Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals
In motor imagery (MI) based brain–computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dime...
        Saved in:
      
    
          | Published in | Computers in biology and medicine Vol. 107; pp. 118 - 126 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.04.2019
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4825 1879-0534 1879-0534  | 
| DOI | 10.1016/j.compbiomed.2019.02.009 | 
Cover
| Abstract | In motor imagery (MI) based brain–computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dimensions and subject-specific behaviour of EEG features, there is a need for a suitable feature selection algorithm that can select the optimal features to give the best classification performance along with increased computational efficiency. The present study proposes a feature selection algorithm based on neighbourhood component analysis (NCA) with modification of the regularization parameter. In the experiment, time, frequency, and phase features of the EEG are extracted using a dual-tree complex wavelet transform (DTCWT). Afterwards, the proposed algorithm selects the most significant EEG features, and using these selected features, a support vector machine (SVM) classifier performs the classification of MI signals. The proposed algorithm has been validated experimentally on two public BCI datasets (BCI Competition II Dataset III and BCI Competition IV Dataset 2b). The classification performance of the algorithm is quantified by the average accuracy and kappa coefficient, whose values are 80.7% and 0.615 respectively. The performance of the proposed algorithm is compared with standard feature selection methods based on Genetic Algorithm (GA), Principal Component Analysis (PCA), and ReliefF and performs better than these methods. Further, the proposed algorithm selects the lowest number of features and results in increased computational efficiency, which makes it a promising feature selection tool for an MI-based BCI system.
•RNCA at the feature selection stage enhances the classification performance of the Motor imagery task.•Computational time of the SVM classifier is significantly reduced using RNCA as feature selection approach.•Power spectral density of the EEG carries important information to distinguish between two classes of motor imagery. | 
    
|---|---|
| AbstractList | In motor imagery (MI) based brain-computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dimensions and subject-specific behaviour of EEG features, there is a need for a suitable feature selection algorithm that can select the optimal features to give the best classification performance along with increased computational efficiency. The present study proposes a feature selection algorithm based on neighbourhood component analysis (NCA) with modification of the regularization parameter. In the experiment, time, frequency, and phase features of the EEG are extracted using a dual-tree complex wavelet transform (DTCWT). Afterwards, the proposed algorithm selects the most significant EEG features, and using these selected features, a support vector machine (SVM) classifier performs the classification of MI signals. The proposed algorithm has been validated experimentally on two public BCI datasets (BCI Competition II Dataset III and BCI Competition IV Dataset 2b). The classification performance of the algorithm is quantified by the average accuracy and kappa coefficient, whose values are 80.7% and 0.615 respectively. The performance of the proposed algorithm is compared with standard feature selection methods based on Genetic Algorithm (GA), Principal Component Analysis (PCA), and ReliefF and performs better than these methods. Further, the proposed algorithm selects the lowest number of features and results in increased computational efficiency, which makes it a promising feature selection tool for an MI-based BCI system. In motor imagery (MI) based brain–computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dimensions and subject-specific behaviour of EEG features, there is a need for a suitable feature selection algorithm that can select the optimal features to give the best classification performance along with increased computational efficiency. The present study proposes a feature selection algorithm based on neighbourhood component analysis (NCA) with modification of the regularization parameter. In the experiment, time, frequency, and phase features of the EEG are extracted using a dual-tree complex wavelet transform (DTCWT). Afterwards, the proposed algorithm selects the most significant EEG features, and using these selected features, a support vector machine (SVM) classifier performs the classification of MI signals. The proposed algorithm has been validated experimentally on two public BCI datasets (BCI Competition II Dataset III and BCI Competition IV Dataset 2b). The classification performance of the algorithm is quantified by the average accuracy and kappa coefficient, whose values are 80.7% and 0.615 respectively. The performance of the proposed algorithm is compared with standard feature selection methods based on Genetic Algorithm (GA), Principal Component Analysis (PCA), and ReliefF and performs better than these methods. Further, the proposed algorithm selects the lowest number of features and results in increased computational efficiency, which makes it a promising feature selection tool for an MI-based BCI system. •RNCA at the feature selection stage enhances the classification performance of the Motor imagery task.•Computational time of the SVM classifier is significantly reduced using RNCA as feature selection approach.•Power spectral density of the EEG carries important information to distinguish between two classes of motor imagery. In motor imagery (MI) based brain-computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dimensions and subject-specific behaviour of EEG features, there is a need for a suitable feature selection algorithm that can select the optimal features to give the best classification performance along with increased computational efficiency. The present study proposes a feature selection algorithm based on neighbourhood component analysis (NCA) with modification of the regularization parameter. In the experiment, time, frequency, and phase features of the EEG are extracted using a dual-tree complex wavelet transform (DTCWT). Afterwards, the proposed algorithm selects the most significant EEG features, and using these selected features, a support vector machine (SVM) classifier performs the classification of MI signals. The proposed algorithm has been validated experimentally on two public BCI datasets (BCI Competition II Dataset III and BCI Competition IV Dataset 2b). The classification performance of the algorithm is quantified by the average accuracy and kappa coefficient, whose values are 80.7% and 0.615 respectively. The performance of the proposed algorithm is compared with standard feature selection methods based on Genetic Algorithm (GA), Principal Component Analysis (PCA), and ReliefF and performs better than these methods. Further, the proposed algorithm selects the lowest number of features and results in increased computational efficiency, which makes it a promising feature selection tool for an MI-based BCI system.In motor imagery (MI) based brain-computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dimensions and subject-specific behaviour of EEG features, there is a need for a suitable feature selection algorithm that can select the optimal features to give the best classification performance along with increased computational efficiency. The present study proposes a feature selection algorithm based on neighbourhood component analysis (NCA) with modification of the regularization parameter. In the experiment, time, frequency, and phase features of the EEG are extracted using a dual-tree complex wavelet transform (DTCWT). Afterwards, the proposed algorithm selects the most significant EEG features, and using these selected features, a support vector machine (SVM) classifier performs the classification of MI signals. The proposed algorithm has been validated experimentally on two public BCI datasets (BCI Competition II Dataset III and BCI Competition IV Dataset 2b). The classification performance of the algorithm is quantified by the average accuracy and kappa coefficient, whose values are 80.7% and 0.615 respectively. The performance of the proposed algorithm is compared with standard feature selection methods based on Genetic Algorithm (GA), Principal Component Analysis (PCA), and ReliefF and performs better than these methods. Further, the proposed algorithm selects the lowest number of features and results in increased computational efficiency, which makes it a promising feature selection tool for an MI-based BCI system.  | 
    
| Author | Malan, Nitesh Singh Sharma, Shiru  | 
    
| Author_xml | – sequence: 1 givenname: Nitesh Singh surname: Malan fullname: Malan, Nitesh Singh email: niteshsm.rs.bme16@itbhu.ac.in – sequence: 2 givenname: Shiru surname: Sharma fullname: Sharma, Shiru email: shiru.bme@itbhu.ac.in  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30802693$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkcGO0zAURS00iOkM_AKyxIZNyrOdNvEGAaOZAWkkNrC2HOcldUnsYjsjlR_gt3HaAaSuunoLXx_73XNFLpx3SAhlsGTA1u-2S-PHXWP9iO2SA5NL4EsA-YwsWF3JAlaivCALAAZFWfPVJbmKcQsAJQh4QS4F1MDXUizI7zvUaQpIIw5okvWOTtG6ngbsp0EH-wtb6tD2m8ZPYeN9S-en83dcotrpYR9tpMlTdBvtDNK0QWoGHaPtrNEH4A5D58N4OPYdHX3ygdpR9xj2NNo-U-JL8rzLA189zWvy_e72283n4uHr_Zebjw-FKVcyFWXDUWqjWzTNmte8rWFVCck6wZF1vMpTNHlL04i6lsC7VpRCtExKY6pOl-KavD1yd8H_nDAmNdpocBi0Qz9FxVm9ZiWrKpmjb06i21zB_FnFee6xyiZm4Oun1NRkG2oX8mZhr_5WnAP1MWCCjzFg9y_CQM021Vb9t6lmmwq4yjbz1fcnV41Nh05T0HY4B_DpCMBc6aPFoKKxmD20NmTbqvX2HMiHE4gZrMtyhx-4Pw_xB8np2ys | 
    
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_138760 crossref_primary_10_1093_sleep_zsad328 crossref_primary_10_1007_s11042_024_18365_y crossref_primary_10_1177_1748006X211044843 crossref_primary_10_3390_s22093248 crossref_primary_10_1007_s11760_025_03851_z crossref_primary_10_3390_s24196466 crossref_primary_10_1016_j_mehy_2019_109464 crossref_primary_10_1109_ACCESS_2024_3413822 crossref_primary_10_3390_rs14092097 crossref_primary_10_1016_j_heliyon_2024_e28716 crossref_primary_10_3390_en14113117 crossref_primary_10_1016_j_brainres_2025_149484 crossref_primary_10_1016_j_bspc_2023_105003 crossref_primary_10_1016_j_compeleceng_2024_109319 crossref_primary_10_1016_j_bspc_2021_102763 crossref_primary_10_1016_j_eswa_2022_118621 crossref_primary_10_1016_j_measen_2022_100553 crossref_primary_10_3390_bios12060384 crossref_primary_10_1080_0952813X_2023_2256739 crossref_primary_10_1016_j_bspc_2022_103618 crossref_primary_10_1038_s41598_023_38868_2 crossref_primary_10_1007_s00521_023_09311_4 crossref_primary_10_1016_j_engappai_2022_105347 crossref_primary_10_1109_JIOT_2024_3354988 crossref_primary_10_1016_j_talanta_2021_122873 crossref_primary_10_1109_TIM_2020_2994604 crossref_primary_10_1002_suco_202300452 crossref_primary_10_1002_ima_22683 crossref_primary_10_32628_IJSRST218535 crossref_primary_10_1115_1_4052838 crossref_primary_10_3390_sym13071202 crossref_primary_10_1109_ACCESS_2020_2982210 crossref_primary_10_3390_bios14050211 crossref_primary_10_17341_gazimmfd_978895 crossref_primary_10_1016_j_compbiomed_2020_103671 crossref_primary_10_1039_D3RA02476H crossref_primary_10_1155_2020_1683013 crossref_primary_10_3390_s21196597 crossref_primary_10_1016_j_artmed_2021_102210 crossref_primary_10_1007_s10586_024_04475_7 crossref_primary_10_1088_2057_1976_ac2354 crossref_primary_10_1007_s12239_023_0071_0 crossref_primary_10_1016_j_chaos_2021_111450 crossref_primary_10_7717_peerj_12027 crossref_primary_10_1016_j_chemolab_2019_103886 crossref_primary_10_1016_j_jhydrol_2022_127534 crossref_primary_10_1016_j_eswa_2024_123239 crossref_primary_10_1109_TSMC_2024_3355101 crossref_primary_10_1016_j_eswa_2023_119971 crossref_primary_10_3390_s20164485 crossref_primary_10_1007_s11668_022_01463_0 crossref_primary_10_1142_S0129065721500404 crossref_primary_10_1016_j_bspc_2021_102550 crossref_primary_10_1007_s11042_023_14943_8 crossref_primary_10_1016_j_bspc_2020_102069 crossref_primary_10_47897_bilmes_845452 crossref_primary_10_1007_s00202_023_01974_5 crossref_primary_10_1016_j_compbiomed_2022_105521 crossref_primary_10_1016_j_mineng_2021_107041 crossref_primary_10_3390_s20205881 crossref_primary_10_1016_j_bspc_2021_102621 crossref_primary_10_1109_TIM_2021_3132833 crossref_primary_10_1088_1741_2552_abce70 crossref_primary_10_1016_j_bspc_2021_102548 crossref_primary_10_1016_j_eswa_2022_119219 crossref_primary_10_1016_j_irbm_2021_01_002 crossref_primary_10_1016_j_jneumeth_2021_109425 crossref_primary_10_1186_s41747_024_00455_z crossref_primary_10_1007_s00500_020_05205_y crossref_primary_10_1007_s11042_024_18595_0 crossref_primary_10_1016_j_bspc_2024_106681 crossref_primary_10_1142_S0219467823500535 crossref_primary_10_1016_j_inffus_2023_102124 crossref_primary_10_1109_JSEN_2023_3276022 crossref_primary_10_1109_TIA_2023_3327227 crossref_primary_10_1109_JBHI_2024_3464550 crossref_primary_10_1007_s11042_022_12327_y crossref_primary_10_1016_j_bspc_2022_103496 crossref_primary_10_1016_j_compeleceng_2022_108275 crossref_primary_10_1080_24705314_2023_2230398 crossref_primary_10_1007_s11030_022_10425_5 crossref_primary_10_1016_j_rser_2020_109873 crossref_primary_10_1177_15500594251325273 crossref_primary_10_2217_epi_2019_0230 crossref_primary_10_1080_03772063_2021_1914204 crossref_primary_10_3992_jgb_17_4_79  | 
    
| Cites_doi | 10.1109/TNNLS.2015.2476656 10.1016/j.ijleo.2013.09.013 10.1016/j.eij.2015.06.002 10.1109/TNSRE.2013.2243471 10.1155/2018/1624637 10.1109/RBME.2009.2035356 10.1109/5.939829 10.1016/j.neucom.2011.06.026 10.1007/BF00175354 10.1162/NECO_a_00838 10.3390/s17112576 10.1109/TCYB.2015.2479240 10.1038/nrneurol.2016.113 10.1109/TNSRE.2016.2519350 10.1016/j.neunet.2018.02.011 10.1016/S1388-2457(99)00141-8 10.1109/TSP.2009.2028962 10.1109/ACCESS.2018.2868361 10.3389/fnins.2012.00055 10.1155/2013/419187 10.1109/TBME.2008.2009768  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd  | 
    
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd  | 
    
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8  | 
    
| DOI | 10.1016/j.compbiomed.2019.02.009 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection Text complet a ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed Research Library Prep MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1879-0534 | 
    
| EndPage | 126 | 
    
| ExternalDocumentID | 30802693 10_1016_j_compbiomed_2019_02_009 S0010482519300563  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW LCYCR M0N RIG AAYXX CITATION PUEGO AFCTW ALIPV NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8  | 
    
| ID | FETCH-LOGICAL-c459t-4b2e9acadecb6282d8057391f32e1f27f323b040cb388902fd3433d199cc7fa43 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0010-4825 1879-0534  | 
    
| IngestDate | Sun Sep 28 09:08:15 EDT 2025 Tue Oct 07 06:38:35 EDT 2025 Thu Apr 03 07:02:34 EDT 2025 Wed Oct 01 04:07:28 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Fri Feb 23 02:24:56 EST 2024 Tue Oct 14 19:33:08 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Brain-computer interface Motor imagery Support vector machine Genetic algorithm Neighbourhood component analysis Principal component analysis  | 
    
| Language | English | 
    
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c459t-4b2e9acadecb6282d8057391f32e1f27f323b040cb388902fd3433d199cc7fa43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PMID | 30802693 | 
    
| PQID | 2203070164 | 
    
| PQPubID | 1226355 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_miscellaneous_2186141779 proquest_journals_2203070164 pubmed_primary_30802693 crossref_primary_10_1016_j_compbiomed_2019_02_009 crossref_citationtrail_10_1016_j_compbiomed_2019_02_009 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_02_009 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_02_009  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2019 2019-04-00 20190401  | 
    
| PublicationDateYYYYMMDD | 2019-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2019 text: April 2019  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Oxford  | 
    
| PublicationTitle | Computers in biology and medicine | 
    
| PublicationTitleAlternate | Comput Biol Med | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier Ltd Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited  | 
    
| References | Uzer, Yilmaz, Inan (bib45) 2013 Yu, Chum, Sim (bib17) 2014; 125 Yang, Laaksonen (bib25) 2007 Wang, Zhang, Waytowich, Krusienski, Zhou, Jin, Wang, Cichocki (bib11) 2016; 24 Rakotomamonjy, Guigue, Mallet, Alvarado (bib16) 2005 Shawe-Taylor, Sun (bib40) 2011; 74 Zhang, Nam, Zhou, Jin, Wang, Cichocki (bib9) 2018 Chaurasiya, Londhe, Ghosh (bib30) 2015; 9 Song, Guo, Mei (bib37) 2010 Bhattacharyya, Rakshit, Konar, Tibarewala, Janarthanan (bib19) 2013 Hsu (bib33) 2013; 9 Feng, Yin, Jin, Saab, Daly, Wang, Hu, Cichocki (bib44) 2018; 102 Feature selection on movement imagery discrimination and attention detection, (n.d.). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946110/(accessed February 5, 2019). Resalat, Saba (bib31) 2016; 7 Ang, Chin, Zhang, Guan (bib42) 2008 Ramos, Hernández, Vellasco (bib23) 2016 Babatunde, Armstrong, Leng, Diepeveen (bib35) 2014 Bashashati, Ward, Bashashati (bib48) 2016 Hamedi, Salleh, Noor (bib2) 2016; 28 Corralejo, Hornero, Álvarez (bib46) 2011 Pfurtscheller, Da Silva (bib3) 1999; 110 Grosse-Wentrup, Liefhold, Gramann, Buss (bib7) 2009; 56 Schlogl, Kronegg, Huggins, Mason (bib41) 2007 Nakisa, Rastgoo, Rakotonirainy, Maire, Chandran (bib47) 2018; 6 Pfurtscheller, Neuper (bib8) 2001; 89 Kim, Sun, Liu, Wang, Paek (bib32) 2018 Zikov, Bibian, Dumont, Huzmezan, Ries (bib29) 2002 Dong, Kim, Lee (bib13) 2016; 46 Jin, Zhou, Gao, Zhang (bib14) 2018 Boutsidis, Mahoney, Drineas (bib36) 2008 Wang, Gonuguntla, Shafiq, Veluvolu (bib20) 2013 Goldberger, Hinton, Roweis, Salakhutdinov (bib24) 2005 Liu, Chen, Liu, Ai, Xie, Chen (bib15) 2017; 17 Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz (bib27) 2012; 6 Guo, Wu, Gong, Zhang (bib18) 2013 Chaudhury, Unser (bib28) 2010; 58 Zhang, Zhou, Jin, Zhao, Wang, Cichocki (bib10) 2016; 27 Zhang, Zhou, Zhao, Jin, Wang, Cichocki (bib12) 2013; 21 Chaudhary, Birbaumer, Ramos-Murguialday (bib1) 2016; 12 Kononenko (bib38) 1994 Blankertz, Muller, Curio, Vaughan, Schalk, Wolpaw, Schlogl, Neuper, Pfurtscheller, Hinterberger, Schroder, Birbaumer (bib26) 2004; 51 Wang, Wang, Jung (bib43) 2012; 7 Cantillo-Negrete, Carino-Escobar, Carrillo-Mora, Elias-Vinas, Gutierrez-Martinez (bib6) 2018 Abdulkader, Atia, Mostafa (bib4) 2015; 16 Whitley (bib34) 1994; 4 Yang, Wang, Zuo (bib39) 2012; 7 Mak, Wolpaw (bib5) 2009; 2 Rakshit, Bhattacharyya, Konar, Khasnobish, Tibarewala, Janarthanan (bib21) 2013 Yang (10.1016/j.compbiomed.2019.02.009_bib25) 2007 Babatunde (10.1016/j.compbiomed.2019.02.009_bib35) 2014 Bashashati (10.1016/j.compbiomed.2019.02.009_bib48) 2016 Yu (10.1016/j.compbiomed.2019.02.009_bib17) 2014; 125 Uzer (10.1016/j.compbiomed.2019.02.009_bib45) 2013 Chaudhury (10.1016/j.compbiomed.2019.02.009_bib28) 2010; 58 Goldberger (10.1016/j.compbiomed.2019.02.009_bib24) 2005 Hamedi (10.1016/j.compbiomed.2019.02.009_bib2) 2016; 28 Boutsidis (10.1016/j.compbiomed.2019.02.009_bib36) 2008 Wang (10.1016/j.compbiomed.2019.02.009_bib11) 2016; 24 Guo (10.1016/j.compbiomed.2019.02.009_bib18) 2013 Tangermann (10.1016/j.compbiomed.2019.02.009_bib27) 2012; 6 Ang (10.1016/j.compbiomed.2019.02.009_bib42) 2008 Jin (10.1016/j.compbiomed.2019.02.009_bib14) 2018 10.1016/j.compbiomed.2019.02.009_bib22 Kim (10.1016/j.compbiomed.2019.02.009_bib32) 2018 Pfurtscheller (10.1016/j.compbiomed.2019.02.009_bib8) 2001; 89 Resalat (10.1016/j.compbiomed.2019.02.009_bib31) 2016; 7 Whitley (10.1016/j.compbiomed.2019.02.009_bib34) 1994; 4 Chaudhary (10.1016/j.compbiomed.2019.02.009_bib1) 2016; 12 Zikov (10.1016/j.compbiomed.2019.02.009_bib29) 2002 Pfurtscheller (10.1016/j.compbiomed.2019.02.009_bib3) 1999; 110 Yang (10.1016/j.compbiomed.2019.02.009_bib39) 2012; 7 Rakshit (10.1016/j.compbiomed.2019.02.009_bib21) 2013 Zhang (10.1016/j.compbiomed.2019.02.009_bib12) 2013; 21 Schlogl (10.1016/j.compbiomed.2019.02.009_bib41) 2007 Ramos (10.1016/j.compbiomed.2019.02.009_bib23) 2016 Corralejo (10.1016/j.compbiomed.2019.02.009_bib46) 2011 Liu (10.1016/j.compbiomed.2019.02.009_bib15) 2017; 17 Feng (10.1016/j.compbiomed.2019.02.009_bib44) 2018; 102 Blankertz (10.1016/j.compbiomed.2019.02.009_bib26) 2004; 51 Nakisa (10.1016/j.compbiomed.2019.02.009_bib47) 2018; 6 Wang (10.1016/j.compbiomed.2019.02.009_bib43) 2012; 7 Shawe-Taylor (10.1016/j.compbiomed.2019.02.009_bib40) 2011; 74 Chaurasiya (10.1016/j.compbiomed.2019.02.009_bib30) 2015; 9 Hsu (10.1016/j.compbiomed.2019.02.009_bib33) 2013; 9 Kononenko (10.1016/j.compbiomed.2019.02.009_bib38) 1994 Grosse-Wentrup (10.1016/j.compbiomed.2019.02.009_bib7) 2009; 56 Zhang (10.1016/j.compbiomed.2019.02.009_bib10) 2016; 27 Zhang (10.1016/j.compbiomed.2019.02.009_bib9) 2018 Abdulkader (10.1016/j.compbiomed.2019.02.009_bib4) 2015; 16 Song (10.1016/j.compbiomed.2019.02.009_bib37) 2010 Mak (10.1016/j.compbiomed.2019.02.009_bib5) 2009; 2 Cantillo-Negrete (10.1016/j.compbiomed.2019.02.009_bib6) 2018 Bhattacharyya (10.1016/j.compbiomed.2019.02.009_bib19) 2013 Dong (10.1016/j.compbiomed.2019.02.009_bib13) 2016; 46 Rakotomamonjy (10.1016/j.compbiomed.2019.02.009_bib16) 2005 Wang (10.1016/j.compbiomed.2019.02.009_bib20) 2013  | 
    
| References_xml | – volume: 7 year: 2012 ident: bib43 article-title: Translation of EEG spatial filters from resting to motor imagery using independent component analysis publication-title: PLoS One – volume: 89 start-page: 1123 year: 2001 end-page: 1134 ident: bib8 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE – volume: 27 start-page: 2256 year: 2016 end-page: 2267 ident: bib10 article-title: Sparse bayesian classification of EEG for brain–computer interface publication-title: IEEE Trans. Neural Netw. Learn Syst. – volume: 56 start-page: 1209 year: 2009 end-page: 1219 ident: bib7 article-title: Beamforming in noninvasive brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 24 start-page: 532 year: 2016 end-page: 541 ident: bib11 article-title: Discriminative feature extraction via multivariate linear regression for SSVEP-based BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 2390 year: 2008 end-page: 2397 ident: bib42 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface publication-title: Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on – start-page: 1 year: 2018 end-page: 9 ident: bib14 article-title: EEG Classification Using Sparse Bayesian Extreme Learning Machine for Brain–Computer Interface, Neural Computing and Applications – volume: 21 start-page: 233 year: 2013 end-page: 243 ident: bib12 article-title: Spatial-temporal discriminant analysis for ERP-based brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 45 year: 2005 end-page: 50 ident: bib16 article-title: Ensemble of SVMs for improving brain computer interface P300 speller performances publication-title: Proceedings of the 15th International Conference on Artificial Neural Networks: Biological Inspirations - Volume Part I – volume: 16 start-page: 213 year: 2015 end-page: 230 ident: bib4 article-title: Brain computer interfacing: applications and challenges publication-title: Egyptian Informatics Journal – start-page: 34 year: 2013 end-page: 35 ident: bib20 article-title: BMFLC with neural network and DE for better event classification publication-title: 2013 International Winter Workshop on Brain-Computer Interface – volume: 102 start-page: 87 year: 2018 end-page: 95 ident: bib44 article-title: Towards correlation-based time window selection method for motor imagery BCIs publication-title: Neural Network. – volume: 51 start-page: 1044 year: 2004 end-page: 1051 ident: bib26 article-title: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 4 start-page: 65 year: 1994 end-page: 85 ident: bib34 article-title: A genetic algorithm tutorial publication-title: Stat. Comput. – volume: 7 start-page: 161 year: 2012 end-page: 168 ident: bib39 article-title: Neighborhood component feature selection for high-dimensional data publication-title: J. Clin. Pharm. – volume: 2 start-page: 187 year: 2009 end-page: 199 ident: bib5 article-title: Clinical applications of brain-computer interfaces: current state and future prospects publication-title: IEEE Rev. Biomed. Eng. – year: 2018 ident: bib6 article-title: Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients publication-title: J. Healthc. Eng. – start-page: 253 year: 2007 end-page: 262 ident: bib25 article-title: Regularized neighborhood component analysis publication-title: Image Analysis – volume: 9 start-page: 182 year: 2015 end-page: 186 ident: bib30 article-title: Statistical wavelet features, PCA, and SVM based approach for EEG signals classification publication-title: Int. J. Electr. Comput. Electron. Commun. Eng. – start-page: 1 year: 2016 end-page: 6 ident: bib23 article-title: Feature Selection methods applied to Motor Imagery task classification publication-title: 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI) – start-page: 61 year: 2008 end-page: 69 ident: bib36 article-title: Unsupervised feature selection for principal components analysis publication-title: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 7703 year: 2011 end-page: 7706 ident: bib46 article-title: Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface publication-title: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society – start-page: 513 year: 2005 end-page: 520 ident: bib24 article-title: Neighbourhood components analysis publication-title: Advances in Neural Information Processing Systems – volume: 12 start-page: 513 year: 2016 end-page: 525 ident: bib1 article-title: Brain-computer interfaces for communication and rehabilitation publication-title: Nat. Rev. Neurol. – volume: 6 start-page: 55 year: 2012 ident: bib27 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. – start-page: 1 year: 2018 end-page: 14 ident: bib32 article-title: An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI publication-title: Med. Biol. Eng. Comput. – start-page: 27 year: 2010 end-page: 30 ident: bib37 article-title: Feature selection using principal component analysis publication-title: System Science, Engineering Design and Manufacturing Informatization (ICSEM), 2010 International Conference on – volume: 74 start-page: 3609 year: 2011 end-page: 3618 ident: bib40 article-title: A review of optimization methodologies in support vector machines publication-title: Neurocomputing – year: 2013 ident: bib45 article-title: Feature selection method based on artificial bee Colony algorithm and support vector machines for medical datasets classification publication-title: J. Sci. World – volume: 58 start-page: 221 year: 2010 end-page: 232 ident: bib28 article-title: On the shiftability of dual-tree complex wavelet transforms publication-title: IEEE Trans. Signal Process. – start-page: 534 year: 2013 end-page: 545 ident: bib19 article-title: Feature selection of motor imagery EEG signals using firefly temporal difference Q-learning and support vector machine publication-title: Swarm, Evolutionary, and Memetic Computing – volume: 125 start-page: 1498 year: 2014 end-page: 1502 ident: bib17 article-title: Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system publication-title: Optik – volume: 7 start-page: 13 year: 2016 end-page: 19 ident: bib31 article-title: A study of various feature extraction methods on a motor imagery based brain computer interface system publication-title: Basic Clin. Neurosci. – volume: 6 start-page: 49325 year: 2018 end-page: 49338 ident: bib47 article-title: Long short term memory hyperparameter optimization for a neural network based emotion recognition framework publication-title: IEEE Access – start-page: 1 year: 2018 end-page: 11 ident: bib9 article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI publication-title: IEEE Trans. Cybern. – reference: Feature selection on movement imagery discrimination and attention detection, (n.d.). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946110/(accessed February 5, 2019). – volume: 110 start-page: 1842 year: 1999 end-page: 1857 ident: bib3 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. – volume: 46 start-page: 2535 year: 2016 end-page: 2542 ident: bib13 article-title: EEG-based classification of implicit intention during self-relevant sentence reading publication-title: IEEE Trans. Cybern. – start-page: 1058 year: 2013 end-page: 1061 ident: bib18 article-title: Envelope detection based on online ICA algorithm and its application to motor imagery classification publication-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering – start-page: 127 year: 2013 end-page: 138 ident: bib21 article-title: Artificial bee Colony based feature selection for motor imagery EEG data publication-title: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012) – year: 2007 ident: bib41 article-title: 19 Evaluation Criteria for Bci Research, toward Brain-Computer Interfacing – volume: 9 start-page: 465 year: 2013 end-page: 475 ident: bib33 article-title: Wavelet-coherence features for motor imagery EEG analysis posterior to EOG noise elimination publication-title: Int. J. Innov. Comput. Inf. Contr. – year: 2014 ident: bib35 article-title: A Genetic Algorithm-Based Feature Selection – start-page: 1 year: 2016 end-page: 5 ident: bib48 article-title: Bayesian optimization of BCI parameters publication-title: 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) – volume: 28 start-page: 999 year: 2016 end-page: 1041 ident: bib2 article-title: Electroencephalographic motor imagery brain connectivity analysis for BCI: a review publication-title: Neural Comput. – volume: 17 year: 2017 ident: bib15 article-title: Feature selection for motor imagery EEG classification based on firefly algorithm and learning automata publication-title: Sensors – start-page: 98 year: 2002 end-page: 105 ident: bib29 article-title: A wavelet based de-noising technique for ocular artifact correction of the electroencephalogram publication-title: Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint – start-page: 171 year: 1994 end-page: 182 ident: bib38 article-title: Estimating attributes: analysis and extensions of RELIEF publication-title: European Conference on Machine Learning – ident: 10.1016/j.compbiomed.2019.02.009_bib22 – volume: 51 start-page: 1044 year: 2004 ident: 10.1016/j.compbiomed.2019.02.009_bib26 article-title: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 7 year: 2012 ident: 10.1016/j.compbiomed.2019.02.009_bib43 article-title: Translation of EEG spatial filters from resting to motor imagery using independent component analysis publication-title: PLoS One – volume: 27 start-page: 2256 year: 2016 ident: 10.1016/j.compbiomed.2019.02.009_bib10 article-title: Sparse bayesian classification of EEG for brain–computer interface publication-title: IEEE Trans. Neural Netw. Learn Syst. doi: 10.1109/TNNLS.2015.2476656 – start-page: 2390 year: 2008 ident: 10.1016/j.compbiomed.2019.02.009_bib42 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface – start-page: 7703 year: 2011 ident: 10.1016/j.compbiomed.2019.02.009_bib46 article-title: Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface – start-page: 534 year: 2013 ident: 10.1016/j.compbiomed.2019.02.009_bib19 article-title: Feature selection of motor imagery EEG signals using firefly temporal difference Q-learning and support vector machine – start-page: 253 year: 2007 ident: 10.1016/j.compbiomed.2019.02.009_bib25 article-title: Regularized neighborhood component analysis – start-page: 1058 year: 2013 ident: 10.1016/j.compbiomed.2019.02.009_bib18 article-title: Envelope detection based on online ICA algorithm and its application to motor imagery classification – volume: 125 start-page: 1498 year: 2014 ident: 10.1016/j.compbiomed.2019.02.009_bib17 article-title: Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system publication-title: Optik doi: 10.1016/j.ijleo.2013.09.013 – volume: 16 start-page: 213 year: 2015 ident: 10.1016/j.compbiomed.2019.02.009_bib4 article-title: Brain computer interfacing: applications and challenges publication-title: Egyptian Informatics Journal doi: 10.1016/j.eij.2015.06.002 – start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.009_bib23 article-title: Feature Selection methods applied to Motor Imagery task classification – volume: 21 start-page: 233 year: 2013 ident: 10.1016/j.compbiomed.2019.02.009_bib12 article-title: Spatial-temporal discriminant analysis for ERP-based brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2243471 – start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2019.02.009_bib32 article-title: An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI publication-title: Med. Biol. Eng. Comput. – start-page: 45 year: 2005 ident: 10.1016/j.compbiomed.2019.02.009_bib16 article-title: Ensemble of SVMs for improving brain computer interface P300 speller performances – year: 2018 ident: 10.1016/j.compbiomed.2019.02.009_bib6 article-title: Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients publication-title: J. Healthc. Eng. doi: 10.1155/2018/1624637 – volume: 2 start-page: 187 year: 2009 ident: 10.1016/j.compbiomed.2019.02.009_bib5 article-title: Clinical applications of brain-computer interfaces: current state and future prospects publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2009.2035356 – volume: 7 start-page: 161 year: 2012 ident: 10.1016/j.compbiomed.2019.02.009_bib39 article-title: Neighborhood component feature selection for high-dimensional data publication-title: J. Clin. Pharm. – start-page: 27 year: 2010 ident: 10.1016/j.compbiomed.2019.02.009_bib37 article-title: Feature selection using principal component analysis – volume: 89 start-page: 1123 year: 2001 ident: 10.1016/j.compbiomed.2019.02.009_bib8 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE doi: 10.1109/5.939829 – volume: 74 start-page: 3609 year: 2011 ident: 10.1016/j.compbiomed.2019.02.009_bib40 article-title: A review of optimization methodologies in support vector machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.06.026 – start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.009_bib48 article-title: Bayesian optimization of BCI parameters – volume: 4 start-page: 65 year: 1994 ident: 10.1016/j.compbiomed.2019.02.009_bib34 article-title: A genetic algorithm tutorial publication-title: Stat. Comput. doi: 10.1007/BF00175354 – volume: 9 start-page: 182 year: 2015 ident: 10.1016/j.compbiomed.2019.02.009_bib30 article-title: Statistical wavelet features, PCA, and SVM based approach for EEG signals classification publication-title: Int. J. Electr. Comput. Electron. Commun. Eng. – start-page: 171 year: 1994 ident: 10.1016/j.compbiomed.2019.02.009_bib38 article-title: Estimating attributes: analysis and extensions of RELIEF – volume: 28 start-page: 999 year: 2016 ident: 10.1016/j.compbiomed.2019.02.009_bib2 article-title: Electroencephalographic motor imagery brain connectivity analysis for BCI: a review publication-title: Neural Comput. doi: 10.1162/NECO_a_00838 – volume: 17 year: 2017 ident: 10.1016/j.compbiomed.2019.02.009_bib15 article-title: Feature selection for motor imagery EEG classification based on firefly algorithm and learning automata publication-title: Sensors doi: 10.3390/s17112576 – volume: 46 start-page: 2535 year: 2016 ident: 10.1016/j.compbiomed.2019.02.009_bib13 article-title: EEG-based classification of implicit intention during self-relevant sentence reading publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2479240 – volume: 9 start-page: 465 year: 2013 ident: 10.1016/j.compbiomed.2019.02.009_bib33 article-title: Wavelet-coherence features for motor imagery EEG analysis posterior to EOG noise elimination publication-title: Int. J. Innov. Comput. Inf. Contr. – start-page: 61 year: 2008 ident: 10.1016/j.compbiomed.2019.02.009_bib36 article-title: Unsupervised feature selection for principal components analysis – year: 2007 ident: 10.1016/j.compbiomed.2019.02.009_bib41 – volume: 12 start-page: 513 year: 2016 ident: 10.1016/j.compbiomed.2019.02.009_bib1 article-title: Brain-computer interfaces for communication and rehabilitation publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2016.113 – volume: 24 start-page: 532 year: 2016 ident: 10.1016/j.compbiomed.2019.02.009_bib11 article-title: Discriminative feature extraction via multivariate linear regression for SSVEP-based BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2519350 – start-page: 98 year: 2002 ident: 10.1016/j.compbiomed.2019.02.009_bib29 article-title: A wavelet based de-noising technique for ocular artifact correction of the electroencephalogram – volume: 102 start-page: 87 year: 2018 ident: 10.1016/j.compbiomed.2019.02.009_bib44 article-title: Towards correlation-based time window selection method for motor imagery BCIs publication-title: Neural Network. doi: 10.1016/j.neunet.2018.02.011 – start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2019.02.009_bib9 article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI publication-title: IEEE Trans. Cybern. – volume: 110 start-page: 1842 year: 1999 ident: 10.1016/j.compbiomed.2019.02.009_bib3 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00141-8 – volume: 58 start-page: 221 year: 2010 ident: 10.1016/j.compbiomed.2019.02.009_bib28 article-title: On the shiftability of dual-tree complex wavelet transforms publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2028962 – start-page: 127 year: 2013 ident: 10.1016/j.compbiomed.2019.02.009_bib21 article-title: Artificial bee Colony based feature selection for motor imagery EEG data – volume: 6 start-page: 49325 year: 2018 ident: 10.1016/j.compbiomed.2019.02.009_bib47 article-title: Long short term memory hyperparameter optimization for a neural network based emotion recognition framework publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2868361 – start-page: 513 year: 2005 ident: 10.1016/j.compbiomed.2019.02.009_bib24 article-title: Neighbourhood components analysis – start-page: 34 year: 2013 ident: 10.1016/j.compbiomed.2019.02.009_bib20 article-title: BMFLC with neural network and DE for better event classification – volume: 6 start-page: 55 year: 2012 ident: 10.1016/j.compbiomed.2019.02.009_bib27 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00055 – volume: 7 start-page: 13 year: 2016 ident: 10.1016/j.compbiomed.2019.02.009_bib31 article-title: A study of various feature extraction methods on a motor imagery based brain computer interface system publication-title: Basic Clin. Neurosci. – year: 2014 ident: 10.1016/j.compbiomed.2019.02.009_bib35 – start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2019.02.009_bib14 – year: 2013 ident: 10.1016/j.compbiomed.2019.02.009_bib45 article-title: Feature selection method based on artificial bee Colony algorithm and support vector machines for medical datasets classification publication-title: J. Sci. World doi: 10.1155/2013/419187 – volume: 56 start-page: 1209 year: 2009 ident: 10.1016/j.compbiomed.2019.02.009_bib7 article-title: Beamforming in noninvasive brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2009768  | 
    
| SSID | ssj0004030 | 
    
| Score | 2.5450428 | 
    
| Snippet | In motor imagery (MI) based brain–computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to... In motor imagery (MI) based brain-computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 118 | 
    
| SubjectTerms | Accuracy Brain-computer interface Classification Cognitive tasks Competition Computational efficiency Computational neuroscience Computing time Data processing Datasets EEG Electroencephalography Feature extraction Genetic algorithm Genetic algorithms Genetic analysis Human-computer interface Image classification Image enhancement Mental task performance Methods Motor imagery Motor task performance Motors Neighbourhood component analysis Parameter modification Principal component analysis Principal components analysis Regularization Robotics Signal analysis Signal classification Support vector machine Support vector machines Temporal resolution Wavelet transforms  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELUQB9RLBbRA-KimUq9b8NrZXYsTQiBUCU5F4matvXabCnajTXJoD1z528zY3kQckCL1FCXZiRzP7Ph5_eYNY9-4aqp6XKhMGY4blMaXWa2sz4xH7OoQoNcusHzvipt7-eNh_LDBLodaGKJVptwfc3rI1umT0zSbp9PJhGp8cSsRKi9Jcr0gxU8pS-pi8P15RfOQZyKWoWC-oasTmydyvIi2HcvcieSlonqnem-Jeg-ChqXoept9TBgSLuIwd9iGa3fZ1m06Jf_EXgjXLXoHs9DkBmceiN7-C_rQeL6f_HMNtPRMlB5pkq4x0BC7FhcgqJNKCcw7cO1vCgpAkAiWYDbxioIrYboqOIDOAzq862HyRIoYf4FIIRjWn9n99dXPy5ssNVzIrByreSZN7lRNvHxrCtyLNRXJJSruRe64z0t8FQZn1BpR0fmkb4QUouFKWVv6Woo9ttniYA8YGOFEMbaYIZyShZdG-KpopMrLvLKOVyNWDnOsbVIjp6YYj3qgnf3RK-9o8o4-yzV6Z8T40nIaFTnWsFGDG_VQcYo5UuOysYbt-dL2TWSuaX08RI1O2WGm8zykWtypjtjX5dd4X9NhTd26boHX8AqREy9L_In9GG3LvyuoQLpQ4vC_hnbEPtC7SEM6ZpvzfuFOEGHNzZdwC70CizsoWw priority: 102 providerName: Elsevier  | 
    
| Title | Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519300563 https://dx.doi.org/10.1016/j.compbiomed.2019.02.009 https://www.ncbi.nlm.nih.gov/pubmed/30802693 https://www.proquest.com/docview/2203070164 https://www.proquest.com/docview/2186141779  | 
    
| Volume | 107 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LAB) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB21iYS4oPIdKNEicTV0vRvbK1ShghoCiAghKuW2svejFIEd3OTQHrjyt5nxrpNTUS7OIRlr4xnPvt198wbgBVe2KCeZSlTFcYFifZ6Uyvik8ohdHQL00nUs33k2O5MfF5PFHsz7WhiiVfY5sUvUtjG0R_4qTbvwRHT_Zvk7oa5RdLrat9AoY2sFe9xJjO3DMCVlrAEM357Ov3zdVkoeiVCUgtlH4uIocnsC44tI3KHonShfKmh5qpsmrJsAaTcxTQ_gTkSU7CSEwF3Yc_U9uPU5npnfh7-E8tatY5ddyxv0AyOy-zlruzb07cW1s6ymHVLa4CSVY0ZDbGqcjlgZNUvYqmGu_k4hwhAyMkOgm1hGnWPZclt-wBrP0P1Nyy5-kT7GFSOKCAb5Azibnn57N0ti-4XEyIlaJbJKnSqJpW-qDFdmtiDxRMW9SB33aY6fosInaipR0Gmlt0IKYblSxuS-lOIhDGoc7GNglXAimxjMF07JzMtK-CKzUqV5WhjHixHk_TPWJmqTU4uMn7onof3QW-9o8o4-SjV6ZwR8Y7kM-hw72KjejbqvP8WMqXES2cH29cY2YpSAPXa0PuyjRsdccam3kT2C55uv8S2no5uyds0af8MLxFE8z_EWj0K0bf6uoHLpTIkn_7_5U7hNIwmso0MYrNq1e4aAalWNYf_lH47XfJHjtZi-H8Pw5MOn2Xwc359_3Qonzg | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK0EviDcLBYwEx4j6sUksVCEerba0XSHUSr2Z-AWtIFmyu0LlD_Cv-G3MxM7uqWgvPe0hO5aTGY-_sb-ZIeQFU66shrnKlGEQoLhQZJWyITMBsKsHgF75juU7zkcn8uPp8HSN_O1zYZBW2fvEzlG7xuIZ-SvOO_MEdP9m8jPDrlF4u9q30KhSawW305UYS4kdB_7iF4Rw0539D6Dvl5zv7R6_H2Wpy0Bm5VDNMmm4VxWS0a3JIQBxJdYIVCwI7lngBfwKA6ZujSjxUi44IYVwTClri1BJAeNeIxtSSAXB38a73fGnz8vMzG0Rk2DA20kIxhKXKDLMkDQek-yRYqZi7VB12QZ5GQDuNsK9W-RmQrD0bTS522TN13fI9aN0R3-X_EFUOW89nXYtdkDvFMn1X2nbtb1vz357R2s8kcUDVayqTHGKTQ3bH61SjRQ6a6ivv6FJUoCo1CLIR1ZTZ0h0skx3oE2gYG5NS89-YD2OC4qUFFhU98jJlSjiPlmvYbIPCTXCi3xowT95JfMgjQhl7qTiBS-tZ-WAFP031jbVQseWHN91T3o710vtaNSO3uYatDMgbCE5ifVAVpBRvRp1n-8KHlrDprWC7OuFbMJEEeusKL3VW41OvmmqlytpQJ4vHoNXwauiqvbNHP7DSsBtrChgiAfR2havKzA9O1fi0f8Hf0ZujI6PDvXh_vjgMdnEWUXG0xZZn7Vz_wTA3Mw8TSuGki9XvUj_AbVoYC8 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8WChgJjlHrx8axEEKIsmopVByotDcTOzYUQbJkd4XKH-A_8euYiZPdU9FeetpDdiwn8_Bn-5sZgGfcVEU5zk1mHMcNShV1VhofMxcRuwYE6GXoWL4n-eGpejcdT7fg75ALQ7TKISZ2gbpqPJ2R7wnRmSei-73Y0yI-HkxezX5m1EGKblqHdhrJRI7D-S_cvs1fHh2grp8LMXn76c1h1ncYyLwam0WmnAimJCK6dzluPqqC6gMaHqUIPAqNv9KhmXsnC7qQi5VUUlbcGO91LJXEca_AVS2lITqhnup1Tua-TOkvGOcUbsN6FlHilhFdPKXXE7nMpKqh5qKl8SLo2y2Bkxtwvceu7HUytpuwFepbsPOhv52_DX8ITy7bwOZdcx3UOCNa_RfWdg3v27PfoWI1ncXSUSrVU2Y0xabGhY-VfXUUtmhYqL-SMTIEp8wTvCc-U2dCbLZOdGBNZGhoTcvOflAljnNGZBR0pztweilquAvbNU72PjAng8zHHiNTMCqPyslY5JUyQovCB16MQA_f2Pq-Cjo14_huB7rbN7vWjiXt2H1hUTsj4CvJWaoEsoGMGdRoh0xXjM0Wl6sNZF-sZHs0lFDOhtK7g9XYPirN7dqHRvB09RjjCV0SlXVolvgfXiBi41rjEPeSta1eV1Jidm7kg_8P_gR20DXt-6OT44dwjSaVqE67sL1ol-ERoriFe9y5C4PPl-2f_wAfC13J | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+using+regularized+neighbourhood+component+analysis+to+enhance+the+classification+performance+of+motor+imagery+signals&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Malan%2C+Nitesh+Singh&rft.au=Sharma%2C+Shiru&rft.date=2019-04-01&rft.issn=0010-4825&rft.volume=107&rft.spage=118&rft.epage=126&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.02.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2019_02_009 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |