Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals

In motor imagery (MI) based brain–computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dime...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 107; pp. 118 - 126
Main Authors Malan, Nitesh Singh, Sharma, Shiru
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.04.2019
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2019.02.009

Cover

Abstract In motor imagery (MI) based brain–computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dimensions and subject-specific behaviour of EEG features, there is a need for a suitable feature selection algorithm that can select the optimal features to give the best classification performance along with increased computational efficiency. The present study proposes a feature selection algorithm based on neighbourhood component analysis (NCA) with modification of the regularization parameter. In the experiment, time, frequency, and phase features of the EEG are extracted using a dual-tree complex wavelet transform (DTCWT). Afterwards, the proposed algorithm selects the most significant EEG features, and using these selected features, a support vector machine (SVM) classifier performs the classification of MI signals. The proposed algorithm has been validated experimentally on two public BCI datasets (BCI Competition II Dataset III and BCI Competition IV Dataset 2b). The classification performance of the algorithm is quantified by the average accuracy and kappa coefficient, whose values are 80.7% and 0.615 respectively. The performance of the proposed algorithm is compared with standard feature selection methods based on Genetic Algorithm (GA), Principal Component Analysis (PCA), and ReliefF and performs better than these methods. Further, the proposed algorithm selects the lowest number of features and results in increased computational efficiency, which makes it a promising feature selection tool for an MI-based BCI system. •RNCA at the feature selection stage enhances the classification performance of the Motor imagery task.•Computational time of the SVM classifier is significantly reduced using RNCA as feature selection approach.•Power spectral density of the EEG carries important information to distinguish between two classes of motor imagery.
AbstractList In motor imagery (MI) based brain-computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dimensions and subject-specific behaviour of EEG features, there is a need for a suitable feature selection algorithm that can select the optimal features to give the best classification performance along with increased computational efficiency. The present study proposes a feature selection algorithm based on neighbourhood component analysis (NCA) with modification of the regularization parameter. In the experiment, time, frequency, and phase features of the EEG are extracted using a dual-tree complex wavelet transform (DTCWT). Afterwards, the proposed algorithm selects the most significant EEG features, and using these selected features, a support vector machine (SVM) classifier performs the classification of MI signals. The proposed algorithm has been validated experimentally on two public BCI datasets (BCI Competition II Dataset III and BCI Competition IV Dataset 2b). The classification performance of the algorithm is quantified by the average accuracy and kappa coefficient, whose values are 80.7% and 0.615 respectively. The performance of the proposed algorithm is compared with standard feature selection methods based on Genetic Algorithm (GA), Principal Component Analysis (PCA), and ReliefF and performs better than these methods. Further, the proposed algorithm selects the lowest number of features and results in increased computational efficiency, which makes it a promising feature selection tool for an MI-based BCI system.
In motor imagery (MI) based brain–computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dimensions and subject-specific behaviour of EEG features, there is a need for a suitable feature selection algorithm that can select the optimal features to give the best classification performance along with increased computational efficiency. The present study proposes a feature selection algorithm based on neighbourhood component analysis (NCA) with modification of the regularization parameter. In the experiment, time, frequency, and phase features of the EEG are extracted using a dual-tree complex wavelet transform (DTCWT). Afterwards, the proposed algorithm selects the most significant EEG features, and using these selected features, a support vector machine (SVM) classifier performs the classification of MI signals. The proposed algorithm has been validated experimentally on two public BCI datasets (BCI Competition II Dataset III and BCI Competition IV Dataset 2b). The classification performance of the algorithm is quantified by the average accuracy and kappa coefficient, whose values are 80.7% and 0.615 respectively. The performance of the proposed algorithm is compared with standard feature selection methods based on Genetic Algorithm (GA), Principal Component Analysis (PCA), and ReliefF and performs better than these methods. Further, the proposed algorithm selects the lowest number of features and results in increased computational efficiency, which makes it a promising feature selection tool for an MI-based BCI system. •RNCA at the feature selection stage enhances the classification performance of the Motor imagery task.•Computational time of the SVM classifier is significantly reduced using RNCA as feature selection approach.•Power spectral density of the EEG carries important information to distinguish between two classes of motor imagery.
In motor imagery (MI) based brain-computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dimensions and subject-specific behaviour of EEG features, there is a need for a suitable feature selection algorithm that can select the optimal features to give the best classification performance along with increased computational efficiency. The present study proposes a feature selection algorithm based on neighbourhood component analysis (NCA) with modification of the regularization parameter. In the experiment, time, frequency, and phase features of the EEG are extracted using a dual-tree complex wavelet transform (DTCWT). Afterwards, the proposed algorithm selects the most significant EEG features, and using these selected features, a support vector machine (SVM) classifier performs the classification of MI signals. The proposed algorithm has been validated experimentally on two public BCI datasets (BCI Competition II Dataset III and BCI Competition IV Dataset 2b). The classification performance of the algorithm is quantified by the average accuracy and kappa coefficient, whose values are 80.7% and 0.615 respectively. The performance of the proposed algorithm is compared with standard feature selection methods based on Genetic Algorithm (GA), Principal Component Analysis (PCA), and ReliefF and performs better than these methods. Further, the proposed algorithm selects the lowest number of features and results in increased computational efficiency, which makes it a promising feature selection tool for an MI-based BCI system.In motor imagery (MI) based brain-computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related mental tasks separately. However, due to the high dimensions and subject-specific behaviour of EEG features, there is a need for a suitable feature selection algorithm that can select the optimal features to give the best classification performance along with increased computational efficiency. The present study proposes a feature selection algorithm based on neighbourhood component analysis (NCA) with modification of the regularization parameter. In the experiment, time, frequency, and phase features of the EEG are extracted using a dual-tree complex wavelet transform (DTCWT). Afterwards, the proposed algorithm selects the most significant EEG features, and using these selected features, a support vector machine (SVM) classifier performs the classification of MI signals. The proposed algorithm has been validated experimentally on two public BCI datasets (BCI Competition II Dataset III and BCI Competition IV Dataset 2b). The classification performance of the algorithm is quantified by the average accuracy and kappa coefficient, whose values are 80.7% and 0.615 respectively. The performance of the proposed algorithm is compared with standard feature selection methods based on Genetic Algorithm (GA), Principal Component Analysis (PCA), and ReliefF and performs better than these methods. Further, the proposed algorithm selects the lowest number of features and results in increased computational efficiency, which makes it a promising feature selection tool for an MI-based BCI system.
Author Malan, Nitesh Singh
Sharma, Shiru
Author_xml – sequence: 1
  givenname: Nitesh Singh
  surname: Malan
  fullname: Malan, Nitesh Singh
  email: niteshsm.rs.bme16@itbhu.ac.in
– sequence: 2
  givenname: Shiru
  surname: Sharma
  fullname: Sharma, Shiru
  email: shiru.bme@itbhu.ac.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30802693$$D View this record in MEDLINE/PubMed
BookMark eNqNkcGO0zAURS00iOkM_AKyxIZNyrOdNvEGAaOZAWkkNrC2HOcldUnsYjsjlR_gt3HaAaSuunoLXx_73XNFLpx3SAhlsGTA1u-2S-PHXWP9iO2SA5NL4EsA-YwsWF3JAlaivCALAAZFWfPVJbmKcQsAJQh4QS4F1MDXUizI7zvUaQpIIw5okvWOTtG6ngbsp0EH-wtb6tD2m8ZPYeN9S-en83dcotrpYR9tpMlTdBvtDNK0QWoGHaPtrNEH4A5D58N4OPYdHX3ygdpR9xj2NNo-U-JL8rzLA189zWvy_e72283n4uHr_Zebjw-FKVcyFWXDUWqjWzTNmte8rWFVCck6wZF1vMpTNHlL04i6lsC7VpRCtExKY6pOl-KavD1yd8H_nDAmNdpocBi0Qz9FxVm9ZiWrKpmjb06i21zB_FnFee6xyiZm4Oun1NRkG2oX8mZhr_5WnAP1MWCCjzFg9y_CQM021Vb9t6lmmwq4yjbz1fcnV41Nh05T0HY4B_DpCMBc6aPFoKKxmD20NmTbqvX2HMiHE4gZrMtyhx-4Pw_xB8np2ys
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_138760
crossref_primary_10_1093_sleep_zsad328
crossref_primary_10_1007_s11042_024_18365_y
crossref_primary_10_1177_1748006X211044843
crossref_primary_10_3390_s22093248
crossref_primary_10_1007_s11760_025_03851_z
crossref_primary_10_3390_s24196466
crossref_primary_10_1016_j_mehy_2019_109464
crossref_primary_10_1109_ACCESS_2024_3413822
crossref_primary_10_3390_rs14092097
crossref_primary_10_1016_j_heliyon_2024_e28716
crossref_primary_10_3390_en14113117
crossref_primary_10_1016_j_brainres_2025_149484
crossref_primary_10_1016_j_bspc_2023_105003
crossref_primary_10_1016_j_compeleceng_2024_109319
crossref_primary_10_1016_j_bspc_2021_102763
crossref_primary_10_1016_j_eswa_2022_118621
crossref_primary_10_1016_j_measen_2022_100553
crossref_primary_10_3390_bios12060384
crossref_primary_10_1080_0952813X_2023_2256739
crossref_primary_10_1016_j_bspc_2022_103618
crossref_primary_10_1038_s41598_023_38868_2
crossref_primary_10_1007_s00521_023_09311_4
crossref_primary_10_1016_j_engappai_2022_105347
crossref_primary_10_1109_JIOT_2024_3354988
crossref_primary_10_1016_j_talanta_2021_122873
crossref_primary_10_1109_TIM_2020_2994604
crossref_primary_10_1002_suco_202300452
crossref_primary_10_1002_ima_22683
crossref_primary_10_32628_IJSRST218535
crossref_primary_10_1115_1_4052838
crossref_primary_10_3390_sym13071202
crossref_primary_10_1109_ACCESS_2020_2982210
crossref_primary_10_3390_bios14050211
crossref_primary_10_17341_gazimmfd_978895
crossref_primary_10_1016_j_compbiomed_2020_103671
crossref_primary_10_1039_D3RA02476H
crossref_primary_10_1155_2020_1683013
crossref_primary_10_3390_s21196597
crossref_primary_10_1016_j_artmed_2021_102210
crossref_primary_10_1007_s10586_024_04475_7
crossref_primary_10_1088_2057_1976_ac2354
crossref_primary_10_1007_s12239_023_0071_0
crossref_primary_10_1016_j_chaos_2021_111450
crossref_primary_10_7717_peerj_12027
crossref_primary_10_1016_j_chemolab_2019_103886
crossref_primary_10_1016_j_jhydrol_2022_127534
crossref_primary_10_1016_j_eswa_2024_123239
crossref_primary_10_1109_TSMC_2024_3355101
crossref_primary_10_1016_j_eswa_2023_119971
crossref_primary_10_3390_s20164485
crossref_primary_10_1007_s11668_022_01463_0
crossref_primary_10_1142_S0129065721500404
crossref_primary_10_1016_j_bspc_2021_102550
crossref_primary_10_1007_s11042_023_14943_8
crossref_primary_10_1016_j_bspc_2020_102069
crossref_primary_10_47897_bilmes_845452
crossref_primary_10_1007_s00202_023_01974_5
crossref_primary_10_1016_j_compbiomed_2022_105521
crossref_primary_10_1016_j_mineng_2021_107041
crossref_primary_10_3390_s20205881
crossref_primary_10_1016_j_bspc_2021_102621
crossref_primary_10_1109_TIM_2021_3132833
crossref_primary_10_1088_1741_2552_abce70
crossref_primary_10_1016_j_bspc_2021_102548
crossref_primary_10_1016_j_eswa_2022_119219
crossref_primary_10_1016_j_irbm_2021_01_002
crossref_primary_10_1016_j_jneumeth_2021_109425
crossref_primary_10_1186_s41747_024_00455_z
crossref_primary_10_1007_s00500_020_05205_y
crossref_primary_10_1007_s11042_024_18595_0
crossref_primary_10_1016_j_bspc_2024_106681
crossref_primary_10_1142_S0219467823500535
crossref_primary_10_1016_j_inffus_2023_102124
crossref_primary_10_1109_JSEN_2023_3276022
crossref_primary_10_1109_TIA_2023_3327227
crossref_primary_10_1109_JBHI_2024_3464550
crossref_primary_10_1007_s11042_022_12327_y
crossref_primary_10_1016_j_bspc_2022_103496
crossref_primary_10_1016_j_compeleceng_2022_108275
crossref_primary_10_1080_24705314_2023_2230398
crossref_primary_10_1007_s11030_022_10425_5
crossref_primary_10_1016_j_rser_2020_109873
crossref_primary_10_1177_15500594251325273
crossref_primary_10_2217_epi_2019_0230
crossref_primary_10_1080_03772063_2021_1914204
crossref_primary_10_3992_jgb_17_4_79
Cites_doi 10.1109/TNNLS.2015.2476656
10.1016/j.ijleo.2013.09.013
10.1016/j.eij.2015.06.002
10.1109/TNSRE.2013.2243471
10.1155/2018/1624637
10.1109/RBME.2009.2035356
10.1109/5.939829
10.1016/j.neucom.2011.06.026
10.1007/BF00175354
10.1162/NECO_a_00838
10.3390/s17112576
10.1109/TCYB.2015.2479240
10.1038/nrneurol.2016.113
10.1109/TNSRE.2016.2519350
10.1016/j.neunet.2018.02.011
10.1016/S1388-2457(99)00141-8
10.1109/TSP.2009.2028962
10.1109/ACCESS.2018.2868361
10.3389/fnins.2012.00055
10.1155/2013/419187
10.1109/TBME.2008.2009768
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
2019. Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: 2019. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2019.02.009
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
Text complet a ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Research Library Prep

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 126
ExternalDocumentID 30802693
10_1016_j_compbiomed_2019_02_009
S0010482519300563
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
M0N
RIG
AAYXX
CITATION
PUEGO
AFCTW
ALIPV
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c459t-4b2e9acadecb6282d8057391f32e1f27f323b040cb388902fd3433d199cc7fa43
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 09:08:15 EDT 2025
Tue Oct 07 06:38:35 EDT 2025
Thu Apr 03 07:02:34 EDT 2025
Wed Oct 01 04:07:28 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Fri Feb 23 02:24:56 EST 2024
Tue Oct 14 19:33:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Brain-computer interface
Motor imagery
Support vector machine
Genetic algorithm
Neighbourhood component analysis
Principal component analysis
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-4b2e9acadecb6282d8057391f32e1f27f323b040cb388902fd3433d199cc7fa43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30802693
PQID 2203070164
PQPubID 1226355
PageCount 9
ParticipantIDs proquest_miscellaneous_2186141779
proquest_journals_2203070164
pubmed_primary_30802693
crossref_primary_10_1016_j_compbiomed_2019_02_009
crossref_citationtrail_10_1016_j_compbiomed_2019_02_009
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_02_009
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_02_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Uzer, Yilmaz, Inan (bib45) 2013
Yu, Chum, Sim (bib17) 2014; 125
Yang, Laaksonen (bib25) 2007
Wang, Zhang, Waytowich, Krusienski, Zhou, Jin, Wang, Cichocki (bib11) 2016; 24
Rakotomamonjy, Guigue, Mallet, Alvarado (bib16) 2005
Shawe-Taylor, Sun (bib40) 2011; 74
Zhang, Nam, Zhou, Jin, Wang, Cichocki (bib9) 2018
Chaurasiya, Londhe, Ghosh (bib30) 2015; 9
Song, Guo, Mei (bib37) 2010
Bhattacharyya, Rakshit, Konar, Tibarewala, Janarthanan (bib19) 2013
Hsu (bib33) 2013; 9
Feng, Yin, Jin, Saab, Daly, Wang, Hu, Cichocki (bib44) 2018; 102
Feature selection on movement imagery discrimination and attention detection, (n.d.). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946110/(accessed February 5, 2019).
Resalat, Saba (bib31) 2016; 7
Ang, Chin, Zhang, Guan (bib42) 2008
Ramos, Hernández, Vellasco (bib23) 2016
Babatunde, Armstrong, Leng, Diepeveen (bib35) 2014
Bashashati, Ward, Bashashati (bib48) 2016
Hamedi, Salleh, Noor (bib2) 2016; 28
Corralejo, Hornero, Álvarez (bib46) 2011
Pfurtscheller, Da Silva (bib3) 1999; 110
Grosse-Wentrup, Liefhold, Gramann, Buss (bib7) 2009; 56
Schlogl, Kronegg, Huggins, Mason (bib41) 2007
Nakisa, Rastgoo, Rakotonirainy, Maire, Chandran (bib47) 2018; 6
Pfurtscheller, Neuper (bib8) 2001; 89
Kim, Sun, Liu, Wang, Paek (bib32) 2018
Zikov, Bibian, Dumont, Huzmezan, Ries (bib29) 2002
Dong, Kim, Lee (bib13) 2016; 46
Jin, Zhou, Gao, Zhang (bib14) 2018
Boutsidis, Mahoney, Drineas (bib36) 2008
Wang, Gonuguntla, Shafiq, Veluvolu (bib20) 2013
Goldberger, Hinton, Roweis, Salakhutdinov (bib24) 2005
Liu, Chen, Liu, Ai, Xie, Chen (bib15) 2017; 17
Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz (bib27) 2012; 6
Guo, Wu, Gong, Zhang (bib18) 2013
Chaudhury, Unser (bib28) 2010; 58
Zhang, Zhou, Jin, Zhao, Wang, Cichocki (bib10) 2016; 27
Zhang, Zhou, Zhao, Jin, Wang, Cichocki (bib12) 2013; 21
Chaudhary, Birbaumer, Ramos-Murguialday (bib1) 2016; 12
Kononenko (bib38) 1994
Blankertz, Muller, Curio, Vaughan, Schalk, Wolpaw, Schlogl, Neuper, Pfurtscheller, Hinterberger, Schroder, Birbaumer (bib26) 2004; 51
Wang, Wang, Jung (bib43) 2012; 7
Cantillo-Negrete, Carino-Escobar, Carrillo-Mora, Elias-Vinas, Gutierrez-Martinez (bib6) 2018
Abdulkader, Atia, Mostafa (bib4) 2015; 16
Whitley (bib34) 1994; 4
Yang, Wang, Zuo (bib39) 2012; 7
Mak, Wolpaw (bib5) 2009; 2
Rakshit, Bhattacharyya, Konar, Khasnobish, Tibarewala, Janarthanan (bib21) 2013
Yang (10.1016/j.compbiomed.2019.02.009_bib25) 2007
Babatunde (10.1016/j.compbiomed.2019.02.009_bib35) 2014
Bashashati (10.1016/j.compbiomed.2019.02.009_bib48) 2016
Yu (10.1016/j.compbiomed.2019.02.009_bib17) 2014; 125
Uzer (10.1016/j.compbiomed.2019.02.009_bib45) 2013
Chaudhury (10.1016/j.compbiomed.2019.02.009_bib28) 2010; 58
Goldberger (10.1016/j.compbiomed.2019.02.009_bib24) 2005
Hamedi (10.1016/j.compbiomed.2019.02.009_bib2) 2016; 28
Boutsidis (10.1016/j.compbiomed.2019.02.009_bib36) 2008
Wang (10.1016/j.compbiomed.2019.02.009_bib11) 2016; 24
Guo (10.1016/j.compbiomed.2019.02.009_bib18) 2013
Tangermann (10.1016/j.compbiomed.2019.02.009_bib27) 2012; 6
Ang (10.1016/j.compbiomed.2019.02.009_bib42) 2008
Jin (10.1016/j.compbiomed.2019.02.009_bib14) 2018
10.1016/j.compbiomed.2019.02.009_bib22
Kim (10.1016/j.compbiomed.2019.02.009_bib32) 2018
Pfurtscheller (10.1016/j.compbiomed.2019.02.009_bib8) 2001; 89
Resalat (10.1016/j.compbiomed.2019.02.009_bib31) 2016; 7
Whitley (10.1016/j.compbiomed.2019.02.009_bib34) 1994; 4
Chaudhary (10.1016/j.compbiomed.2019.02.009_bib1) 2016; 12
Zikov (10.1016/j.compbiomed.2019.02.009_bib29) 2002
Pfurtscheller (10.1016/j.compbiomed.2019.02.009_bib3) 1999; 110
Yang (10.1016/j.compbiomed.2019.02.009_bib39) 2012; 7
Rakshit (10.1016/j.compbiomed.2019.02.009_bib21) 2013
Zhang (10.1016/j.compbiomed.2019.02.009_bib12) 2013; 21
Schlogl (10.1016/j.compbiomed.2019.02.009_bib41) 2007
Ramos (10.1016/j.compbiomed.2019.02.009_bib23) 2016
Corralejo (10.1016/j.compbiomed.2019.02.009_bib46) 2011
Liu (10.1016/j.compbiomed.2019.02.009_bib15) 2017; 17
Feng (10.1016/j.compbiomed.2019.02.009_bib44) 2018; 102
Blankertz (10.1016/j.compbiomed.2019.02.009_bib26) 2004; 51
Nakisa (10.1016/j.compbiomed.2019.02.009_bib47) 2018; 6
Wang (10.1016/j.compbiomed.2019.02.009_bib43) 2012; 7
Shawe-Taylor (10.1016/j.compbiomed.2019.02.009_bib40) 2011; 74
Chaurasiya (10.1016/j.compbiomed.2019.02.009_bib30) 2015; 9
Hsu (10.1016/j.compbiomed.2019.02.009_bib33) 2013; 9
Kononenko (10.1016/j.compbiomed.2019.02.009_bib38) 1994
Grosse-Wentrup (10.1016/j.compbiomed.2019.02.009_bib7) 2009; 56
Zhang (10.1016/j.compbiomed.2019.02.009_bib10) 2016; 27
Zhang (10.1016/j.compbiomed.2019.02.009_bib9) 2018
Abdulkader (10.1016/j.compbiomed.2019.02.009_bib4) 2015; 16
Song (10.1016/j.compbiomed.2019.02.009_bib37) 2010
Mak (10.1016/j.compbiomed.2019.02.009_bib5) 2009; 2
Cantillo-Negrete (10.1016/j.compbiomed.2019.02.009_bib6) 2018
Bhattacharyya (10.1016/j.compbiomed.2019.02.009_bib19) 2013
Dong (10.1016/j.compbiomed.2019.02.009_bib13) 2016; 46
Rakotomamonjy (10.1016/j.compbiomed.2019.02.009_bib16) 2005
Wang (10.1016/j.compbiomed.2019.02.009_bib20) 2013
References_xml – volume: 7
  year: 2012
  ident: bib43
  article-title: Translation of EEG spatial filters from resting to motor imagery using independent component analysis
  publication-title: PLoS One
– volume: 89
  start-page: 1123
  year: 2001
  end-page: 1134
  ident: bib8
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
– volume: 27
  start-page: 2256
  year: 2016
  end-page: 2267
  ident: bib10
  article-title: Sparse bayesian classification of EEG for brain–computer interface
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
– volume: 56
  start-page: 1209
  year: 2009
  end-page: 1219
  ident: bib7
  article-title: Beamforming in noninvasive brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 24
  start-page: 532
  year: 2016
  end-page: 541
  ident: bib11
  article-title: Discriminative feature extraction via multivariate linear regression for SSVEP-based BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 2390
  year: 2008
  end-page: 2397
  ident: bib42
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on
– start-page: 1
  year: 2018
  end-page: 9
  ident: bib14
  article-title: EEG Classification Using Sparse Bayesian Extreme Learning Machine for Brain–Computer Interface, Neural Computing and Applications
– volume: 21
  start-page: 233
  year: 2013
  end-page: 243
  ident: bib12
  article-title: Spatial-temporal discriminant analysis for ERP-based brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 45
  year: 2005
  end-page: 50
  ident: bib16
  article-title: Ensemble of SVMs for improving brain computer interface P300 speller performances
  publication-title: Proceedings of the 15th International Conference on Artificial Neural Networks: Biological Inspirations - Volume Part I
– volume: 16
  start-page: 213
  year: 2015
  end-page: 230
  ident: bib4
  article-title: Brain computer interfacing: applications and challenges
  publication-title: Egyptian Informatics Journal
– start-page: 34
  year: 2013
  end-page: 35
  ident: bib20
  article-title: BMFLC with neural network and DE for better event classification
  publication-title: 2013 International Winter Workshop on Brain-Computer Interface
– volume: 102
  start-page: 87
  year: 2018
  end-page: 95
  ident: bib44
  article-title: Towards correlation-based time window selection method for motor imagery BCIs
  publication-title: Neural Network.
– volume: 51
  start-page: 1044
  year: 2004
  end-page: 1051
  ident: bib26
  article-title: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 4
  start-page: 65
  year: 1994
  end-page: 85
  ident: bib34
  article-title: A genetic algorithm tutorial
  publication-title: Stat. Comput.
– volume: 7
  start-page: 161
  year: 2012
  end-page: 168
  ident: bib39
  article-title: Neighborhood component feature selection for high-dimensional data
  publication-title: J. Clin. Pharm.
– volume: 2
  start-page: 187
  year: 2009
  end-page: 199
  ident: bib5
  article-title: Clinical applications of brain-computer interfaces: current state and future prospects
  publication-title: IEEE Rev. Biomed. Eng.
– year: 2018
  ident: bib6
  article-title: Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients
  publication-title: J. Healthc. Eng.
– start-page: 253
  year: 2007
  end-page: 262
  ident: bib25
  article-title: Regularized neighborhood component analysis
  publication-title: Image Analysis
– volume: 9
  start-page: 182
  year: 2015
  end-page: 186
  ident: bib30
  article-title: Statistical wavelet features, PCA, and SVM based approach for EEG signals classification
  publication-title: Int. J. Electr. Comput. Electron. Commun. Eng.
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib23
  article-title: Feature Selection methods applied to Motor Imagery task classification
  publication-title: 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI)
– start-page: 61
  year: 2008
  end-page: 69
  ident: bib36
  article-title: Unsupervised feature selection for principal components analysis
  publication-title: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 7703
  year: 2011
  end-page: 7706
  ident: bib46
  article-title: Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface
  publication-title: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– start-page: 513
  year: 2005
  end-page: 520
  ident: bib24
  article-title: Neighbourhood components analysis
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 513
  year: 2016
  end-page: 525
  ident: bib1
  article-title: Brain-computer interfaces for communication and rehabilitation
  publication-title: Nat. Rev. Neurol.
– volume: 6
  start-page: 55
  year: 2012
  ident: bib27
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci.
– start-page: 1
  year: 2018
  end-page: 14
  ident: bib32
  article-title: An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI
  publication-title: Med. Biol. Eng. Comput.
– start-page: 27
  year: 2010
  end-page: 30
  ident: bib37
  article-title: Feature selection using principal component analysis
  publication-title: System Science, Engineering Design and Manufacturing Informatization (ICSEM), 2010 International Conference on
– volume: 74
  start-page: 3609
  year: 2011
  end-page: 3618
  ident: bib40
  article-title: A review of optimization methodologies in support vector machines
  publication-title: Neurocomputing
– year: 2013
  ident: bib45
  article-title: Feature selection method based on artificial bee Colony algorithm and support vector machines for medical datasets classification
  publication-title: J. Sci. World
– volume: 58
  start-page: 221
  year: 2010
  end-page: 232
  ident: bib28
  article-title: On the shiftability of dual-tree complex wavelet transforms
  publication-title: IEEE Trans. Signal Process.
– start-page: 534
  year: 2013
  end-page: 545
  ident: bib19
  article-title: Feature selection of motor imagery EEG signals using firefly temporal difference Q-learning and support vector machine
  publication-title: Swarm, Evolutionary, and Memetic Computing
– volume: 125
  start-page: 1498
  year: 2014
  end-page: 1502
  ident: bib17
  article-title: Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system
  publication-title: Optik
– volume: 7
  start-page: 13
  year: 2016
  end-page: 19
  ident: bib31
  article-title: A study of various feature extraction methods on a motor imagery based brain computer interface system
  publication-title: Basic Clin. Neurosci.
– volume: 6
  start-page: 49325
  year: 2018
  end-page: 49338
  ident: bib47
  article-title: Long short term memory hyperparameter optimization for a neural network based emotion recognition framework
  publication-title: IEEE Access
– start-page: 1
  year: 2018
  end-page: 11
  ident: bib9
  article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI
  publication-title: IEEE Trans. Cybern.
– reference: Feature selection on movement imagery discrimination and attention detection, (n.d.). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946110/(accessed February 5, 2019).
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  ident: bib3
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
– volume: 46
  start-page: 2535
  year: 2016
  end-page: 2542
  ident: bib13
  article-title: EEG-based classification of implicit intention during self-relevant sentence reading
  publication-title: IEEE Trans. Cybern.
– start-page: 1058
  year: 2013
  end-page: 1061
  ident: bib18
  article-title: Envelope detection based on online ICA algorithm and its application to motor imagery classification
  publication-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering
– start-page: 127
  year: 2013
  end-page: 138
  ident: bib21
  article-title: Artificial bee Colony based feature selection for motor imagery EEG data
  publication-title: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012)
– year: 2007
  ident: bib41
  article-title: 19 Evaluation Criteria for Bci Research, toward Brain-Computer Interfacing
– volume: 9
  start-page: 465
  year: 2013
  end-page: 475
  ident: bib33
  article-title: Wavelet-coherence features for motor imagery EEG analysis posterior to EOG noise elimination
  publication-title: Int. J. Innov. Comput. Inf. Contr.
– year: 2014
  ident: bib35
  article-title: A Genetic Algorithm-Based Feature Selection
– start-page: 1
  year: 2016
  end-page: 5
  ident: bib48
  article-title: Bayesian optimization of BCI parameters
  publication-title: 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)
– volume: 28
  start-page: 999
  year: 2016
  end-page: 1041
  ident: bib2
  article-title: Electroencephalographic motor imagery brain connectivity analysis for BCI: a review
  publication-title: Neural Comput.
– volume: 17
  year: 2017
  ident: bib15
  article-title: Feature selection for motor imagery EEG classification based on firefly algorithm and learning automata
  publication-title: Sensors
– start-page: 98
  year: 2002
  end-page: 105
  ident: bib29
  article-title: A wavelet based de-noising technique for ocular artifact correction of the electroencephalogram
  publication-title: Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint
– start-page: 171
  year: 1994
  end-page: 182
  ident: bib38
  article-title: Estimating attributes: analysis and extensions of RELIEF
  publication-title: European Conference on Machine Learning
– ident: 10.1016/j.compbiomed.2019.02.009_bib22
– volume: 51
  start-page: 1044
  year: 2004
  ident: 10.1016/j.compbiomed.2019.02.009_bib26
  article-title: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 7
  year: 2012
  ident: 10.1016/j.compbiomed.2019.02.009_bib43
  article-title: Translation of EEG spatial filters from resting to motor imagery using independent component analysis
  publication-title: PLoS One
– volume: 27
  start-page: 2256
  year: 2016
  ident: 10.1016/j.compbiomed.2019.02.009_bib10
  article-title: Sparse bayesian classification of EEG for brain–computer interface
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
  doi: 10.1109/TNNLS.2015.2476656
– start-page: 2390
  year: 2008
  ident: 10.1016/j.compbiomed.2019.02.009_bib42
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
– start-page: 7703
  year: 2011
  ident: 10.1016/j.compbiomed.2019.02.009_bib46
  article-title: Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface
– start-page: 534
  year: 2013
  ident: 10.1016/j.compbiomed.2019.02.009_bib19
  article-title: Feature selection of motor imagery EEG signals using firefly temporal difference Q-learning and support vector machine
– start-page: 253
  year: 2007
  ident: 10.1016/j.compbiomed.2019.02.009_bib25
  article-title: Regularized neighborhood component analysis
– start-page: 1058
  year: 2013
  ident: 10.1016/j.compbiomed.2019.02.009_bib18
  article-title: Envelope detection based on online ICA algorithm and its application to motor imagery classification
– volume: 125
  start-page: 1498
  year: 2014
  ident: 10.1016/j.compbiomed.2019.02.009_bib17
  article-title: Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system
  publication-title: Optik
  doi: 10.1016/j.ijleo.2013.09.013
– volume: 16
  start-page: 213
  year: 2015
  ident: 10.1016/j.compbiomed.2019.02.009_bib4
  article-title: Brain computer interfacing: applications and challenges
  publication-title: Egyptian Informatics Journal
  doi: 10.1016/j.eij.2015.06.002
– start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2019.02.009_bib23
  article-title: Feature Selection methods applied to Motor Imagery task classification
– volume: 21
  start-page: 233
  year: 2013
  ident: 10.1016/j.compbiomed.2019.02.009_bib12
  article-title: Spatial-temporal discriminant analysis for ERP-based brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2243471
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2019.02.009_bib32
  article-title: An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI
  publication-title: Med. Biol. Eng. Comput.
– start-page: 45
  year: 2005
  ident: 10.1016/j.compbiomed.2019.02.009_bib16
  article-title: Ensemble of SVMs for improving brain computer interface P300 speller performances
– year: 2018
  ident: 10.1016/j.compbiomed.2019.02.009_bib6
  article-title: Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/1624637
– volume: 2
  start-page: 187
  year: 2009
  ident: 10.1016/j.compbiomed.2019.02.009_bib5
  article-title: Clinical applications of brain-computer interfaces: current state and future prospects
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2009.2035356
– volume: 7
  start-page: 161
  year: 2012
  ident: 10.1016/j.compbiomed.2019.02.009_bib39
  article-title: Neighborhood component feature selection for high-dimensional data
  publication-title: J. Clin. Pharm.
– start-page: 27
  year: 2010
  ident: 10.1016/j.compbiomed.2019.02.009_bib37
  article-title: Feature selection using principal component analysis
– volume: 89
  start-page: 1123
  year: 2001
  ident: 10.1016/j.compbiomed.2019.02.009_bib8
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– volume: 74
  start-page: 3609
  year: 2011
  ident: 10.1016/j.compbiomed.2019.02.009_bib40
  article-title: A review of optimization methodologies in support vector machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.06.026
– start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2019.02.009_bib48
  article-title: Bayesian optimization of BCI parameters
– volume: 4
  start-page: 65
  year: 1994
  ident: 10.1016/j.compbiomed.2019.02.009_bib34
  article-title: A genetic algorithm tutorial
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175354
– volume: 9
  start-page: 182
  year: 2015
  ident: 10.1016/j.compbiomed.2019.02.009_bib30
  article-title: Statistical wavelet features, PCA, and SVM based approach for EEG signals classification
  publication-title: Int. J. Electr. Comput. Electron. Commun. Eng.
– start-page: 171
  year: 1994
  ident: 10.1016/j.compbiomed.2019.02.009_bib38
  article-title: Estimating attributes: analysis and extensions of RELIEF
– volume: 28
  start-page: 999
  year: 2016
  ident: 10.1016/j.compbiomed.2019.02.009_bib2
  article-title: Electroencephalographic motor imagery brain connectivity analysis for BCI: a review
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00838
– volume: 17
  year: 2017
  ident: 10.1016/j.compbiomed.2019.02.009_bib15
  article-title: Feature selection for motor imagery EEG classification based on firefly algorithm and learning automata
  publication-title: Sensors
  doi: 10.3390/s17112576
– volume: 46
  start-page: 2535
  year: 2016
  ident: 10.1016/j.compbiomed.2019.02.009_bib13
  article-title: EEG-based classification of implicit intention during self-relevant sentence reading
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2479240
– volume: 9
  start-page: 465
  year: 2013
  ident: 10.1016/j.compbiomed.2019.02.009_bib33
  article-title: Wavelet-coherence features for motor imagery EEG analysis posterior to EOG noise elimination
  publication-title: Int. J. Innov. Comput. Inf. Contr.
– start-page: 61
  year: 2008
  ident: 10.1016/j.compbiomed.2019.02.009_bib36
  article-title: Unsupervised feature selection for principal components analysis
– year: 2007
  ident: 10.1016/j.compbiomed.2019.02.009_bib41
– volume: 12
  start-page: 513
  year: 2016
  ident: 10.1016/j.compbiomed.2019.02.009_bib1
  article-title: Brain-computer interfaces for communication and rehabilitation
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2016.113
– volume: 24
  start-page: 532
  year: 2016
  ident: 10.1016/j.compbiomed.2019.02.009_bib11
  article-title: Discriminative feature extraction via multivariate linear regression for SSVEP-based BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2519350
– start-page: 98
  year: 2002
  ident: 10.1016/j.compbiomed.2019.02.009_bib29
  article-title: A wavelet based de-noising technique for ocular artifact correction of the electroencephalogram
– volume: 102
  start-page: 87
  year: 2018
  ident: 10.1016/j.compbiomed.2019.02.009_bib44
  article-title: Towards correlation-based time window selection method for motor imagery BCIs
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2018.02.011
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2019.02.009_bib9
  article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI
  publication-title: IEEE Trans. Cybern.
– volume: 110
  start-page: 1842
  year: 1999
  ident: 10.1016/j.compbiomed.2019.02.009_bib3
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 58
  start-page: 221
  year: 2010
  ident: 10.1016/j.compbiomed.2019.02.009_bib28
  article-title: On the shiftability of dual-tree complex wavelet transforms
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2028962
– start-page: 127
  year: 2013
  ident: 10.1016/j.compbiomed.2019.02.009_bib21
  article-title: Artificial bee Colony based feature selection for motor imagery EEG data
– volume: 6
  start-page: 49325
  year: 2018
  ident: 10.1016/j.compbiomed.2019.02.009_bib47
  article-title: Long short term memory hyperparameter optimization for a neural network based emotion recognition framework
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2868361
– start-page: 513
  year: 2005
  ident: 10.1016/j.compbiomed.2019.02.009_bib24
  article-title: Neighbourhood components analysis
– start-page: 34
  year: 2013
  ident: 10.1016/j.compbiomed.2019.02.009_bib20
  article-title: BMFLC with neural network and DE for better event classification
– volume: 6
  start-page: 55
  year: 2012
  ident: 10.1016/j.compbiomed.2019.02.009_bib27
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00055
– volume: 7
  start-page: 13
  year: 2016
  ident: 10.1016/j.compbiomed.2019.02.009_bib31
  article-title: A study of various feature extraction methods on a motor imagery based brain computer interface system
  publication-title: Basic Clin. Neurosci.
– year: 2014
  ident: 10.1016/j.compbiomed.2019.02.009_bib35
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2019.02.009_bib14
– year: 2013
  ident: 10.1016/j.compbiomed.2019.02.009_bib45
  article-title: Feature selection method based on artificial bee Colony algorithm and support vector machines for medical datasets classification
  publication-title: J. Sci. World
  doi: 10.1155/2013/419187
– volume: 56
  start-page: 1209
  year: 2009
  ident: 10.1016/j.compbiomed.2019.02.009_bib7
  article-title: Beamforming in noninvasive brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2009768
SSID ssj0004030
Score 2.5450428
Snippet In motor imagery (MI) based brain–computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to...
In motor imagery (MI) based brain-computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118
SubjectTerms Accuracy
Brain-computer interface
Classification
Cognitive tasks
Competition
Computational efficiency
Computational neuroscience
Computing time
Data processing
Datasets
EEG
Electroencephalography
Feature extraction
Genetic algorithm
Genetic algorithms
Genetic analysis
Human-computer interface
Image classification
Image enhancement
Mental task performance
Methods
Motor imagery
Motor task performance
Motors
Neighbourhood component analysis
Parameter modification
Principal component analysis
Principal components analysis
Regularization
Robotics
Signal analysis
Signal classification
Support vector machine
Support vector machines
Temporal resolution
Wavelet transforms
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELUQB9RLBbRA-KimUq9b8NrZXYsTQiBUCU5F4matvXabCnajTXJoD1z528zY3kQckCL1FCXZiRzP7Ph5_eYNY9-4aqp6XKhMGY4blMaXWa2sz4xH7OoQoNcusHzvipt7-eNh_LDBLodaGKJVptwfc3rI1umT0zSbp9PJhGp8cSsRKi9Jcr0gxU8pS-pi8P15RfOQZyKWoWC-oasTmydyvIi2HcvcieSlonqnem-Jeg-ChqXoept9TBgSLuIwd9iGa3fZ1m06Jf_EXgjXLXoHs9DkBmceiN7-C_rQeL6f_HMNtPRMlB5pkq4x0BC7FhcgqJNKCcw7cO1vCgpAkAiWYDbxioIrYboqOIDOAzq862HyRIoYf4FIIRjWn9n99dXPy5ssNVzIrByreSZN7lRNvHxrCtyLNRXJJSruRe64z0t8FQZn1BpR0fmkb4QUouFKWVv6Woo9ttniYA8YGOFEMbaYIZyShZdG-KpopMrLvLKOVyNWDnOsbVIjp6YYj3qgnf3RK-9o8o4-yzV6Z8T40nIaFTnWsFGDG_VQcYo5UuOysYbt-dL2TWSuaX08RI1O2WGm8zykWtypjtjX5dd4X9NhTd26boHX8AqREy9L_In9GG3LvyuoQLpQ4vC_hnbEPtC7SEM6ZpvzfuFOEGHNzZdwC70CizsoWw
  priority: 102
  providerName: Elsevier
Title Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519300563
https://dx.doi.org/10.1016/j.compbiomed.2019.02.009
https://www.ncbi.nlm.nih.gov/pubmed/30802693
https://www.proquest.com/docview/2203070164
https://www.proquest.com/docview/2186141779
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LAB)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB21iYS4oPIdKNEicTV0vRvbK1ShghoCiAghKuW2svejFIEd3OTQHrjyt5nxrpNTUS7OIRlr4xnPvt198wbgBVe2KCeZSlTFcYFifZ6Uyvik8ohdHQL00nUs33k2O5MfF5PFHsz7WhiiVfY5sUvUtjG0R_4qTbvwRHT_Zvk7oa5RdLrat9AoY2sFe9xJjO3DMCVlrAEM357Ov3zdVkoeiVCUgtlH4uIocnsC44tI3KHonShfKmh5qpsmrJsAaTcxTQ_gTkSU7CSEwF3Yc_U9uPU5npnfh7-E8tatY5ddyxv0AyOy-zlruzb07cW1s6ymHVLa4CSVY0ZDbGqcjlgZNUvYqmGu_k4hwhAyMkOgm1hGnWPZclt-wBrP0P1Nyy5-kT7GFSOKCAb5Azibnn57N0ti-4XEyIlaJbJKnSqJpW-qDFdmtiDxRMW9SB33aY6fosInaipR0Gmlt0IKYblSxuS-lOIhDGoc7GNglXAimxjMF07JzMtK-CKzUqV5WhjHixHk_TPWJmqTU4uMn7onof3QW-9o8o4-SjV6ZwR8Y7kM-hw72KjejbqvP8WMqXES2cH29cY2YpSAPXa0PuyjRsdccam3kT2C55uv8S2no5uyds0af8MLxFE8z_EWj0K0bf6uoHLpTIkn_7_5U7hNIwmso0MYrNq1e4aAalWNYf_lH47XfJHjtZi-H8Pw5MOn2Xwc359_3Qonzg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK0EviDcLBYwEx4j6sUksVCEerba0XSHUSr2Z-AWtIFmyu0LlD_Cv-G3MxM7uqWgvPe0hO5aTGY-_sb-ZIeQFU66shrnKlGEQoLhQZJWyITMBsKsHgF75juU7zkcn8uPp8HSN_O1zYZBW2fvEzlG7xuIZ-SvOO_MEdP9m8jPDrlF4u9q30KhSawW305UYS4kdB_7iF4Rw0539D6Dvl5zv7R6_H2Wpy0Bm5VDNMmm4VxWS0a3JIQBxJdYIVCwI7lngBfwKA6ZujSjxUi44IYVwTClri1BJAeNeIxtSSAXB38a73fGnz8vMzG0Rk2DA20kIxhKXKDLMkDQek-yRYqZi7VB12QZ5GQDuNsK9W-RmQrD0bTS522TN13fI9aN0R3-X_EFUOW89nXYtdkDvFMn1X2nbtb1vz357R2s8kcUDVayqTHGKTQ3bH61SjRQ6a6ivv6FJUoCo1CLIR1ZTZ0h0skx3oE2gYG5NS89-YD2OC4qUFFhU98jJlSjiPlmvYbIPCTXCi3xowT95JfMgjQhl7qTiBS-tZ-WAFP031jbVQseWHN91T3o710vtaNSO3uYatDMgbCE5ifVAVpBRvRp1n-8KHlrDprWC7OuFbMJEEeusKL3VW41OvmmqlytpQJ4vHoNXwauiqvbNHP7DSsBtrChgiAfR2havKzA9O1fi0f8Hf0ZujI6PDvXh_vjgMdnEWUXG0xZZn7Vz_wTA3Mw8TSuGki9XvUj_AbVoYC8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8WChgJjlHrx8axEEKIsmopVByotDcTOzYUQbJkd4XKH-A_8euYiZPdU9FeetpDdiwn8_Bn-5sZgGfcVEU5zk1mHMcNShV1VhofMxcRuwYE6GXoWL4n-eGpejcdT7fg75ALQ7TKISZ2gbpqPJ2R7wnRmSei-73Y0yI-HkxezX5m1EGKblqHdhrJRI7D-S_cvs1fHh2grp8LMXn76c1h1ncYyLwam0WmnAimJCK6dzluPqqC6gMaHqUIPAqNv9KhmXsnC7qQi5VUUlbcGO91LJXEca_AVS2lITqhnup1Tua-TOkvGOcUbsN6FlHilhFdPKXXE7nMpKqh5qKl8SLo2y2Bkxtwvceu7HUytpuwFepbsPOhv52_DX8ITy7bwOZdcx3UOCNa_RfWdg3v27PfoWI1ncXSUSrVU2Y0xabGhY-VfXUUtmhYqL-SMTIEp8wTvCc-U2dCbLZOdGBNZGhoTcvOflAljnNGZBR0pztweilquAvbNU72PjAng8zHHiNTMCqPyslY5JUyQovCB16MQA_f2Pq-Cjo14_huB7rbN7vWjiXt2H1hUTsj4CvJWaoEsoGMGdRoh0xXjM0Wl6sNZF-sZHs0lFDOhtK7g9XYPirN7dqHRvB09RjjCV0SlXVolvgfXiBi41rjEPeSta1eV1Jidm7kg_8P_gR20DXt-6OT44dwjSaVqE67sL1ol-ERoriFe9y5C4PPl-2f_wAfC13J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+using+regularized+neighbourhood+component+analysis+to+enhance+the+classification+performance+of+motor+imagery+signals&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Malan%2C+Nitesh+Singh&rft.au=Sharma%2C+Shiru&rft.date=2019-04-01&rft.issn=0010-4825&rft.volume=107&rft.spage=118&rft.epage=126&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.02.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2019_02_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon