Selecting, optimizing and externally validating a preexisting machine-learning regression algorithm for estimating waist circumference

Obesity, typically defined by the body mass index (BMI), has well known negative health effects. However, the BMI has serious deficiencies in predicting the adverse risks associated to obesity. Waist circumference (WC) is an alternative to define obesity and a better disease predictor according to t...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 169; p. 107909
Main Author Phillips-Farfán, Bryan V.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.02.2024
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2023.107909

Cover

Abstract Obesity, typically defined by the body mass index (BMI), has well known negative health effects. However, the BMI has serious deficiencies in predicting the adverse risks associated to obesity. Waist circumference (WC) is an alternative to define obesity and a better disease predictor according to the literature. However, old databases often lack this information, it is inaccurate (collected via self-report) or it is incomplete. Thus, this study accurately assesses WC using machine learning. The novel approaches are: 1) predictor variables (weight, height, age and sex) likely to appear in most data sets are used. 2) Publicly available data (including non-adults) and algorithms are used. 3) Systematic methods for data cleanup, model selection, hyperparameter optimization and external validation are performed. one variable per column, no special codes, missing values or outliers. Preexisting regression algorithms are gaged by cross-validation, using one data set. The hyperparameters of the best performing algorithm are optimized. The tuned algorithm is externally validated with other data sets by cross-validation. In spite of the limited number of features, the tuned algorithm outperforms prior WC approximations, using the same or similar predictor variables. The tuned algorithm enables using data where WC is not measured, is incomplete or is unreliable. A similar approach would be useful to estimate other variables of interest. [Display omitted] •Predictors (weight, height, age, sex) likely to appear in most data sets are used.•Publicly available data (including non-adults) and algorithms are used.•Novel data cleanup, model selection, hyperparameter tuning and external validation.•The tuned algorithm outperforms prior WC estimates, using the same variables.
AbstractList Obesity, typically defined by the body mass index (BMI), has well known negative health effects. However, the BMI has serious deficiencies in predicting the adverse risks associated to obesity. Waist circumference (WC) is an alternative to define obesity and a better disease predictor according to the literature. However, old databases often lack this information, it is inaccurate (collected via self-report) or it is incomplete. Thus, this study accurately assesses WC using machine learning. The novel approaches are: 1) predictor variables (weight, height, age and sex) likely to appear in most data sets are used. 2) Publicly available data (including non-adults) and algorithms are used. 3) Systematic methods for data cleanup, model selection, hyperparameter optimization and external validation are performed. DATA ARE CLEANED: one variable per column, no special codes, missing values or outliers. Preexisting regression algorithms are gaged by cross-validation, using one data set. The hyperparameters of the best performing algorithm are optimized. The tuned algorithm is externally validated with other data sets by cross-validation. In spite of the limited number of features, the tuned algorithm outperforms prior WC approximations, using the same or similar predictor variables. The tuned algorithm enables using data where WC is not measured, is incomplete or is unreliable. A similar approach would be useful to estimate other variables of interest.
Obesity, typically defined by the body mass index (BMI), has well known negative health effects. However, the BMI has serious deficiencies in predicting the adverse risks associated to obesity. Waist circumference (WC) is an alternative to define obesity and a better disease predictor according to the literature. However, old databases often lack this information, it is inaccurate (collected via self-report) or it is incomplete. Thus, this study accurately assesses WC using machine learning. The novel approaches are: 1) predictor variables (weight, height, age and sex) likely to appear in most data sets are used. 2) Publicly available data (including non-adults) and algorithms are used. 3) Systematic methods for data cleanup, model selection, hyperparameter optimization and external validation are performed. DATA ARE CLEANED: one variable per column, no special codes, missing values or outliers. Preexisting regression algorithms are gaged by cross-validation, using one data set. The hyperparameters of the best performing algorithm are optimized. The tuned algorithm is externally validated with other data sets by cross-validation. In spite of the limited number of features, the tuned algorithm outperforms prior WC approximations, using the same or similar predictor variables. The tuned algorithm enables using data where WC is not measured, is incomplete or is unreliable. A similar approach would be useful to estimate other variables of interest.Obesity, typically defined by the body mass index (BMI), has well known negative health effects. However, the BMI has serious deficiencies in predicting the adverse risks associated to obesity. Waist circumference (WC) is an alternative to define obesity and a better disease predictor according to the literature. However, old databases often lack this information, it is inaccurate (collected via self-report) or it is incomplete. Thus, this study accurately assesses WC using machine learning. The novel approaches are: 1) predictor variables (weight, height, age and sex) likely to appear in most data sets are used. 2) Publicly available data (including non-adults) and algorithms are used. 3) Systematic methods for data cleanup, model selection, hyperparameter optimization and external validation are performed. DATA ARE CLEANED: one variable per column, no special codes, missing values or outliers. Preexisting regression algorithms are gaged by cross-validation, using one data set. The hyperparameters of the best performing algorithm are optimized. The tuned algorithm is externally validated with other data sets by cross-validation. In spite of the limited number of features, the tuned algorithm outperforms prior WC approximations, using the same or similar predictor variables. The tuned algorithm enables using data where WC is not measured, is incomplete or is unreliable. A similar approach would be useful to estimate other variables of interest.
AbstractObesity, typically defined by the body mass index (BMI), has well known negative health effects. However, the BMI has serious deficiencies in predicting the adverse risks associated to obesity. Waist circumference (WC) is an alternative to define obesity and a better disease predictor according to the literature. However, old databases often lack this information, it is inaccurate (collected via self-report) or it is incomplete. Thus, this study accurately assesses WC using machine learning. The novel approaches are: 1) predictor variables (weight, height, age and sex) likely to appear in most data sets are used. 2) Publicly available data (including non-adults) and algorithms are used. 3) Systematic methods for data cleanup, model selection, hyperparameter optimization and external validation are performed. Data are cleanedone variable per column, no special codes, missing values or outliers. Preexisting regression algorithms are gaged by cross-validation, using one data set. The hyperparameters of the best performing algorithm are optimized. The tuned algorithm is externally validated with other data sets by cross-validation. In spite of the limited number of features, the tuned algorithm outperforms prior WC approximations, using the same or similar predictor variables. The tuned algorithm enables using data where WC is not measured, is incomplete or is unreliable. A similar approach would be useful to estimate other variables of interest.
Obesity, typically defined by the body mass index (BMI), has well known negative health effects. However, the BMI has serious deficiencies in predicting the adverse risks associated to obesity. Waist circumference (WC) is an alternative to define obesity and a better disease predictor according to the literature. However, old databases often lack this information, it is inaccurate (collected via self-report) or it is incomplete. Thus, this study accurately assesses WC using machine learning. The novel approaches are: 1) predictor variables (weight, height, age and sex) likely to appear in most data sets are used. 2) Publicly available data (including non-adults) and algorithms are used. 3) Systematic methods for data cleanup, model selection, hyperparameter optimization and external validation are performed. one variable per column, no special codes, missing values or outliers. Preexisting regression algorithms are gaged by cross-validation, using one data set. The hyperparameters of the best performing algorithm are optimized. The tuned algorithm is externally validated with other data sets by cross-validation. In spite of the limited number of features, the tuned algorithm outperforms prior WC approximations, using the same or similar predictor variables. The tuned algorithm enables using data where WC is not measured, is incomplete or is unreliable. A similar approach would be useful to estimate other variables of interest. [Display omitted] •Predictors (weight, height, age, sex) likely to appear in most data sets are used.•Publicly available data (including non-adults) and algorithms are used.•Novel data cleanup, model selection, hyperparameter tuning and external validation.•The tuned algorithm outperforms prior WC estimates, using the same variables.
Obesity, typically defined by the body mass index (BMI), has well known negative health effects. However, the BMI has serious deficiencies in predicting the adverse risks associated to obesity. Waist circumference (WC) is an alternative to define obesity and a better disease predictor according to the literature. However, old databases often lack this information, it is inaccurate (collected via self-report) or it is incomplete. Thus, this study accurately assesses WC using machine learning. The novel approaches are: 1) predictor variables (weight, height, age and sex) likely to appear in most data sets are used. 2) Publicly available data (including non-adults) and algorithms are used. 3) Systematic methods for data cleanup, model selection, hyperparameter optimization and external validation are performed.Data are cleanedone variable per column, no special codes, missing values or outliers. Preexisting regression algorithms are gaged by cross-validation, using one data set. The hyperparameters of the best performing algorithm are optimized. The tuned algorithm is externally validated with other data sets by cross-validation. In spite of the limited number of features, the tuned algorithm outperforms prior WC approximations, using the same or similar predictor variables. The tuned algorithm enables using data where WC is not measured, is incomplete or is unreliable. A similar approach would be useful to estimate other variables of interest.
ArticleNumber 107909
Author Phillips-Farfán, Bryan V.
Author_xml – sequence: 1
  givenname: Bryan V.
  orcidid: 0000-0001-6470-6860
  surname: Phillips-Farfán
  fullname: Phillips-Farfán, Bryan V.
  email: bphillipsf@pediatria.gob.mx
  organization: Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría. Insurgentes Sur 3700, Letra “C”, Alcaldía Coyoacán, CDMX, 04530, Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38181609$$D View this record in MEDLINE/PubMed
BookMark eNqNUstuFDEQtFAQ2QR-AY3EhQOztF_zuCBCxEuKxCFwtjyeno0Xj73YsyHLB_DdeHZDkCIh5WS7XVXqruoTcuSDR0IKCksKtHq9XpowbjobRuyXDBjP5bqF9hFZ0KZuS5BcHJEFAIVSNEwek5OU1gAggMMTcswb2tAK2gX5fYkOzWT96lURNpMd7a98L7TvC7yZMHrt3K641s72etr_FJuIeGPT_jVqc2U9lg519HMh4ipiSjb4QrtViHa6GoshxAIzYTxI_NSZXRgbzXYcMKI3-JQ8HrRL-Oz2PCXfPrz_ev6pvPjy8fP52UVphGynUvKhqiiIru56ITupBwqyHnpacyMq2lMDKATVkjKEjvGBZyOaqsZGYtsOjJ-SlwfdTQw_trknNdpk0DntMWyTYi3jnElWiwx9cQ-6DtvZjz0KKtpKWWXU81vUtsthqE3MU8ad-utwBjQHgIkhpYjDHYSCmsNUa_UvTDWHqQ5hZuq7AxWzI9cWo0rGzm71NubMVB_sQ0Te3BMxznprtPuOO0x3M1GVmAJ1Oe_MvDKMA-W1mH14-3-Bh_XwB3H82QU
Cites_doi 10.1002/osp4.122
10.5395/rde.2019.44.e11
10.1186/s12874-021-01242-9
10.1038/s41586-020-2649-2
10.1038/nmeth.4642
10.1017/S0007114523000090
10.1016/j.ssmph.2017.11.008
10.1186/s12911-019-0874-0
10.1016/j.eswa.2021.115222
10.21105/joss.01075
10.3390/e23091123
10.1371/journal.pone.0245376
10.3390/math10081283
10.1080/10618600.2012.680865
10.1109/TPAMI.2013.159
10.1186/s12874-016-0239-7
10.3390/nu15020257
10.1038/s41574-019-0310-7
10.3390/jpm12122014
10.1093/bioinformatics/btu520
10.18637/jss.v050.i11
10.1186/1471-2288-12-115
10.1038/s41598-021-02409-6
10.3945/jn.109.118737
10.1016/j.cmpb.2020.105418
10.1111/jch.12049
10.1371/journal.pone.0161788
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
2024. Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
– notice: 2024. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
NAPCQ
P64
7X8
DOI 10.1016/j.compbiomed.2023.107909
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Computer Science Collection
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 107909
ExternalDocumentID 38181609
10_1016_j_compbiomed_2023_107909
S0010482523013744
1_s2_0_S0010482523013744
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD038700
– fundername: NICHD NIH HHS
  grantid: R01 HD030880
– fundername: NIDDK NIH HHS
  grantid: P30 DK056350
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c459t-53f66104b7bd45b5af1057fd173c461d1c0e441a512e0b23f3534867e85e99f23
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sat Sep 27 21:41:18 EDT 2025
Tue Oct 07 06:30:41 EDT 2025
Wed Feb 19 02:03:43 EST 2025
Wed Oct 01 04:08:02 EDT 2025
Sat Jul 13 15:30:54 EDT 2024
Tue Feb 25 20:12:00 EST 2025
Tue Oct 14 19:33:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Algorithm selection
Regression
Model inspection
Hyperparameter optimization
Machine-learning
External cross-validation
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-53f66104b7bd45b5af1057fd173c461d1c0e441a512e0b23f3534867e85e99f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6470-6860
PMID 38181609
PQID 2920619556
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2923325274
proquest_journals_2920619556
pubmed_primary_38181609
crossref_primary_10_1016_j_compbiomed_2023_107909
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107909
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523013744
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107909
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Centers for Disease Control and Prevention, National Center for Health Statistics. National Health and Nutrition Examination Survey Data, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Hyattsville, MD, 1999-2000, 2009-2010 and 2017-2020
Landsberg, Aronne, Beilin, Burke, Igel, Lloyd-Jones, Sowers (bib1) 2013; 15
Arashi, Roozbeh, Hamzah, Gasparini (bib18) 2021; 16
Zhou, Eckler, Barszczyk, Waese-Perlman, Wang, Gu, Feng, Peng, Lee (bib8) 2021; 21
Boon, Einmahl, McKeague (bib32) 2013; 22
Suthahar, Meems, Withaar, Gorter, Kieneker, Gansevoort, Bakker, van Veldhuisen, de Boer (bib4) 2022; 12
Okamoto, Hosono, Shibata, Tsujimura, Oka, Fujita, Kamiya, Kondo, Wakabayashi, Yamada, Suzuki (bib7) 2017; 3
Klaise, Van Looveren, Vacanti, Coca (bib17) 2021; 22
Bzdok, Altman, Krzywinski (bib33) 2018; 15
Korjus, Hebart, Vicente (bib28) 2016; 11
Bozeman, Hoaglin, Burton, Pashos, Ben-Joseph, Hollenbeak (bib9) 2012; 12
Elshawi, Al-Mallah, Sakr (bib25) 2019; 19
CHNS, 2009.
(bib37) 2023
Kim (bib31) 2019; 44
Nagayama, Fujishiro, Watanabe, Yamaguchi, Suzuki, Saiki, Shirai (bib3) 2022; 12
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib11) 2011; 12
Mogensen, Ishwaran, Gerds (bib30) 2012; 50
Chen, Guestrin (bib12) 2016
(Accessed 2 June 2022).
Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (bib13) 2017; 30
Brumen, Černezel, Bošnjak (bib24) 2021; 23
Stevens, Lyons, Dharmayat, Mahani, Ray, Vallejo-Vaz, Sharabiani (bib20) 2023; 9
Ramírez-Manent, Jover, Martinez, Tomás-Gil, Martí-Lliteras, López-González (bib5) 2023; 15
Ross, Neeland, Yamashita, Shai, Seidell, Magni, Santos, Arsenault, Cuevas, Hu, Griffin, Zambon, Barter, Fruchart, Eckel, Matsuzawa, Després (bib2) 2020; 16
Chan, Leow, Bea, Cheng, Phoong, Hong, Chen (bib19) 2022; 10
Graybeal, Brandner, Tinsley (bib44) 2023; 130
(bib38) 2023
Bosy-Westphal, Booke, Blöcker, Kossel, Goele, Later, Hitze, Heller, Glüer, Müller (bib6) 2010; 140
Wahl, Boulesteix, Zierer, Thorand, van de Wiel (bib29) 2016; 16
Vajdi, Zaghian, Dehkordi, Rastegari, Maroofi, Farahmand, Jia, Pomplun, Haspel, Bayat (bib34) 2019
Seligman, Tuljapurkar, Rehkopf (bib42) 2017; 4
Instituto Nacional de Salud Pública, Encuesta Nacional de Salud y Nutrición, Cuernavaca, Morelos, México, 2012, 2018 and 2021.
Johnson, Zhang (bib14) 2014; 36
Cawley, Talbot (bib21) 2010; 11
Hunter (bib15) 2007; 9
Bengfort, Bilbro (bib16) 2019; 4
Wainer, Cawley (bib23) 2021; 182
Seo, Kang, Kim, Kim, Oh, Kim (bib43) 2020; 191
Ding, Tang, Liao, Jia, Oesterreich, Lin, Tseng (bib22) 2014; 30
Zhao, Hastie (bib26) 2019; 2019
Ho, Phua, Wong, Bin Goh (bib27) 2020; 1
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, Del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (bib10) 2020; 585
Boon (10.1016/j.compbiomed.2023.107909_bib32) 2013; 22
Chan (10.1016/j.compbiomed.2023.107909_bib19) 2022; 10
Ke (10.1016/j.compbiomed.2023.107909_bib13) 2017; 30
Arashi (10.1016/j.compbiomed.2023.107909_bib18) 2021; 16
Ho (10.1016/j.compbiomed.2023.107909_bib27) 2020; 1
Korjus (10.1016/j.compbiomed.2023.107909_bib28) 2016; 11
Ross (10.1016/j.compbiomed.2023.107909_bib2) 2020; 16
Ding (10.1016/j.compbiomed.2023.107909_bib22) 2014; 30
Zhou (10.1016/j.compbiomed.2023.107909_bib8) 2021; 21
Nagayama (10.1016/j.compbiomed.2023.107909_bib3) 2022; 12
Bozeman (10.1016/j.compbiomed.2023.107909_bib9) 2012; 12
Johnson (10.1016/j.compbiomed.2023.107909_bib14) 2014; 36
(10.1016/j.compbiomed.2023.107909_bib37) 2023
Suthahar (10.1016/j.compbiomed.2023.107909_bib4) 2022; 12
Ramírez-Manent (10.1016/j.compbiomed.2023.107909_bib5) 2023; 15
10.1016/j.compbiomed.2023.107909_bib35
10.1016/j.compbiomed.2023.107909_bib36
Elshawi (10.1016/j.compbiomed.2023.107909_bib25) 2019; 19
Bzdok (10.1016/j.compbiomed.2023.107909_bib33) 2018; 15
Pedregosa (10.1016/j.compbiomed.2023.107909_bib11) 2011; 12
Mogensen (10.1016/j.compbiomed.2023.107909_bib30) 2012; 50
Vajdi (10.1016/j.compbiomed.2023.107909_bib34) 2019
Seo (10.1016/j.compbiomed.2023.107909_bib43) 2020; 191
Okamoto (10.1016/j.compbiomed.2023.107909_bib7) 2017; 3
Bosy-Westphal (10.1016/j.compbiomed.2023.107909_bib6) 2010; 140
Graybeal (10.1016/j.compbiomed.2023.107909_bib44) 2023; 130
Bengfort (10.1016/j.compbiomed.2023.107909_bib16) 2019; 4
Harris (10.1016/j.compbiomed.2023.107909_bib10) 2020; 585
Stevens (10.1016/j.compbiomed.2023.107909_bib20) 2023; 9
Landsberg (10.1016/j.compbiomed.2023.107909_bib1) 2013; 15
Kim (10.1016/j.compbiomed.2023.107909_bib31) 2019; 44
(10.1016/j.compbiomed.2023.107909_bib38) 2023
Zhao (10.1016/j.compbiomed.2023.107909_bib26) 2019; 2019
Hunter (10.1016/j.compbiomed.2023.107909_bib15) 2007; 9
Brumen (10.1016/j.compbiomed.2023.107909_bib24) 2021; 23
Wahl (10.1016/j.compbiomed.2023.107909_bib29) 2016; 16
Seligman (10.1016/j.compbiomed.2023.107909_bib42) 2017; 4
Wainer (10.1016/j.compbiomed.2023.107909_bib23) 2021; 182
Klaise (10.1016/j.compbiomed.2023.107909_bib17) 2021; 22
Cawley (10.1016/j.compbiomed.2023.107909_bib21) 2010; 11
10.1016/j.compbiomed.2023.107909_bib45
Chen (10.1016/j.compbiomed.2023.107909_bib12) 2016
References_xml – volume: 15
  start-page: 257
  year: 2023
  ident: bib5
  article-title: Waist circumference is an essential factor in predicting insulin resistance and early detection of metabolic syndrome in adults
  publication-title: Nutrients
– reference: Instituto Nacional de Salud Pública, Encuesta Nacional de Salud y Nutrición, Cuernavaca, Morelos, México, 2012, 2018 and 2021.
– reference: CHNS, 2009.
– volume: 182
  year: 2021
  ident: bib23
  article-title: Nested cross-validation when selecting classifiers is overzealous for most practical applications
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 8194
  year: 2021
  end-page: 8200
  ident: bib17
  article-title: Alibi explain: algorithms for explaining machine learning models
  publication-title: J. Mach. Learn. Res.
– reference: . (Accessed 2 June 2022).
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib11
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 1283
  year: 2022
  ident: bib19
  article-title: Mitigating the multicollinearity problem and its machine learning approach: a review
  publication-title: Mathematics
– volume: 191
  start-page: 105418
  year: 2020
  ident: bib43
  article-title: SVM-based waist circumference estimation using Kinect
  publication-title: Comput Methods Programs Biomed
– volume: 2019
  year: 2019
  ident: bib26
  article-title: Causal interpretations of black-box models
  publication-title: J. Bus. Econ. Stat.
– volume: 12
  start-page: 2014
  year: 2022
  ident: bib3
  article-title: A body shape index (ABSI) as a variant of conicity index not affected by the obesity paradox: a cross-sectional study using arterial stiffness parameter
  publication-title: J. Personalized Med.
– volume: 44
  start-page: e11
  year: 2019
  ident: bib31
  article-title: Statistical notes for clinical researchers: simple linear regression 3 - residual analysis
  publication-title: Restor Dent Endod
– volume: 15
  start-page: 233
  year: 2018
  end-page: 234
  ident: bib33
  article-title: Statistics versus machine learning
  publication-title: Nat. Methods
– volume: 130
  start-page: 1077
  year: 2023
  end-page: 1087
  ident: bib44
  article-title: Evaluation of automated anthropometrics produced by smartphone-based machine learning: a comparison with traditional anthropometric assessments
  publication-title: Br J Nutr
– volume: 1
  year: 2020
  ident: bib27
  article-title: Extensions of the external validation for checking learned model interpretability and generalizability
  publication-title: Patterns (N Y).
– volume: 140
  start-page: 954
  year: 2010
  end-page: 961
  ident: bib6
  article-title: Measurement site for waist circumference affects its accuracy as an index of visceral and abdominal subcutaneous fat in a Caucasian population
  publication-title: J. Nutr.
– volume: 11
  start-page: 2079
  year: 2010
  end-page: 2107
  ident: bib21
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– reference: Centers for Disease Control and Prevention, National Center for Health Statistics. National Health and Nutrition Examination Survey Data, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Hyattsville, MD, 1999-2000, 2009-2010 and 2017-2020
– volume: 16
  start-page: 144
  year: 2016
  ident: bib29
  article-title: Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation
  publication-title: BMC Med. Res. Methodol.
– volume: 4
  start-page: 1075
  year: 2019
  ident: bib16
  article-title: Yellowbrick: visualizing the scikit-learn model selection process
  publication-title: J. Open Source Softw.
– volume: 22
  start-page: 69
  year: 2013
  end-page: 78
  ident: bib32
  article-title: Visualizing multiple quantile plots
  publication-title: J. Comput. Graph Stat.
– year: 2023
  ident: bib37
  article-title: Pandas-Dev/pandas: Pandas (v2.0.1)
– volume: 30
  start-page: 3146
  year: 2017
  end-page: 3154
  ident: bib13
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 16
  year: 2021
  ident: bib18
  article-title: Ridge regression and its applications in genetic studies
  publication-title: PLoS One
– start-page: 6533
  year: 2023
  ident: bib38
  article-title: National Diet and Nutrition Survey Years 1-11, 2008-2019
– volume: 50
  start-page: 1
  year: 2012
  end-page: 23
  ident: bib30
  article-title: Evaluating random forests for survival analysis using prediction error curves
  publication-title: J. Stat. Software
– volume: 9
  year: 2023
  ident: bib20
  article-title: Ensemble machine learning methods in screening electronic health records: a scoping review
  publication-title: Digit Health
– year: 2019
  ident: bib34
  article-title: Human Gait Database for Normal Walk Collected by Smartphone Accelerometer. Preprint
– volume: 21
  start-page: 47
  year: 2021
  ident: bib8
  article-title: Waist circumference prediction for epidemiological research using gradient boosted trees
  publication-title: BMC Med. Res. Methodol.
– volume: 19
  start-page: 146
  year: 2019
  ident: bib25
  article-title: On the interpretability of machine learning-based model for predicting hypertension
  publication-title: BMC Med. Inf. Decis. Making
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: bib15
  article-title: Matplotlib: a 2D graphics environment
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 1123
  year: 2021
  ident: bib24
  article-title: Overview of machine learning process modelling
  publication-title: Entropy
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib12
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 16
  start-page: 177
  year: 2020
  end-page: 189
  ident: bib2
  article-title: Waist circumference as a vital sign in clinical practice: a consensus statement from the IAS and ICCR Working Group on Visceral Obesity
  publication-title: Nat. Rev. Endocrinol.
– volume: 12
  start-page: 115
  year: 2012
  ident: bib9
  article-title: Predicting waist circumference from body mass index
  publication-title: BMC Med. Res. Methodol.
– volume: 3
  start-page: 417
  year: 2017
  end-page: 424
  ident: bib7
  article-title: Accuracy of self-reported height, weight and waist circumference in a Japanese sample
  publication-title: Obes Sci Pract
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: bib10
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 15
  start-page: 14
  year: 2013
  end-page: 33
  ident: bib1
  article-title: Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of the Obesity Society and the American Society of Hypertension
  publication-title: J. Clin. Hypertens.
– volume: 4
  start-page: 95
  year: 2017
  end-page: 99
  ident: bib42
  article-title: Machine learning approaches to the social determinants of health in the health and retirement study
  publication-title: SSM Popul Health
– volume: 12
  start-page: 147
  year: 2022
  ident: bib4
  article-title: Relative fat mass, a new index of adiposity, is strongly associated with incident heart failure: data from PREVEND
  publication-title: Sci. Rep.
– volume: 11
  year: 2016
  ident: bib28
  article-title: An efficient data partitioning to improve classification performance while keeping parameters interpretable
  publication-title: PLoS One
– volume: 30
  start-page: 3152
  year: 2014
  end-page: 3158
  ident: bib22
  article-title: Bias correction for selecting the minimal-error classifier from many machine learning models
  publication-title: Bioinformatics
– volume: 36
  start-page: 942
  year: 2014
  end-page: 954
  ident: bib14
  article-title: Learning nonlinear functions using regularized greedy forest
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 3
  start-page: 417
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107909_bib7
  article-title: Accuracy of self-reported height, weight and waist circumference in a Japanese sample
  publication-title: Obes Sci Pract
  doi: 10.1002/osp4.122
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.compbiomed.2023.107909_bib11
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 2019
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107909_bib26
  article-title: Causal interpretations of black-box models
  publication-title: J. Bus. Econ. Stat.
– ident: 10.1016/j.compbiomed.2023.107909_bib35
– volume: 44
  start-page: e11
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107909_bib31
  article-title: Statistical notes for clinical researchers: simple linear regression 3 - residual analysis
  publication-title: Restor Dent Endod
  doi: 10.5395/rde.2019.44.e11
– volume: 21
  start-page: 47
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107909_bib8
  article-title: Waist circumference prediction for epidemiological research using gradient boosted trees
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-021-01242-9
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107909_bib10
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 22
  start-page: 8194
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107909_bib17
  article-title: Alibi explain: algorithms for explaining machine learning models
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 233
  issue: 4
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107909_bib33
  article-title: Statistics versus machine learning
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4642
– volume: 130
  start-page: 1077
  issue: 6
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107909_bib44
  article-title: Evaluation of automated anthropometrics produced by smartphone-based machine learning: a comparison with traditional anthropometric assessments
  publication-title: Br J Nutr
  doi: 10.1017/S0007114523000090
– volume: 4
  start-page: 95
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107909_bib42
  article-title: Machine learning approaches to the social determinants of health in the health and retirement study
  publication-title: SSM Popul Health
  doi: 10.1016/j.ssmph.2017.11.008
– volume: 19
  start-page: 146
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107909_bib25
  article-title: On the interpretability of machine learning-based model for predicting hypertension
  publication-title: BMC Med. Inf. Decis. Making
  doi: 10.1186/s12911-019-0874-0
– volume: 182
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107909_bib23
  article-title: Nested cross-validation when selecting classifiers is overzealous for most practical applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115222
– volume: 4
  start-page: 1075
  issue: 35
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107909_bib16
  article-title: Yellowbrick: visualizing the scikit-learn model selection process
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.01075
– volume: 23
  start-page: 1123
  issue: 9
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107909_bib24
  article-title: Overview of machine learning process modelling
  publication-title: Entropy
  doi: 10.3390/e23091123
– volume: 11
  start-page: 2079
  year: 2010
  ident: 10.1016/j.compbiomed.2023.107909_bib21
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– volume: 16
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107909_bib18
  article-title: Ridge regression and its applications in genetic studies
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0245376
– volume: 10
  start-page: 1283
  issue: 8
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107909_bib19
  article-title: Mitigating the multicollinearity problem and its machine learning approach: a review
  publication-title: Mathematics
  doi: 10.3390/math10081283
– year: 2019
  ident: 10.1016/j.compbiomed.2023.107909_bib34
– volume: 9
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107909_bib20
  article-title: Ensemble machine learning methods in screening electronic health records: a scoping review
  publication-title: Digit Health
– volume: 22
  start-page: 69
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2023.107909_bib32
  article-title: Visualizing multiple quantile plots
  publication-title: J. Comput. Graph Stat.
  doi: 10.1080/10618600.2012.680865
– volume: 36
  start-page: 942
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107909_bib14
  article-title: Learning nonlinear functions using regularized greedy forest
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.159
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 10.1016/j.compbiomed.2023.107909_bib15
  article-title: Matplotlib: a 2D graphics environment
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 16
  start-page: 144
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107909_bib29
  article-title: Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-016-0239-7
– volume: 15
  start-page: 257
  issue: 2
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107909_bib5
  article-title: Waist circumference is an essential factor in predicting insulin resistance and early detection of metabolic syndrome in adults
  publication-title: Nutrients
  doi: 10.3390/nu15020257
– volume: 30
  start-page: 3146
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107909_bib13
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 16
  start-page: 177
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107909_bib2
  article-title: Waist circumference as a vital sign in clinical practice: a consensus statement from the IAS and ICCR Working Group on Visceral Obesity
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/s41574-019-0310-7
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107909_bib37
– volume: 12
  start-page: 2014
  issue: 12
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107909_bib3
  article-title: A body shape index (ABSI) as a variant of conicity index not affected by the obesity paradox: a cross-sectional study using arterial stiffness parameter
  publication-title: J. Personalized Med.
  doi: 10.3390/jpm12122014
– ident: 10.1016/j.compbiomed.2023.107909_bib36
– volume: 30
  start-page: 3152
  issue: 22
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107909_bib22
  article-title: Bias correction for selecting the minimal-error classifier from many machine learning models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu520
– volume: 50
  start-page: 1
  issue: 11
  year: 2012
  ident: 10.1016/j.compbiomed.2023.107909_bib30
  article-title: Evaluating random forests for survival analysis using prediction error curves
  publication-title: J. Stat. Software
  doi: 10.18637/jss.v050.i11
– volume: 12
  start-page: 115
  year: 2012
  ident: 10.1016/j.compbiomed.2023.107909_bib9
  article-title: Predicting waist circumference from body mass index
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-12-115
– volume: 12
  start-page: 147
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107909_bib4
  article-title: Relative fat mass, a new index of adiposity, is strongly associated with incident heart failure: data from PREVEND
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-02409-6
– volume: 140
  start-page: 954
  issue: 5
  year: 2010
  ident: 10.1016/j.compbiomed.2023.107909_bib6
  article-title: Measurement site for waist circumference affects its accuracy as an index of visceral and abdominal subcutaneous fat in a Caucasian population
  publication-title: J. Nutr.
  doi: 10.3945/jn.109.118737
– volume: 191
  start-page: 105418
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107909_bib43
  article-title: SVM-based waist circumference estimation using Kinect
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105418
– volume: 1
  issue: 8
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107909_bib27
  article-title: Extensions of the external validation for checking learned model interpretability and generalizability
  publication-title: Patterns (N Y).
– start-page: 6533
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107909_bib38
– volume: 15
  start-page: 14
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2023.107909_bib1
  article-title: Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of the Obesity Society and the American Society of Hypertension
  publication-title: J. Clin. Hypertens.
  doi: 10.1111/jch.12049
– volume: 11
  issue: 8
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107909_bib28
  article-title: An efficient data partitioning to improve classification performance while keeping parameters interpretable
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0161788
– ident: 10.1016/j.compbiomed.2023.107909_bib45
– start-page: 785
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107909_bib12
  article-title: XGBoost: a scalable tree boosting system
SSID ssj0004030
Score 2.3718472
Snippet Obesity, typically defined by the body mass index (BMI), has well known negative health effects. However, the BMI has serious deficiencies in predicting the...
AbstractObesity, typically defined by the body mass index (BMI), has well known negative health effects. However, the BMI has serious deficiencies in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 107909
SubjectTerms Age
Algorithm selection
Algorithms
Body Mass Index
Body size
Datasets
Ethnicity
External cross-validation
Humans
Hyperparameter optimization
Internal Medicine
Learning algorithms
Machine learning
Minority & ethnic groups
Model inspection
Nutrition
Obesity
Other
Outliers (statistics)
Regression
Risk Factors
Variables
Waist Circumference
Title Selecting, optimizing and externally validating a preexisting machine-learning regression algorithm for estimating waist circumference
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523013744
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523013744
https://dx.doi.org/10.1016/j.compbiomed.2023.107909
https://www.ncbi.nlm.nih.gov/pubmed/38181609
https://www.proquest.com/docview/2920619556
https://www.proquest.com/docview/2923325274
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhhdJL6bvbPFChxzqxV5Il0VMI3W5bkksbyE1Ysrx1ib2Ld5eSHHLs786MJW8oTSHQi7H1sIQ0Gn1C38wQ8k5ZqxxkJilnPOGscIlSOU8Uq0oAzM7L3jv_yWk-PeNfzsX5FjkebGGQVhl1f9DpvbaOKYdxNA8XdY02vnCUgAMOgOiMSY4-QTmXGMXg4PqW5sFTFsxQQN9g6cjmCRwvpG0HM_cDDCMOyVIjNfHuLepfELTfiiZPyOOIIelR6OZTsuXbZ-ThSbwlf05-f-uD28Cm9J7OQSU09RW806It6eD0-eKSgojVaNuAOXTRefSJ2X81Pb_SJzGgxIx2fhbYsi0tLmbzrl79aCiAXYoeOprwi18F1Kau7ty6iSaEL8jZ5OP342kS4y0kjgu9SgSrYLdOuZW25MKKosIgwFWZSeZ4npWZSz2gpwIwgk_tmFVMMHTY55XwWldj9pJst_PWvya0HLvKaclUyTT3TCsA8UJ5bp2uSiXtiGTDEJtFcKthBr7ZT3M7LQanxYRpGRE9zIUZzEZB0RnQ_feoK--q65dxxS5NZpZjk5q_pGpEPmxq_iGY92x3dxAas2kKA4TBuVWIfETebrJhWeNdTdH6-bovwxj0QkIHXgVh2wwUgqwsT_Wb_-raDnkEXzww0HfJ9qpb-z0AWCu7368geKrJp33y4Ojz1-npDa1GKLU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VIgEXVL4XChiJI2mT2I5tcaoqqgW6vdBKvVmJ42yDmuwqu6uqPfTI72YcO1shilSJWxLbsWWPx2_kNzMAH2VRSIOFUcwoixjNTSRlxiJJqxIBs7Gij84_OcrGJ-zbKT_dgP3BF8bRKoPu9zq919bhy26Yzd15XTsfXzQl0MBBEJ1Qwdg9uM94KpwFtnN9w_NgMfV-KKhwXPVA5_EkL8fb9n7uOy6POH4WynETbz-j_oVB-7PoYAseBxBJ9vw4n8CGbZ_Cg0m4Jn8Gv3702W3wVPpEZqgTmvoKn0nelmSI-nx-SVDGaufc4ErIvLMuKGb_1vQESxuFjBJT0tmpp8u2JD-fzrp6edYQRLvEheho_C8ucmxNTN2ZVRN8CJ_DycGX4_1xFBIuRIZxtYw4rfC4jlkhipLxgueVywJclYmghmVJmZjYInzKESTYuEhpRTl1Efus5FapKqUvYLOdtfYVkDI1lVGCypIqZqmSiOK5tKwwqiqlKEaQDFOs5z6uhh4IZz_1zbJotyzaL8sI1LAWevAbRU2nUfnfoa24ra1dhC270IlepDrWf4nVCD6vW_4hmXfsd3sQGr3uymUIQ8OV82wEH9bFuK_dZU3e2tmqr0MpjkLgAF56YVtPlENZSRar1_81tPfwcHw8OdSHX4--v4FHWMI8HX0bNpfdyr5FtLUs3vW76TdVHilk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selecting%2C+optimizing+and+externally+validating+a+preexisting+machine-learning+regression+algorithm+for+estimating+waist+circumference&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Phillips-Farf%C3%A1n%2C+Bryan+V.&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=169&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107909&rft.externalDocID=S0010482523013744
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif