Phase-synchrony evaluation of EEG signals for Multiple Sclerosis diagnosis based on bivariate empirical mode decomposition during a visual task

Despite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To addre...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 117; p. 103596
Main Authors Raeisi, Khadijeh, Mohebbi, Maryam, Khazaei, Mohammad, Seraji, Masoud, Yoonessi, Ali
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.02.2020
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2019.103596

Cover

Abstract Despite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To address these issues, in this work, we proposed a robust pattern recognition algorithm as a computer-aided diagnosis system. This method is based on calculating the pairwise phase-synchrony of EEG recordings during a visual task. Initially, the bivariate empirical mode decomposition (BEMD) was applied to extract the intrinsic mode functions (IMFs). The phases of these IMFs were then obtained using the Hilbert transform to be utilized in the mean phase coherence (MPC), a measure for phase-synchrony calculation. After the construction of the feature space using MPC values, the ReliefF algorithm was applied for dimension reduction. Finally, the best distinguishing features were input to a k-nearest neighbor (KNN) classifier. The results revealed a higher level of network synchronization in the posterior regions of the brain and desynchronization in the anterior regions among the MS group as compared with the normal subjects. In the validation phase, the leave-one-subject-out cross-validation (LOOCV) method was used to assess the validity of the proposed algorithm. We achieved an accuracy, sensitivity, and specificity of 93.09%, 91.07%, and 95.24% for red-green, 90.44%, 88.39%, and 92.62% for luminance, and 87.44%, 87.05%, and 87.86% for blue-yellow tasks, respectively. The experimental results demonstrated the reliability of the presented method to be generalized in the field of automated MS diagnosis systems. •The presented research is a step forward in the development of automated MS diagnosis systems using event-related EEGs.•Phase-synchrony information derived from bivariate empirical mode decomposition was used for MS diagnosis.•.Higher levels of networks synchronization in the posterior regions of the brain were seen among the MS group.
AbstractList Background and objectiveDespite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To address these issues, in this work, we proposed a robust pattern recognition algorithm as a computer-aided diagnosis system. This method is based on calculating the pairwise phase-synchrony of EEG recordings during a visual task. Initially, the bivariate empirical mode decomposition (BEMD) was applied to extract the intrinsic mode functions (IMFs). The phases of these IMFs were then obtained using the Hilbert transform to be utilized in the mean phase coherence (MPC), a measure for phase-synchrony calculation. After the construction of the feature space using MPC values, the ReliefF algorithm was applied for dimension reduction. Finally, the best distinguishing features were input to a k-nearest neighbor (KNN) classifier. The results revealed a higher level of network synchronization in the posterior regions of the brain and desynchronization in the anterior regions among the MS group as compared with the normal subjects. In the validation phase, the leave-one-subject-out cross-validation (LOOCV) method was used to assess the validity of the proposed algorithm. We achieved an accuracy, sensitivity, and specificity of 93.09%, 91.07%, and 95.24% for red-green, 90.44%, 88.39%, and 92.62% for luminance, and 87.44%, 87.05%, and 87.86% for blue-yellow tasks, respectively. The experimental results demonstrated the reliability of the presented method to be generalized in the field of automated MS diagnosis systems.
Despite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To address these issues, in this work, we proposed a robust pattern recognition algorithm as a computer-aided diagnosis system. This method is based on calculating the pairwise phase-synchrony of EEG recordings during a visual task. Initially, the bivariate empirical mode decomposition (BEMD) was applied to extract the intrinsic mode functions (IMFs). The phases of these IMFs were then obtained using the Hilbert transform to be utilized in the mean phase coherence (MPC), a measure for phase-synchrony calculation. After the construction of the feature space using MPC values, the ReliefF algorithm was applied for dimension reduction. Finally, the best distinguishing features were input to a k-nearest neighbor (KNN) classifier. The results revealed a higher level of network synchronization in the posterior regions of the brain and desynchronization in the anterior regions among the MS group as compared with the normal subjects. In the validation phase, the leave-one-subject-out cross-validation (LOOCV) method was used to assess the validity of the proposed algorithm. We achieved an accuracy, sensitivity, and specificity of 93.09%, 91.07%, and 95.24% for red-green, 90.44%, 88.39%, and 92.62% for luminance, and 87.44%, 87.05%, and 87.86% for blue-yellow tasks, respectively. The experimental results demonstrated the reliability of the presented method to be generalized in the field of automated MS diagnosis systems. •The presented research is a step forward in the development of automated MS diagnosis systems using event-related EEGs.•Phase-synchrony information derived from bivariate empirical mode decomposition was used for MS diagnosis.•.Higher levels of networks synchronization in the posterior regions of the brain were seen among the MS group.
Despite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To address these issues, in this work, we proposed a robust pattern recognition algorithm as a computer-aided diagnosis system. This method is based on calculating the pairwise phase-synchrony of EEG recordings during a visual task. Initially, the bivariate empirical mode decomposition (BEMD) was applied to extract the intrinsic mode functions (IMFs). The phases of these IMFs were then obtained using the Hilbert transform to be utilized in the mean phase coherence (MPC), a measure for phase-synchrony calculation. After the construction of the feature space using MPC values, the ReliefF algorithm was applied for dimension reduction. Finally, the best distinguishing features were input to a k-nearest neighbor (KNN) classifier. The results revealed a higher level of network synchronization in the posterior regions of the brain and desynchronization in the anterior regions among the MS group as compared with the normal subjects. In the validation phase, the leave-one-subject-out cross-validation (LOOCV) method was used to assess the validity of the proposed algorithm. We achieved an accuracy, sensitivity, and specificity of 93.09%, 91.07%, and 95.24% for red-green, 90.44%, 88.39%, and 92.62% for luminance, and 87.44%, 87.05%, and 87.86% for blue-yellow tasks, respectively. The experimental results demonstrated the reliability of the presented method to be generalized in the field of automated MS diagnosis systems.
Despite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To address these issues, in this work, we proposed a robust pattern recognition algorithm as a computer-aided diagnosis system. This method is based on calculating the pairwise phase-synchrony of EEG recordings during a visual task. Initially, the bivariate empirical mode decomposition (BEMD) was applied to extract the intrinsic mode functions (IMFs). The phases of these IMFs were then obtained using the Hilbert transform to be utilized in the mean phase coherence (MPC), a measure for phase-synchrony calculation. After the construction of the feature space using MPC values, the ReliefF algorithm was applied for dimension reduction. Finally, the best distinguishing features were input to a k-nearest neighbor (KNN) classifier. The results revealed a higher level of network synchronization in the posterior regions of the brain and desynchronization in the anterior regions among the MS group as compared with the normal subjects. In the validation phase, the leave-one-subject-out cross-validation (LOOCV) method was used to assess the validity of the proposed algorithm. We achieved an accuracy, sensitivity, and specificity of 93.09%, 91.07%, and 95.24% for red-green, 90.44%, 88.39%, and 92.62% for luminance, and 87.44%, 87.05%, and 87.86% for blue-yellow tasks, respectively. The experimental results demonstrated the reliability of the presented method to be generalized in the field of automated MS diagnosis systems.BACKGROUND AND OBJECTIVEDespite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a great need to automate the MS diagnosis procedure to eliminate the evaluation errors thereby improving its consistency and reliability. To address these issues, in this work, we proposed a robust pattern recognition algorithm as a computer-aided diagnosis system. This method is based on calculating the pairwise phase-synchrony of EEG recordings during a visual task. Initially, the bivariate empirical mode decomposition (BEMD) was applied to extract the intrinsic mode functions (IMFs). The phases of these IMFs were then obtained using the Hilbert transform to be utilized in the mean phase coherence (MPC), a measure for phase-synchrony calculation. After the construction of the feature space using MPC values, the ReliefF algorithm was applied for dimension reduction. Finally, the best distinguishing features were input to a k-nearest neighbor (KNN) classifier. The results revealed a higher level of network synchronization in the posterior regions of the brain and desynchronization in the anterior regions among the MS group as compared with the normal subjects. In the validation phase, the leave-one-subject-out cross-validation (LOOCV) method was used to assess the validity of the proposed algorithm. We achieved an accuracy, sensitivity, and specificity of 93.09%, 91.07%, and 95.24% for red-green, 90.44%, 88.39%, and 92.62% for luminance, and 87.44%, 87.05%, and 87.86% for blue-yellow tasks, respectively. The experimental results demonstrated the reliability of the presented method to be generalized in the field of automated MS diagnosis systems.
ArticleNumber 103596
Author Yoonessi, Ali
Raeisi, Khadijeh
Khazaei, Mohammad
Mohebbi, Maryam
Seraji, Masoud
Author_xml – sequence: 1
  givenname: Khadijeh
  surname: Raeisi
  fullname: Raeisi, Khadijeh
  email: kh.reisi68@gmail.com
  organization: School of Electrical Engineering, K.N.Toosi University of Technology, Tehran, Iran
– sequence: 2
  givenname: Maryam
  surname: Mohebbi
  fullname: Mohebbi, Maryam
  email: m.mohebbi@kntu.ac.ir
  organization: School of Electrical Engineering, K.N.Toosi University of Technology, Tehran, Iran
– sequence: 3
  givenname: Mohammad
  surname: Khazaei
  fullname: Khazaei, Mohammad
  email: mkhazaei@alumni.iust.ac.ir
  organization: School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
– sequence: 4
  givenname: Masoud
  surname: Seraji
  fullname: Seraji, Masoud
  email: m.seraji@rutgers.edu
  organization: Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
– sequence: 5
  givenname: Ali
  surname: Yoonessi
  fullname: Yoonessi, Ali
  email: a-yoonessi@tums.ac.ir
  organization: School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32072973$$D View this record in MEDLINE/PubMed
BookMark eNqNkcuO0zAUhi00iOkMvAKyxIZNii9xLhsEjMqANAgkYG05zmnndBI72EmlPgWvjNMOIHXVlS3rO5-P_v-KXDjvgBDK2ZIzXrzZLq3vhwZ9D-1SMF6nZ6nq4glZ8KqsM6ZkfkEWjHGW5ZVQl-Qqxi1jLGeSPSOXUrBS1KVckN_f7k2ELO6dvQ_e7SnsTDeZEb2jfk1Xq1saceNMF-naB_pl6kYcOqDfbQfBR4y0RbNxh1uTTC1Ngw3uTEAzAoV-wIDWdLT3LdAW5r0TfPC3U0C3oYbuME4JGU18eE6ertNn8OLxvCY_P65-3HzK7r7efr55f5fZXNVjVhRNVUsmVMVbVlkGUsnaQiOtVaIRhS1rAFOvheBgBbAWeC5EpUyZN3VjmLwmr4_eIfhfE8RR9xgtdJ1x4KeohVSVKmVelQl9dYJu_RTmSLTIeZmCrwqVqJeP1NSkVvQQsDdhr_9GnYDqCNiUWwyw_odwpudW9Vb_b1XPrepjq2n07cmoxfHQ0RgMducIPhwFkCLdIQQdLYKz0GIAO-rW4zmSdycS26Gby32A_XmKP75v3H0
CitedBy_id crossref_primary_10_4015_S1016237221500484
crossref_primary_10_2174_1567205018666211001110824
crossref_primary_10_3389_fneur_2021_645594
crossref_primary_10_1016_j_neucom_2022_05_022
crossref_primary_10_3390_app11156983
crossref_primary_10_3389_fnsys_2023_919977
crossref_primary_10_1016_j_compbiomed_2024_109615
crossref_primary_10_3389_fncom_2023_1207067
crossref_primary_10_1016_j_compbiomed_2024_108728
crossref_primary_10_1371_journal_pone_0255324
crossref_primary_10_3389_fninf_2025_1519391
crossref_primary_10_1016_j_bspc_2023_105627
crossref_primary_10_1016_j_pscychresns_2023_111764
crossref_primary_10_1109_ACCESS_2024_3438873
crossref_primary_10_3390_app10217453
crossref_primary_10_1155_2022_5430528
crossref_primary_10_3389_fnhum_2022_936393
Cites_doi 10.1109/TNSRE.2019.2892960
10.1016/j.clinph.2013.09.047
10.1016/j.ophtha.2011.11.032
10.1590/S0004-282X2010000200010
10.1212/WNL.30.7_Part_2.110
10.1177/1352458517712078
10.1016/j.bspc.2017.08.004
10.1016/j.clinph.2016.12.029
10.1136/jnnp.2005.086280
10.1007/s00415-006-1103-1
10.1097/01.wco.0000073928.19076.84
10.1016/j.clinph.2015.06.025
10.1109/LSP.2003.821662
10.1098/rspa.1998.0193
10.1109/LSP.2007.904710
10.2174/1871527315666161024142439
10.1016/j.jns.2005.08.019
10.1016/S0967-5868(02)00172-8
10.1016/j.bspc.2014.02.012
10.1016/j.pneurobio.2011.04.007
10.1109/TNSRE.2013.2289899
10.1016/j.clinph.2015.05.029
10.1016/j.compbiomed.2013.10.025
10.1002/ana.22366
10.1016/S1388-2457(99)00141-8
10.1038/247481a0
10.1016/S0920-1211(03)00002-0
10.1016/j.jns.2004.12.009
10.3758/s13415-014-0272-0
10.1016/0010-4825(93)90024-U
10.1016/j.cmpb.2018.11.006
10.1080/00031305.1992.10475879
10.1177/0037549716666962
10.1016/j.bspc.2015.06.015
10.1016/j.clinph.2015.11.041
10.1016/j.clinph.2017.06.253
10.1186/1471-2377-13-128
10.1093/brain/124.3.468
10.1080/02713683.2018.1459730
10.1016/j.compbiomed.2018.12.005
10.1016/S1474-4422(08)70259-X
10.1016/j.jneumeth.2006.11.017
10.1016/j.neuroimage.2014.07.019
10.1136/jnnp.42.4.323
10.1109/TNSRE.2018.2881606
10.1007/s11055-009-9161-3
10.1590/S0004-282X2010000400010
10.1007/s13246-017-0584-9
10.1016/j.compbiomed.2011.06.020
10.1177/1352458508088916
10.1109/TNSRE.2011.2116805
10.1016/S0167-2789(00)00087-7
10.1016/j.bspc.2006.08.001
10.1109/TNSRE.2004.838443
10.1093/brain/98.2.261
10.1109/ACCESS.2016.2620996
10.1016/0006-8993(91)90403-I
10.1016/j.acn.2005.04.007
10.1109/4233.870032
10.1016/j.jns.2005.11.025
10.1126/science.1247003
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
2019. Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: 2019. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2019.103596
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database (Proquest)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
ExternalDocumentID 32072973
10_1016_j_compbiomed_2019_103596
S0010482519304457
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
M0N
RIG
AAYXX
CITATION
PUEGO
AFCTW
ALIPV
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c459t-66b89302581d08c0e3539ceb3cc52b26c79eea9f221ec2e0de142285a74b9ba03
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 01:25:12 EDT 2025
Tue Oct 07 06:22:25 EDT 2025
Wed Feb 19 02:31:54 EST 2025
Wed Oct 01 05:19:23 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Fri Feb 23 02:48:35 EST 2024
Tue Oct 14 19:33:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Bivariate empirical mode decomposition
Multiple sclerosis
reliefF
Electroencephalography
Phase-synchrony
Mean phase coherence
Visual task
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-66b89302581d08c0e3539ceb3cc52b26c79eea9f221ec2e0de142285a74b9ba03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 32072973
PQID 2417035865
PQPubID 1226355
ParticipantIDs proquest_miscellaneous_2358573487
proquest_journals_2417035865
pubmed_primary_32072973
crossref_primary_10_1016_j_compbiomed_2019_103596
crossref_citationtrail_10_1016_j_compbiomed_2019_103596
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103596
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103596
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
2020-Feb
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Fuso, Callegaro, Pompéia, Bueno (bib2) 2010; 68
Huang (bib54) 1998; 454
Leocani (bib16) 2006; 77
Walter (bib63) 2012; 119
Bakhshayesh, Fitzgibbon, Janani, Grummett, Pope (bib48) 2019; 105
McCarthy, Beaumont, Thompson, Peacock (bib3) 2005; 20
Rehman, Mandic (bib55) 2009; 466
Altman (bib61) 1992; 46
Gysels, Celka (bib46) 2004; 12
Peirce (bib52) 2007; 162
Biberacher (bib6) 2018; 24
Mormann, Kreuz, Andrzejak, David, Lehnertz, Elger (bib38) 2003; 53
Matas, Matas, Oliveira, Gonçalves (bib9) 2010; 68
Kingwell (bib1) 2013; 13
del Castillo (bib19) 2015; 22
Griesmayr, Berger, Stelzig-Schoeler, Aichhorn, Bergmann, Sauseng (bib41) 2014; 14
Ziqiang, Puthusserypady (bib42) 2007
Heesen, Böhm, Reich, Kasper, Goebel, Gold (bib64) 2008; 14
Keune (bib37) 2017; 128
Ahmadi, Davoudi, Daliri (bib36) 2019; 169
Baldauf, Desimone (bib65) 2014; 344
London, El Sankari, Van Pesch (bib10) 2017; 128
Asselman, Chadwick, Marsden (bib17) 1975; 98
Chilińska, Ejma, Turno-Kręcicka, Guranski, Misiuk-Hojlo (bib21) 2016; 127
Rilling, Flandrin, Gonçalves, Lilly (bib57) 2007; 14
Babiloni (bib31) 2016; 127
Zhang (bib33) 2016; 92
Benedict (bib7) 2005; 231
Pfurtscheller, Da Silva (bib30) 1999; 110
Torabi, Daliri, Sabzposhan (bib35) 2017; 40
Brusa, Jones, Plant (bib26) 2001; 124
Farahmand, Sobayo, Mogul (bib40) 2018; 26
Yoonessi, Yoonessi (bib23) 2011; 6
Savers, Beagley, Henshall (bib28) 1974; 247
Kononenko (bib59) 1994
Vijn, Van Dijk, Spekreijse (bib29) 1991; 550
Jalili, Barzegaran, Knyazeva (bib43) 2014; 22
Rangaprakash (bib49) 2014; 46
Calabrese (bib66) 2006; 253
Tcheslavski, Beex (bib45) 2006; 1
Schlaeger (bib11) 2016; 127
Rangaprakash, Pradhan (bib44) 2014; 11
Dasey, Micheli-Tzanakou (bib22) 2000; 4
Park, Looney, Kidmose, Ungstrup, Mandic (bib50) 2011; 19
Wang (bib32) 2016; 4
Bobholz, Rao (bib4) 2003; 16
Amato, Zipoli, Portaccio (bib5) 2006; 245
Pittion-Vouyovitch, Debouverie, Guillemin, Vandenberghe, Anxionnat, Vespignani (bib8) 2006; 243
Li, Yu, Gu, Tan, Wang, Li (bib27) 2019; 27
Nguyen (bib18) 2018; 43
Polman (bib51) 2011; 69
Dutta, Singh, Kumar (bib56) 2018; 39
Mormann, Lehnertz, David, Elger (bib58) 2000; 144
Flandrin, Rilling, Goncalves (bib62) 2004; 11
Chiappa (bib13) 1980; 30
Zheng, Wang, Li, Bao, Wang (bib39) 2014; 125
Ziemann, Wahl, Hattingen, Tumani (bib20) 2011; 95
Karaca, Zhang, Cattani, Ayan (bib34) 2017; 16
Chiaravalloti, DeLuca (bib67) 2008; 7
Wu, Slater, Honig, Ramsay (bib12) 1993; 23
Denison, Vu, Yacoub, Feinberg, Silver (bib24) 2014; 102
Sakkalis (bib47) 2011; 41
Murav’eva, Deshkovich, Shelepin (bib25) 2009; 39
De Valois, De Valois (bib53) 2000
Diem, Tschirne, Bähr (bib15) 2003; 10
Kira, Rendell (bib60) 1992
Trojaborg, Petersen (bib14) 1979; 42
Savers (10.1016/j.compbiomed.2019.103596_bib28) 1974; 247
Torabi (10.1016/j.compbiomed.2019.103596_bib35) 2017; 40
Bobholz (10.1016/j.compbiomed.2019.103596_bib4) 2003; 16
Yoonessi (10.1016/j.compbiomed.2019.103596_bib23) 2011; 6
Dutta (10.1016/j.compbiomed.2019.103596_bib56) 2018; 39
Keune (10.1016/j.compbiomed.2019.103596_bib37) 2017; 128
Li (10.1016/j.compbiomed.2019.103596_bib27) 2019; 27
Pfurtscheller (10.1016/j.compbiomed.2019.103596_bib30) 1999; 110
Huang (10.1016/j.compbiomed.2019.103596_bib54) 1998; 454
Wang (10.1016/j.compbiomed.2019.103596_bib32) 2016; 4
McCarthy (10.1016/j.compbiomed.2019.103596_bib3) 2005; 20
Amato (10.1016/j.compbiomed.2019.103596_bib5) 2006; 245
Kingwell (10.1016/j.compbiomed.2019.103596_bib1) 2013; 13
Mormann (10.1016/j.compbiomed.2019.103596_bib58) 2000; 144
Dasey (10.1016/j.compbiomed.2019.103596_bib22) 2000; 4
Vijn (10.1016/j.compbiomed.2019.103596_bib29) 1991; 550
Rangaprakash (10.1016/j.compbiomed.2019.103596_bib44) 2014; 11
Diem (10.1016/j.compbiomed.2019.103596_bib15) 2003; 10
Chiappa (10.1016/j.compbiomed.2019.103596_bib13) 1980; 30
Gysels (10.1016/j.compbiomed.2019.103596_bib46) 2004; 12
Bakhshayesh (10.1016/j.compbiomed.2019.103596_bib48) 2019; 105
Ahmadi (10.1016/j.compbiomed.2019.103596_bib36) 2019; 169
Nguyen (10.1016/j.compbiomed.2019.103596_bib18) 2018; 43
Wu (10.1016/j.compbiomed.2019.103596_bib12) 1993; 23
Kononenko (10.1016/j.compbiomed.2019.103596_bib59) 1994
Calabrese (10.1016/j.compbiomed.2019.103596_bib66) 2006; 253
Farahmand (10.1016/j.compbiomed.2019.103596_bib40) 2018; 26
Heesen (10.1016/j.compbiomed.2019.103596_bib64) 2008; 14
Denison (10.1016/j.compbiomed.2019.103596_bib24) 2014; 102
Benedict (10.1016/j.compbiomed.2019.103596_bib7) 2005; 231
Kira (10.1016/j.compbiomed.2019.103596_bib60) 1992
Rilling (10.1016/j.compbiomed.2019.103596_bib57) 2007; 14
Rangaprakash (10.1016/j.compbiomed.2019.103596_bib49) 2014; 46
del Castillo (10.1016/j.compbiomed.2019.103596_bib19) 2015; 22
Jalili (10.1016/j.compbiomed.2019.103596_bib43) 2014; 22
Walter (10.1016/j.compbiomed.2019.103596_bib63) 2012; 119
Baldauf (10.1016/j.compbiomed.2019.103596_bib65) 2014; 344
Pittion-Vouyovitch (10.1016/j.compbiomed.2019.103596_bib8) 2006; 243
Babiloni (10.1016/j.compbiomed.2019.103596_bib31) 2016; 127
Trojaborg (10.1016/j.compbiomed.2019.103596_bib14) 1979; 42
Chiaravalloti (10.1016/j.compbiomed.2019.103596_bib67) 2008; 7
Flandrin (10.1016/j.compbiomed.2019.103596_bib62) 2004; 11
Ziqiang (10.1016/j.compbiomed.2019.103596_bib42) 2007
Leocani (10.1016/j.compbiomed.2019.103596_bib16) 2006; 77
Brusa (10.1016/j.compbiomed.2019.103596_bib26) 2001; 124
Karaca (10.1016/j.compbiomed.2019.103596_bib34) 2017; 16
Sakkalis (10.1016/j.compbiomed.2019.103596_bib47) 2011; 41
Matas (10.1016/j.compbiomed.2019.103596_bib9) 2010; 68
Fuso (10.1016/j.compbiomed.2019.103596_bib2) 2010; 68
Polman (10.1016/j.compbiomed.2019.103596_bib51) 2011; 69
Asselman (10.1016/j.compbiomed.2019.103596_bib17) 1975; 98
Griesmayr (10.1016/j.compbiomed.2019.103596_bib41) 2014; 14
Murav’eva (10.1016/j.compbiomed.2019.103596_bib25) 2009; 39
Chilińska (10.1016/j.compbiomed.2019.103596_bib21) 2016; 127
Ziemann (10.1016/j.compbiomed.2019.103596_bib20) 2011; 95
Zheng (10.1016/j.compbiomed.2019.103596_bib39) 2014; 125
Park (10.1016/j.compbiomed.2019.103596_bib50) 2011; 19
Zhang (10.1016/j.compbiomed.2019.103596_bib33) 2016; 92
Tcheslavski (10.1016/j.compbiomed.2019.103596_bib45) 2006; 1
De Valois (10.1016/j.compbiomed.2019.103596_bib53) 2000
Rehman (10.1016/j.compbiomed.2019.103596_bib55) 2009; 466
Schlaeger (10.1016/j.compbiomed.2019.103596_bib11) 2016; 127
London (10.1016/j.compbiomed.2019.103596_bib10) 2017; 128
Biberacher (10.1016/j.compbiomed.2019.103596_bib6) 2018; 24
Mormann (10.1016/j.compbiomed.2019.103596_bib38) 2003; 53
Peirce (10.1016/j.compbiomed.2019.103596_bib52) 2007; 162
Altman (10.1016/j.compbiomed.2019.103596_bib61) 1992; 46
References_xml – volume: 128
  start-page: 561
  year: 2017
  end-page: 569
  ident: bib10
  article-title: Early disturbances in multimodal evoked potentials as a prognostic factor for long-term disability in relapsing-remitting multiple sclerosis patients
  publication-title: Clin. Neurophysiol.
– volume: 43
  start-page: 941
  year: 2018
  end-page: 948
  ident: bib18
  article-title: Visual pathway measures are associated with neuropsychological function in multiple sclerosis
  publication-title: Curr. Eye Res.
– volume: 40
  start-page: 785
  year: 2017
  end-page: 797
  ident: bib35
  article-title: Diagnosis of multiple sclerosis from EEG signals using nonlinear methods
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 127
  start-page: 581
  year: 2016
  end-page: 590
  ident: bib31
  article-title: Cortical sources of resting state electroencephalographic rhythms differ in relapsing–remitting and secondary progressive multiple sclerosis
  publication-title: Clin. Neurophysiol.
– volume: 102
  start-page: 358
  year: 2014
  end-page: 369
  ident: bib24
  article-title: Functional mapping of the magnocellular and parvocellular subdivisions of human LGN
  publication-title: Neuroimage
– volume: 92
  start-page: 861
  year: 2016
  end-page: 871
  ident: bib33
  article-title: Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machine
  publication-title: Simulation
– volume: 11
  start-page: 112
  year: 2004
  end-page: 114
  ident: bib62
  article-title: Empirical mode decomposition as a filter bank
  publication-title: IEEE Signal Process. Lett.
– volume: 69
  start-page: 292
  year: 2011
  end-page: 302
  ident: bib51
  article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria
  publication-title: Ann. Neurol.
– volume: 253
  start-page: i10
  year: 2006
  end-page: i15
  ident: bib66
  article-title: Neuropsychology of multiple sclerosis
  publication-title: J. Neurol.
– volume: 77
  start-page: 1030
  year: 2006
  end-page: 1035
  ident: bib16
  article-title: Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 128
  start-page: 1746
  year: 2017
  end-page: 1754
  ident: bib37
  article-title: Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis
  publication-title: Clin. Neurophysiol.
– volume: 46
  start-page: 11
  year: 2014
  end-page: 21
  ident: bib49
  article-title: Connectivity analysis of multichannel EEG signals using recurrence based phase synchronization technique
  publication-title: Comput. Biol. Med.
– volume: 4
  start-page: 7567
  year: 2016
  end-page: 7576
  ident: bib32
  article-title: Multiple sclerosis detection based on biorthogonal wavelet transform, RBF kernel principal component analysis, and logistic regression
  publication-title: IEEE Access
– volume: 144
  start-page: 358
  year: 2000
  end-page: 369
  ident: bib58
  article-title: Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients
  publication-title: Phys. D Nonlinear Phenom.
– volume: 124
  start-page: 468
  year: 2001
  end-page: 479
  ident: bib26
  article-title: Long-term remyelination after optic neuritis: a 2-year visual evoked potential and psychophysical serial study
  publication-title: Brain
– volume: 119
  start-page: 1250
  year: 2012
  end-page: 1257
  ident: bib63
  article-title: Ganglion cell loss in relation to visual disability in multiple sclerosis
  publication-title: Ophthalmology
– volume: 24
  start-page: 1115
  year: 2018
  end-page: 1125
  ident: bib6
  article-title: Fatigue in multiple sclerosis: associations with clinical, MRI and CSF parameters
  publication-title: Mult. Scler. J.
– volume: 16
  start-page: 36
  year: 2017
  end-page: 43
  ident: bib34
  article-title: The differential diagnosis of multiple sclerosis using convex combination of infinite kernels
  publication-title: CNS Neurol. Disord. - Drug Targets
– volume: 1
  start-page: 151
  year: 2006
  end-page: 161
  ident: bib45
  article-title: Phase synchrony and coherence analyses of EEG as tools to discriminate between children with and without attention deficit disorder
  publication-title: Biomed. Signal Process. Control
– volume: 245
  start-page: 41
  year: 2006
  end-page: 46
  ident: bib5
  article-title: Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies
  publication-title: J. Neurol. Sci.
– volume: 95
  start-page: 670
  year: 2011
  end-page: 685
  ident: bib20
  article-title: Development of biomarkers for multiple sclerosis as a neurodegenerative disorder
  publication-title: Prog. Neurobiol.
– volume: 42
  start-page: 323
  year: 1979
  end-page: 330
  ident: bib14
  article-title: Visual and somatosensory evoked cortical potentials in multiple sclerosis
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 231
  start-page: 29
  year: 2005
  end-page: 34
  ident: bib7
  article-title: Predicting quality of life in multiple sclerosis: accounting for physical disability, fatigue, cognition, mood disorder, personality, and behavior change
  publication-title: J. Neurol. Sci.
– volume: 11
  start-page: 114
  year: 2014
  end-page: 122
  ident: bib44
  article-title: Study of phase synchronization in multichannel seizure EEG using nonlinear recurrence measure
  publication-title: Biomed. Signal Process. Control
– volume: 344
  start-page: 424
  year: 2014
  end-page: 427
  ident: bib65
  article-title: Neural mechanisms of object-based attention
  publication-title: Science
– volume: 162
  start-page: 8
  year: 2007
  end-page: 13
  ident: bib52
  article-title: PsychoPy—psychophysics software in Python
  publication-title: J. Neurosci. Methods
– volume: 22
  start-page: 212
  year: 2014
  end-page: 221
  ident: bib43
  article-title: Synchronization of EEG: bivariate and multivariate measures
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 30
  start-page: 110
  year: 1980
  end-page: 123
  ident: bib13
  article-title: Pattern shift visual, brainstem auditory, and short‐latency somatosensory evoked potentials in multiple sclerosis
  publication-title: Neurology
– volume: 39
  start-page: 535
  year: 2009
  end-page: 543
  ident: bib25
  article-title: The human magno and parvo systems and selective impairments of their functions
  publication-title: Neurosci. Behav. Physiol.
– volume: 22
  start-page: 119
  year: 2015
  end-page: 125
  ident: bib19
  article-title: A new method for quantifying mfVEP signal intensity in multiple sclerosis
  publication-title: Biomed. Signal Process. Control
– volume: 53
  start-page: 173
  year: 2003
  end-page: 185
  ident: bib38
  article-title: Epileptic seizures are preceded by a decrease in synchronization
  publication-title: Epilepsy Res.
– volume: 13
  start-page: 128
  year: 2013
  ident: bib1
  article-title: Incidence and prevalence of multiple sclerosis in Europe: a systematic review
  publication-title: BMC Neurol.
– volume: 550
  start-page: 49
  year: 1991
  end-page: 53
  ident: bib29
  article-title: Visual stimulation reduces EEG activity in man
  publication-title: Brain Res.
– volume: 243
  start-page: 39
  year: 2006
  end-page: 45
  ident: bib8
  article-title: Fatigue in multiple sclerosis is related to disability, depression and quality of life
  publication-title: J. Neurol. Sci.
– volume: 12
  start-page: 406
  year: 2004
  end-page: 415
  ident: bib46
  article-title: Phase synchronization for the recognition of mental tasks in a brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 41
  start-page: 1110
  year: 2011
  end-page: 1117
  ident: bib47
  article-title: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG
  publication-title: Comput. Biol. Med.
– volume: 6
  start-page: 119
  year: 2011
  ident: bib23
  article-title: Functional assessment of magno, parvo and konio-cellular pathways; current state and future clinical applications
  publication-title: J. Ophthalmic Vis. Res.
– volume: 14
  start-page: 1340
  year: 2014
  end-page: 1355
  ident: bib41
  article-title: EEG theta phase coupling during executive control of visual working memory investigated in individuals with schizophrenia and in healthy controls
  publication-title: Cognit. Affect Behav. Neurosci.
– volume: 14
  start-page: 936
  year: 2007
  end-page: 939
  ident: bib57
  article-title: Bivariate empirical mode decomposition
  publication-title: IEEE Signal Process. Lett.
– volume: 247
  start-page: 481
  year: 1974
  ident: bib28
  article-title: The mechanism of auditory evoked EEG responses
  publication-title: Nature
– start-page: 171
  year: 1994
  end-page: 182
  ident: bib59
  article-title: Estimating attributes: analysis and extensions of RELIEF
  publication-title: European Conference on Machine Learning
– start-page: 249
  year: 1992
  end-page: 256
  ident: bib60
  article-title: A practical approach to feature selection
  publication-title: Machine Learning Proceedings
– volume: 19
  start-page: 366
  year: 2011
  end-page: 373
  ident: bib50
  article-title: Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: bib61
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
– volume: 7
  start-page: 1139
  year: 2008
  end-page: 1151
  ident: bib67
  article-title: Cognitive impairment in multiple sclerosis
  publication-title: Lancet Neurol.
– volume: 16
  start-page: 283
  year: 2003
  end-page: 288
  ident: bib4
  article-title: Cognitive dysfunction in multiple sclerosis: a review of recent developments
  publication-title: Curr. Opin. Neurol.
– volume: 4
  start-page: 216
  year: 2000
  end-page: 224
  ident: bib22
  article-title: Detection of multiple sclerosis with visual evoked potentials-an unsupervised computational intelligence system
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 169
  start-page: 9
  year: 2019
  end-page: 18
  ident: bib36
  article-title: Computer Aided Diagnosis System for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention
  publication-title: Comput. Methods Progr. Biomed.
– volume: 20
  start-page: 705
  year: 2005
  end-page: 718
  ident: bib3
  article-title: Modality-specific aspects of sustained and divided attentional performance in multiple sclerosis
  publication-title: Arch. Clin. Neuropsychol.
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  ident: bib30
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
– volume: 127
  start-page: 1864
  year: 2016
  end-page: 1871
  ident: bib11
  article-title: Monitoring multiple sclerosis by multimodal evoked potentials: numerically versus ordinally scaled scoring systems
  publication-title: Clin. Neurophysiol.
– volume: 26
  start-page: 2270
  year: 2018
  end-page: 2279
  ident: bib40
  article-title: Noise-assisted multivariate EMD-based mean-phase coherence analysis to evaluate phase-synchrony dynamics in epilepsy patients
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 27
  start-page: 139
  year: 2019
  end-page: 151
  ident: bib27
  article-title: Spatial-temporal discriminative restricted Boltzmann machine for event-related potential detection and analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 466
  start-page: 1291
  year: 2009
  end-page: 1302
  ident: bib55
  article-title: Multivariate empirical mode decomposition
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 105
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib48
  article-title: Detecting synchrony in EEG: a comparative study of functional connectivity measures
  publication-title: Comput. Biol. Med.
– volume: 68
  start-page: 205
  year: 2010
  end-page: 211
  ident: bib2
  article-title: Working memory impairment in multiple sclerosis relapsing-remitting patients with episodic memory deficits
  publication-title: Arq. Neuro. Psiquiatr.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib54
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
– volume: 14
  start-page: 988
  year: 2008
  end-page: 991
  ident: bib64
  article-title: Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable
  publication-title: Mult. Scler. J.
– volume: 10
  start-page: 67
  year: 2003
  end-page: 70
  ident: bib15
  article-title: Decreased amplitudes in multiple sclerosis patients with normal visual acuity: a VEP study
  publication-title: J. Clin. Neurosci.
– volume: 125
  start-page: 1104
  year: 2014
  end-page: 1111
  ident: bib39
  article-title: Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition
  publication-title: Clin. Neurophysiol.
– start-page: 129
  year: 2000
  end-page: 175
  ident: bib53
  article-title: Color vision
– volume: 68
  start-page: 528
  year: 2010
  end-page: 534
  ident: bib9
  article-title: Auditory evoked potentials and multiple sclerosis
  publication-title: Arq. Neuro. Psiquiatr.
– volume: 23
  start-page: 251
  year: 1993
  end-page: 264
  ident: bib12
  article-title: A neural network design for event-related potential diagnosis
  publication-title: Comput. Biol. Med.
– volume: 39
  start-page: 378
  year: 2018
  end-page: 389
  ident: bib56
  article-title: Classification of non-motor cognitive task in EEG based brain-computer interface using phase space features in multivariate empirical mode decomposition domain
  publication-title: Biomed. Signal Process. Control
– volume: 127
  start-page: 821
  year: 2016
  end-page: 826
  ident: bib21
  article-title: Analysis of retinal nerve fibre layer, visual evoked potentials and relative afferent pupillary defect in multiple sclerosis patients
  publication-title: Clin. Neurophysiol.
– start-page: 131
  year: 2007
  end-page: 134
  ident: bib42
  article-title: Analysis of schizophrenic EEG synchrony using empirical mode decomposition
  publication-title: 15th International Conference on Digital Signal Processing
– volume: 98
  start-page: 261
  year: 1975
  end-page: 282
  ident: bib17
  article-title: Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis
  publication-title: Brain: J. Neurol.
– volume: 27
  start-page: 139
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103596_bib27
  article-title: Spatial-temporal discriminative restricted Boltzmann machine for event-related potential detection and analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2892960
– volume: 125
  start-page: 1104
  issue: 6
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103596_bib39
  article-title: Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2013.09.047
– volume: 119
  start-page: 1250
  issue: 6
  year: 2012
  ident: 10.1016/j.compbiomed.2019.103596_bib63
  article-title: Ganglion cell loss in relation to visual disability in multiple sclerosis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2011.11.032
– volume: 68
  start-page: 205
  issue: 2
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103596_bib2
  article-title: Working memory impairment in multiple sclerosis relapsing-remitting patients with episodic memory deficits
  publication-title: Arq. Neuro. Psiquiatr.
  doi: 10.1590/S0004-282X2010000200010
– volume: 30
  start-page: 110
  issue: 7 Part 2
  year: 1980
  ident: 10.1016/j.compbiomed.2019.103596_bib13
  article-title: Pattern shift visual, brainstem auditory, and short‐latency somatosensory evoked potentials in multiple sclerosis
  publication-title: Neurology
  doi: 10.1212/WNL.30.7_Part_2.110
– volume: 24
  start-page: 1115
  issue: 8
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103596_bib6
  article-title: Fatigue in multiple sclerosis: associations with clinical, MRI and CSF parameters
  publication-title: Mult. Scler. J.
  doi: 10.1177/1352458517712078
– volume: 39
  start-page: 378
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103596_bib56
  article-title: Classification of non-motor cognitive task in EEG based brain-computer interface using phase space features in multivariate empirical mode decomposition domain
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.08.004
– volume: 128
  start-page: 561
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103596_bib10
  article-title: Early disturbances in multimodal evoked potentials as a prognostic factor for long-term disability in relapsing-remitting multiple sclerosis patients
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2016.12.029
– volume: 77
  start-page: 1030
  issue: 9
  year: 2006
  ident: 10.1016/j.compbiomed.2019.103596_bib16
  article-title: Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2005.086280
– volume: 253
  start-page: i10
  issue: 1
  year: 2006
  ident: 10.1016/j.compbiomed.2019.103596_bib66
  article-title: Neuropsychology of multiple sclerosis
  publication-title: J. Neurol.
  doi: 10.1007/s00415-006-1103-1
– volume: 16
  start-page: 283
  issue: 3
  year: 2003
  ident: 10.1016/j.compbiomed.2019.103596_bib4
  article-title: Cognitive dysfunction in multiple sclerosis: a review of recent developments
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/01.wco.0000073928.19076.84
– volume: 127
  start-page: 821
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103596_bib21
  article-title: Analysis of retinal nerve fibre layer, visual evoked potentials and relative afferent pupillary defect in multiple sclerosis patients
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.06.025
– volume: 11
  start-page: 112
  issue: 2
  year: 2004
  ident: 10.1016/j.compbiomed.2019.103596_bib62
  article-title: Empirical mode decomposition as a filter bank
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2003.821662
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.compbiomed.2019.103596_bib54
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– start-page: 131
  year: 2007
  ident: 10.1016/j.compbiomed.2019.103596_bib42
  article-title: Analysis of schizophrenic EEG synchrony using empirical mode decomposition
– volume: 14
  start-page: 936
  issue: 12
  year: 2007
  ident: 10.1016/j.compbiomed.2019.103596_bib57
  article-title: Bivariate empirical mode decomposition
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2007.904710
– volume: 16
  start-page: 36
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103596_bib34
  article-title: The differential diagnosis of multiple sclerosis using convex combination of infinite kernels
  publication-title: CNS Neurol. Disord. - Drug Targets
  doi: 10.2174/1871527315666161024142439
– volume: 245
  start-page: 41
  issue: 1–2
  year: 2006
  ident: 10.1016/j.compbiomed.2019.103596_bib5
  article-title: Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2005.08.019
– volume: 6
  start-page: 119
  issue: 2
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103596_bib23
  article-title: Functional assessment of magno, parvo and konio-cellular pathways; current state and future clinical applications
  publication-title: J. Ophthalmic Vis. Res.
– volume: 10
  start-page: 67
  issue: 1
  year: 2003
  ident: 10.1016/j.compbiomed.2019.103596_bib15
  article-title: Decreased amplitudes in multiple sclerosis patients with normal visual acuity: a VEP study
  publication-title: J. Clin. Neurosci.
  doi: 10.1016/S0967-5868(02)00172-8
– volume: 11
  start-page: 114
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103596_bib44
  article-title: Study of phase synchronization in multichannel seizure EEG using nonlinear recurrence measure
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.02.012
– start-page: 249
  year: 1992
  ident: 10.1016/j.compbiomed.2019.103596_bib60
  article-title: A practical approach to feature selection
– volume: 95
  start-page: 670
  issue: 4
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103596_bib20
  article-title: Development of biomarkers for multiple sclerosis as a neurodegenerative disorder
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2011.04.007
– volume: 22
  start-page: 212
  issue: 2
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103596_bib43
  article-title: Synchronization of EEG: bivariate and multivariate measures
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2289899
– volume: 127
  start-page: 581
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103596_bib31
  article-title: Cortical sources of resting state electroencephalographic rhythms differ in relapsing–remitting and secondary progressive multiple sclerosis
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.05.029
– volume: 46
  start-page: 11
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103596_bib49
  article-title: Connectivity analysis of multichannel EEG signals using recurrence based phase synchronization technique
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.10.025
– volume: 69
  start-page: 292
  issue: 2
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103596_bib51
  article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22366
– volume: 110
  start-page: 1842
  issue: 11
  year: 1999
  ident: 10.1016/j.compbiomed.2019.103596_bib30
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 247
  start-page: 481
  issue: 5441
  year: 1974
  ident: 10.1016/j.compbiomed.2019.103596_bib28
  article-title: The mechanism of auditory evoked EEG responses
  publication-title: Nature
  doi: 10.1038/247481a0
– volume: 53
  start-page: 173
  issue: 3
  year: 2003
  ident: 10.1016/j.compbiomed.2019.103596_bib38
  article-title: Epileptic seizures are preceded by a decrease in synchronization
  publication-title: Epilepsy Res.
  doi: 10.1016/S0920-1211(03)00002-0
– volume: 231
  start-page: 29
  issue: 1–2
  year: 2005
  ident: 10.1016/j.compbiomed.2019.103596_bib7
  article-title: Predicting quality of life in multiple sclerosis: accounting for physical disability, fatigue, cognition, mood disorder, personality, and behavior change
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2004.12.009
– volume: 14
  start-page: 1340
  issue: 4
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103596_bib41
  article-title: EEG theta phase coupling during executive control of visual working memory investigated in individuals with schizophrenia and in healthy controls
  publication-title: Cognit. Affect Behav. Neurosci.
  doi: 10.3758/s13415-014-0272-0
– volume: 23
  start-page: 251
  issue: 3
  year: 1993
  ident: 10.1016/j.compbiomed.2019.103596_bib12
  article-title: A neural network design for event-related potential diagnosis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/0010-4825(93)90024-U
– volume: 169
  start-page: 9
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103596_bib36
  article-title: Computer Aided Diagnosis System for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2018.11.006
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 10.1016/j.compbiomed.2019.103596_bib61
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1992.10475879
– volume: 92
  start-page: 861
  issue: 9
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103596_bib33
  article-title: Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machine
  publication-title: Simulation
  doi: 10.1177/0037549716666962
– volume: 22
  start-page: 119
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103596_bib19
  article-title: A new method for quantifying mfVEP signal intensity in multiple sclerosis
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.06.015
– volume: 127
  start-page: 1864
  issue: 3
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103596_bib11
  article-title: Monitoring multiple sclerosis by multimodal evoked potentials: numerically versus ordinally scaled scoring systems
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.11.041
– volume: 128
  start-page: 1746
  issue: 9
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103596_bib37
  article-title: Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2017.06.253
– volume: 13
  start-page: 128
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103596_bib1
  article-title: Incidence and prevalence of multiple sclerosis in Europe: a systematic review
  publication-title: BMC Neurol.
  doi: 10.1186/1471-2377-13-128
– volume: 124
  start-page: 468
  issue: 3
  year: 2001
  ident: 10.1016/j.compbiomed.2019.103596_bib26
  article-title: Long-term remyelination after optic neuritis: a 2-year visual evoked potential and psychophysical serial study
  publication-title: Brain
  doi: 10.1093/brain/124.3.468
– volume: 43
  start-page: 941
  issue: 7
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103596_bib18
  article-title: Visual pathway measures are associated with neuropsychological function in multiple sclerosis
  publication-title: Curr. Eye Res.
  doi: 10.1080/02713683.2018.1459730
– volume: 105
  start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103596_bib48
  article-title: Detecting synchrony in EEG: a comparative study of functional connectivity measures
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.12.005
– volume: 7
  start-page: 1139
  issue: 12
  year: 2008
  ident: 10.1016/j.compbiomed.2019.103596_bib67
  article-title: Cognitive impairment in multiple sclerosis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70259-X
– volume: 162
  start-page: 8
  issue: 1–2
  year: 2007
  ident: 10.1016/j.compbiomed.2019.103596_bib52
  article-title: PsychoPy—psychophysics software in Python
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2006.11.017
– start-page: 171
  year: 1994
  ident: 10.1016/j.compbiomed.2019.103596_bib59
  article-title: Estimating attributes: analysis and extensions of RELIEF
– volume: 102
  start-page: 358
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103596_bib24
  article-title: Functional mapping of the magnocellular and parvocellular subdivisions of human LGN
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.07.019
– start-page: 129
  year: 2000
  ident: 10.1016/j.compbiomed.2019.103596_bib53
– volume: 42
  start-page: 323
  issue: 4
  year: 1979
  ident: 10.1016/j.compbiomed.2019.103596_bib14
  article-title: Visual and somatosensory evoked cortical potentials in multiple sclerosis
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.42.4.323
– volume: 26
  start-page: 2270
  issue: 12
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103596_bib40
  article-title: Noise-assisted multivariate EMD-based mean-phase coherence analysis to evaluate phase-synchrony dynamics in epilepsy patients
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2881606
– volume: 39
  start-page: 535
  issue: 6
  year: 2009
  ident: 10.1016/j.compbiomed.2019.103596_bib25
  article-title: The human magno and parvo systems and selective impairments of their functions
  publication-title: Neurosci. Behav. Physiol.
  doi: 10.1007/s11055-009-9161-3
– volume: 68
  start-page: 528
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103596_bib9
  article-title: Auditory evoked potentials and multiple sclerosis
  publication-title: Arq. Neuro. Psiquiatr.
  doi: 10.1590/S0004-282X2010000400010
– volume: 466
  start-page: 1291
  issue: 2117
  year: 2009
  ident: 10.1016/j.compbiomed.2019.103596_bib55
  article-title: Multivariate empirical mode decomposition
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 40
  start-page: 785
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103596_bib35
  article-title: Diagnosis of multiple sclerosis from EEG signals using nonlinear methods
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-017-0584-9
– volume: 41
  start-page: 1110
  issue: 12
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103596_bib47
  article-title: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2011.06.020
– volume: 14
  start-page: 988
  issue: 7
  year: 2008
  ident: 10.1016/j.compbiomed.2019.103596_bib64
  article-title: Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable
  publication-title: Mult. Scler. J.
  doi: 10.1177/1352458508088916
– volume: 19
  start-page: 366
  issue: 4
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103596_bib50
  article-title: Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2116805
– volume: 144
  start-page: 358
  issue: 3–4
  year: 2000
  ident: 10.1016/j.compbiomed.2019.103596_bib58
  article-title: Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/S0167-2789(00)00087-7
– volume: 1
  start-page: 151
  issue: 2
  year: 2006
  ident: 10.1016/j.compbiomed.2019.103596_bib45
  article-title: Phase synchrony and coherence analyses of EEG as tools to discriminate between children with and without attention deficit disorder
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2006.08.001
– volume: 12
  start-page: 406
  issue: 4
  year: 2004
  ident: 10.1016/j.compbiomed.2019.103596_bib46
  article-title: Phase synchronization for the recognition of mental tasks in a brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2004.838443
– volume: 98
  start-page: 261
  issue: 2
  year: 1975
  ident: 10.1016/j.compbiomed.2019.103596_bib17
  article-title: Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis
  publication-title: Brain: J. Neurol.
  doi: 10.1093/brain/98.2.261
– volume: 4
  start-page: 7567
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103596_bib32
  article-title: Multiple sclerosis detection based on biorthogonal wavelet transform, RBF kernel principal component analysis, and logistic regression
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2620996
– volume: 550
  start-page: 49
  issue: 1
  year: 1991
  ident: 10.1016/j.compbiomed.2019.103596_bib29
  article-title: Visual stimulation reduces EEG activity in man
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(91)90403-I
– volume: 20
  start-page: 705
  issue: 6
  year: 2005
  ident: 10.1016/j.compbiomed.2019.103596_bib3
  article-title: Modality-specific aspects of sustained and divided attentional performance in multiple sclerosis
  publication-title: Arch. Clin. Neuropsychol.
  doi: 10.1016/j.acn.2005.04.007
– volume: 4
  start-page: 216
  issue: 3
  year: 2000
  ident: 10.1016/j.compbiomed.2019.103596_bib22
  article-title: Detection of multiple sclerosis with visual evoked potentials-an unsupervised computational intelligence system
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/4233.870032
– volume: 243
  start-page: 39
  issue: 1–2
  year: 2006
  ident: 10.1016/j.compbiomed.2019.103596_bib8
  article-title: Fatigue in multiple sclerosis is related to disability, depression and quality of life
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2005.11.025
– volume: 344
  start-page: 424
  issue: 6182
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103596_bib65
  article-title: Neural mechanisms of object-based attention
  publication-title: Science
  doi: 10.1126/science.1247003
SSID ssj0004030
Score 2.359461
Snippet Despite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover, there has always been a...
Background and objectiveDespite the widespread prevalence of Multiple Sclerosis (MS), the study of brain interactions is still poorly understood. Moreover,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103596
SubjectTerms Algorithms
Automation
Bivariate analysis
Bivariate empirical mode decomposition
Brain
Brain research
Diagnosis
EEG
Electroencephalography
Evaluation
Fractals
Hilbert transformation
K-nearest neighbors algorithm
Mathematical analysis
Mean phase coherence
Medical diagnosis
Methods
Morphology
Multiple sclerosis
Nervous system
Noise
Pattern recognition
Pattern recognition systems
Phase coherence
Phase-synchrony
Reliability analysis
reliefF
Signal processing
Synchronism
Synchronization
Visual task
Visual tasks
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9QwEA7HPYgv4m9XTxnB13q9NEkbfJJjz0NYEfTg3kKTTrHqdRe7e3Av_gv-y8406S6CwoJvpc2UtElnvkm_byLEK1lhi7nxWd6EJlOmtZn3DXPcGeAXtcVRLrb4YM4v1PtLfXkgTictDNMqk--PPn301unMcXqbx6uuY40vpRKj8pJScqVZUa5UybsYvP65o3movIgyFPI33DqxeSLHi2nbUebOJC_LCnTN5fv_HqL-BUHHUHR2V9xJGBLexm7eEwfY3xe3Fukv-QPx6-MXik3ZcNMHLn17A7uS3rBsYT5_B0zboIkHBFlhkTiF8InuRj3qBmgiAY-OOMo1QIa-u6a0mpAp4NWqGwuLAG-jAw3y8yXuF0TZI9Rw3Q0barKuh28PxcXZ_PPpeZY2XsiC0nadGeMJxhAaIjCbVyHHQhc2UNodgpZemlBaxNq2Up5gkJg3yCtJla5L5a2v8-KROOyXPT4RgIHS3UaVecBWlbb1aEyoKA-tglaFrGainN61C6kqOW-O8d1N9LOvbjdKjkfJxVGaiZOt5SpW5tjDxk7D6SblKflKR-FjD9s3W9s_Zuie1kfT7HHJSwyO0BM5XF0ZPRMvt5fp--afNnWPyw21oeuaSxCVM_E4zrrt4xaS676XxdP_6tozcVvyIsJIRT8Sh-sfG3xOSGvtX4yf0m9vsCme
  priority: 102
  providerName: Elsevier
Title Phase-synchrony evaluation of EEG signals for Multiple Sclerosis diagnosis based on bivariate empirical mode decomposition during a visual task
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519304457
https://dx.doi.org/10.1016/j.compbiomed.2019.103596
https://www.ncbi.nlm.nih.gov/pubmed/32072973
https://www.proquest.com/docview/2417035865
https://www.proquest.com/docview/2358573487
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Health & Medical Collection (via ProQuest)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_uWhBfxG-rZ1nB12i6ySZZROSU9qrScqgHfVuyH8H6kVbTHtyL_4L_sjPZTfui0pdQSCY02cnOb3Z_8xuAp7xwlYszHcXW2CjNKhlpbYnjTgA_KaVry8Vm82x6kb5biMURzLtaGKJVdnNiO1HblaE18ucYadA5RZGJV-sfEXWNot3VroVGGVor2JetxNgx9DkpY_Wg_3o8P_-wr5SME1-UgrNPislR4PZ4xheRuH3RO1G-JNWjCxLz_3vA-hcgbQPT5CbcCIiSnXoXuAVHrr4N12Zhz_wO_D7_jJEqaq5qQ0K4V2wv8M1WFRuPzxiRONANGQJYNgsMQ_YR74b_aNkw6-l4-ItinmVoqJeXmGQjTmXu-3rZyowwaqrDrKPnC0ww5osgWckul80WL9mUzde7cDEZf3ozjUIbhsikQm6iLNMIahAbIbSNCxO7RCTSYBJujOCaZyaXzpWy4nzkDHexdbSuVIgyT7XUZZzcg169qt0DYM5g8mvTPDauSnNZaZdlpsCstDAiTXgxgLx718oEjXJqlfFNdWS0L2o_SopGSflRGsBoZ7n2Oh0H2MhuOFVXh4ozp8JgcoDti51twCoegxxofdJ5jwpzRqP2Hj6AJ7vT-LXTFk5Zu9UWr8HzggSJ8gHc9163e9yEkwp8njz8_80fwXVOawYt8_wEepufW_cYgdVGD-H42a8RHvNFjsdicjaE_unb99P5MHxHfwAVmClN
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKKwEviJuFAkaCx4jURxILVYhjy5Z2VxW0Ut_c-IhYjuxCdov2V_CP-G3MxM7uC6B96Vske6wkM57D_maGkKes8JVPM5OkzrpEZJVKjHGIcUcHn5fKt-liw1E2OBHvT-XpBvnd5cIgrLLTia2idhOLZ-TPwdKAcMoiky-n3xPsGoW3q10LjTK2VnC7bYmxmNhx4Bc_IYRrdvffAr-fMbbXP34zSGKXgcQKqWZJlhmw2WD6wXNLC5t6LrmyEGNaK5lhmc2V96WqGNvxlvnUeTw2KWSZC6NMmXJY9xLZElwoCP62XvdHRx9WmZkpD0kwoO0EBGMRSxQQZggaD0n2CDFTmP8usXnA3w3kvxzg1hDuXSfXogdLXwWRu0E2fH2TXB7GO_pb5NfRJ7CMSbOoLRbeXdBVQXE6qWi__44iaATEnoLDTIcR0Ug_wmrwRuOGugD_gye0sY4CoRmfQ1APfjH136bjtqwJxSY-1Hn8vog8oyHpkpb0fNzMYcqsbL7cJicXwpA7ZLOe1P4eod5CsO1EnlpfiVxVxmeZLSAKLqwUnBU9knf_WttYEx1bc3zVHfjts15xSSOXdOBSj-wsKaehLsgaNKpjp-7yXkFTazBea9C-WNJG3yj4PGtSb3fSo6OOavRqR_XIk-UwaBe8MiprP5nDHBiXWAAp75G7QeqWn8sZVp3P-f3_L_6YXBkcDw_14f7o4AG5yvC8okW9b5PN2Y-5fwhO3cw8ijuHkrOL3qx_ACi7YaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIU28IL5XGGAkeIyW2XEcCyGEWMvG6DQJJvXNxI4jykdbSDvUv4L_h7-Ou9hpXwD1ZW-R7LOS3Pk-7N_dATzlha99mtskrVyVZHmtE2srwriTgy9K7dt0seFpfnSevR3J0Rb87nJhCFbZ6cRWUVdTR2fk-2hpUDhlkcv9OsIizg4HL2ffE-ogRTetXTuNICInfvkTw7fmxfEh8voZ54P-h9dHSewwkLhM6nmS5xbtNZp99NrSwqVeSKEdxpfOSW557pT2vtQ15wfecZ9Wno5MClmqzGpbpgLXvQJXlRCa4IRqpNY5makI6S-o5zIMwyKKKGDLCC4e0usJXKYp811S24C_m8Z_ub6tCRzcgOvRd2WvgrDdhC0_uQU7w3g7fxt-nX1Cm5g0y4mjkrtLti4lzqY16_ffMIKLoMAzdJXZMGIZ2XtcDd9o3LAqAP_wiaxrxZDQji8wnEePmPlvs3Fb0IRR-x5Wefq-iDljId2Slexi3CxwyrxsvtyB80thx13YnkwnfheYdxhmV5lKna8zpWvr89wVGP8WTmaCFz1Q3b82LlZDp6YcX00He_ts1lwyxCUTuNSDgxXlLFQE2YBGd-w0XcYr6miDZmsD2ucr2ugVBW9nQ-q9TnpM1E6NWe-lHjxZDaNeocuicuKnC5yD45JKH6ke3AtSt_pcwanevBL3_7_4Y9jBLWreHZ-ePIBrnA4qWrj7HmzPfyz8Q_Tm5vZRu20YfLzsffoHgztfPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-synchrony+evaluation+of+EEG+signals+for+Multiple+Sclerosis+diagnosis+based+on+bivariate+empirical+mode+decomposition+during+a+visual+task&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Raeisi%2C+Khadijeh&rft.au=Mohebbi%2C+Maryam&rft.au=Khazaei%2C+Mohammad&rft.au=Seraji%2C+Masoud&rft.date=2020-02-01&rft.eissn=1879-0534&rft.volume=117&rft.spage=103596&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103596&rft_id=info%3Apmid%2F32072973&rft.externalDocID=32072973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon