Phase-synchrony evaluation of EEG signals for Multiple Sclerosis diagnosis based on bivariate empirical mode decomposition during a visual task
Despite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To addre...
Saved in:
| Published in | Computers in biology and medicine Vol. 117; p. 103596 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.02.2020
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2019.103596 |
Cover
| Abstract | Despite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To address these issues, in this work, we proposed a robust pattern recognition algorithm as a computer-aided diagnosis system. This method is based on calculating the pairwise phase-synchrony of EEG recordings during a visual task. Initially, the bivariate empirical mode decomposition (BEMD) was applied to extract the intrinsic mode functions (IMFs). The phases of these IMFs were then obtained using the Hilbert transform to be utilized in the mean phase coherence (MPC), a measure for phase-synchrony calculation. After the construction of the feature space using MPC values, the ReliefF algorithm was applied for dimension reduction. Finally, the best distinguishing features were input to a k-nearest neighbor (KNN) classifier. The results revealed a higher level of network synchronization in the posterior regions of the brain and desynchronization in the anterior regions among the MS group as compared with the normal subjects. In the validation phase, the leave-one-subject-out cross-validation (LOOCV) method was used to assess the validity of the proposed algorithm. We achieved an accuracy, sensitivity, and specificity of 93.09%, 91.07%, and 95.24% for red-green, 90.44%, 88.39%, and 92.62% for luminance, and 87.44%, 87.05%, and 87.86% for blue-yellow tasks, respectively. The experimental results demonstrated the reliability of the presented method to be generalized in the field of automated MS diagnosis systems.
•The presented research is a step forward in the development of automated MS diagnosis systems using event-related EEGs.•Phase-synchrony information derived from bivariate empirical mode decomposition was used for MS diagnosis.•.Higher levels of networks synchronization in the posterior regions of the brain were seen among the MS group. |
|---|---|
| AbstractList | Background and objectiveDespite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To address these issues, in this work, we proposed a robust pattern recognition algorithm as a computer-aided diagnosis system. This method is based on calculating the pairwise phase-synchrony of EEG recordings during a visual task. Initially, the bivariate empirical mode decomposition (BEMD) was applied to extract the intrinsic mode functions (IMFs). The phases of these IMFs were then obtained using the Hilbert transform to be utilized in the mean phase coherence (MPC), a measure for phase-synchrony calculation. After the construction of the feature space using MPC values, the ReliefF algorithm was applied for dimension reduction. Finally, the best distinguishing features were input to a k-nearest neighbor (KNN) classifier. The results revealed a higher level of network synchronization in the posterior regions of the brain and desynchronization in the anterior regions among the MS group as compared with the normal subjects. In the validation phase, the leave-one-subject-out cross-validation (LOOCV) method was used to assess the validity of the proposed algorithm. We achieved an accuracy, sensitivity, and specificity of 93.09%, 91.07%, and 95.24% for red-green, 90.44%, 88.39%, and 92.62% for luminance, and 87.44%, 87.05%, and 87.86% for blue-yellow tasks, respectively. The experimental results demonstrated the reliability of the presented method to be generalized in the field of automated MS diagnosis systems. Despite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To address these issues, in this work, we proposed a robust pattern recognition algorithm as a computer-aided diagnosis system. This method is based on calculating the pairwise phase-synchrony of EEG recordings during a visual task. Initially, the bivariate empirical mode decomposition (BEMD) was applied to extract the intrinsic mode functions (IMFs). The phases of these IMFs were then obtained using the Hilbert transform to be utilized in the mean phase coherence (MPC), a measure for phase-synchrony calculation. After the construction of the feature space using MPC values, the ReliefF algorithm was applied for dimension reduction. Finally, the best distinguishing features were input to a k-nearest neighbor (KNN) classifier. The results revealed a higher level of network synchronization in the posterior regions of the brain and desynchronization in the anterior regions among the MS group as compared with the normal subjects. In the validation phase, the leave-one-subject-out cross-validation (LOOCV) method was used to assess the validity of the proposed algorithm. We achieved an accuracy, sensitivity, and specificity of 93.09%, 91.07%, and 95.24% for red-green, 90.44%, 88.39%, and 92.62% for luminance, and 87.44%, 87.05%, and 87.86% for blue-yellow tasks, respectively. The experimental results demonstrated the reliability of the presented method to be generalized in the field of automated MS diagnosis systems. •The presented research is a step forward in the development of automated MS diagnosis systems using event-related EEGs.•Phase-synchrony information derived from bivariate empirical mode decomposition was used for MS diagnosis.•.Higher levels of networks synchronization in the posterior regions of the brain were seen among the MS group. Despite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To address these issues, in this work, we proposed a robust pattern recognition algorithm as a computer-aided diagnosis system. This method is based on calculating the pairwise phase-synchrony of EEG recordings during a visual task. Initially, the bivariate empirical mode decomposition (BEMD) was applied to extract the intrinsic mode functions (IMFs). The phases of these IMFs were then obtained using the Hilbert transform to be utilized in the mean phase coherence (MPC), a measure for phase-synchrony calculation. After the construction of the feature space using MPC values, the ReliefF algorithm was applied for dimension reduction. Finally, the best distinguishing features were input to a k-nearest neighbor (KNN) classifier. The results revealed a higher level of network synchronization in the posterior regions of the brain and desynchronization in the anterior regions among the MS group as compared with the normal subjects. In the validation phase, the leave-one-subject-out cross-validation (LOOCV) method was used to assess the validity of the proposed algorithm. We achieved an accuracy, sensitivity, and specificity of 93.09%, 91.07%, and 95.24% for red-green, 90.44%, 88.39%, and 92.62% for luminance, and 87.44%, 87.05%, and 87.86% for blue-yellow tasks, respectively. The experimental results demonstrated the reliability of the presented method to be generalized in the field of automated MS diagnosis systems. Despite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To address these issues, in this work, we proposed a robust pattern recognition algorithm as a computer-aided diagnosis system. This method is based on calculating the pairwise phase-synchrony of EEG recordings during a visual task. Initially, the bivariate empirical mode decomposition (BEMD) was applied to extract the intrinsic mode functions (IMFs). The phases of these IMFs were then obtained using the Hilbert transform to be utilized in the mean phase coherence (MPC), a measure for phase-synchrony calculation. After the construction of the feature space using MPC values, the ReliefF algorithm was applied for dimension reduction. Finally, the best distinguishing features were input to a k-nearest neighbor (KNN) classifier. The results revealed a higher level of network synchronization in the posterior regions of the brain and desynchronization in the anterior regions among the MS group as compared with the normal subjects. In the validation phase, the leave-one-subject-out cross-validation (LOOCV) method was used to assess the validity of the proposed algorithm. We achieved an accuracy, sensitivity, and specificity of 93.09%, 91.07%, and 95.24% for red-green, 90.44%, 88.39%, and 92.62% for luminance, and 87.44%, 87.05%, and 87.86% for blue-yellow tasks, respectively. The experimental results demonstrated the reliability of the presented method to be generalized in the field of automated MS diagnosis systems.BACKGROUND AND OBJECTIVEDespite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To address these issues, in this work, we proposed a robust pattern recognition algorithm as a computer-aided diagnosis system. This method is based on calculating the pairwise phase-synchrony of EEG recordings during a visual task. Initially, the bivariate empirical mode decomposition (BEMD) was applied to extract the intrinsic mode functions (IMFs). The phases of these IMFs were then obtained using the Hilbert transform to be utilized in the mean phase coherence (MPC), a measure for phase-synchrony calculation. After the construction of the feature space using MPC values, the ReliefF algorithm was applied for dimension reduction. Finally, the best distinguishing features were input to a k-nearest neighbor (KNN) classifier. The results revealed a higher level of network synchronization in the posterior regions of the brain and desynchronization in the anterior regions among the MS group as compared with the normal subjects. In the validation phase, the leave-one-subject-out cross-validation (LOOCV) method was used to assess the validity of the proposed algorithm. We achieved an accuracy, sensitivity, and specificity of 93.09%, 91.07%, and 95.24% for red-green, 90.44%, 88.39%, and 92.62% for luminance, and 87.44%, 87.05%, and 87.86% for blue-yellow tasks, respectively. The experimental results demonstrated the reliability of the presented method to be generalized in the field of automated MS diagnosis systems. |
| ArticleNumber | 103596 |
| Author | Yoonessi, Ali Raeisi, Khadijeh Khazaei, Mohammad Mohebbi, Maryam Seraji, Masoud |
| Author_xml | – sequence: 1 givenname: Khadijeh surname: Raeisi fullname: Raeisi, Khadijeh email: kh.reisi68@gmail.com organization: School of Electrical Engineering, K.N.Toosi University of Technology, Tehran, Iran – sequence: 2 givenname: Maryam surname: Mohebbi fullname: Mohebbi, Maryam email: m.mohebbi@kntu.ac.ir organization: School of Electrical Engineering, K.N.Toosi University of Technology, Tehran, Iran – sequence: 3 givenname: Mohammad surname: Khazaei fullname: Khazaei, Mohammad email: mkhazaei@alumni.iust.ac.ir organization: School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran – sequence: 4 givenname: Masoud surname: Seraji fullname: Seraji, Masoud email: m.seraji@rutgers.edu organization: Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA – sequence: 5 givenname: Ali surname: Yoonessi fullname: Yoonessi, Ali email: a-yoonessi@tums.ac.ir organization: School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32072973$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkcuO0zAUhi00iOkMvAKyxIZNii9xLhsEjMqANAgkYG05zmnndBI72EmlPgWvjNMOIHXVlS3rO5-P_v-KXDjvgBDK2ZIzXrzZLq3vhwZ9D-1SMF6nZ6nq4glZ8KqsM6ZkfkEWjHGW5ZVQl-Qqxi1jLGeSPSOXUrBS1KVckN_f7k2ELO6dvQ_e7SnsTDeZEb2jfk1Xq1saceNMF-naB_pl6kYcOqDfbQfBR4y0RbNxh1uTTC1Ngw3uTEAzAoV-wIDWdLT3LdAW5r0TfPC3U0C3oYbuME4JGU18eE6ertNn8OLxvCY_P65-3HzK7r7efr55f5fZXNVjVhRNVUsmVMVbVlkGUsnaQiOtVaIRhS1rAFOvheBgBbAWeC5EpUyZN3VjmLwmr4_eIfhfE8RR9xgtdJ1x4KeohVSVKmVelQl9dYJu_RTmSLTIeZmCrwqVqJeP1NSkVvQQsDdhr_9GnYDqCNiUWwyw_odwpudW9Vb_b1XPrepjq2n07cmoxfHQ0RgMducIPhwFkCLdIQQdLYKz0GIAO-rW4zmSdycS26Gby32A_XmKP75v3H0 |
| CitedBy_id | crossref_primary_10_4015_S1016237221500484 crossref_primary_10_2174_1567205018666211001110824 crossref_primary_10_3389_fneur_2021_645594 crossref_primary_10_1016_j_neucom_2022_05_022 crossref_primary_10_3390_app11156983 crossref_primary_10_3389_fnsys_2023_919977 crossref_primary_10_1016_j_compbiomed_2024_109615 crossref_primary_10_3389_fncom_2023_1207067 crossref_primary_10_1016_j_compbiomed_2024_108728 crossref_primary_10_1371_journal_pone_0255324 crossref_primary_10_3389_fninf_2025_1519391 crossref_primary_10_1016_j_bspc_2023_105627 crossref_primary_10_1016_j_pscychresns_2023_111764 crossref_primary_10_1109_ACCESS_2024_3438873 crossref_primary_10_3390_app10217453 crossref_primary_10_1155_2022_5430528 crossref_primary_10_3389_fnhum_2022_936393 |
| Cites_doi | 10.1109/TNSRE.2019.2892960 10.1016/j.clinph.2013.09.047 10.1016/j.ophtha.2011.11.032 10.1590/S0004-282X2010000200010 10.1212/WNL.30.7_Part_2.110 10.1177/1352458517712078 10.1016/j.bspc.2017.08.004 10.1016/j.clinph.2016.12.029 10.1136/jnnp.2005.086280 10.1007/s00415-006-1103-1 10.1097/01.wco.0000073928.19076.84 10.1016/j.clinph.2015.06.025 10.1109/LSP.2003.821662 10.1098/rspa.1998.0193 10.1109/LSP.2007.904710 10.2174/1871527315666161024142439 10.1016/j.jns.2005.08.019 10.1016/S0967-5868(02)00172-8 10.1016/j.bspc.2014.02.012 10.1016/j.pneurobio.2011.04.007 10.1109/TNSRE.2013.2289899 10.1016/j.clinph.2015.05.029 10.1016/j.compbiomed.2013.10.025 10.1002/ana.22366 10.1016/S1388-2457(99)00141-8 10.1038/247481a0 10.1016/S0920-1211(03)00002-0 10.1016/j.jns.2004.12.009 10.3758/s13415-014-0272-0 10.1016/0010-4825(93)90024-U 10.1016/j.cmpb.2018.11.006 10.1080/00031305.1992.10475879 10.1177/0037549716666962 10.1016/j.bspc.2015.06.015 10.1016/j.clinph.2015.11.041 10.1016/j.clinph.2017.06.253 10.1186/1471-2377-13-128 10.1093/brain/124.3.468 10.1080/02713683.2018.1459730 10.1016/j.compbiomed.2018.12.005 10.1016/S1474-4422(08)70259-X 10.1016/j.jneumeth.2006.11.017 10.1016/j.neuroimage.2014.07.019 10.1136/jnnp.42.4.323 10.1109/TNSRE.2018.2881606 10.1007/s11055-009-9161-3 10.1590/S0004-282X2010000400010 10.1007/s13246-017-0584-9 10.1016/j.compbiomed.2011.06.020 10.1177/1352458508088916 10.1109/TNSRE.2011.2116805 10.1016/S0167-2789(00)00087-7 10.1016/j.bspc.2006.08.001 10.1109/TNSRE.2004.838443 10.1093/brain/98.2.261 10.1109/ACCESS.2016.2620996 10.1016/0006-8993(91)90403-I 10.1016/j.acn.2005.04.007 10.1109/4233.870032 10.1016/j.jns.2005.11.025 10.1126/science.1247003 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd |
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2019.103596 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database (Proquest) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Technology Collection (ProQuest) Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| ExternalDocumentID | 32072973 10_1016_j_compbiomed_2019_103596 S0010482519304457 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW LCYCR M0N RIG AAYXX CITATION PUEGO AFCTW ALIPV NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c459t-66b89302581d08c0e3539ceb3cc52b26c79eea9f221ec2e0de142285a74b9ba03 |
| IEDL.DBID | BENPR |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Sep 28 01:25:12 EDT 2025 Tue Oct 07 06:22:25 EDT 2025 Wed Feb 19 02:31:54 EST 2025 Wed Oct 01 05:19:23 EDT 2025 Thu Apr 24 23:06:19 EDT 2025 Fri Feb 23 02:48:35 EST 2024 Tue Oct 14 19:33:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bivariate empirical mode decomposition Multiple sclerosis reliefF Electroencephalography Phase-synchrony Mean phase coherence Visual task |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-66b89302581d08c0e3539ceb3cc52b26c79eea9f221ec2e0de142285a74b9ba03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 32072973 |
| PQID | 2417035865 |
| PQPubID | 1226355 |
| ParticipantIDs | proquest_miscellaneous_2358573487 proquest_journals_2417035865 pubmed_primary_32072973 crossref_primary_10_1016_j_compbiomed_2019_103596 crossref_citationtrail_10_1016_j_compbiomed_2019_103596 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103596 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103596 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 2020-Feb 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Fuso, Callegaro, Pompéia, Bueno (bib2) 2010; 68 Huang (bib54) 1998; 454 Leocani (bib16) 2006; 77 Walter (bib63) 2012; 119 Bakhshayesh, Fitzgibbon, Janani, Grummett, Pope (bib48) 2019; 105 McCarthy, Beaumont, Thompson, Peacock (bib3) 2005; 20 Rehman, Mandic (bib55) 2009; 466 Altman (bib61) 1992; 46 Gysels, Celka (bib46) 2004; 12 Peirce (bib52) 2007; 162 Biberacher (bib6) 2018; 24 Mormann, Kreuz, Andrzejak, David, Lehnertz, Elger (bib38) 2003; 53 Matas, Matas, Oliveira, Gonçalves (bib9) 2010; 68 Kingwell (bib1) 2013; 13 del Castillo (bib19) 2015; 22 Griesmayr, Berger, Stelzig-Schoeler, Aichhorn, Bergmann, Sauseng (bib41) 2014; 14 Ziqiang, Puthusserypady (bib42) 2007 Heesen, Böhm, Reich, Kasper, Goebel, Gold (bib64) 2008; 14 Keune (bib37) 2017; 128 Ahmadi, Davoudi, Daliri (bib36) 2019; 169 Baldauf, Desimone (bib65) 2014; 344 London, El Sankari, Van Pesch (bib10) 2017; 128 Asselman, Chadwick, Marsden (bib17) 1975; 98 Chilińska, Ejma, Turno-Kręcicka, Guranski, Misiuk-Hojlo (bib21) 2016; 127 Rilling, Flandrin, Gonçalves, Lilly (bib57) 2007; 14 Babiloni (bib31) 2016; 127 Zhang (bib33) 2016; 92 Benedict (bib7) 2005; 231 Pfurtscheller, Da Silva (bib30) 1999; 110 Torabi, Daliri, Sabzposhan (bib35) 2017; 40 Brusa, Jones, Plant (bib26) 2001; 124 Farahmand, Sobayo, Mogul (bib40) 2018; 26 Yoonessi, Yoonessi (bib23) 2011; 6 Savers, Beagley, Henshall (bib28) 1974; 247 Kononenko (bib59) 1994 Vijn, Van Dijk, Spekreijse (bib29) 1991; 550 Jalili, Barzegaran, Knyazeva (bib43) 2014; 22 Rangaprakash (bib49) 2014; 46 Calabrese (bib66) 2006; 253 Tcheslavski, Beex (bib45) 2006; 1 Schlaeger (bib11) 2016; 127 Rangaprakash, Pradhan (bib44) 2014; 11 Dasey, Micheli-Tzanakou (bib22) 2000; 4 Park, Looney, Kidmose, Ungstrup, Mandic (bib50) 2011; 19 Wang (bib32) 2016; 4 Bobholz, Rao (bib4) 2003; 16 Amato, Zipoli, Portaccio (bib5) 2006; 245 Pittion-Vouyovitch, Debouverie, Guillemin, Vandenberghe, Anxionnat, Vespignani (bib8) 2006; 243 Li, Yu, Gu, Tan, Wang, Li (bib27) 2019; 27 Nguyen (bib18) 2018; 43 Polman (bib51) 2011; 69 Dutta, Singh, Kumar (bib56) 2018; 39 Mormann, Lehnertz, David, Elger (bib58) 2000; 144 Flandrin, Rilling, Goncalves (bib62) 2004; 11 Chiappa (bib13) 1980; 30 Zheng, Wang, Li, Bao, Wang (bib39) 2014; 125 Ziemann, Wahl, Hattingen, Tumani (bib20) 2011; 95 Karaca, Zhang, Cattani, Ayan (bib34) 2017; 16 Chiaravalloti, DeLuca (bib67) 2008; 7 Wu, Slater, Honig, Ramsay (bib12) 1993; 23 Denison, Vu, Yacoub, Feinberg, Silver (bib24) 2014; 102 Sakkalis (bib47) 2011; 41 Murav’eva, Deshkovich, Shelepin (bib25) 2009; 39 De Valois, De Valois (bib53) 2000 Diem, Tschirne, Bähr (bib15) 2003; 10 Kira, Rendell (bib60) 1992 Trojaborg, Petersen (bib14) 1979; 42 Savers (10.1016/j.compbiomed.2019.103596_bib28) 1974; 247 Torabi (10.1016/j.compbiomed.2019.103596_bib35) 2017; 40 Bobholz (10.1016/j.compbiomed.2019.103596_bib4) 2003; 16 Yoonessi (10.1016/j.compbiomed.2019.103596_bib23) 2011; 6 Dutta (10.1016/j.compbiomed.2019.103596_bib56) 2018; 39 Keune (10.1016/j.compbiomed.2019.103596_bib37) 2017; 128 Li (10.1016/j.compbiomed.2019.103596_bib27) 2019; 27 Pfurtscheller (10.1016/j.compbiomed.2019.103596_bib30) 1999; 110 Huang (10.1016/j.compbiomed.2019.103596_bib54) 1998; 454 Wang (10.1016/j.compbiomed.2019.103596_bib32) 2016; 4 McCarthy (10.1016/j.compbiomed.2019.103596_bib3) 2005; 20 Amato (10.1016/j.compbiomed.2019.103596_bib5) 2006; 245 Kingwell (10.1016/j.compbiomed.2019.103596_bib1) 2013; 13 Mormann (10.1016/j.compbiomed.2019.103596_bib58) 2000; 144 Dasey (10.1016/j.compbiomed.2019.103596_bib22) 2000; 4 Vijn (10.1016/j.compbiomed.2019.103596_bib29) 1991; 550 Rangaprakash (10.1016/j.compbiomed.2019.103596_bib44) 2014; 11 Diem (10.1016/j.compbiomed.2019.103596_bib15) 2003; 10 Chiappa (10.1016/j.compbiomed.2019.103596_bib13) 1980; 30 Gysels (10.1016/j.compbiomed.2019.103596_bib46) 2004; 12 Bakhshayesh (10.1016/j.compbiomed.2019.103596_bib48) 2019; 105 Ahmadi (10.1016/j.compbiomed.2019.103596_bib36) 2019; 169 Nguyen (10.1016/j.compbiomed.2019.103596_bib18) 2018; 43 Wu (10.1016/j.compbiomed.2019.103596_bib12) 1993; 23 Kononenko (10.1016/j.compbiomed.2019.103596_bib59) 1994 Calabrese (10.1016/j.compbiomed.2019.103596_bib66) 2006; 253 Farahmand (10.1016/j.compbiomed.2019.103596_bib40) 2018; 26 Heesen (10.1016/j.compbiomed.2019.103596_bib64) 2008; 14 Denison (10.1016/j.compbiomed.2019.103596_bib24) 2014; 102 Benedict (10.1016/j.compbiomed.2019.103596_bib7) 2005; 231 Kira (10.1016/j.compbiomed.2019.103596_bib60) 1992 Rilling (10.1016/j.compbiomed.2019.103596_bib57) 2007; 14 Rangaprakash (10.1016/j.compbiomed.2019.103596_bib49) 2014; 46 del Castillo (10.1016/j.compbiomed.2019.103596_bib19) 2015; 22 Jalili (10.1016/j.compbiomed.2019.103596_bib43) 2014; 22 Walter (10.1016/j.compbiomed.2019.103596_bib63) 2012; 119 Baldauf (10.1016/j.compbiomed.2019.103596_bib65) 2014; 344 Pittion-Vouyovitch (10.1016/j.compbiomed.2019.103596_bib8) 2006; 243 Babiloni (10.1016/j.compbiomed.2019.103596_bib31) 2016; 127 Trojaborg (10.1016/j.compbiomed.2019.103596_bib14) 1979; 42 Chiaravalloti (10.1016/j.compbiomed.2019.103596_bib67) 2008; 7 Flandrin (10.1016/j.compbiomed.2019.103596_bib62) 2004; 11 Ziqiang (10.1016/j.compbiomed.2019.103596_bib42) 2007 Leocani (10.1016/j.compbiomed.2019.103596_bib16) 2006; 77 Brusa (10.1016/j.compbiomed.2019.103596_bib26) 2001; 124 Karaca (10.1016/j.compbiomed.2019.103596_bib34) 2017; 16 Sakkalis (10.1016/j.compbiomed.2019.103596_bib47) 2011; 41 Matas (10.1016/j.compbiomed.2019.103596_bib9) 2010; 68 Fuso (10.1016/j.compbiomed.2019.103596_bib2) 2010; 68 Polman (10.1016/j.compbiomed.2019.103596_bib51) 2011; 69 Asselman (10.1016/j.compbiomed.2019.103596_bib17) 1975; 98 Griesmayr (10.1016/j.compbiomed.2019.103596_bib41) 2014; 14 Murav’eva (10.1016/j.compbiomed.2019.103596_bib25) 2009; 39 Chilińska (10.1016/j.compbiomed.2019.103596_bib21) 2016; 127 Ziemann (10.1016/j.compbiomed.2019.103596_bib20) 2011; 95 Zheng (10.1016/j.compbiomed.2019.103596_bib39) 2014; 125 Park (10.1016/j.compbiomed.2019.103596_bib50) 2011; 19 Zhang (10.1016/j.compbiomed.2019.103596_bib33) 2016; 92 Tcheslavski (10.1016/j.compbiomed.2019.103596_bib45) 2006; 1 De Valois (10.1016/j.compbiomed.2019.103596_bib53) 2000 Rehman (10.1016/j.compbiomed.2019.103596_bib55) 2009; 466 Schlaeger (10.1016/j.compbiomed.2019.103596_bib11) 2016; 127 London (10.1016/j.compbiomed.2019.103596_bib10) 2017; 128 Biberacher (10.1016/j.compbiomed.2019.103596_bib6) 2018; 24 Mormann (10.1016/j.compbiomed.2019.103596_bib38) 2003; 53 Peirce (10.1016/j.compbiomed.2019.103596_bib52) 2007; 162 Altman (10.1016/j.compbiomed.2019.103596_bib61) 1992; 46 |
| References_xml | – volume: 128 start-page: 561 year: 2017 end-page: 569 ident: bib10 article-title: Early disturbances in multimodal evoked potentials as a prognostic factor for long-term disability in relapsing-remitting multiple sclerosis patients publication-title: Clin. Neurophysiol. – volume: 43 start-page: 941 year: 2018 end-page: 948 ident: bib18 article-title: Visual pathway measures are associated with neuropsychological function in multiple sclerosis publication-title: Curr. Eye Res. – volume: 40 start-page: 785 year: 2017 end-page: 797 ident: bib35 article-title: Diagnosis of multiple sclerosis from EEG signals using nonlinear methods publication-title: Australas. Phys. Eng. Sci. Med. – volume: 127 start-page: 581 year: 2016 end-page: 590 ident: bib31 article-title: Cortical sources of resting state electroencephalographic rhythms differ in relapsing–remitting and secondary progressive multiple sclerosis publication-title: Clin. Neurophysiol. – volume: 102 start-page: 358 year: 2014 end-page: 369 ident: bib24 article-title: Functional mapping of the magnocellular and parvocellular subdivisions of human LGN publication-title: Neuroimage – volume: 92 start-page: 861 year: 2016 end-page: 871 ident: bib33 article-title: Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machine publication-title: Simulation – volume: 11 start-page: 112 year: 2004 end-page: 114 ident: bib62 article-title: Empirical mode decomposition as a filter bank publication-title: IEEE Signal Process. Lett. – volume: 69 start-page: 292 year: 2011 end-page: 302 ident: bib51 article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria publication-title: Ann. Neurol. – volume: 253 start-page: i10 year: 2006 end-page: i15 ident: bib66 article-title: Neuropsychology of multiple sclerosis publication-title: J. Neurol. – volume: 77 start-page: 1030 year: 2006 end-page: 1035 ident: bib16 article-title: Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 128 start-page: 1746 year: 2017 end-page: 1754 ident: bib37 article-title: Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis publication-title: Clin. Neurophysiol. – volume: 46 start-page: 11 year: 2014 end-page: 21 ident: bib49 article-title: Connectivity analysis of multichannel EEG signals using recurrence based phase synchronization technique publication-title: Comput. Biol. Med. – volume: 4 start-page: 7567 year: 2016 end-page: 7576 ident: bib32 article-title: Multiple sclerosis detection based on biorthogonal wavelet transform, RBF kernel principal component analysis, and logistic regression publication-title: IEEE Access – volume: 144 start-page: 358 year: 2000 end-page: 369 ident: bib58 article-title: Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients publication-title: Phys. D Nonlinear Phenom. – volume: 124 start-page: 468 year: 2001 end-page: 479 ident: bib26 article-title: Long-term remyelination after optic neuritis: a 2-year visual evoked potential and psychophysical serial study publication-title: Brain – volume: 119 start-page: 1250 year: 2012 end-page: 1257 ident: bib63 article-title: Ganglion cell loss in relation to visual disability in multiple sclerosis publication-title: Ophthalmology – volume: 24 start-page: 1115 year: 2018 end-page: 1125 ident: bib6 article-title: Fatigue in multiple sclerosis: associations with clinical, MRI and CSF parameters publication-title: Mult. Scler. J. – volume: 16 start-page: 36 year: 2017 end-page: 43 ident: bib34 article-title: The differential diagnosis of multiple sclerosis using convex combination of infinite kernels publication-title: CNS Neurol. Disord. - Drug Targets – volume: 1 start-page: 151 year: 2006 end-page: 161 ident: bib45 article-title: Phase synchrony and coherence analyses of EEG as tools to discriminate between children with and without attention deficit disorder publication-title: Biomed. Signal Process. Control – volume: 245 start-page: 41 year: 2006 end-page: 46 ident: bib5 article-title: Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies publication-title: J. Neurol. Sci. – volume: 95 start-page: 670 year: 2011 end-page: 685 ident: bib20 article-title: Development of biomarkers for multiple sclerosis as a neurodegenerative disorder publication-title: Prog. Neurobiol. – volume: 42 start-page: 323 year: 1979 end-page: 330 ident: bib14 article-title: Visual and somatosensory evoked cortical potentials in multiple sclerosis publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 231 start-page: 29 year: 2005 end-page: 34 ident: bib7 article-title: Predicting quality of life in multiple sclerosis: accounting for physical disability, fatigue, cognition, mood disorder, personality, and behavior change publication-title: J. Neurol. Sci. – volume: 11 start-page: 114 year: 2014 end-page: 122 ident: bib44 article-title: Study of phase synchronization in multichannel seizure EEG using nonlinear recurrence measure publication-title: Biomed. Signal Process. Control – volume: 344 start-page: 424 year: 2014 end-page: 427 ident: bib65 article-title: Neural mechanisms of object-based attention publication-title: Science – volume: 162 start-page: 8 year: 2007 end-page: 13 ident: bib52 article-title: PsychoPy—psychophysics software in Python publication-title: J. Neurosci. Methods – volume: 22 start-page: 212 year: 2014 end-page: 221 ident: bib43 article-title: Synchronization of EEG: bivariate and multivariate measures publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 30 start-page: 110 year: 1980 end-page: 123 ident: bib13 article-title: Pattern shift visual, brainstem auditory, and short‐latency somatosensory evoked potentials in multiple sclerosis publication-title: Neurology – volume: 39 start-page: 535 year: 2009 end-page: 543 ident: bib25 article-title: The human magno and parvo systems and selective impairments of their functions publication-title: Neurosci. Behav. Physiol. – volume: 22 start-page: 119 year: 2015 end-page: 125 ident: bib19 article-title: A new method for quantifying mfVEP signal intensity in multiple sclerosis publication-title: Biomed. Signal Process. Control – volume: 53 start-page: 173 year: 2003 end-page: 185 ident: bib38 article-title: Epileptic seizures are preceded by a decrease in synchronization publication-title: Epilepsy Res. – volume: 13 start-page: 128 year: 2013 ident: bib1 article-title: Incidence and prevalence of multiple sclerosis in Europe: a systematic review publication-title: BMC Neurol. – volume: 550 start-page: 49 year: 1991 end-page: 53 ident: bib29 article-title: Visual stimulation reduces EEG activity in man publication-title: Brain Res. – volume: 243 start-page: 39 year: 2006 end-page: 45 ident: bib8 article-title: Fatigue in multiple sclerosis is related to disability, depression and quality of life publication-title: J. Neurol. Sci. – volume: 12 start-page: 406 year: 2004 end-page: 415 ident: bib46 article-title: Phase synchronization for the recognition of mental tasks in a brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 41 start-page: 1110 year: 2011 end-page: 1117 ident: bib47 article-title: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG publication-title: Comput. Biol. Med. – volume: 6 start-page: 119 year: 2011 ident: bib23 article-title: Functional assessment of magno, parvo and konio-cellular pathways; current state and future clinical applications publication-title: J. Ophthalmic Vis. Res. – volume: 14 start-page: 1340 year: 2014 end-page: 1355 ident: bib41 article-title: EEG theta phase coupling during executive control of visual working memory investigated in individuals with schizophrenia and in healthy controls publication-title: Cognit. Affect Behav. Neurosci. – volume: 14 start-page: 936 year: 2007 end-page: 939 ident: bib57 article-title: Bivariate empirical mode decomposition publication-title: IEEE Signal Process. Lett. – volume: 247 start-page: 481 year: 1974 ident: bib28 article-title: The mechanism of auditory evoked EEG responses publication-title: Nature – start-page: 171 year: 1994 end-page: 182 ident: bib59 article-title: Estimating attributes: analysis and extensions of RELIEF publication-title: European Conference on Machine Learning – start-page: 249 year: 1992 end-page: 256 ident: bib60 article-title: A practical approach to feature selection publication-title: Machine Learning Proceedings – volume: 19 start-page: 366 year: 2011 end-page: 373 ident: bib50 article-title: Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 46 start-page: 175 year: 1992 end-page: 185 ident: bib61 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am. Stat. – volume: 7 start-page: 1139 year: 2008 end-page: 1151 ident: bib67 article-title: Cognitive impairment in multiple sclerosis publication-title: Lancet Neurol. – volume: 16 start-page: 283 year: 2003 end-page: 288 ident: bib4 article-title: Cognitive dysfunction in multiple sclerosis: a review of recent developments publication-title: Curr. Opin. Neurol. – volume: 4 start-page: 216 year: 2000 end-page: 224 ident: bib22 article-title: Detection of multiple sclerosis with visual evoked potentials-an unsupervised computational intelligence system publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 169 start-page: 9 year: 2019 end-page: 18 ident: bib36 article-title: Computer Aided Diagnosis System for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention publication-title: Comput. Methods Progr. Biomed. – volume: 20 start-page: 705 year: 2005 end-page: 718 ident: bib3 article-title: Modality-specific aspects of sustained and divided attentional performance in multiple sclerosis publication-title: Arch. Clin. Neuropsychol. – volume: 110 start-page: 1842 year: 1999 end-page: 1857 ident: bib30 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. – volume: 127 start-page: 1864 year: 2016 end-page: 1871 ident: bib11 article-title: Monitoring multiple sclerosis by multimodal evoked potentials: numerically versus ordinally scaled scoring systems publication-title: Clin. Neurophysiol. – volume: 26 start-page: 2270 year: 2018 end-page: 2279 ident: bib40 article-title: Noise-assisted multivariate EMD-based mean-phase coherence analysis to evaluate phase-synchrony dynamics in epilepsy patients publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 27 start-page: 139 year: 2019 end-page: 151 ident: bib27 article-title: Spatial-temporal discriminative restricted Boltzmann machine for event-related potential detection and analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 466 start-page: 1291 year: 2009 end-page: 1302 ident: bib55 article-title: Multivariate empirical mode decomposition publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 105 start-page: 1 year: 2019 end-page: 15 ident: bib48 article-title: Detecting synchrony in EEG: a comparative study of functional connectivity measures publication-title: Comput. Biol. Med. – volume: 68 start-page: 205 year: 2010 end-page: 211 ident: bib2 article-title: Working memory impairment in multiple sclerosis relapsing-remitting patients with episodic memory deficits publication-title: Arq. Neuro. Psiquiatr. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: bib54 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. – volume: 14 start-page: 988 year: 2008 end-page: 991 ident: bib64 article-title: Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable publication-title: Mult. Scler. J. – volume: 10 start-page: 67 year: 2003 end-page: 70 ident: bib15 article-title: Decreased amplitudes in multiple sclerosis patients with normal visual acuity: a VEP study publication-title: J. Clin. Neurosci. – volume: 125 start-page: 1104 year: 2014 end-page: 1111 ident: bib39 article-title: Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition publication-title: Clin. Neurophysiol. – start-page: 129 year: 2000 end-page: 175 ident: bib53 article-title: Color vision – volume: 68 start-page: 528 year: 2010 end-page: 534 ident: bib9 article-title: Auditory evoked potentials and multiple sclerosis publication-title: Arq. Neuro. Psiquiatr. – volume: 23 start-page: 251 year: 1993 end-page: 264 ident: bib12 article-title: A neural network design for event-related potential diagnosis publication-title: Comput. Biol. Med. – volume: 39 start-page: 378 year: 2018 end-page: 389 ident: bib56 article-title: Classification of non-motor cognitive task in EEG based brain-computer interface using phase space features in multivariate empirical mode decomposition domain publication-title: Biomed. Signal Process. Control – volume: 127 start-page: 821 year: 2016 end-page: 826 ident: bib21 article-title: Analysis of retinal nerve fibre layer, visual evoked potentials and relative afferent pupillary defect in multiple sclerosis patients publication-title: Clin. Neurophysiol. – start-page: 131 year: 2007 end-page: 134 ident: bib42 article-title: Analysis of schizophrenic EEG synchrony using empirical mode decomposition publication-title: 15th International Conference on Digital Signal Processing – volume: 98 start-page: 261 year: 1975 end-page: 282 ident: bib17 article-title: Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis publication-title: Brain: J. Neurol. – volume: 27 start-page: 139 issue: 2 year: 2019 ident: 10.1016/j.compbiomed.2019.103596_bib27 article-title: Spatial-temporal discriminative restricted Boltzmann machine for event-related potential detection and analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2892960 – volume: 125 start-page: 1104 issue: 6 year: 2014 ident: 10.1016/j.compbiomed.2019.103596_bib39 article-title: Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2013.09.047 – volume: 119 start-page: 1250 issue: 6 year: 2012 ident: 10.1016/j.compbiomed.2019.103596_bib63 article-title: Ganglion cell loss in relation to visual disability in multiple sclerosis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2011.11.032 – volume: 68 start-page: 205 issue: 2 year: 2010 ident: 10.1016/j.compbiomed.2019.103596_bib2 article-title: Working memory impairment in multiple sclerosis relapsing-remitting patients with episodic memory deficits publication-title: Arq. Neuro. Psiquiatr. doi: 10.1590/S0004-282X2010000200010 – volume: 30 start-page: 110 issue: 7 Part 2 year: 1980 ident: 10.1016/j.compbiomed.2019.103596_bib13 article-title: Pattern shift visual, brainstem auditory, and short‐latency somatosensory evoked potentials in multiple sclerosis publication-title: Neurology doi: 10.1212/WNL.30.7_Part_2.110 – volume: 24 start-page: 1115 issue: 8 year: 2018 ident: 10.1016/j.compbiomed.2019.103596_bib6 article-title: Fatigue in multiple sclerosis: associations with clinical, MRI and CSF parameters publication-title: Mult. Scler. J. doi: 10.1177/1352458517712078 – volume: 39 start-page: 378 year: 2018 ident: 10.1016/j.compbiomed.2019.103596_bib56 article-title: Classification of non-motor cognitive task in EEG based brain-computer interface using phase space features in multivariate empirical mode decomposition domain publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.08.004 – volume: 128 start-page: 561 issue: 4 year: 2017 ident: 10.1016/j.compbiomed.2019.103596_bib10 article-title: Early disturbances in multimodal evoked potentials as a prognostic factor for long-term disability in relapsing-remitting multiple sclerosis patients publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2016.12.029 – volume: 77 start-page: 1030 issue: 9 year: 2006 ident: 10.1016/j.compbiomed.2019.103596_bib16 article-title: Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2005.086280 – volume: 253 start-page: i10 issue: 1 year: 2006 ident: 10.1016/j.compbiomed.2019.103596_bib66 article-title: Neuropsychology of multiple sclerosis publication-title: J. Neurol. doi: 10.1007/s00415-006-1103-1 – volume: 16 start-page: 283 issue: 3 year: 2003 ident: 10.1016/j.compbiomed.2019.103596_bib4 article-title: Cognitive dysfunction in multiple sclerosis: a review of recent developments publication-title: Curr. Opin. Neurol. doi: 10.1097/01.wco.0000073928.19076.84 – volume: 127 start-page: 821 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.103596_bib21 article-title: Analysis of retinal nerve fibre layer, visual evoked potentials and relative afferent pupillary defect in multiple sclerosis patients publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.06.025 – volume: 11 start-page: 112 issue: 2 year: 2004 ident: 10.1016/j.compbiomed.2019.103596_bib62 article-title: Empirical mode decomposition as a filter bank publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2003.821662 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.compbiomed.2019.103596_bib54 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – start-page: 131 year: 2007 ident: 10.1016/j.compbiomed.2019.103596_bib42 article-title: Analysis of schizophrenic EEG synchrony using empirical mode decomposition – volume: 14 start-page: 936 issue: 12 year: 2007 ident: 10.1016/j.compbiomed.2019.103596_bib57 article-title: Bivariate empirical mode decomposition publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2007.904710 – volume: 16 start-page: 36 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2019.103596_bib34 article-title: The differential diagnosis of multiple sclerosis using convex combination of infinite kernels publication-title: CNS Neurol. Disord. - Drug Targets doi: 10.2174/1871527315666161024142439 – volume: 245 start-page: 41 issue: 1–2 year: 2006 ident: 10.1016/j.compbiomed.2019.103596_bib5 article-title: Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2005.08.019 – volume: 6 start-page: 119 issue: 2 year: 2011 ident: 10.1016/j.compbiomed.2019.103596_bib23 article-title: Functional assessment of magno, parvo and konio-cellular pathways; current state and future clinical applications publication-title: J. Ophthalmic Vis. Res. – volume: 10 start-page: 67 issue: 1 year: 2003 ident: 10.1016/j.compbiomed.2019.103596_bib15 article-title: Decreased amplitudes in multiple sclerosis patients with normal visual acuity: a VEP study publication-title: J. Clin. Neurosci. doi: 10.1016/S0967-5868(02)00172-8 – volume: 11 start-page: 114 year: 2014 ident: 10.1016/j.compbiomed.2019.103596_bib44 article-title: Study of phase synchronization in multichannel seizure EEG using nonlinear recurrence measure publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.02.012 – start-page: 249 year: 1992 ident: 10.1016/j.compbiomed.2019.103596_bib60 article-title: A practical approach to feature selection – volume: 95 start-page: 670 issue: 4 year: 2011 ident: 10.1016/j.compbiomed.2019.103596_bib20 article-title: Development of biomarkers for multiple sclerosis as a neurodegenerative disorder publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2011.04.007 – volume: 22 start-page: 212 issue: 2 year: 2014 ident: 10.1016/j.compbiomed.2019.103596_bib43 article-title: Synchronization of EEG: bivariate and multivariate measures publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2289899 – volume: 127 start-page: 581 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.103596_bib31 article-title: Cortical sources of resting state electroencephalographic rhythms differ in relapsing–remitting and secondary progressive multiple sclerosis publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.05.029 – volume: 46 start-page: 11 year: 2014 ident: 10.1016/j.compbiomed.2019.103596_bib49 article-title: Connectivity analysis of multichannel EEG signals using recurrence based phase synchronization technique publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.10.025 – volume: 69 start-page: 292 issue: 2 year: 2011 ident: 10.1016/j.compbiomed.2019.103596_bib51 article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria publication-title: Ann. Neurol. doi: 10.1002/ana.22366 – volume: 110 start-page: 1842 issue: 11 year: 1999 ident: 10.1016/j.compbiomed.2019.103596_bib30 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00141-8 – volume: 247 start-page: 481 issue: 5441 year: 1974 ident: 10.1016/j.compbiomed.2019.103596_bib28 article-title: The mechanism of auditory evoked EEG responses publication-title: Nature doi: 10.1038/247481a0 – volume: 53 start-page: 173 issue: 3 year: 2003 ident: 10.1016/j.compbiomed.2019.103596_bib38 article-title: Epileptic seizures are preceded by a decrease in synchronization publication-title: Epilepsy Res. doi: 10.1016/S0920-1211(03)00002-0 – volume: 231 start-page: 29 issue: 1–2 year: 2005 ident: 10.1016/j.compbiomed.2019.103596_bib7 article-title: Predicting quality of life in multiple sclerosis: accounting for physical disability, fatigue, cognition, mood disorder, personality, and behavior change publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2004.12.009 – volume: 14 start-page: 1340 issue: 4 year: 2014 ident: 10.1016/j.compbiomed.2019.103596_bib41 article-title: EEG theta phase coupling during executive control of visual working memory investigated in individuals with schizophrenia and in healthy controls publication-title: Cognit. Affect Behav. Neurosci. doi: 10.3758/s13415-014-0272-0 – volume: 23 start-page: 251 issue: 3 year: 1993 ident: 10.1016/j.compbiomed.2019.103596_bib12 article-title: A neural network design for event-related potential diagnosis publication-title: Comput. Biol. Med. doi: 10.1016/0010-4825(93)90024-U – volume: 169 start-page: 9 year: 2019 ident: 10.1016/j.compbiomed.2019.103596_bib36 article-title: Computer Aided Diagnosis System for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2018.11.006 – volume: 46 start-page: 175 issue: 3 year: 1992 ident: 10.1016/j.compbiomed.2019.103596_bib61 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am. Stat. doi: 10.1080/00031305.1992.10475879 – volume: 92 start-page: 861 issue: 9 year: 2016 ident: 10.1016/j.compbiomed.2019.103596_bib33 article-title: Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machine publication-title: Simulation doi: 10.1177/0037549716666962 – volume: 22 start-page: 119 year: 2015 ident: 10.1016/j.compbiomed.2019.103596_bib19 article-title: A new method for quantifying mfVEP signal intensity in multiple sclerosis publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.06.015 – volume: 127 start-page: 1864 issue: 3 year: 2016 ident: 10.1016/j.compbiomed.2019.103596_bib11 article-title: Monitoring multiple sclerosis by multimodal evoked potentials: numerically versus ordinally scaled scoring systems publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.11.041 – volume: 128 start-page: 1746 issue: 9 year: 2017 ident: 10.1016/j.compbiomed.2019.103596_bib37 article-title: Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2017.06.253 – volume: 13 start-page: 128 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2019.103596_bib1 article-title: Incidence and prevalence of multiple sclerosis in Europe: a systematic review publication-title: BMC Neurol. doi: 10.1186/1471-2377-13-128 – volume: 124 start-page: 468 issue: 3 year: 2001 ident: 10.1016/j.compbiomed.2019.103596_bib26 article-title: Long-term remyelination after optic neuritis: a 2-year visual evoked potential and psychophysical serial study publication-title: Brain doi: 10.1093/brain/124.3.468 – volume: 43 start-page: 941 issue: 7 year: 2018 ident: 10.1016/j.compbiomed.2019.103596_bib18 article-title: Visual pathway measures are associated with neuropsychological function in multiple sclerosis publication-title: Curr. Eye Res. doi: 10.1080/02713683.2018.1459730 – volume: 105 start-page: 1 year: 2019 ident: 10.1016/j.compbiomed.2019.103596_bib48 article-title: Detecting synchrony in EEG: a comparative study of functional connectivity measures publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.12.005 – volume: 7 start-page: 1139 issue: 12 year: 2008 ident: 10.1016/j.compbiomed.2019.103596_bib67 article-title: Cognitive impairment in multiple sclerosis publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(08)70259-X – volume: 162 start-page: 8 issue: 1–2 year: 2007 ident: 10.1016/j.compbiomed.2019.103596_bib52 article-title: PsychoPy—psychophysics software in Python publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2006.11.017 – start-page: 171 year: 1994 ident: 10.1016/j.compbiomed.2019.103596_bib59 article-title: Estimating attributes: analysis and extensions of RELIEF – volume: 102 start-page: 358 year: 2014 ident: 10.1016/j.compbiomed.2019.103596_bib24 article-title: Functional mapping of the magnocellular and parvocellular subdivisions of human LGN publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.07.019 – start-page: 129 year: 2000 ident: 10.1016/j.compbiomed.2019.103596_bib53 – volume: 42 start-page: 323 issue: 4 year: 1979 ident: 10.1016/j.compbiomed.2019.103596_bib14 article-title: Visual and somatosensory evoked cortical potentials in multiple sclerosis publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.42.4.323 – volume: 26 start-page: 2270 issue: 12 year: 2018 ident: 10.1016/j.compbiomed.2019.103596_bib40 article-title: Noise-assisted multivariate EMD-based mean-phase coherence analysis to evaluate phase-synchrony dynamics in epilepsy patients publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2881606 – volume: 39 start-page: 535 issue: 6 year: 2009 ident: 10.1016/j.compbiomed.2019.103596_bib25 article-title: The human magno and parvo systems and selective impairments of their functions publication-title: Neurosci. Behav. Physiol. doi: 10.1007/s11055-009-9161-3 – volume: 68 start-page: 528 issue: 4 year: 2010 ident: 10.1016/j.compbiomed.2019.103596_bib9 article-title: Auditory evoked potentials and multiple sclerosis publication-title: Arq. Neuro. Psiquiatr. doi: 10.1590/S0004-282X2010000400010 – volume: 466 start-page: 1291 issue: 2117 year: 2009 ident: 10.1016/j.compbiomed.2019.103596_bib55 article-title: Multivariate empirical mode decomposition publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 40 start-page: 785 issue: 4 year: 2017 ident: 10.1016/j.compbiomed.2019.103596_bib35 article-title: Diagnosis of multiple sclerosis from EEG signals using nonlinear methods publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-017-0584-9 – volume: 41 start-page: 1110 issue: 12 year: 2011 ident: 10.1016/j.compbiomed.2019.103596_bib47 article-title: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2011.06.020 – volume: 14 start-page: 988 issue: 7 year: 2008 ident: 10.1016/j.compbiomed.2019.103596_bib64 article-title: Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable publication-title: Mult. Scler. J. doi: 10.1177/1352458508088916 – volume: 19 start-page: 366 issue: 4 year: 2011 ident: 10.1016/j.compbiomed.2019.103596_bib50 article-title: Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2011.2116805 – volume: 144 start-page: 358 issue: 3–4 year: 2000 ident: 10.1016/j.compbiomed.2019.103596_bib58 article-title: Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/S0167-2789(00)00087-7 – volume: 1 start-page: 151 issue: 2 year: 2006 ident: 10.1016/j.compbiomed.2019.103596_bib45 article-title: Phase synchrony and coherence analyses of EEG as tools to discriminate between children with and without attention deficit disorder publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2006.08.001 – volume: 12 start-page: 406 issue: 4 year: 2004 ident: 10.1016/j.compbiomed.2019.103596_bib46 article-title: Phase synchronization for the recognition of mental tasks in a brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2004.838443 – volume: 98 start-page: 261 issue: 2 year: 1975 ident: 10.1016/j.compbiomed.2019.103596_bib17 article-title: Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis publication-title: Brain: J. Neurol. doi: 10.1093/brain/98.2.261 – volume: 4 start-page: 7567 year: 2016 ident: 10.1016/j.compbiomed.2019.103596_bib32 article-title: Multiple sclerosis detection based on biorthogonal wavelet transform, RBF kernel principal component analysis, and logistic regression publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2620996 – volume: 550 start-page: 49 issue: 1 year: 1991 ident: 10.1016/j.compbiomed.2019.103596_bib29 article-title: Visual stimulation reduces EEG activity in man publication-title: Brain Res. doi: 10.1016/0006-8993(91)90403-I – volume: 20 start-page: 705 issue: 6 year: 2005 ident: 10.1016/j.compbiomed.2019.103596_bib3 article-title: Modality-specific aspects of sustained and divided attentional performance in multiple sclerosis publication-title: Arch. Clin. Neuropsychol. doi: 10.1016/j.acn.2005.04.007 – volume: 4 start-page: 216 issue: 3 year: 2000 ident: 10.1016/j.compbiomed.2019.103596_bib22 article-title: Detection of multiple sclerosis with visual evoked potentials-an unsupervised computational intelligence system publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/4233.870032 – volume: 243 start-page: 39 issue: 1–2 year: 2006 ident: 10.1016/j.compbiomed.2019.103596_bib8 article-title: Fatigue in multiple sclerosis is related to disability, depression and quality of life publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2005.11.025 – volume: 344 start-page: 424 issue: 6182 year: 2014 ident: 10.1016/j.compbiomed.2019.103596_bib65 article-title: Neural mechanisms of object-based attention publication-title: Science doi: 10.1126/science.1247003 |
| SSID | ssj0004030 |
| Score | 2.359461 |
| Snippet | Despite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a... Background and objectiveDespite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 103596 |
| SubjectTerms | Algorithms Automation Bivariate analysis Bivariate empirical mode decomposition Brain Brain research Diagnosis EEG Electroencephalography Evaluation Fractals Hilbert transformation K-nearest neighbors algorithm Mathematical analysis Mean phase coherence Medical diagnosis Methods Morphology Multiple sclerosis Nervous system Noise Pattern recognition Pattern recognition systems Phase coherence Phase-synchrony Reliability analysis reliefF Signal processing Synchronism Synchronization Visual task Visual tasks |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9QwEA7HPYgv4m9XTxnB13q9NEkbfJJjz0NYEfTg3kKTTrHqdRe7e3Av_gv-y8406S6CwoJvpc2UtElnvkm_byLEK1lhi7nxWd6EJlOmtZn3DXPcGeAXtcVRLrb4YM4v1PtLfXkgTictDNMqk--PPn301unMcXqbx6uuY40vpRKj8pJScqVZUa5UybsYvP65o3movIgyFPI33DqxeSLHi2nbUebOJC_LCnTN5fv_HqL-BUHHUHR2V9xJGBLexm7eEwfY3xe3Fukv-QPx6-MXik3ZcNMHLn17A7uS3rBsYT5_B0zboIkHBFlhkTiF8InuRj3qBmgiAY-OOMo1QIa-u6a0mpAp4NWqGwuLAG-jAw3y8yXuF0TZI9Rw3Q0barKuh28PxcXZ_PPpeZY2XsiC0nadGeMJxhAaIjCbVyHHQhc2UNodgpZemlBaxNq2Up5gkJg3yCtJla5L5a2v8-KROOyXPT4RgIHS3UaVecBWlbb1aEyoKA-tglaFrGainN61C6kqOW-O8d1N9LOvbjdKjkfJxVGaiZOt5SpW5tjDxk7D6SblKflKR-FjD9s3W9s_Zuie1kfT7HHJSwyO0BM5XF0ZPRMvt5fp--afNnWPyw21oeuaSxCVM_E4zrrt4xaS676XxdP_6tozcVvyIsJIRT8Sh-sfG3xOSGvtX4yf0m9vsCme priority: 102 providerName: Elsevier |
| Title | Phase-synchrony evaluation of EEG signals for Multiple Sclerosis diagnosis based on bivariate empirical mode decomposition during a visual task |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519304457 https://dx.doi.org/10.1016/j.compbiomed.2019.103596 https://www.ncbi.nlm.nih.gov/pubmed/32072973 https://www.proquest.com/docview/2417035865 https://www.proquest.com/docview/2358573487 |
| Volume | 117 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Health & Medical Collection (via ProQuest) customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_uWhBfxG-rZ1nB12i6ySZZROSU9qrScqgHfVuyH8H6kVbTHtyL_4L_sjPZTfui0pdQSCY02cnOb3Z_8xuAp7xwlYszHcXW2CjNKhlpbYnjTgA_KaVry8Vm82x6kb5biMURzLtaGKJVdnNiO1HblaE18ucYadA5RZGJV-sfEXWNot3VroVGGVor2JetxNgx9DkpY_Wg_3o8P_-wr5SME1-UgrNPislR4PZ4xheRuH3RO1G-JNWjCxLz_3vA-hcgbQPT5CbcCIiSnXoXuAVHrr4N12Zhz_wO_D7_jJEqaq5qQ0K4V2wv8M1WFRuPzxiRONANGQJYNgsMQ_YR74b_aNkw6-l4-ItinmVoqJeXmGQjTmXu-3rZyowwaqrDrKPnC0ww5osgWckul80WL9mUzde7cDEZf3ozjUIbhsikQm6iLNMIahAbIbSNCxO7RCTSYBJujOCaZyaXzpWy4nzkDHexdbSuVIgyT7XUZZzcg169qt0DYM5g8mvTPDauSnNZaZdlpsCstDAiTXgxgLx718oEjXJqlfFNdWS0L2o_SopGSflRGsBoZ7n2Oh0H2MhuOFVXh4ozp8JgcoDti51twCoegxxofdJ5jwpzRqP2Hj6AJ7vT-LXTFk5Zu9UWr8HzggSJ8gHc9163e9yEkwp8njz8_80fwXVOawYt8_wEepufW_cYgdVGD-H42a8RHvNFjsdicjaE_unb99P5MHxHfwAVmClN |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKKwEviJuFAkaCx4jURxILVYhjy5Z2VxW0Ut_c-IhYjuxCdov2V_CP-G3MxM7uC6B96Vske6wkM57D_maGkKes8JVPM5OkzrpEZJVKjHGIcUcHn5fKt-liw1E2OBHvT-XpBvnd5cIgrLLTia2idhOLZ-TPwdKAcMoiky-n3xPsGoW3q10LjTK2VnC7bYmxmNhx4Bc_IYRrdvffAr-fMbbXP34zSGKXgcQKqWZJlhmw2WD6wXNLC5t6LrmyEGNaK5lhmc2V96WqGNvxlvnUeTw2KWSZC6NMmXJY9xLZElwoCP62XvdHRx9WmZkpD0kwoO0EBGMRSxQQZggaD0n2CDFTmP8usXnA3w3kvxzg1hDuXSfXogdLXwWRu0E2fH2TXB7GO_pb5NfRJ7CMSbOoLRbeXdBVQXE6qWi__44iaATEnoLDTIcR0Ug_wmrwRuOGugD_gye0sY4CoRmfQ1APfjH136bjtqwJxSY-1Hn8vog8oyHpkpb0fNzMYcqsbL7cJicXwpA7ZLOe1P4eod5CsO1EnlpfiVxVxmeZLSAKLqwUnBU9knf_WttYEx1bc3zVHfjts15xSSOXdOBSj-wsKaehLsgaNKpjp-7yXkFTazBea9C-WNJG3yj4PGtSb3fSo6OOavRqR_XIk-UwaBe8MiprP5nDHBiXWAAp75G7QeqWn8sZVp3P-f3_L_6YXBkcDw_14f7o4AG5yvC8okW9b5PN2Y-5fwhO3cw8ijuHkrOL3qx_ACi7YaQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIU28IL5XGGAkeIyW2XEcCyGEWMvG6DQJJvXNxI4jykdbSDvUv4L_h7-Ou9hpXwD1ZW-R7LOS3Pk-7N_dATzlha99mtskrVyVZHmtE2srwriTgy9K7dt0seFpfnSevR3J0Rb87nJhCFbZ6cRWUVdTR2fk-2hpUDhlkcv9OsIizg4HL2ffE-ogRTetXTuNICInfvkTw7fmxfEh8voZ54P-h9dHSewwkLhM6nmS5xbtNZp99NrSwqVeSKEdxpfOSW557pT2vtQ15wfecZ9Wno5MClmqzGpbpgLXvQJXlRCa4IRqpNY5makI6S-o5zIMwyKKKGDLCC4e0usJXKYp811S24C_m8Z_ub6tCRzcgOvRd2WvgrDdhC0_uQU7w3g7fxt-nX1Cm5g0y4mjkrtLti4lzqY16_ffMIKLoMAzdJXZMGIZ2XtcDd9o3LAqAP_wiaxrxZDQji8wnEePmPlvs3Fb0IRR-x5Wefq-iDljId2Slexi3CxwyrxsvtyB80thx13YnkwnfheYdxhmV5lKna8zpWvr89wVGP8WTmaCFz1Q3b82LlZDp6YcX00He_ts1lwyxCUTuNSDgxXlLFQE2YBGd-w0XcYr6miDZmsD2ucr2ugVBW9nQ-q9TnpM1E6NWe-lHjxZDaNeocuicuKnC5yD45JKH6ke3AtSt_pcwanevBL3_7_4Y9jBLWreHZ-ePIBrnA4qWrj7HmzPfyz8Q_Tm5vZRu20YfLzsffoHgztfPg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-synchrony+evaluation+of+EEG+signals+for+Multiple+Sclerosis+diagnosis+based+on+bivariate+empirical+mode+decomposition+during+a+visual+task&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Raeisi%2C+Khadijeh&rft.au=Mohebbi%2C+Maryam&rft.au=Khazaei%2C+Mohammad&rft.au=Seraji%2C+Masoud&rft.date=2020-02-01&rft.eissn=1879-0534&rft.volume=117&rft.spage=103596&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103596&rft_id=info%3Apmid%2F32072973&rft.externalDocID=32072973 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |