 – reference: 26651918 - Trends Plant Sci. 2016 Feb;21(2):110-24 – reference: 26150829 - Front Genet. 2015 Jun 19;6:220 – reference: 18430950 - Genetics. 2008 Apr;178(4):2289-303 – reference: 12522423 - Heredity (Edinb). 2003 Jan;90(1):33-8 – reference: 15961443 - Bioinformatics. 2005 Aug 15;21(16):3441-2 – reference: 2035192 - Trends Genet. 1991 Feb;7(2):55-60 – reference: 14704202 - Genetics. 2003 Dec;165(4):2269-82 – reference: 24905985 - PLoS One. 2014 Jun 06;9(6):e98855 – reference: 11823790 - Nat Rev Genet. 2002 Jan;3(1):43-52 – reference: 12481051 - Plant Physiol. 2002 Dec;130(4):1686-96 – reference: 27978816 - BMC Genomics. 2016 Dec 15;17 (1):1039 – reference: 24078685 - Bioinformatics. 2013 Dec 15;29(24):3128-34 – reference: 3366363 - Genetics. 1988 Mar;118(3):519-26 – reference: 19904522 - Theor Appl Genet. 2010 Jan;120(2):415-27 – reference: 18464863 - Genome. 1997 Oct;40(5):755-69 – reference: 26466852 - Plant Biotechnol J. 2016 May;14 (5):1195-206 – reference: 23630259 - Proc Natl Acad Sci U S A. 2013 May 14;110(20):8057-62 – reference: 11290733 - Genetics. 2001 Apr;157(4):1819-29 – reference: 24121292 - Mol Plant. 2014 Mar;7(3):541-53 – reference: 18437346 - Theor Appl Genet. 2008 Jun;117(1):103-15 – reference: 10739757 - Am J Hum Genet. 2000 Apr;66(4):1287-97 – reference: 14573493 - Genetics. 2003 Oct;165(2):849-65 – reference: 24646323 - Plant Biotechnol J. 2014 Aug;12(6):787-96 – reference: 25014030 - PLoS One. 2014 Jul 11;9(7):e98628 – reference: 24830330 - PLoS One. 2014 May 15;9(5):e97288 – reference: 20517342 - Nat Rev Genet. 2010 Jul;11(7):499-511 – reference: 25227227 - G3 (Bethesda). 2014 Sep 15;4(11):2219-30 – reference: 21828280 - Genetics. 2011 Aug;188(4):799-808 – reference: 23731483 - Genome Biol. 2013 May 29;14(5):205 – reference: 27513976 - PLoS One. 2016 Aug 11;11(8):e0160623 – reference: 12807793 - Genetics. 2003 Jun;164(2):741-5 – reference: 1427888 - Genomics. 1992 Nov;14(3):604-10 – reference: 24259662 - J Cell Sci. 2013 Dec 15;126(Pt 24):5529-39 – reference: 21705746 - Genetics. 2011 Sep;189(1):317-27 – reference: 12399396 - Genetics. 2002 Oct;162(2):861-73 – reference: 11006329 - Plant Cell. 2000 Sep;12(9):1523-40 – reference: 26801965 - Plant Biotechnol J. 2016 Jun;14 (6):1406-17 – reference: 26691201 - BMC Genomics. 2015 Dec 21;16:1078 – reference: 1928104 - Am J Hum Genet. 1991 Nov;49(5):985-94 – reference: 25266061 - BMC Genomics. 2014 Sep 29;15:823 – reference: 20156985 - Brief Funct Genomics. 2010 Mar;9(2):166-77 – reference: 16582432 - Genetics. 2006 Jun;173(2):1075-87 – reference: 25824869 - Nat Rev Genet. 2015 May;16(5):275-84 – reference: 18846212 - PLoS Genet. 2008 Oct;4(10):e1000212 – reference: 22174790 - PLoS One. 2011;6(12):e28334 – reference: 26940065 - BMC Genomics. 2016 Mar 03;17 :178 – reference: 24173949 - Theor Appl Genet. 1995 Mar;90(3-4):542-8 – reference: 16424108 - Genome Res. 2006 Mar;16(3):414-27 – reference: 27917289 - Hortic Res. 2016 Nov 23;3:16057 – reference: 27898771 - Plant Genome. 2016 Mar;9(1):null – reference: 19933208 - Brief Bioinform. 2009 Nov;10(6):595-608 – reference: 27257967 - PLoS One. 2016 Jun 03;11(6):e0156571 – reference: 21205322 - BMC Genomics. 2011 Jan 04;12:4 – reference: 24972598 - DNA Res. 2014 Oct;21(5):555-67 – reference: 25424506 - Plant Biotechnol J. 2015 Jun;13(5):648-63 – reference: 17185644 - Genome Res. 2007 Feb;17(2):219-30 – reference: 10790413 - Genetics. 2000 May;155(1):407-20 – reference: 16258753 - Theor Appl Genet. 2005 Dec;112(1):187-94 – reference: 26182149 - PLoS One. 2015 Jul 16;10(7):e0133161 – reference: 19077279 - BMC Genet. 2008 Dec 12;9:85 – reference: 18430951 - Genetics. 2008 Apr;178(4):2305-13 – reference: 24386142 - PLoS One. 2013 Dec 26;8(12):e83052 – reference: 17663699 - Hereditas. 2007 Jul;144(3):78-9 – reference: 26668116 - Genome Biol Evol. 2015 Dec 14;8(1):78-93 – reference: 18076469 - J Anim Breed Genet. 2007 Dec;124(6):323-30 – reference: 22686303 - J Toxicol Environ Health A. 2012;75(8-10):438-46 – reference: 17426959 - Theor Appl Genet. 2007 May;114(8):1305-17 – reference: 2563713 - Genetics. 1989 Jan;121(1):185-99 – reference: 17277374 - Genetics. 2007 Aug;176(4):2521-7 – reference: 24898122 - BMC Genomics. 2014 Jun 04;15:433 – reference: 1360934 - Genetics. 1992 Dec;132(4):1141-60 – reference: 25648560 - Sci Rep. 2015 Feb 04;5:8232 – reference: 27019468 - PLoS One. 2016 Mar 28;11(3):e0152185 – reference: 27587236 - Sci Rep. 2016 Sep 02;6:32608 – reference: 26744365 - DNA Res. 2016 Apr;23 (2):81-91 – reference: 25128435 - G3 (Bethesda). 2014 Aug 15;4(10):1963-9 – reference: 15598829 - Bioinformatics. 2005 Apr 15;21(8):1703-4 – reference: 24034357 - Plant Biotechnol J. 2014 Jan;12(1):28-37 – reference: 11791215 - Am J Hum Genet. 2002 Feb;70(2):496-508 – reference: 16304600 - Nat Rev Genet. 2005 Nov;6(11):847-59 – reference: 18464862 - Genome. 1997 Oct;40(5):744-54 – reference: 26957018 - Sci Rep. 2016 Mar 09;6:22482 – reference: 8103599 - Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980-4 – reference: 27317430 - BMC Genomics. 2016 Jun 17;17 :466 – reference: 19859947 - Magn Reson Med. 2009 Dec;62(6):1609-18 – reference: 18469909 - Genome. 1996 Jun;39(3):473-84 – reference: 16783016 - Genetics. 2006 Aug;173(4):2383-90 – reference: 16228189 - Theor Appl Genet. 2005 Dec;112(1):30-40 – reference: 24235132 - Plant Physiol. 2014 Jan;164(1):481-95 – reference: 15839329 - J Med Syst. 2005 Feb;29(1):13-32 – reference: 22247776 - PLoS One. 2012;7(1):e29453 – reference: 26717308 - PLoS One. 2015 Dec 30;10(12):e0145714 |
| SSID | ssj0000500997 |
| Score | 2.1995006 |
| Snippet | Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1434 |
| SubjectTerms | genetic map high-density map expansion Plant Science prediction single nucleotide polymorphism wheat |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhQQXxJvwkpE4wCFtEjsPH9vSqkICcaBSb9b4ta2UOqvdrGBP_HVmknS1K0C9oJxiO47tGdvf2OPPjL0PUNU5WEg9eEhlVWGfk0almBxUKENQw81zX75WZ-fy80V5sXXVF_mEjfTAY8MdFCB97qpG5cZKSec8bWjAuyKXLgtyGH2zRm0ZUyOrN0GfeuTyQStMHYR5S-zceb1PjHZyZxoa2Pr_BjH_9JS8t4pzWP-Att2ahk4fsgcTfuSHY7kfsTs-PmZ3jzrEeOsn7NdIRsy7wI-7dOnRmCYGjTjjdCYHkR7vIifXjvQTOa73a06005gVxs-XHKLj3xa0dUPiolwwmJ_8xBGDFtX44F-AYeR_6flEzTrjh-2sW1z1l9fLp-z89OT78Vk6XbGQWlmqPq3qrA42E40TxkvlhEOL1chSVM6AMkZKb0srCi8cGk4yoMiNsSW9ONNIEM_YXuyif8E4zvMGLMI5FdDmRolBUQYrLSDkMxmYhO3ftLi2E_84XYPRarRDSESaRKRJRHoQUcI-bD6Yj9Qb_056RCLcJCPO7CEANUlPmqRv06SEvbtRAI19jDZOIPputdQIclGJCeok7PmoEJtfFThK46MSVu-oyk5ZdmPi1eXA412WdSEqkbCPG6W6raIv_0dFX7H7lCOtjBfiNdvrFyv_BqFVb94Oveg3A64ksA priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9NAEF1BQaKXqnwVQ0GLxAEODol3vc4eEGpLqwqpiAORcrP2M61k1qntiObUv86M7QQiUqGcvF6v15432Tf2-A0h77wS2UgZFTvlVMyFAJ_jWsbQXUmfei_bynMX38T5hH-dptM_5YD6G1hvDe2wntSkKgY318vP4PCfMOKE9fajnxcovD3KBihWx--TB7BMSazjcNFz_U7oG9lQW2xFCA7TSqad1M-2MVAjGNwPfnJjwWp1_beR0X9zKh8twlwtf6mi-GvBOtsnez3TpEcdNB6Tey48IQ-PS2CDy6fktpMtpqWnJ2VcOwi7UWsjzCh-vQOckJaBYhJI_AVT3JslRYFqGAr2z2uqgqXfK3zJg4bFUaCZnt7Afws-fqNtJgK0Yaamo72I64weFbOyumouf9bPyOTs9MfJedwXY4gNT2UTi2yYeTNkY8u049IyC7Gt5ikTViupNefOpIYljlkIsbgHcGhtUtyweswVe052QhncC0KBEWhlgPhJD9G5FWOVpN5wo4Ac6qHSERms7nhueqVyLJhR5BCxoLVytFaO1spba0Xk_fqAeSfScXfXYzThuhuqa7cNZTXLe2fNE8XdCOYlR9pwjqgxfqycTeBahp4nEXm7AkAO3oivWFRw5aLOgQ4D3JEUReSgA8T6VCtARSTbgMrGXDb3hKvLVvE7TbOECRaRD2tQ_e9CX955_ldkF7vhg_GEHZKdplq418CsGv2m9ZjfemUhVw priority: 102 providerName: Scholars Portal |
| Title | Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28878789 https://www.proquest.com/docview/1936624152 https://pubmed.ncbi.nlm.nih.gov/PMC5572363 https://www.frontiersin.org/articles/10.3389/fpls.2017.01434/pdf https://doaj.org/article/2a4e1d6891bc440997cf8aed214d0f42 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: GX1 dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1664-462X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: M48 dateStart: 20100601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegQ2IXvjfCx2QkDnBI18aOEx-7sTEhbdqBSuUU2Y7dVQQnalNBufCv816SVisMIYQiRYrzYsf2e_HvOc8_E_LaKZEMlVGhVVaFXAiwOa5lCOJKutg52ew8d34hzsb8wySeXFvFj2GVDpfu40bQM98yBXchYmjh4FHJQ1cVyLQ9TPrITscPq9zdJjsiBjTeIzvji8vRJ_SzhOBQejRpGX1uenJrMGo4-28Cmr_HS95d-kqtvqqiuDYYnd4nal2NNgblc39Z6775_gvD4__U8wG51yFVOmrFH5Jb1j8id45KQJOrx-RHS3tMS0ePy3BhwW1Hrg4_pbj6B0qjpacYRBK-wxD5ekWR4BqygvvVgiqf08s5_iRCxcBcIJmefINvE07f0SaSAdIw0tPSjgR2SkfFtJzP6qsviydkfHry8fgs7DZzCA2PZR2KZJA4M2BpzrTlMmc5-Maax0zkWkmtObcmNiyyLAcXjTtQLq1NjBe5Trlie6TnS2-fEgqIQisDwFE68O5zkaoodoYbBeBSD5QOSH_dq5npmM5xw40iA48HGzbDhs2wYbOmYQPyZvNA1ZJ8_Fn0CNVkI4bs3E0CdGDWdWAWKW6H8F5yqA3nuDbZuFTZPIK6DByPAvJqrWQZWDP-olHelstFBnAazAVBVUD2W6XbFBXBeACHDEiypY5b77J9x8-uGsbwOE4iJlhA3m4U928VffYPss_JLl7gVHvEXpBePV_al4DVan3QzHHA-f1kCOdznh50BvoTr6pDzQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagi8ReeMOGl4zEAQ7ptvEj9bG77GqFxGoPVCqnyHbsbkVwojYVlAt_nZkkrbawCCGUU-xJ_JqJv3HGnwl57bVMh9rq2GmnYy4l2Bw3KgZxrbzwXjUnz304l2cT_n4qpld28WNYpcet-3gQ9Dy0TMFdiBhaOHhU6tBXBTJtD9M-stPxwyr3N8meFIDGe2Rvcn4x_oR-lpQcSk-mLaPPdU_uTEYNZ_91QPP3eMnbq1Dp9VddFFcmo9O7RG-a0cagfO6vatO3339hePyfdt4jdzqkSset-H1yw4UH5NZRCWhy_ZD8aGmPaenpcRkvHbjtyNURZhR3_0BptAwUg0jidxgiX68pElzDqyC_WlIdcnqxwJ9EqBj4FkimJ9_g24TLd7SJZIA0jPR0tCOBndFxMSsX8_ryy_IRmZyefDw-i7vDHGLLhapjmQ5SbwdslDPjuMpZDr6x4YLJ3GhlDOfOCssSx3Jw0bgH5TLGCrzJzYhr9pj0QhncAaGAKIy2AByVB-8-lyOdCG-51QAuzUCbiPQ3o5rZjukcD9woMvB4sGMz7NgMOzZrOjYib7YPVC3Jx59Fj1BNtmLIzt0kwABm3QBmieZuCPVSQ2M5x73J1o-0yxNoy8DzJCKvNkqWgTXjLxodXLlaZgCnwVwQVEXkSat026ISmA_gUhFJd9Rxpy67OWF-2TCGC5EmTLKIvN0q7t8a-vQfZJ-RfbzBpfaEPSe9erFyLwCr1eZlZ44_AQyaQQ0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Co-segregating+Markers+on+High-Density+Genetic+Maps+and+Prediction+of+Map+Expansion+Using+Machine+Learning+Algorithms&rft.jtitle=Frontiers+in+plant+science&rft.au=N%27Diaye%2C+Amidou&rft.au=Haile%2C+Jemanesh+K&rft.au=Fowler%2C+D+Brian&rft.au=Ammar%2C+Karim&rft.date=2017-08-23&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=8&rft.spage=1434&rft_id=info:doi/10.3389%2Ffpls.2017.01434&rft_id=info%3Apmid%2F28878789&rft.externalDocID=28878789 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |