Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites
The bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the cation composition is varied because the bromine-rich anion compositions with wide bandgaps are structurally unstable. Kim et al. show that by using phenethylammonium as a two-dim...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 368; no. 6487; pp. 155 - 160 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
10.04.2020
American Association for the Advancement of Science (AAAS) |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.aba3433 |
Cover
Abstract | The bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the cation composition is varied because the bromine-rich anion compositions with wide bandgaps are structurally unstable. Kim
et al.
show that by using phenethylammonium as a two-dimensional additive, along with iodine and thiocyanate, bromine-rich perovskite films can be stabilized. A tandem silicon cell delivered >26% certified power conversion efficiency, and a perovskite device maintained 80% of its initial power conversion efficiency of >20% after 1000 hours under illumination.
Science
, this issue p.
155
Thiocyanate as a two-dimensional additive enhanced perovskite carrier mobility and stability in silicon tandem solar cells.
Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells. |
---|---|
AbstractList | The bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the cation composition is varied because the bromine-rich anion compositions with wide bandgaps are structurally unstable. Kim
et al.
show that by using phenethylammonium as a two-dimensional additive, along with iodine and thiocyanate, bromine-rich perovskite films can be stabilized. A tandem silicon cell delivered >26% certified power conversion efficiency, and a perovskite device maintained 80% of its initial power conversion efficiency of >20% after 1000 hours under illumination.
Science
, this issue p.
155
Thiocyanate as a two-dimensional additive enhanced perovskite carrier mobility and stability in silicon tandem solar cells.
Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells. Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells. Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells. Engineering perovskites with anionsThe bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the cation composition is varied because the bromine-rich anion compositions with wide bandgaps are structurally unstable. Kim et al. show that by using phenethylammonium as a two-dimensional additive, along with iodine and thiocyanate, bromine-rich perovskite films can be stabilized. A tandem silicon cell delivered >26% certified power conversion efficiency, and a perovskite device maintained 80% of its initial power conversion efficiency of >20% after 1000 hours under illumination.Science, this issue p. 155Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells. |
Author | Kim, Dong Hoe Kim, Minkyu Shin, Byungha Pae, Seong Ryul Kim, Jekyung Berry, Joseph J. Zhu, Kai Dunfield, Sean P. Dravid, Vinayak Tong, Jinhui Park, Ik Jae Ji, Su Geun Zhang, Fei Kang, Seok Beom Jung, Hee Joon Kim, Jin Young Xiao, Chuanxiao Kim, Daehan Larson, Bryon W. Boonmongkolras, Passarut |
Author_xml | – sequence: 1 givenname: Daehan orcidid: 0000-0003-2359-1862 surname: Kim fullname: Kim, Daehan organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea – sequence: 2 givenname: Hee Joon orcidid: 0000-0001-7963-0897 surname: Jung fullname: Jung, Hee Joon organization: Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA – sequence: 3 givenname: Ik Jae orcidid: 0000-0002-3377-6249 surname: Park fullname: Park, Ik Jae organization: Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea – sequence: 4 givenname: Bryon W. orcidid: 0000-0002-0934-987X surname: Larson fullname: Larson, Bryon W. organization: National Renewable Energy Laboratory, Golden, CO 80401, USA – sequence: 5 givenname: Sean P. orcidid: 0000-0002-2855-4457 surname: Dunfield fullname: Dunfield, Sean P. organization: National Renewable Energy Laboratory, Golden, CO 80401, USA., Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA – sequence: 6 givenname: Chuanxiao surname: Xiao fullname: Xiao, Chuanxiao organization: National Renewable Energy Laboratory, Golden, CO 80401, USA – sequence: 7 givenname: Jekyung orcidid: 0000-0002-8250-5736 surname: Kim fullname: Kim, Jekyung organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea – sequence: 8 givenname: Jinhui orcidid: 0000-0002-8960-1747 surname: Tong fullname: Tong, Jinhui organization: National Renewable Energy Laboratory, Golden, CO 80401, USA – sequence: 9 givenname: Passarut orcidid: 0000-0002-5081-7794 surname: Boonmongkolras fullname: Boonmongkolras, Passarut organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea – sequence: 10 givenname: Su Geun surname: Ji fullname: Ji, Su Geun organization: Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea – sequence: 11 givenname: Fei orcidid: 0000-0002-3774-9520 surname: Zhang fullname: Zhang, Fei organization: National Renewable Energy Laboratory, Golden, CO 80401, USA – sequence: 12 givenname: Seong Ryul orcidid: 0000-0002-4362-4011 surname: Pae fullname: Pae, Seong Ryul organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea – sequence: 13 givenname: Minkyu orcidid: 0000-0002-6401-9072 surname: Kim fullname: Kim, Minkyu organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea – sequence: 14 givenname: Seok Beom surname: Kang fullname: Kang, Seok Beom organization: Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea – sequence: 15 givenname: Vinayak orcidid: 0000-0002-6007-3063 surname: Dravid fullname: Dravid, Vinayak organization: Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA – sequence: 16 givenname: Joseph J. orcidid: 0000-0003-3874-3582 surname: Berry fullname: Berry, Joseph J. organization: National Renewable Energy Laboratory, Golden, CO 80401, USA., Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA., Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309, USA – sequence: 17 givenname: Jin Young orcidid: 0000-0001-7746-9972 surname: Kim fullname: Kim, Jin Young organization: Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea – sequence: 18 givenname: Kai orcidid: 0000-0003-0908-3909 surname: Zhu fullname: Zhu, Kai organization: National Renewable Energy Laboratory, Golden, CO 80401, USA – sequence: 19 givenname: Dong Hoe orcidid: 0000-0001-8909-2076 surname: Kim fullname: Kim, Dong Hoe organization: National Renewable Energy Laboratory, Golden, CO 80401, USA., Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea – sequence: 20 givenname: Byungha orcidid: 0000-0001-6845-0305 surname: Shin fullname: Shin, Byungha organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32217753$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1615092$$D View this record in Osti.gov |
BookMark | eNp1kb1PHDEQxa2IKBwHNR1akYYiC_bO2rcuEYIkEhINqVJY_pgjhj37sH0g_vt4dUcKpFSWZn7vye_NAdkLMSAhx4yeM9aJi2w9Bovn2mjoAT6RGaOSt7KjsEdmlIJoB7rg--Qg50dK607CF7IPXccWCw4z8vt6ufSTSfnW5KLNiE32o7cxNEUHh6vG4jjmBsO0c415a3TwMbQYHnxATHX26h22ptIPet2sMcWX_OQL5kPyeanHjEe7d05-3VzfX_1ob---_7y6vG1tz2VpuUEtpBikBA4DM1Qy11PjBHem045T2oO1KKmRTEoHGoSRtGeSDVJbCjAnp1vfmItXtZKC9k9NENAWxQTjVHYVOttC6xSfN5iLWvk8ZdMB4yarDoZqKcWCVfTrB_QxblKoESYKBB94_dKcnOyojVmhU-vkVzq9qfduK3CxBWyKOSdc_kMYVdP11O56ane9quAfFDWLLrXukrQf_6v7C2Zon-4 |
CitedBy_id | crossref_primary_10_1002_adma_202105083 crossref_primary_10_1016_j_jechem_2021_04_003 crossref_primary_10_1016_j_cej_2023_144975 crossref_primary_10_1039_D1EE01206A crossref_primary_10_1002_solr_202400172 crossref_primary_10_1002_adfm_202104868 crossref_primary_10_1002_adma_202407681 crossref_primary_10_1002_adfm_202400569 crossref_primary_10_1021_acsami_3c05333 crossref_primary_10_1039_D3EE03359G crossref_primary_10_1002_adma_202102816 crossref_primary_10_1016_j_matt_2021_05_007 crossref_primary_10_1002_solr_202300331 crossref_primary_10_1007_s40820_023_01019_3 crossref_primary_10_1109_JPHOT_2021_3067703 crossref_primary_10_1016_j_colcom_2021_100563 crossref_primary_10_1002_adfm_202205557 crossref_primary_10_1039_D0EE02017F crossref_primary_10_1016_j_mtcomm_2024_110028 crossref_primary_10_1039_D1SE01045J crossref_primary_10_1039_D2TA07671C crossref_primary_10_1016_j_joule_2020_11_020 crossref_primary_10_1016_j_joule_2021_05_013 crossref_primary_10_1002_adma_202201451 crossref_primary_10_56767_jfpe_2022_1_1_65 crossref_primary_10_1039_D0CP04426A crossref_primary_10_1016_j_rser_2022_112939 crossref_primary_10_1021_acs_nanolett_1c03336 crossref_primary_10_1002_adma_202002196 crossref_primary_10_1021_accountsmr_0c00017 crossref_primary_10_1016_j_photonics_2023_101170 crossref_primary_10_1002_adma_202205809 crossref_primary_10_1002_aenm_202303135 crossref_primary_10_1007_s43630_023_00500_7 crossref_primary_10_1002_adma_202303139 crossref_primary_10_1021_acsami_1c06140 crossref_primary_10_1002_sstr_202100102 crossref_primary_10_1002_ange_202117303 crossref_primary_10_1021_acsenergylett_0c00763 crossref_primary_10_1016_j_cej_2022_134792 crossref_primary_10_1002_eem2_12639 crossref_primary_10_1021_acsnano_2c11615 crossref_primary_10_1039_D1CS00841B crossref_primary_10_1002_aenm_202100520 crossref_primary_10_1002_adma_202109348 crossref_primary_10_1039_D3TA01749D crossref_primary_10_1016_j_surfin_2023_102680 crossref_primary_10_1002_smll_202103887 crossref_primary_10_1002_aenm_202202404 crossref_primary_10_1002_adma_202201315 crossref_primary_10_1021_acsami_2c22179 crossref_primary_10_1016_j_cej_2024_158272 crossref_primary_10_1039_D0CS01316A crossref_primary_10_1016_j_matt_2021_06_028 crossref_primary_10_1021_acsenergylett_1c02148 crossref_primary_10_1002_anie_202317972 crossref_primary_10_1021_acsami_1c00729 crossref_primary_10_1021_acsami_1c19587 crossref_primary_10_1016_j_solmat_2022_111868 crossref_primary_10_1002_eom2_12407 crossref_primary_10_23919_IEN_2024_0025 crossref_primary_10_1021_acsaem_1c04028 crossref_primary_10_1021_acsami_3c15594 crossref_primary_10_1021_acs_jpcc_1c08346 crossref_primary_10_1039_D0SE00774A crossref_primary_10_1002_admt_202201006 crossref_primary_10_1002_adma_202404010 crossref_primary_10_1038_s41560_022_01096_5 crossref_primary_10_1002_ente_202000778 crossref_primary_10_1039_D0TC04935B crossref_primary_10_1016_j_nanoen_2021_106608 crossref_primary_10_1002_ange_202110603 crossref_primary_10_1021_acs_chemmater_1c00848 crossref_primary_10_1002_solr_202200877 crossref_primary_10_1002_er_8243 crossref_primary_10_1016_j_nanoen_2020_105249 crossref_primary_10_1021_acsnano_0c06380 crossref_primary_10_1364_AOP_531166 crossref_primary_10_1016_j_egyr_2022_04_028 crossref_primary_10_1002_aenm_202003386 crossref_primary_10_1038_s41586_023_06667_4 crossref_primary_10_1557_mrs_2020_223 crossref_primary_10_1126_sciadv_adr2290 crossref_primary_10_1002_adma_202211284 crossref_primary_10_1002_smtd_202401045 crossref_primary_10_1002_solr_202300535 crossref_primary_10_1002_smtd_202300223 crossref_primary_10_1016_j_egyr_2021_12_038 crossref_primary_10_1021_acsenergylett_0c01445 crossref_primary_10_1134_S0018151X22050108 crossref_primary_10_1002_aenm_202404366 crossref_primary_10_1002_aenm_202101923 crossref_primary_10_1039_D2QM01147F crossref_primary_10_1021_acsenergylett_3c00685 crossref_primary_10_1039_D2QM01341J crossref_primary_10_1039_D3QI00714F crossref_primary_10_1002_adma_202306568 crossref_primary_10_1002_adma_202405684 crossref_primary_10_1016_j_apcatb_2021_120217 crossref_primary_10_1021_acsmaterialslett_2c00675 crossref_primary_10_1002_smtd_202300432 crossref_primary_10_1016_j_energy_2023_128432 crossref_primary_10_1021_acs_jpcc_1c06086 crossref_primary_10_3390_nano13030533 crossref_primary_10_1021_acsenergylett_2c00780 crossref_primary_10_1002_anie_202110603 crossref_primary_10_1038_s41578_021_00331_x crossref_primary_10_1016_j_isci_2022_104420 crossref_primary_10_1002_adfm_202208885 crossref_primary_10_1002_adfm_202419391 crossref_primary_10_1039_D1TA04527J crossref_primary_10_1002_solr_202200793 crossref_primary_10_1016_j_heliyon_2024_e24689 crossref_primary_10_1007_s11426_024_2567_7 crossref_primary_10_1016_j_cinorg_2025_100100 crossref_primary_10_1088_1674_4926_43_5_052201 crossref_primary_10_1038_s41467_020_19237_3 crossref_primary_10_1021_acs_jpcc_3c08129 crossref_primary_10_1038_s41560_020_00687_4 crossref_primary_10_1039_D3EE02569A crossref_primary_10_1002_ange_202319170 crossref_primary_10_1038_s41586_023_06610_7 crossref_primary_10_3390_nano13121886 crossref_primary_10_1016_j_nanoen_2024_109486 crossref_primary_10_1021_acs_jpcc_1c09739 crossref_primary_10_1002_adfm_202404402 crossref_primary_10_1002_adfm_202001904 crossref_primary_10_1021_acsenergylett_0c01350 crossref_primary_10_1002_aenm_202200632 crossref_primary_10_1002_pssr_202100119 crossref_primary_10_1021_acsenergylett_0c02445 crossref_primary_10_1002_ange_202317972 crossref_primary_10_1002_adfm_202300552 crossref_primary_10_3390_nano14110963 crossref_primary_10_1021_acsenergylett_5c00155 crossref_primary_10_1002_solr_202000793 crossref_primary_10_1016_j_nanoen_2022_107988 crossref_primary_10_1002_smll_202006145 crossref_primary_10_1016_j_nanoen_2024_109476 crossref_primary_10_1021_acsenergylett_2c00698 crossref_primary_10_1126_sciadv_add0377 crossref_primary_10_1016_j_joule_2021_11_003 crossref_primary_10_1002_aenm_202203911 crossref_primary_10_1002_adom_202001866 crossref_primary_10_1007_s12633_023_02466_8 crossref_primary_10_1016_j_nantod_2021_101155 crossref_primary_10_1016_j_solener_2023_02_003 crossref_primary_10_1021_acsami_4c13467 crossref_primary_10_1002_adfm_202109495 crossref_primary_10_1002_adfm_202311679 crossref_primary_10_1016_j_jechem_2021_03_038 crossref_primary_10_1186_s40580_023_00374_6 crossref_primary_10_1021_acsami_1c05447 crossref_primary_10_1016_j_nanoen_2021_106141 crossref_primary_10_3390_en16083519 crossref_primary_10_1002_pip_3354 crossref_primary_10_1016_j_cej_2022_139047 crossref_primary_10_1093_oxfmat_itaa007 crossref_primary_10_1021_acsenergylett_4c00285 crossref_primary_10_1126_science_abj1186 crossref_primary_10_1021_acsami_3c10075 crossref_primary_10_1002_solr_202300156 crossref_primary_10_1007_s10854_021_07023_w crossref_primary_10_1002_adom_202201723 crossref_primary_10_1007_s12034_021_02625_w crossref_primary_10_1016_j_nanoen_2021_106114 crossref_primary_10_3390_photonics7030047 crossref_primary_10_1063_5_0204758 crossref_primary_10_3390_nano12234326 crossref_primary_10_1021_acsnano_2c02876 crossref_primary_10_1039_D2MH00983H crossref_primary_10_1039_D2TC03701G crossref_primary_10_1016_j_mtchem_2022_101060 crossref_primary_10_1016_j_xcrp_2020_100208 crossref_primary_10_1039_D1TA05934C crossref_primary_10_1021_acs_jpclett_4c03063 crossref_primary_10_1002_ente_202400998 crossref_primary_10_1021_jacs_4c10872 crossref_primary_10_1016_j_mtener_2023_101316 crossref_primary_10_1021_acsenergylett_4c00172 crossref_primary_10_1002_admi_202001482 crossref_primary_10_1039_D0MH00990C crossref_primary_10_1039_D0MA00994F crossref_primary_10_1007_s40820_021_00672_w crossref_primary_10_1007_s43207_021_00117_5 crossref_primary_10_1016_j_xcrp_2020_100219 crossref_primary_10_1016_j_nanoen_2021_106219 crossref_primary_10_1021_acs_chemrev_0c00107 crossref_primary_10_7498_aps_69_20200822 crossref_primary_10_1002_adma_202311501 crossref_primary_10_1016_j_isci_2022_103750 crossref_primary_10_1002_adma_202100791 crossref_primary_10_1002_sus2_25 crossref_primary_10_1021_acsami_0c04577 crossref_primary_10_1021_acsami_0c12068 crossref_primary_10_1038_s41578_023_00560_2 crossref_primary_10_1021_acsami_2c03492 crossref_primary_10_1016_j_chempr_2021_11_004 crossref_primary_10_1039_D1CP03698J crossref_primary_10_1016_j_xcrp_2020_100224 crossref_primary_10_1021_acsmaterialslett_3c00111 crossref_primary_10_1063_5_0097704 crossref_primary_10_1039_D1TC01536B crossref_primary_10_1021_acsenergylett_4c00154 crossref_primary_10_1016_j_joule_2021_12_006 crossref_primary_10_1021_acsaem_1c01537 crossref_primary_10_1002_aenm_202302124 crossref_primary_10_1021_acsami_2c01191 crossref_primary_10_1007_s40843_022_2437_9 crossref_primary_10_1021_acsenergylett_3c02104 crossref_primary_10_1149_2162_8777_ac4d81 crossref_primary_10_1002_solr_202000408 crossref_primary_10_1103_PRXEnergy_1_023005 crossref_primary_10_1126_science_ado9104 crossref_primary_10_1186_s43593_022_00028_w crossref_primary_10_2139_ssrn_4048940 crossref_primary_10_1021_acsenergylett_0c02105 crossref_primary_10_1016_j_jechem_2022_12_029 crossref_primary_10_1007_s43979_022_00003_x crossref_primary_10_1002_anie_202214208 crossref_primary_10_1021_acsaem_1c00413 crossref_primary_10_1002_inf2_12431 crossref_primary_10_1021_acsaem_1c01988 crossref_primary_10_1088_1361_6528_ac33d5 crossref_primary_10_1016_j_ceramint_2023_07_167 crossref_primary_10_1016_j_joule_2022_08_006 crossref_primary_10_1002_anie_202415966 crossref_primary_10_1021_acsenergylett_1c01018 crossref_primary_10_1021_acsenergylett_1c01013 crossref_primary_10_1088_1674_1056_ac693d crossref_primary_10_1039_D1NR06549A crossref_primary_10_1002_smll_202105611 crossref_primary_10_1002_solr_202100295 crossref_primary_10_1038_s41560_023_01382_w crossref_primary_10_1039_D4EE03045A crossref_primary_10_1002_ange_202112074 crossref_primary_10_1002_solr_202200708 crossref_primary_10_1016_j_apcatb_2021_121045 crossref_primary_10_1016_j_egyr_2022_09_169 crossref_primary_10_1016_j_mtener_2021_100729 crossref_primary_10_1021_acs_jpcc_0c07063 crossref_primary_10_1088_2752_5724_acb838 crossref_primary_10_1016_j_matt_2021_09_021 crossref_primary_10_1016_j_optmat_2022_112848 crossref_primary_10_1039_D3TA01211E crossref_primary_10_1002_anie_202112352 crossref_primary_10_1002_adma_202415757 crossref_primary_10_1002_aesr_202200133 crossref_primary_10_1002_adom_202100788 crossref_primary_10_1021_acsami_0c09651 crossref_primary_10_1002_advs_202413749 crossref_primary_10_1002_ange_202407151 crossref_primary_10_1039_D1QM01586A crossref_primary_10_1002_solr_202201026 crossref_primary_10_1038_s41560_020_00725_1 crossref_primary_10_1039_D4TC02303J crossref_primary_10_1016_j_eng_2021_06_009 crossref_primary_10_1016_j_tsf_2022_139460 crossref_primary_10_7498_aps_72_20222019 crossref_primary_10_1039_D0TA06033J crossref_primary_10_1002_adma_202308370 crossref_primary_10_1016_j_cej_2024_156798 crossref_primary_10_1002_adma_202211806 crossref_primary_10_1021_acsenergylett_4c00110 crossref_primary_10_1039_D4EE01173B crossref_primary_10_1021_acs_chemrev_4c00073 crossref_primary_10_1002_ange_202214208 crossref_primary_10_1002_smll_202208289 crossref_primary_10_1016_j_optmat_2024_115447 crossref_primary_10_1088_1674_4926_42_12_120203 crossref_primary_10_1039_D2EE02218D crossref_primary_10_1016_j_spmi_2021_106811 crossref_primary_10_1002_solr_202400710 crossref_primary_10_1002_adfm_202213963 crossref_primary_10_1063_5_0027573 crossref_primary_10_1002_solr_202100899 crossref_primary_10_1016_j_nanoen_2024_110170 crossref_primary_10_1126_sciadv_adg0032 crossref_primary_10_1002_adfm_202107359 crossref_primary_10_1007_s11426_024_2115_y crossref_primary_10_1002_aenm_202103236 crossref_primary_10_1109_JPHOTOV_2024_3483266 crossref_primary_10_1021_acs_chemrev_3c00214 crossref_primary_10_1039_D4CC05131A crossref_primary_10_1002_eom2_12084 crossref_primary_10_1002_aenm_202102046 crossref_primary_10_1021_acsenergylett_2c02373 crossref_primary_10_1002_adma_202207883 crossref_primary_10_1007_s12209_024_00401_5 crossref_primary_10_1016_j_cej_2024_158954 crossref_primary_10_1002_cssc_202000953 crossref_primary_10_3390_nano11030750 crossref_primary_10_1002_adfm_202003476 crossref_primary_10_1016_j_joule_2023_04_009 crossref_primary_10_1186_s40580_023_00371_9 crossref_primary_10_3390_nano11010088 crossref_primary_10_1002_aenm_202302983 crossref_primary_10_1038_s41586_021_03406_5 crossref_primary_10_1002_anie_202407151 crossref_primary_10_1039_D3TA01496G crossref_primary_10_1002_aenm_202200713 crossref_primary_10_1039_D2TA01470J crossref_primary_10_1016_j_nantod_2022_101503 crossref_primary_10_1039_D3TA07152A crossref_primary_10_1002_aenm_202400204 crossref_primary_10_1038_s41467_024_45228_9 crossref_primary_10_1021_acsenergylett_1c01649 crossref_primary_10_1002_advs_202104938 crossref_primary_10_1039_D2TA08966A crossref_primary_10_1002_solr_202100244 crossref_primary_10_1038_s41578_024_00678_x crossref_primary_10_1038_s41467_023_37492_y crossref_primary_10_1016_j_trechm_2022_08_009 crossref_primary_10_1021_acsami_2c10928 crossref_primary_10_1007_s12274_023_5403_x crossref_primary_10_1038_s41560_022_01046_1 crossref_primary_10_1002_adfm_202415331 crossref_primary_10_1021_acsapm_1c00891 crossref_primary_10_1002_marc_202100305 crossref_primary_10_1007_s40820_023_01090_w crossref_primary_10_1126_science_abh3884 crossref_primary_10_1002_cey2_321 crossref_primary_10_1002_eem2_12489 crossref_primary_10_1002_adma_202008134 crossref_primary_10_1016_j_apcatb_2022_121765 crossref_primary_10_1021_acs_jpclett_2c00233 crossref_primary_10_1088_2515_7655_ab9eab crossref_primary_10_1002_EXP_20220029 crossref_primary_10_1039_D0QM01085E crossref_primary_10_1016_j_xcrp_2023_101726 crossref_primary_10_1088_2053_1591_acdec8 crossref_primary_10_1021_acsenergylett_1c00213 crossref_primary_10_1002_solr_202300074 crossref_primary_10_1016_j_solener_2020_05_042 crossref_primary_10_1038_s43246_022_00291_x crossref_primary_10_1039_D0TC02354J crossref_primary_10_1039_D4TA06871H crossref_primary_10_3390_en15030870 crossref_primary_10_1016_j_joule_2024_05_019 crossref_primary_10_34133_research_0196 crossref_primary_10_1016_j_rser_2022_112553 crossref_primary_10_1016_j_jmst_2022_06_055 crossref_primary_10_1016_j_solener_2024_112366 crossref_primary_10_1007_s13391_022_00340_0 crossref_primary_10_1038_s41467_023_41149_1 crossref_primary_10_1039_D0EE04013D crossref_primary_10_1021_acsami_2c20752 crossref_primary_10_1002_solr_202301059 crossref_primary_10_1063_5_0061483 crossref_primary_10_1007_s00706_023_03103_1 crossref_primary_10_1016_j_jechem_2021_07_031 crossref_primary_10_1002_ange_202112352 crossref_primary_10_1007_s13391_020_00259_4 crossref_primary_10_1016_j_orgel_2022_106699 crossref_primary_10_1126_science_abd4016 crossref_primary_10_1016_j_joule_2021_03_015 crossref_primary_10_1038_s41566_022_01033_8 crossref_primary_10_1039_D2NR05475B crossref_primary_10_1002_solr_202400454 crossref_primary_10_1021_acssuschemeng_0c06452 crossref_primary_10_1002_adsu_202300188 crossref_primary_10_1002_adfm_202103252 crossref_primary_10_1021_acsami_2c02811 crossref_primary_10_1126_science_adf0194 crossref_primary_10_1016_j_joule_2023_11_018 crossref_primary_10_1140_epjp_s13360_024_05548_7 crossref_primary_10_1002_adma_202311025 crossref_primary_10_1021_acsaem_2c03438 crossref_primary_10_1002_aenm_202102526 crossref_primary_10_1021_acsaem_1c02496 crossref_primary_10_1002_aenm_202203230 crossref_primary_10_1021_acs_nanolett_3c01962 crossref_primary_10_1002_aesr_202100143 crossref_primary_10_1002_anie_202319170 crossref_primary_10_1002_anie_202112074 crossref_primary_10_1002_adma_202305946 crossref_primary_10_1038_s41563_024_02073_x crossref_primary_10_1007_s40820_024_01406_4 crossref_primary_10_1016_j_xcrp_2022_101076 crossref_primary_10_1002_aenm_202202029 crossref_primary_10_1016_j_ccr_2023_215031 crossref_primary_10_1002_adfm_202301196 crossref_primary_10_1021_acsami_1c21479 crossref_primary_10_1016_j_jlumin_2021_118093 crossref_primary_10_1002_ange_202415966 crossref_primary_10_1021_acsaem_3c00146 crossref_primary_10_1016_j_matt_2022_09_015 crossref_primary_10_1016_j_synthmet_2022_117092 crossref_primary_10_1002_adma_202003312 crossref_primary_10_1002_solr_202400433 crossref_primary_10_1021_jacs_4c03669 crossref_primary_10_1007_s11426_022_1426_x crossref_primary_10_1007_s11433_022_1928_8 crossref_primary_10_1002_cphc_202300642 crossref_primary_10_1021_acsaelm_1c01088 crossref_primary_10_3390_nano12010112 crossref_primary_10_1002_adma_202002228 crossref_primary_10_1007_s11426_023_1966_1 crossref_primary_10_1002_aenm_202101460 crossref_primary_10_1007_s40820_023_01040_6 crossref_primary_10_1021_acs_chemrev_9b00780 crossref_primary_10_55529_ijrise_31_50_65 crossref_primary_10_1016_j_solmat_2021_111299 crossref_primary_10_1002_adfm_202104251 crossref_primary_10_1016_j_optlastec_2022_108924 crossref_primary_10_1126_science_abn8910 crossref_primary_10_1002_eem2_12118 crossref_primary_10_1021_acs_energyfuels_2c04316 crossref_primary_10_1002_anie_202117303 crossref_primary_10_1002_adfm_202210502 crossref_primary_10_1016_j_jlumin_2021_117902 crossref_primary_10_1039_D1SE00013F crossref_primary_10_1007_s12598_024_02736_3 crossref_primary_10_1039_D1TA05699A crossref_primary_10_1007_s11664_023_10533_4 crossref_primary_10_1016_j_joule_2022_05_014 crossref_primary_10_1002_advs_202105085 crossref_primary_10_1016_j_joule_2022_05_013 crossref_primary_10_1002_solr_202200345 crossref_primary_10_1021_acsenergylett_3c01952 crossref_primary_10_1002_adma_202002202 crossref_primary_10_3390_coatings10121163 crossref_primary_10_1002_aenm_202400050 crossref_primary_10_1021_acs_jpcc_0c06733 crossref_primary_10_1002_ifm2_18 crossref_primary_10_1039_D2EE04007G crossref_primary_10_1021_acsami_3c11658 crossref_primary_10_1016_j_scib_2020_11_006 crossref_primary_10_1002_ente_202300832 crossref_primary_10_1016_j_scib_2020_11_004 crossref_primary_10_1007_s10854_023_10001_z crossref_primary_10_1002_adfm_202302375 crossref_primary_10_1016_j_solener_2022_11_014 crossref_primary_10_1364_PRJ_413229 crossref_primary_10_1016_j_joule_2022_10_007 crossref_primary_10_1021_acsami_0c09571 crossref_primary_10_1002_solr_202100506 crossref_primary_10_1002_adfm_202009164 crossref_primary_10_1039_D2SE00029F crossref_primary_10_1016_j_mtphys_2023_101187 crossref_primary_10_1038_s41565_022_01228_8 crossref_primary_10_1021_acsenergylett_0c01728 crossref_primary_10_1002_adfm_202010269 crossref_primary_10_1007_s11433_022_1959_4 crossref_primary_10_1016_j_mtener_2024_101593 crossref_primary_10_1002_adma_202106402 crossref_primary_10_1088_1361_6528_abeb37 crossref_primary_10_1002_admi_202000957 crossref_primary_10_1002_aenm_202402491 crossref_primary_10_1021_acs_jpcc_2c04957 crossref_primary_10_1002_adom_202101765 crossref_primary_10_1016_j_xinn_2022_100363 crossref_primary_10_1039_D3TA02209A crossref_primary_10_1016_j_jechem_2022_01_013 crossref_primary_10_12677_app_2024_1412081 crossref_primary_10_1007_s12209_022_00316_z crossref_primary_10_1021_acsami_1c02824 crossref_primary_10_1021_acsenergylett_1c01707 crossref_primary_10_1002_adfm_202312037 crossref_primary_10_1515_nanoph_2021_0034 crossref_primary_10_1039_D4TA04151H crossref_primary_10_3390_ma14216569 crossref_primary_10_1016_j_physb_2020_412703 crossref_primary_10_1021_acsenergylett_2c01800 crossref_primary_10_1021_acsnano_1c08726 crossref_primary_10_1002_adma_202307701 crossref_primary_10_1002_adma_202106540 crossref_primary_10_1038_s41566_021_00809_8 crossref_primary_10_1002_sstr_202200338 crossref_primary_10_1002_adfm_202417493 crossref_primary_10_1002_adfm_202010368 crossref_primary_10_3390_nano14020202 crossref_primary_10_1002_aenm_202401029 crossref_primary_10_3390_nano13061084 |
Cites_doi | 10.1016/j.joule.2019.04.012 10.1002/aenm.201701609 10.1126/science.aav7911 10.1126/science.aat8235 10.1038/s41560-017-0067-y 10.1038/nenergy.2017.9 10.1016/j.joule.2018.11.017 10.1016/j.jcrysgro.2017.03.006 10.1039/C8EE00689J 10.1016/j.ultramic.2018.06.003 10.1021/acs.jpcc.6b08744 10.1038/s41586-019-1632-2 10.1126/science.aaz5074 10.1039/C8EE02469C 10.1038/s41467-018-05454-4 10.1039/C8EE00995C 10.1039/C4SC03141E 10.1038/nmat2957 10.1038/s41563-018-0115-4 10.1038/s41566-019-0398-2 10.1002/adma.201606831 10.1126/sciadv.aaw2543 10.1021/acsami.7b14499 10.1002/aenm.201502104 10.1021/acs.jpclett.5b02686 10.1039/C8EE01136B 10.1088/1361-6463/aa9559 10.1016/j.joule.2018.10.003 10.1063/1.4914179 10.1126/sciadv.aau9711 10.1038/nmat3393 10.1038/nenergy.2017.135 10.1002/aenm.201803241 10.1002/aenm.201702498 10.1002/adma.201802769 10.1021/acsenergylett.8b01201 10.1038/s41560-018-0190-4 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 OTOTI |
DOI | 10.1126/science.aba3433 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 160 |
ExternalDocumentID | 1615092 32217753 10_1126_science_aba3433 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AEUPB AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 0B8 63O 6XO ABPTK ABQIS AEXZC AFUVZ ANJGP B-7 ESX IGG OTOTI PK8 PQEST RHF UMP VQA XFK ZA5 |
ID | FETCH-LOGICAL-c459t-5bea69689935381b091d40bd65db2ad50043cce90b9199d3a36b90419189ac033 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri May 19 01:08:02 EDT 2023 Sat Sep 27 23:56:48 EDT 2025 Fri Jul 25 19:04:13 EDT 2025 Thu Apr 03 07:09:51 EDT 2025 Thu Apr 24 23:02:36 EDT 2025 Tue Jul 01 01:35:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6487 |
Language | English |
License | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c459t-5bea69689935381b091d40bd65db2ad50043cce90b9199d3a36b90419189ac033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC36-08GO28308 |
ORCID | 0000-0002-6007-3063 0000-0001-6845-0305 0000-0001-7963-0897 0000-0002-8250-5736 0000-0002-6401-9072 0000-0001-8909-2076 0000-0001-7746-9972 0000-0002-5081-7794 0000-0003-2359-1862 0000-0002-8960-1747 0000-0002-3774-9520 0000-0003-3874-3582 0000-0002-0934-987X 0000-0002-4362-4011 0000-0003-0908-3909 0000-0002-2855-4457 0000-0002-3377-6249 0000000228554457 0000000338743582 0000000282505736 0000000250817794 0000000264019072 0000000189092076 0000000243624011 0000000323591862 0000000260073063 0000000237749520 0000000309083909 0000000168450305 000000020934987X 0000000289601747 0000000177469972 0000000233776249 0000000179630897 |
OpenAccessLink | https://www.osti.gov/biblio/1615092 |
PMID | 32217753 |
PQID | 2383658504 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1615092 proquest_miscellaneous_2384199671 proquest_journals_2383658504 pubmed_primary_32217753 crossref_primary_10_1126_science_aba3433 crossref_citationtrail_10_1126_science_aba3433 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-10 |
PublicationDateYYYYMMDD | 2020-04-10 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2020 |
Publisher | The American Association for the Advancement of Science American Association for the Advancement of Science (AAAS) |
Publisher_xml | – name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science (AAAS) |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_18_2 doi: 10.1016/j.joule.2019.04.012 – ident: e_1_3_2_36_2 doi: 10.1002/aenm.201701609 – ident: e_1_3_2_3_2 doi: 10.1126/science.aav7911 – ident: e_1_3_2_6_2 doi: 10.1126/science.aat8235 – ident: e_1_3_2_19_2 doi: 10.1038/s41560-017-0067-y – ident: e_1_3_2_35_2 doi: 10.1038/nenergy.2017.9 – ident: e_1_3_2_32_2 doi: 10.1016/j.joule.2018.11.017 – ident: e_1_3_2_31_2 doi: 10.1016/j.jcrysgro.2017.03.006 – ident: e_1_3_2_37_2 doi: 10.1039/C8EE00689J – ident: e_1_3_2_33_2 doi: 10.1016/j.ultramic.2018.06.003 – ident: e_1_3_2_4_2 doi: 10.1021/acs.jpcc.6b08744 – ident: e_1_3_2_30_2 doi: 10.1038/s41586-019-1632-2 – ident: e_1_3_2_20_2 doi: 10.1126/science.aaz5074 – ident: e_1_3_2_11_2 doi: 10.1039/C8EE02469C – ident: e_1_3_2_16_2 doi: 10.1038/s41467-018-05454-4 – ident: e_1_3_2_17_2 doi: 10.1039/C8EE00995C – ident: e_1_3_2_13_2 doi: 10.1039/C4SC03141E – ident: e_1_3_2_24_2 doi: 10.1038/nmat2957 – ident: e_1_3_2_8_2 doi: 10.1038/s41563-018-0115-4 – ident: e_1_3_2_25_2 doi: 10.1038/s41566-019-0398-2 – ident: e_1_3_2_29_2 doi: 10.1002/adma.201606831 – ident: e_1_3_2_15_2 doi: 10.1126/sciadv.aaw2543 – ident: e_1_3_2_5_2 doi: 10.1021/acsami.7b14499 – ident: e_1_3_2_26_2 doi: 10.1002/aenm.201502104 – ident: e_1_3_2_34_2 doi: 10.1021/acs.jpclett.5b02686 – ident: e_1_3_2_27_2 doi: 10.1039/C8EE01136B – ident: e_1_3_2_28_2 doi: 10.1088/1361-6463/aa9559 – ident: e_1_3_2_9_2 doi: 10.1016/j.joule.2018.10.003 – ident: e_1_3_2_7_2 doi: 10.1063/1.4914179 – ident: e_1_3_2_10_2 doi: 10.1126/sciadv.aau9711 – ident: e_1_3_2_22_2 doi: 10.1038/nmat3393 – ident: e_1_3_2_14_2 doi: 10.1038/nenergy.2017.135 – ident: e_1_3_2_39_2 doi: 10.1002/aenm.201803241 – ident: e_1_3_2_21_2 doi: 10.1002/aenm.201702498 – ident: e_1_3_2_23_2 doi: 10.1002/adma.201802769 – ident: e_1_3_2_38_2 doi: 10.1021/acsenergylett.8b01201 – ident: e_1_3_2_12_2 doi: 10.1038/s41560-018-0190-4 – ident: e_1_3_2_2_2 |
SSID | ssj0009593 |
Score | 2.7134137 |
Snippet | The bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the cation composition is varied because... Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a... Engineering perovskites with anionsThe bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 155 |
SubjectTerms | Anions Bromine Efficiency Electrical properties Illumination Iodides Iodine Photovoltaic cells Silicon Solar cells |
Title | Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32217753 https://www.proquest.com/docview/2383658504 https://www.proquest.com/docview/2384199671 https://www.osti.gov/biblio/1615092 |
Volume | 368 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJyReEBtfZQMZiYehksqO7Xw8tmxTqQDxsIlJPES24wJipFPTIpUfxu_jOnZTb1Bp8BJVqZNauaf3Hjv3novQiyxTQk-JjGwvqogLSSOVKRKpNDMZYWWWUFvg_O59Mj7jk3Nx3un8CrKWlgs10D__WlfyP1aFc2BXWyX7D5Ztbwon4DPYF45gYTjeyMbHjf6DcdIBQPNsFVT99QKMW_XtFoH53rcb83XfNBVSDdeUFUwnMl6GsEk-L02kYPRneWlVjGc_arujW4e0de0BgI62r3gCw7a5ikOXUbBOMPCXBbsNvnnzkTRfNrCceIczNrZMbZMX8MHncb_51p_IFoBv5dxXiY3mK_jtj4Nw5yK2aaSRz2H13tiLIbtY5Bwwsb0jY8JCD82SLIBiwn2Idi6XChFEb-q6E_wZGIJWlmYglWTcCXBcleC-FhrbhMVmqRQnhb9B4W9wC-3EKXC2LtoZjo5GJ1vlnr2oVFCutZ7DFT7UnYFf377WaTjP6T101y9W8NAhbxd1TLWHbrv2pas9tOvtW-NDr17-8j761ILyFXaQxB6S2EESN5DEHpJYrfB1SOIQkjiA5AN0dnJ8-noc-Q4ekeYiX0RCGWnVl4AEQ2ClCshpyYkqE1GqWJbCvofW2uRE5TTPSyZZonLCaU6zXGrC2EPUrWaVeYwwUFlFJNfAlzm4FJFP07ikZMrKWOiUkB4arJ9job28ve2yclFssV0PHbYXXDpll-1D961h7GmrrKxtCppeFHaxRPK4hw7W9iq8c6gLYMIMyL0gvIeet1-D67bPWFZmtmzGcFsEkNIeeuTs3M4E4ixNU8Ge3HyW--jO5l92gLqL-dI8Bca8UM88PH8DsMPDag |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient%2C+stable+silicon+tandem+cells+enabled+by+anion-engineered+wide-bandgap+perovskites&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Kim%2C+Daehan&rft.au=Jung%2C+Hee+Joon&rft.au=Park%2C+Ik+Jae&rft.au=Larson%2C+Bryon+W.&rft.date=2020-04-10&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=368&rft.issue=6487&rft.spage=155&rft.epage=160&rft_id=info:doi/10.1126%2Fscience.aba3433&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aba3433 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |