Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites

The bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the cation composition is varied because the bromine-rich anion compositions with wide bandgaps are structurally unstable. Kim et al. show that by using phenethylammonium as a two-dim...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 368; no. 6487; pp. 155 - 160
Main Authors Kim, Daehan, Jung, Hee Joon, Park, Ik Jae, Larson, Bryon W., Dunfield, Sean P., Xiao, Chuanxiao, Kim, Jekyung, Tong, Jinhui, Boonmongkolras, Passarut, Ji, Su Geun, Zhang, Fei, Pae, Seong Ryul, Kim, Minkyu, Kang, Seok Beom, Dravid, Vinayak, Berry, Joseph J., Kim, Jin Young, Zhu, Kai, Kim, Dong Hoe, Shin, Byungha
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 10.04.2020
American Association for the Advancement of Science (AAAS)
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.aba3433

Cover

Abstract The bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the cation composition is varied because the bromine-rich anion compositions with wide bandgaps are structurally unstable. Kim et al. show that by using phenethylammonium as a two-dimensional additive, along with iodine and thiocyanate, bromine-rich perovskite films can be stabilized. A tandem silicon cell delivered >26% certified power conversion efficiency, and a perovskite device maintained 80% of its initial power conversion efficiency of >20% after 1000 hours under illumination. Science , this issue p. 155 Thiocyanate as a two-dimensional additive enhanced perovskite carrier mobility and stability in silicon tandem solar cells. Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.
AbstractList The bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the cation composition is varied because the bromine-rich anion compositions with wide bandgaps are structurally unstable. Kim et al. show that by using phenethylammonium as a two-dimensional additive, along with iodine and thiocyanate, bromine-rich perovskite films can be stabilized. A tandem silicon cell delivered >26% certified power conversion efficiency, and a perovskite device maintained 80% of its initial power conversion efficiency of >20% after 1000 hours under illumination. Science , this issue p. 155 Thiocyanate as a two-dimensional additive enhanced perovskite carrier mobility and stability in silicon tandem solar cells. Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.
Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.
Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.
Engineering perovskites with anionsThe bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the cation composition is varied because the bromine-rich anion compositions with wide bandgaps are structurally unstable. Kim et al. show that by using phenethylammonium as a two-dimensional additive, along with iodine and thiocyanate, bromine-rich perovskite films can be stabilized. A tandem silicon cell delivered >26% certified power conversion efficiency, and a perovskite device maintained 80% of its initial power conversion efficiency of >20% after 1000 hours under illumination.Science, this issue p. 155Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.
Author Kim, Dong Hoe
Kim, Minkyu
Shin, Byungha
Pae, Seong Ryul
Kim, Jekyung
Berry, Joseph J.
Zhu, Kai
Dunfield, Sean P.
Dravid, Vinayak
Tong, Jinhui
Park, Ik Jae
Ji, Su Geun
Zhang, Fei
Kang, Seok Beom
Jung, Hee Joon
Kim, Jin Young
Xiao, Chuanxiao
Kim, Daehan
Larson, Bryon W.
Boonmongkolras, Passarut
Author_xml – sequence: 1
  givenname: Daehan
  orcidid: 0000-0003-2359-1862
  surname: Kim
  fullname: Kim, Daehan
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
– sequence: 2
  givenname: Hee Joon
  orcidid: 0000-0001-7963-0897
  surname: Jung
  fullname: Jung, Hee Joon
  organization: Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
– sequence: 3
  givenname: Ik Jae
  orcidid: 0000-0002-3377-6249
  surname: Park
  fullname: Park, Ik Jae
  organization: Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
– sequence: 4
  givenname: Bryon W.
  orcidid: 0000-0002-0934-987X
  surname: Larson
  fullname: Larson, Bryon W.
  organization: National Renewable Energy Laboratory, Golden, CO 80401, USA
– sequence: 5
  givenname: Sean P.
  orcidid: 0000-0002-2855-4457
  surname: Dunfield
  fullname: Dunfield, Sean P.
  organization: National Renewable Energy Laboratory, Golden, CO 80401, USA., Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
– sequence: 6
  givenname: Chuanxiao
  surname: Xiao
  fullname: Xiao, Chuanxiao
  organization: National Renewable Energy Laboratory, Golden, CO 80401, USA
– sequence: 7
  givenname: Jekyung
  orcidid: 0000-0002-8250-5736
  surname: Kim
  fullname: Kim, Jekyung
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
– sequence: 8
  givenname: Jinhui
  orcidid: 0000-0002-8960-1747
  surname: Tong
  fullname: Tong, Jinhui
  organization: National Renewable Energy Laboratory, Golden, CO 80401, USA
– sequence: 9
  givenname: Passarut
  orcidid: 0000-0002-5081-7794
  surname: Boonmongkolras
  fullname: Boonmongkolras, Passarut
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
– sequence: 10
  givenname: Su Geun
  surname: Ji
  fullname: Ji, Su Geun
  organization: Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
– sequence: 11
  givenname: Fei
  orcidid: 0000-0002-3774-9520
  surname: Zhang
  fullname: Zhang, Fei
  organization: National Renewable Energy Laboratory, Golden, CO 80401, USA
– sequence: 12
  givenname: Seong Ryul
  orcidid: 0000-0002-4362-4011
  surname: Pae
  fullname: Pae, Seong Ryul
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
– sequence: 13
  givenname: Minkyu
  orcidid: 0000-0002-6401-9072
  surname: Kim
  fullname: Kim, Minkyu
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
– sequence: 14
  givenname: Seok Beom
  surname: Kang
  fullname: Kang, Seok Beom
  organization: Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
– sequence: 15
  givenname: Vinayak
  orcidid: 0000-0002-6007-3063
  surname: Dravid
  fullname: Dravid, Vinayak
  organization: Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
– sequence: 16
  givenname: Joseph J.
  orcidid: 0000-0003-3874-3582
  surname: Berry
  fullname: Berry, Joseph J.
  organization: National Renewable Energy Laboratory, Golden, CO 80401, USA., Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA., Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309, USA
– sequence: 17
  givenname: Jin Young
  orcidid: 0000-0001-7746-9972
  surname: Kim
  fullname: Kim, Jin Young
  organization: Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
– sequence: 18
  givenname: Kai
  orcidid: 0000-0003-0908-3909
  surname: Zhu
  fullname: Zhu, Kai
  organization: National Renewable Energy Laboratory, Golden, CO 80401, USA
– sequence: 19
  givenname: Dong Hoe
  orcidid: 0000-0001-8909-2076
  surname: Kim
  fullname: Kim, Dong Hoe
  organization: National Renewable Energy Laboratory, Golden, CO 80401, USA., Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
– sequence: 20
  givenname: Byungha
  orcidid: 0000-0001-6845-0305
  surname: Shin
  fullname: Shin, Byungha
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32217753$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1615092$$D View this record in Osti.gov
BookMark eNp1kb1PHDEQxa2IKBwHNR1akYYiC_bO2rcuEYIkEhINqVJY_pgjhj37sH0g_vt4dUcKpFSWZn7vye_NAdkLMSAhx4yeM9aJi2w9Bovn2mjoAT6RGaOSt7KjsEdmlIJoB7rg--Qg50dK607CF7IPXccWCw4z8vt6ufSTSfnW5KLNiE32o7cxNEUHh6vG4jjmBsO0c415a3TwMbQYHnxATHX26h22ptIPet2sMcWX_OQL5kPyeanHjEe7d05-3VzfX_1ob---_7y6vG1tz2VpuUEtpBikBA4DM1Qy11PjBHem045T2oO1KKmRTEoHGoSRtGeSDVJbCjAnp1vfmItXtZKC9k9NENAWxQTjVHYVOttC6xSfN5iLWvk8ZdMB4yarDoZqKcWCVfTrB_QxblKoESYKBB94_dKcnOyojVmhU-vkVzq9qfduK3CxBWyKOSdc_kMYVdP11O56ane9quAfFDWLLrXukrQf_6v7C2Zon-4
CitedBy_id crossref_primary_10_1002_adma_202105083
crossref_primary_10_1016_j_jechem_2021_04_003
crossref_primary_10_1016_j_cej_2023_144975
crossref_primary_10_1039_D1EE01206A
crossref_primary_10_1002_solr_202400172
crossref_primary_10_1002_adfm_202104868
crossref_primary_10_1002_adma_202407681
crossref_primary_10_1002_adfm_202400569
crossref_primary_10_1021_acsami_3c05333
crossref_primary_10_1039_D3EE03359G
crossref_primary_10_1002_adma_202102816
crossref_primary_10_1016_j_matt_2021_05_007
crossref_primary_10_1002_solr_202300331
crossref_primary_10_1007_s40820_023_01019_3
crossref_primary_10_1109_JPHOT_2021_3067703
crossref_primary_10_1016_j_colcom_2021_100563
crossref_primary_10_1002_adfm_202205557
crossref_primary_10_1039_D0EE02017F
crossref_primary_10_1016_j_mtcomm_2024_110028
crossref_primary_10_1039_D1SE01045J
crossref_primary_10_1039_D2TA07671C
crossref_primary_10_1016_j_joule_2020_11_020
crossref_primary_10_1016_j_joule_2021_05_013
crossref_primary_10_1002_adma_202201451
crossref_primary_10_56767_jfpe_2022_1_1_65
crossref_primary_10_1039_D0CP04426A
crossref_primary_10_1016_j_rser_2022_112939
crossref_primary_10_1021_acs_nanolett_1c03336
crossref_primary_10_1002_adma_202002196
crossref_primary_10_1021_accountsmr_0c00017
crossref_primary_10_1016_j_photonics_2023_101170
crossref_primary_10_1002_adma_202205809
crossref_primary_10_1002_aenm_202303135
crossref_primary_10_1007_s43630_023_00500_7
crossref_primary_10_1002_adma_202303139
crossref_primary_10_1021_acsami_1c06140
crossref_primary_10_1002_sstr_202100102
crossref_primary_10_1002_ange_202117303
crossref_primary_10_1021_acsenergylett_0c00763
crossref_primary_10_1016_j_cej_2022_134792
crossref_primary_10_1002_eem2_12639
crossref_primary_10_1021_acsnano_2c11615
crossref_primary_10_1039_D1CS00841B
crossref_primary_10_1002_aenm_202100520
crossref_primary_10_1002_adma_202109348
crossref_primary_10_1039_D3TA01749D
crossref_primary_10_1016_j_surfin_2023_102680
crossref_primary_10_1002_smll_202103887
crossref_primary_10_1002_aenm_202202404
crossref_primary_10_1002_adma_202201315
crossref_primary_10_1021_acsami_2c22179
crossref_primary_10_1016_j_cej_2024_158272
crossref_primary_10_1039_D0CS01316A
crossref_primary_10_1016_j_matt_2021_06_028
crossref_primary_10_1021_acsenergylett_1c02148
crossref_primary_10_1002_anie_202317972
crossref_primary_10_1021_acsami_1c00729
crossref_primary_10_1021_acsami_1c19587
crossref_primary_10_1016_j_solmat_2022_111868
crossref_primary_10_1002_eom2_12407
crossref_primary_10_23919_IEN_2024_0025
crossref_primary_10_1021_acsaem_1c04028
crossref_primary_10_1021_acsami_3c15594
crossref_primary_10_1021_acs_jpcc_1c08346
crossref_primary_10_1039_D0SE00774A
crossref_primary_10_1002_admt_202201006
crossref_primary_10_1002_adma_202404010
crossref_primary_10_1038_s41560_022_01096_5
crossref_primary_10_1002_ente_202000778
crossref_primary_10_1039_D0TC04935B
crossref_primary_10_1016_j_nanoen_2021_106608
crossref_primary_10_1002_ange_202110603
crossref_primary_10_1021_acs_chemmater_1c00848
crossref_primary_10_1002_solr_202200877
crossref_primary_10_1002_er_8243
crossref_primary_10_1016_j_nanoen_2020_105249
crossref_primary_10_1021_acsnano_0c06380
crossref_primary_10_1364_AOP_531166
crossref_primary_10_1016_j_egyr_2022_04_028
crossref_primary_10_1002_aenm_202003386
crossref_primary_10_1038_s41586_023_06667_4
crossref_primary_10_1557_mrs_2020_223
crossref_primary_10_1126_sciadv_adr2290
crossref_primary_10_1002_adma_202211284
crossref_primary_10_1002_smtd_202401045
crossref_primary_10_1002_solr_202300535
crossref_primary_10_1002_smtd_202300223
crossref_primary_10_1016_j_egyr_2021_12_038
crossref_primary_10_1021_acsenergylett_0c01445
crossref_primary_10_1134_S0018151X22050108
crossref_primary_10_1002_aenm_202404366
crossref_primary_10_1002_aenm_202101923
crossref_primary_10_1039_D2QM01147F
crossref_primary_10_1021_acsenergylett_3c00685
crossref_primary_10_1039_D2QM01341J
crossref_primary_10_1039_D3QI00714F
crossref_primary_10_1002_adma_202306568
crossref_primary_10_1002_adma_202405684
crossref_primary_10_1016_j_apcatb_2021_120217
crossref_primary_10_1021_acsmaterialslett_2c00675
crossref_primary_10_1002_smtd_202300432
crossref_primary_10_1016_j_energy_2023_128432
crossref_primary_10_1021_acs_jpcc_1c06086
crossref_primary_10_3390_nano13030533
crossref_primary_10_1021_acsenergylett_2c00780
crossref_primary_10_1002_anie_202110603
crossref_primary_10_1038_s41578_021_00331_x
crossref_primary_10_1016_j_isci_2022_104420
crossref_primary_10_1002_adfm_202208885
crossref_primary_10_1002_adfm_202419391
crossref_primary_10_1039_D1TA04527J
crossref_primary_10_1002_solr_202200793
crossref_primary_10_1016_j_heliyon_2024_e24689
crossref_primary_10_1007_s11426_024_2567_7
crossref_primary_10_1016_j_cinorg_2025_100100
crossref_primary_10_1088_1674_4926_43_5_052201
crossref_primary_10_1038_s41467_020_19237_3
crossref_primary_10_1021_acs_jpcc_3c08129
crossref_primary_10_1038_s41560_020_00687_4
crossref_primary_10_1039_D3EE02569A
crossref_primary_10_1002_ange_202319170
crossref_primary_10_1038_s41586_023_06610_7
crossref_primary_10_3390_nano13121886
crossref_primary_10_1016_j_nanoen_2024_109486
crossref_primary_10_1021_acs_jpcc_1c09739
crossref_primary_10_1002_adfm_202404402
crossref_primary_10_1002_adfm_202001904
crossref_primary_10_1021_acsenergylett_0c01350
crossref_primary_10_1002_aenm_202200632
crossref_primary_10_1002_pssr_202100119
crossref_primary_10_1021_acsenergylett_0c02445
crossref_primary_10_1002_ange_202317972
crossref_primary_10_1002_adfm_202300552
crossref_primary_10_3390_nano14110963
crossref_primary_10_1021_acsenergylett_5c00155
crossref_primary_10_1002_solr_202000793
crossref_primary_10_1016_j_nanoen_2022_107988
crossref_primary_10_1002_smll_202006145
crossref_primary_10_1016_j_nanoen_2024_109476
crossref_primary_10_1021_acsenergylett_2c00698
crossref_primary_10_1126_sciadv_add0377
crossref_primary_10_1016_j_joule_2021_11_003
crossref_primary_10_1002_aenm_202203911
crossref_primary_10_1002_adom_202001866
crossref_primary_10_1007_s12633_023_02466_8
crossref_primary_10_1016_j_nantod_2021_101155
crossref_primary_10_1016_j_solener_2023_02_003
crossref_primary_10_1021_acsami_4c13467
crossref_primary_10_1002_adfm_202109495
crossref_primary_10_1002_adfm_202311679
crossref_primary_10_1016_j_jechem_2021_03_038
crossref_primary_10_1186_s40580_023_00374_6
crossref_primary_10_1021_acsami_1c05447
crossref_primary_10_1016_j_nanoen_2021_106141
crossref_primary_10_3390_en16083519
crossref_primary_10_1002_pip_3354
crossref_primary_10_1016_j_cej_2022_139047
crossref_primary_10_1093_oxfmat_itaa007
crossref_primary_10_1021_acsenergylett_4c00285
crossref_primary_10_1126_science_abj1186
crossref_primary_10_1021_acsami_3c10075
crossref_primary_10_1002_solr_202300156
crossref_primary_10_1007_s10854_021_07023_w
crossref_primary_10_1002_adom_202201723
crossref_primary_10_1007_s12034_021_02625_w
crossref_primary_10_1016_j_nanoen_2021_106114
crossref_primary_10_3390_photonics7030047
crossref_primary_10_1063_5_0204758
crossref_primary_10_3390_nano12234326
crossref_primary_10_1021_acsnano_2c02876
crossref_primary_10_1039_D2MH00983H
crossref_primary_10_1039_D2TC03701G
crossref_primary_10_1016_j_mtchem_2022_101060
crossref_primary_10_1016_j_xcrp_2020_100208
crossref_primary_10_1039_D1TA05934C
crossref_primary_10_1021_acs_jpclett_4c03063
crossref_primary_10_1002_ente_202400998
crossref_primary_10_1021_jacs_4c10872
crossref_primary_10_1016_j_mtener_2023_101316
crossref_primary_10_1021_acsenergylett_4c00172
crossref_primary_10_1002_admi_202001482
crossref_primary_10_1039_D0MH00990C
crossref_primary_10_1039_D0MA00994F
crossref_primary_10_1007_s40820_021_00672_w
crossref_primary_10_1007_s43207_021_00117_5
crossref_primary_10_1016_j_xcrp_2020_100219
crossref_primary_10_1016_j_nanoen_2021_106219
crossref_primary_10_1021_acs_chemrev_0c00107
crossref_primary_10_7498_aps_69_20200822
crossref_primary_10_1002_adma_202311501
crossref_primary_10_1016_j_isci_2022_103750
crossref_primary_10_1002_adma_202100791
crossref_primary_10_1002_sus2_25
crossref_primary_10_1021_acsami_0c04577
crossref_primary_10_1021_acsami_0c12068
crossref_primary_10_1038_s41578_023_00560_2
crossref_primary_10_1021_acsami_2c03492
crossref_primary_10_1016_j_chempr_2021_11_004
crossref_primary_10_1039_D1CP03698J
crossref_primary_10_1016_j_xcrp_2020_100224
crossref_primary_10_1021_acsmaterialslett_3c00111
crossref_primary_10_1063_5_0097704
crossref_primary_10_1039_D1TC01536B
crossref_primary_10_1021_acsenergylett_4c00154
crossref_primary_10_1016_j_joule_2021_12_006
crossref_primary_10_1021_acsaem_1c01537
crossref_primary_10_1002_aenm_202302124
crossref_primary_10_1021_acsami_2c01191
crossref_primary_10_1007_s40843_022_2437_9
crossref_primary_10_1021_acsenergylett_3c02104
crossref_primary_10_1149_2162_8777_ac4d81
crossref_primary_10_1002_solr_202000408
crossref_primary_10_1103_PRXEnergy_1_023005
crossref_primary_10_1126_science_ado9104
crossref_primary_10_1186_s43593_022_00028_w
crossref_primary_10_2139_ssrn_4048940
crossref_primary_10_1021_acsenergylett_0c02105
crossref_primary_10_1016_j_jechem_2022_12_029
crossref_primary_10_1007_s43979_022_00003_x
crossref_primary_10_1002_anie_202214208
crossref_primary_10_1021_acsaem_1c00413
crossref_primary_10_1002_inf2_12431
crossref_primary_10_1021_acsaem_1c01988
crossref_primary_10_1088_1361_6528_ac33d5
crossref_primary_10_1016_j_ceramint_2023_07_167
crossref_primary_10_1016_j_joule_2022_08_006
crossref_primary_10_1002_anie_202415966
crossref_primary_10_1021_acsenergylett_1c01018
crossref_primary_10_1021_acsenergylett_1c01013
crossref_primary_10_1088_1674_1056_ac693d
crossref_primary_10_1039_D1NR06549A
crossref_primary_10_1002_smll_202105611
crossref_primary_10_1002_solr_202100295
crossref_primary_10_1038_s41560_023_01382_w
crossref_primary_10_1039_D4EE03045A
crossref_primary_10_1002_ange_202112074
crossref_primary_10_1002_solr_202200708
crossref_primary_10_1016_j_apcatb_2021_121045
crossref_primary_10_1016_j_egyr_2022_09_169
crossref_primary_10_1016_j_mtener_2021_100729
crossref_primary_10_1021_acs_jpcc_0c07063
crossref_primary_10_1088_2752_5724_acb838
crossref_primary_10_1016_j_matt_2021_09_021
crossref_primary_10_1016_j_optmat_2022_112848
crossref_primary_10_1039_D3TA01211E
crossref_primary_10_1002_anie_202112352
crossref_primary_10_1002_adma_202415757
crossref_primary_10_1002_aesr_202200133
crossref_primary_10_1002_adom_202100788
crossref_primary_10_1021_acsami_0c09651
crossref_primary_10_1002_advs_202413749
crossref_primary_10_1002_ange_202407151
crossref_primary_10_1039_D1QM01586A
crossref_primary_10_1002_solr_202201026
crossref_primary_10_1038_s41560_020_00725_1
crossref_primary_10_1039_D4TC02303J
crossref_primary_10_1016_j_eng_2021_06_009
crossref_primary_10_1016_j_tsf_2022_139460
crossref_primary_10_7498_aps_72_20222019
crossref_primary_10_1039_D0TA06033J
crossref_primary_10_1002_adma_202308370
crossref_primary_10_1016_j_cej_2024_156798
crossref_primary_10_1002_adma_202211806
crossref_primary_10_1021_acsenergylett_4c00110
crossref_primary_10_1039_D4EE01173B
crossref_primary_10_1021_acs_chemrev_4c00073
crossref_primary_10_1002_ange_202214208
crossref_primary_10_1002_smll_202208289
crossref_primary_10_1016_j_optmat_2024_115447
crossref_primary_10_1088_1674_4926_42_12_120203
crossref_primary_10_1039_D2EE02218D
crossref_primary_10_1016_j_spmi_2021_106811
crossref_primary_10_1002_solr_202400710
crossref_primary_10_1002_adfm_202213963
crossref_primary_10_1063_5_0027573
crossref_primary_10_1002_solr_202100899
crossref_primary_10_1016_j_nanoen_2024_110170
crossref_primary_10_1126_sciadv_adg0032
crossref_primary_10_1002_adfm_202107359
crossref_primary_10_1007_s11426_024_2115_y
crossref_primary_10_1002_aenm_202103236
crossref_primary_10_1109_JPHOTOV_2024_3483266
crossref_primary_10_1021_acs_chemrev_3c00214
crossref_primary_10_1039_D4CC05131A
crossref_primary_10_1002_eom2_12084
crossref_primary_10_1002_aenm_202102046
crossref_primary_10_1021_acsenergylett_2c02373
crossref_primary_10_1002_adma_202207883
crossref_primary_10_1007_s12209_024_00401_5
crossref_primary_10_1016_j_cej_2024_158954
crossref_primary_10_1002_cssc_202000953
crossref_primary_10_3390_nano11030750
crossref_primary_10_1002_adfm_202003476
crossref_primary_10_1016_j_joule_2023_04_009
crossref_primary_10_1186_s40580_023_00371_9
crossref_primary_10_3390_nano11010088
crossref_primary_10_1002_aenm_202302983
crossref_primary_10_1038_s41586_021_03406_5
crossref_primary_10_1002_anie_202407151
crossref_primary_10_1039_D3TA01496G
crossref_primary_10_1002_aenm_202200713
crossref_primary_10_1039_D2TA01470J
crossref_primary_10_1016_j_nantod_2022_101503
crossref_primary_10_1039_D3TA07152A
crossref_primary_10_1002_aenm_202400204
crossref_primary_10_1038_s41467_024_45228_9
crossref_primary_10_1021_acsenergylett_1c01649
crossref_primary_10_1002_advs_202104938
crossref_primary_10_1039_D2TA08966A
crossref_primary_10_1002_solr_202100244
crossref_primary_10_1038_s41578_024_00678_x
crossref_primary_10_1038_s41467_023_37492_y
crossref_primary_10_1016_j_trechm_2022_08_009
crossref_primary_10_1021_acsami_2c10928
crossref_primary_10_1007_s12274_023_5403_x
crossref_primary_10_1038_s41560_022_01046_1
crossref_primary_10_1002_adfm_202415331
crossref_primary_10_1021_acsapm_1c00891
crossref_primary_10_1002_marc_202100305
crossref_primary_10_1007_s40820_023_01090_w
crossref_primary_10_1126_science_abh3884
crossref_primary_10_1002_cey2_321
crossref_primary_10_1002_eem2_12489
crossref_primary_10_1002_adma_202008134
crossref_primary_10_1016_j_apcatb_2022_121765
crossref_primary_10_1021_acs_jpclett_2c00233
crossref_primary_10_1088_2515_7655_ab9eab
crossref_primary_10_1002_EXP_20220029
crossref_primary_10_1039_D0QM01085E
crossref_primary_10_1016_j_xcrp_2023_101726
crossref_primary_10_1088_2053_1591_acdec8
crossref_primary_10_1021_acsenergylett_1c00213
crossref_primary_10_1002_solr_202300074
crossref_primary_10_1016_j_solener_2020_05_042
crossref_primary_10_1038_s43246_022_00291_x
crossref_primary_10_1039_D0TC02354J
crossref_primary_10_1039_D4TA06871H
crossref_primary_10_3390_en15030870
crossref_primary_10_1016_j_joule_2024_05_019
crossref_primary_10_34133_research_0196
crossref_primary_10_1016_j_rser_2022_112553
crossref_primary_10_1016_j_jmst_2022_06_055
crossref_primary_10_1016_j_solener_2024_112366
crossref_primary_10_1007_s13391_022_00340_0
crossref_primary_10_1038_s41467_023_41149_1
crossref_primary_10_1039_D0EE04013D
crossref_primary_10_1021_acsami_2c20752
crossref_primary_10_1002_solr_202301059
crossref_primary_10_1063_5_0061483
crossref_primary_10_1007_s00706_023_03103_1
crossref_primary_10_1016_j_jechem_2021_07_031
crossref_primary_10_1002_ange_202112352
crossref_primary_10_1007_s13391_020_00259_4
crossref_primary_10_1016_j_orgel_2022_106699
crossref_primary_10_1126_science_abd4016
crossref_primary_10_1016_j_joule_2021_03_015
crossref_primary_10_1038_s41566_022_01033_8
crossref_primary_10_1039_D2NR05475B
crossref_primary_10_1002_solr_202400454
crossref_primary_10_1021_acssuschemeng_0c06452
crossref_primary_10_1002_adsu_202300188
crossref_primary_10_1002_adfm_202103252
crossref_primary_10_1021_acsami_2c02811
crossref_primary_10_1126_science_adf0194
crossref_primary_10_1016_j_joule_2023_11_018
crossref_primary_10_1140_epjp_s13360_024_05548_7
crossref_primary_10_1002_adma_202311025
crossref_primary_10_1021_acsaem_2c03438
crossref_primary_10_1002_aenm_202102526
crossref_primary_10_1021_acsaem_1c02496
crossref_primary_10_1002_aenm_202203230
crossref_primary_10_1021_acs_nanolett_3c01962
crossref_primary_10_1002_aesr_202100143
crossref_primary_10_1002_anie_202319170
crossref_primary_10_1002_anie_202112074
crossref_primary_10_1002_adma_202305946
crossref_primary_10_1038_s41563_024_02073_x
crossref_primary_10_1007_s40820_024_01406_4
crossref_primary_10_1016_j_xcrp_2022_101076
crossref_primary_10_1002_aenm_202202029
crossref_primary_10_1016_j_ccr_2023_215031
crossref_primary_10_1002_adfm_202301196
crossref_primary_10_1021_acsami_1c21479
crossref_primary_10_1016_j_jlumin_2021_118093
crossref_primary_10_1002_ange_202415966
crossref_primary_10_1021_acsaem_3c00146
crossref_primary_10_1016_j_matt_2022_09_015
crossref_primary_10_1016_j_synthmet_2022_117092
crossref_primary_10_1002_adma_202003312
crossref_primary_10_1002_solr_202400433
crossref_primary_10_1021_jacs_4c03669
crossref_primary_10_1007_s11426_022_1426_x
crossref_primary_10_1007_s11433_022_1928_8
crossref_primary_10_1002_cphc_202300642
crossref_primary_10_1021_acsaelm_1c01088
crossref_primary_10_3390_nano12010112
crossref_primary_10_1002_adma_202002228
crossref_primary_10_1007_s11426_023_1966_1
crossref_primary_10_1002_aenm_202101460
crossref_primary_10_1007_s40820_023_01040_6
crossref_primary_10_1021_acs_chemrev_9b00780
crossref_primary_10_55529_ijrise_31_50_65
crossref_primary_10_1016_j_solmat_2021_111299
crossref_primary_10_1002_adfm_202104251
crossref_primary_10_1016_j_optlastec_2022_108924
crossref_primary_10_1126_science_abn8910
crossref_primary_10_1002_eem2_12118
crossref_primary_10_1021_acs_energyfuels_2c04316
crossref_primary_10_1002_anie_202117303
crossref_primary_10_1002_adfm_202210502
crossref_primary_10_1016_j_jlumin_2021_117902
crossref_primary_10_1039_D1SE00013F
crossref_primary_10_1007_s12598_024_02736_3
crossref_primary_10_1039_D1TA05699A
crossref_primary_10_1007_s11664_023_10533_4
crossref_primary_10_1016_j_joule_2022_05_014
crossref_primary_10_1002_advs_202105085
crossref_primary_10_1016_j_joule_2022_05_013
crossref_primary_10_1002_solr_202200345
crossref_primary_10_1021_acsenergylett_3c01952
crossref_primary_10_1002_adma_202002202
crossref_primary_10_3390_coatings10121163
crossref_primary_10_1002_aenm_202400050
crossref_primary_10_1021_acs_jpcc_0c06733
crossref_primary_10_1002_ifm2_18
crossref_primary_10_1039_D2EE04007G
crossref_primary_10_1021_acsami_3c11658
crossref_primary_10_1016_j_scib_2020_11_006
crossref_primary_10_1002_ente_202300832
crossref_primary_10_1016_j_scib_2020_11_004
crossref_primary_10_1007_s10854_023_10001_z
crossref_primary_10_1002_adfm_202302375
crossref_primary_10_1016_j_solener_2022_11_014
crossref_primary_10_1364_PRJ_413229
crossref_primary_10_1016_j_joule_2022_10_007
crossref_primary_10_1021_acsami_0c09571
crossref_primary_10_1002_solr_202100506
crossref_primary_10_1002_adfm_202009164
crossref_primary_10_1039_D2SE00029F
crossref_primary_10_1016_j_mtphys_2023_101187
crossref_primary_10_1038_s41565_022_01228_8
crossref_primary_10_1021_acsenergylett_0c01728
crossref_primary_10_1002_adfm_202010269
crossref_primary_10_1007_s11433_022_1959_4
crossref_primary_10_1016_j_mtener_2024_101593
crossref_primary_10_1002_adma_202106402
crossref_primary_10_1088_1361_6528_abeb37
crossref_primary_10_1002_admi_202000957
crossref_primary_10_1002_aenm_202402491
crossref_primary_10_1021_acs_jpcc_2c04957
crossref_primary_10_1002_adom_202101765
crossref_primary_10_1016_j_xinn_2022_100363
crossref_primary_10_1039_D3TA02209A
crossref_primary_10_1016_j_jechem_2022_01_013
crossref_primary_10_12677_app_2024_1412081
crossref_primary_10_1007_s12209_022_00316_z
crossref_primary_10_1021_acsami_1c02824
crossref_primary_10_1021_acsenergylett_1c01707
crossref_primary_10_1002_adfm_202312037
crossref_primary_10_1515_nanoph_2021_0034
crossref_primary_10_1039_D4TA04151H
crossref_primary_10_3390_ma14216569
crossref_primary_10_1016_j_physb_2020_412703
crossref_primary_10_1021_acsenergylett_2c01800
crossref_primary_10_1021_acsnano_1c08726
crossref_primary_10_1002_adma_202307701
crossref_primary_10_1002_adma_202106540
crossref_primary_10_1038_s41566_021_00809_8
crossref_primary_10_1002_sstr_202200338
crossref_primary_10_1002_adfm_202417493
crossref_primary_10_1002_adfm_202010368
crossref_primary_10_3390_nano14020202
crossref_primary_10_1002_aenm_202401029
crossref_primary_10_3390_nano13061084
Cites_doi 10.1016/j.joule.2019.04.012
10.1002/aenm.201701609
10.1126/science.aav7911
10.1126/science.aat8235
10.1038/s41560-017-0067-y
10.1038/nenergy.2017.9
10.1016/j.joule.2018.11.017
10.1016/j.jcrysgro.2017.03.006
10.1039/C8EE00689J
10.1016/j.ultramic.2018.06.003
10.1021/acs.jpcc.6b08744
10.1038/s41586-019-1632-2
10.1126/science.aaz5074
10.1039/C8EE02469C
10.1038/s41467-018-05454-4
10.1039/C8EE00995C
10.1039/C4SC03141E
10.1038/nmat2957
10.1038/s41563-018-0115-4
10.1038/s41566-019-0398-2
10.1002/adma.201606831
10.1126/sciadv.aaw2543
10.1021/acsami.7b14499
10.1002/aenm.201502104
10.1021/acs.jpclett.5b02686
10.1039/C8EE01136B
10.1088/1361-6463/aa9559
10.1016/j.joule.2018.10.003
10.1063/1.4914179
10.1126/sciadv.aau9711
10.1038/nmat3393
10.1038/nenergy.2017.135
10.1002/aenm.201803241
10.1002/aenm.201702498
10.1002/adma.201802769
10.1021/acsenergylett.8b01201
10.1038/s41560-018-0190-4
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
OTOTI
DOI 10.1126/science.aba3433
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 160
ExternalDocumentID 1615092
32217753
10_1126_science_aba3433
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
0B8
63O
6XO
ABPTK
ABQIS
AEXZC
AFUVZ
ANJGP
B-7
ESX
IGG
OTOTI
PK8
PQEST
RHF
UMP
VQA
XFK
ZA5
ID FETCH-LOGICAL-c459t-5bea69689935381b091d40bd65db2ad50043cce90b9199d3a36b90419189ac033
ISSN 0036-8075
1095-9203
IngestDate Fri May 19 01:08:02 EDT 2023
Sat Sep 27 23:56:48 EDT 2025
Fri Jul 25 19:04:13 EDT 2025
Thu Apr 03 07:09:51 EDT 2025
Thu Apr 24 23:02:36 EDT 2025
Tue Jul 01 01:35:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6487
Language English
License Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-5bea69689935381b091d40bd65db2ad50043cce90b9199d3a36b90419189ac033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
AC36-08GO28308
ORCID 0000-0002-6007-3063
0000-0001-6845-0305
0000-0001-7963-0897
0000-0002-8250-5736
0000-0002-6401-9072
0000-0001-8909-2076
0000-0001-7746-9972
0000-0002-5081-7794
0000-0003-2359-1862
0000-0002-8960-1747
0000-0002-3774-9520
0000-0003-3874-3582
0000-0002-0934-987X
0000-0002-4362-4011
0000-0003-0908-3909
0000-0002-2855-4457
0000-0002-3377-6249
0000000228554457
0000000338743582
0000000282505736
0000000250817794
0000000264019072
0000000189092076
0000000243624011
0000000323591862
0000000260073063
0000000237749520
0000000309083909
0000000168450305
000000020934987X
0000000289601747
0000000177469972
0000000233776249
0000000179630897
OpenAccessLink https://www.osti.gov/biblio/1615092
PMID 32217753
PQID 2383658504
PQPubID 1256
PageCount 6
ParticipantIDs osti_scitechconnect_1615092
proquest_miscellaneous_2384199671
proquest_journals_2383658504
pubmed_primary_32217753
crossref_primary_10_1126_science_aba3433
crossref_citationtrail_10_1126_science_aba3433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-10
PublicationDateYYYYMMDD 2020-04-10
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2020
Publisher The American Association for the Advancement of Science
American Association for the Advancement of Science (AAAS)
Publisher_xml – name: The American Association for the Advancement of Science
– name: American Association for the Advancement of Science (AAAS)
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_18_2
  doi: 10.1016/j.joule.2019.04.012
– ident: e_1_3_2_36_2
  doi: 10.1002/aenm.201701609
– ident: e_1_3_2_3_2
  doi: 10.1126/science.aav7911
– ident: e_1_3_2_6_2
  doi: 10.1126/science.aat8235
– ident: e_1_3_2_19_2
  doi: 10.1038/s41560-017-0067-y
– ident: e_1_3_2_35_2
  doi: 10.1038/nenergy.2017.9
– ident: e_1_3_2_32_2
  doi: 10.1016/j.joule.2018.11.017
– ident: e_1_3_2_31_2
  doi: 10.1016/j.jcrysgro.2017.03.006
– ident: e_1_3_2_37_2
  doi: 10.1039/C8EE00689J
– ident: e_1_3_2_33_2
  doi: 10.1016/j.ultramic.2018.06.003
– ident: e_1_3_2_4_2
  doi: 10.1021/acs.jpcc.6b08744
– ident: e_1_3_2_30_2
  doi: 10.1038/s41586-019-1632-2
– ident: e_1_3_2_20_2
  doi: 10.1126/science.aaz5074
– ident: e_1_3_2_11_2
  doi: 10.1039/C8EE02469C
– ident: e_1_3_2_16_2
  doi: 10.1038/s41467-018-05454-4
– ident: e_1_3_2_17_2
  doi: 10.1039/C8EE00995C
– ident: e_1_3_2_13_2
  doi: 10.1039/C4SC03141E
– ident: e_1_3_2_24_2
  doi: 10.1038/nmat2957
– ident: e_1_3_2_8_2
  doi: 10.1038/s41563-018-0115-4
– ident: e_1_3_2_25_2
  doi: 10.1038/s41566-019-0398-2
– ident: e_1_3_2_29_2
  doi: 10.1002/adma.201606831
– ident: e_1_3_2_15_2
  doi: 10.1126/sciadv.aaw2543
– ident: e_1_3_2_5_2
  doi: 10.1021/acsami.7b14499
– ident: e_1_3_2_26_2
  doi: 10.1002/aenm.201502104
– ident: e_1_3_2_34_2
  doi: 10.1021/acs.jpclett.5b02686
– ident: e_1_3_2_27_2
  doi: 10.1039/C8EE01136B
– ident: e_1_3_2_28_2
  doi: 10.1088/1361-6463/aa9559
– ident: e_1_3_2_9_2
  doi: 10.1016/j.joule.2018.10.003
– ident: e_1_3_2_7_2
  doi: 10.1063/1.4914179
– ident: e_1_3_2_10_2
  doi: 10.1126/sciadv.aau9711
– ident: e_1_3_2_22_2
  doi: 10.1038/nmat3393
– ident: e_1_3_2_14_2
  doi: 10.1038/nenergy.2017.135
– ident: e_1_3_2_39_2
  doi: 10.1002/aenm.201803241
– ident: e_1_3_2_21_2
  doi: 10.1002/aenm.201702498
– ident: e_1_3_2_23_2
  doi: 10.1002/adma.201802769
– ident: e_1_3_2_38_2
  doi: 10.1021/acsenergylett.8b01201
– ident: e_1_3_2_12_2
  doi: 10.1038/s41560-018-0190-4
– ident: e_1_3_2_2_2
SSID ssj0009593
Score 2.7134137
Snippet The bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the cation composition is varied because...
Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a...
Engineering perovskites with anionsThe bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 155
SubjectTerms Anions
Bromine
Efficiency
Electrical properties
Illumination
Iodides
Iodine
Photovoltaic cells
Silicon
Solar cells
Title Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites
URI https://www.ncbi.nlm.nih.gov/pubmed/32217753
https://www.proquest.com/docview/2383658504
https://www.proquest.com/docview/2384199671
https://www.osti.gov/biblio/1615092
Volume 368
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJyReEBtfZQMZiYehksqO7Xw8tmxTqQDxsIlJPES24wJipFPTIpUfxu_jOnZTb1Bp8BJVqZNauaf3Hjv3novQiyxTQk-JjGwvqogLSSOVKRKpNDMZYWWWUFvg_O59Mj7jk3Nx3un8CrKWlgs10D__WlfyP1aFc2BXWyX7D5Ztbwon4DPYF45gYTjeyMbHjf6DcdIBQPNsFVT99QKMW_XtFoH53rcb83XfNBVSDdeUFUwnMl6GsEk-L02kYPRneWlVjGc_arujW4e0de0BgI62r3gCw7a5ikOXUbBOMPCXBbsNvnnzkTRfNrCceIczNrZMbZMX8MHncb_51p_IFoBv5dxXiY3mK_jtj4Nw5yK2aaSRz2H13tiLIbtY5Bwwsb0jY8JCD82SLIBiwn2Idi6XChFEb-q6E_wZGIJWlmYglWTcCXBcleC-FhrbhMVmqRQnhb9B4W9wC-3EKXC2LtoZjo5GJ1vlnr2oVFCutZ7DFT7UnYFf377WaTjP6T101y9W8NAhbxd1TLWHbrv2pas9tOvtW-NDr17-8j761ILyFXaQxB6S2EESN5DEHpJYrfB1SOIQkjiA5AN0dnJ8-noc-Q4ekeYiX0RCGWnVl4AEQ2ClCshpyYkqE1GqWJbCvofW2uRE5TTPSyZZonLCaU6zXGrC2EPUrWaVeYwwUFlFJNfAlzm4FJFP07ikZMrKWOiUkB4arJ9job28ve2yclFssV0PHbYXXDpll-1D961h7GmrrKxtCppeFHaxRPK4hw7W9iq8c6gLYMIMyL0gvIeet1-D67bPWFZmtmzGcFsEkNIeeuTs3M4E4ixNU8Ge3HyW--jO5l92gLqL-dI8Bca8UM88PH8DsMPDag
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient%2C+stable+silicon+tandem+cells+enabled+by+anion-engineered+wide-bandgap+perovskites&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Kim%2C+Daehan&rft.au=Jung%2C+Hee+Joon&rft.au=Park%2C+Ik+Jae&rft.au=Larson%2C+Bryon+W.&rft.date=2020-04-10&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=368&rft.issue=6487&rft.spage=155&rft.epage=160&rft_id=info:doi/10.1126%2Fscience.aba3433&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aba3433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon